2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
107 u64 orig_block_len, u64 ram_bytes,
110 static int btrfs_dirty_inode(struct inode *inode);
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
125 err = btrfs_init_acl(trans, inode, dir);
127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 struct btrfs_path *path, int extent_inserted,
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
141 struct page **compressed_pages)
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
147 struct btrfs_file_extent_item *ei;
150 size_t cur_size = size;
151 unsigned long offset;
153 if (compressed_size && compressed_pages)
154 cur_size = compressed_size;
156 inode_add_bytes(inode, size);
158 if (!extent_inserted) {
159 struct btrfs_key key;
162 key.objectid = btrfs_ino(inode);
164 key.type = BTRFS_EXTENT_DATA_KEY;
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
185 if (compress_type != BTRFS_COMPRESS_NONE) {
188 while (compressed_size > 0) {
189 cpage = compressed_pages[i];
190 cur_size = min_t(unsigned long, compressed_size,
193 kaddr = kmap_atomic(cpage);
194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 kunmap_atomic(kaddr);
199 compressed_size -= cur_size;
201 btrfs_set_file_extent_compression(leaf, ei,
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
207 kaddr = kmap_atomic(page);
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 kunmap_atomic(kaddr);
211 page_cache_release(page);
213 btrfs_mark_buffer_dirty(leaf);
214 btrfs_release_path(path);
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
225 BTRFS_I(inode)->disk_i_size = inode->i_size;
226 ret = btrfs_update_inode(trans, root, inode);
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
243 struct page **compressed_pages)
245 struct btrfs_trans_handle *trans;
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
249 u64 aligned_end = ALIGN(end, root->sectorsize);
250 u64 data_len = inline_len;
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
257 data_len = compressed_size;
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
263 (actual_end & (root->sectorsize - 1)) == 0) ||
265 data_len > root->fs_info->max_inline) {
269 path = btrfs_alloc_path();
273 trans = btrfs_join_transaction(root);
275 btrfs_free_path(path);
276 return PTR_ERR(trans);
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
284 extent_item_size = btrfs_file_extent_calc_inline_size(
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
291 btrfs_abort_transaction(trans, root, ret);
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
297 ret = insert_inline_extent(trans, path, extent_inserted,
299 inline_len, compressed_size,
300 compress_type, compressed_pages);
301 if (ret && ret != -ENOSPC) {
302 btrfs_abort_transaction(trans, root, ret);
304 } else if (ret == -ENOSPC) {
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
313 btrfs_free_path(path);
314 btrfs_end_transaction(trans, root);
318 struct async_extent {
323 unsigned long nr_pages;
325 struct list_head list;
330 struct btrfs_root *root;
331 struct page *locked_page;
334 struct list_head extents;
335 struct btrfs_work work;
338 static noinline int add_async_extent(struct async_cow *cow,
339 u64 start, u64 ram_size,
342 unsigned long nr_pages,
345 struct async_extent *async_extent;
347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348 BUG_ON(!async_extent); /* -ENOMEM */
349 async_extent->start = start;
350 async_extent->ram_size = ram_size;
351 async_extent->compressed_size = compressed_size;
352 async_extent->pages = pages;
353 async_extent->nr_pages = nr_pages;
354 async_extent->compress_type = compress_type;
355 list_add_tail(&async_extent->list, &cow->extents);
359 static inline int inode_need_compress(struct inode *inode)
361 struct btrfs_root *root = BTRFS_I(inode)->root;
364 if (btrfs_test_opt(root, FORCE_COMPRESS))
366 /* bad compression ratios */
367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
369 if (btrfs_test_opt(root, COMPRESS) ||
370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 BTRFS_I(inode)->force_compress)
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
393 static noinline void compress_file_range(struct inode *inode,
394 struct page *locked_page,
396 struct async_cow *async_cow,
399 struct btrfs_root *root = BTRFS_I(inode)->root;
401 u64 blocksize = root->sectorsize;
403 u64 isize = i_size_read(inode);
405 struct page **pages = NULL;
406 unsigned long nr_pages;
407 unsigned long nr_pages_ret = 0;
408 unsigned long total_compressed = 0;
409 unsigned long total_in = 0;
410 unsigned long max_compressed = 128 * 1024;
411 unsigned long max_uncompressed = 128 * 1024;
414 int compress_type = root->fs_info->compress_type;
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end - start + 1) < 16 * 1024 &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 btrfs_add_inode_defrag(NULL, inode);
422 actual_end = min_t(u64, isize, end + 1);
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
441 total_compressed = actual_end - start;
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
447 if (total_compressed <= blocksize &&
448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 goto cleanup_and_bail_uncompressed;
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
461 total_compressed = min(total_compressed, max_uncompressed);
462 num_bytes = ALIGN(end - start + 1, blocksize);
463 num_bytes = max(blocksize, num_bytes);
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
472 if (inode_need_compress(inode)) {
474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
476 /* just bail out to the uncompressed code */
480 if (BTRFS_I(inode)->force_compress)
481 compress_type = BTRFS_I(inode)->force_compress;
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
492 extent_range_clear_dirty_for_io(inode, start, end);
494 ret = btrfs_compress_pages(compress_type,
495 inode->i_mapping, start,
496 total_compressed, pages,
497 nr_pages, &nr_pages_ret,
503 unsigned long offset = total_compressed &
504 (PAGE_CACHE_SIZE - 1);
505 struct page *page = pages[nr_pages_ret - 1];
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
512 kaddr = kmap_atomic(page);
513 memset(kaddr + offset, 0,
514 PAGE_CACHE_SIZE - offset);
515 kunmap_atomic(kaddr);
522 /* lets try to make an inline extent */
523 if (ret || total_in < (actual_end - start)) {
524 /* we didn't compress the entire range, try
525 * to make an uncompressed inline extent.
527 ret = cow_file_range_inline(root, inode, start, end,
530 /* try making a compressed inline extent */
531 ret = cow_file_range_inline(root, inode, start, end,
533 compress_type, pages);
536 unsigned long clear_flags = EXTENT_DELALLOC |
538 unsigned long page_error_op;
540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
548 extent_clear_unlock_delalloc(inode, start, end, NULL,
549 clear_flags, PAGE_UNLOCK |
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
564 total_compressed = ALIGN(total_compressed, blocksize);
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571 if (total_compressed >= total_in) {
574 num_bytes = total_in;
577 if (!will_compress && pages) {
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
582 for (i = 0; i < nr_pages_ret; i++) {
583 WARN_ON(pages[i]->mapping);
584 page_cache_release(pages[i]);
588 total_compressed = 0;
591 /* flag the file so we don't compress in the future */
592 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 !(BTRFS_I(inode)->force_compress)) {
594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
604 add_async_extent(async_cow, start, num_bytes,
605 total_compressed, pages, nr_pages_ret,
608 if (start + num_bytes < end) {
615 cleanup_and_bail_uncompressed:
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
623 if (page_offset(locked_page) >= start &&
624 page_offset(locked_page) <= end) {
625 __set_page_dirty_nobuffers(locked_page);
626 /* unlocked later on in the async handlers */
629 extent_range_redirty_for_io(inode, start, end);
630 add_async_extent(async_cow, start, end - start + 1,
631 0, NULL, 0, BTRFS_COMPRESS_NONE);
638 for (i = 0; i < nr_pages_ret; i++) {
639 WARN_ON(pages[i]->mapping);
640 page_cache_release(pages[i]);
645 static void free_async_extent_pages(struct async_extent *async_extent)
649 if (!async_extent->pages)
652 for (i = 0; i < async_extent->nr_pages; i++) {
653 WARN_ON(async_extent->pages[i]->mapping);
654 page_cache_release(async_extent->pages[i]);
656 kfree(async_extent->pages);
657 async_extent->nr_pages = 0;
658 async_extent->pages = NULL;
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
667 static noinline void submit_compressed_extents(struct inode *inode,
668 struct async_cow *async_cow)
670 struct async_extent *async_extent;
672 struct btrfs_key ins;
673 struct extent_map *em;
674 struct btrfs_root *root = BTRFS_I(inode)->root;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct extent_io_tree *io_tree;
680 while (!list_empty(&async_cow->extents)) {
681 async_extent = list_entry(async_cow->extents.next,
682 struct async_extent, list);
683 list_del(&async_extent->list);
685 io_tree = &BTRFS_I(inode)->io_tree;
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent->pages) {
690 int page_started = 0;
691 unsigned long nr_written = 0;
693 lock_extent(io_tree, async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1);
697 /* allocate blocks */
698 ret = cow_file_range(inode, async_cow->locked_page,
700 async_extent->start +
701 async_extent->ram_size - 1,
702 &page_started, &nr_written, 0);
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
712 if (!page_started && !ret)
713 extent_write_locked_range(io_tree,
714 inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1,
720 unlock_page(async_cow->locked_page);
726 lock_extent(io_tree, async_extent->start,
727 async_extent->start + async_extent->ram_size - 1);
729 ret = btrfs_reserve_extent(root,
730 async_extent->compressed_size,
731 async_extent->compressed_size,
732 0, alloc_hint, &ins, 1, 1);
734 free_async_extent_pages(async_extent);
736 if (ret == -ENOSPC) {
737 unlock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
747 extent_range_redirty_for_io(inode,
749 async_extent->start +
750 async_extent->ram_size - 1);
757 * here we're doing allocation and writeback of the
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
764 em = alloc_extent_map();
767 goto out_free_reserve;
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
771 em->orig_start = em->start;
772 em->mod_start = em->start;
773 em->mod_len = em->len;
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
777 em->orig_block_len = ins.offset;
778 em->ram_bytes = async_extent->ram_size;
779 em->bdev = root->fs_info->fs_devices->latest_bdev;
780 em->compress_type = async_extent->compress_type;
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
786 write_lock(&em_tree->lock);
787 ret = add_extent_mapping(em_tree, em, 1);
788 write_unlock(&em_tree->lock);
789 if (ret != -EEXIST) {
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
799 goto out_free_reserve;
801 ret = btrfs_add_ordered_extent_compress(inode,
804 async_extent->ram_size,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 goto out_free_reserve;
816 * clear dirty, set writeback and unlock the pages.
818 extent_clear_unlock_delalloc(inode, async_extent->start,
819 async_extent->start +
820 async_extent->ram_size - 1,
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
824 ret = btrfs_submit_compressed_write(inode,
826 async_extent->ram_size,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
843 free_async_extent_pages(async_extent);
845 alloc_hint = ins.objectid + ins.offset;
851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
853 extent_clear_unlock_delalloc(inode, async_extent->start,
854 async_extent->start +
855 async_extent->ram_size - 1,
856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
861 free_async_extent_pages(async_extent);
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
889 alloc_hint = em->block_start;
893 read_unlock(&em_tree->lock);
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
911 static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
917 struct btrfs_root *root = BTRFS_I(inode)->root;
920 unsigned long ram_size;
923 u64 blocksize = root->sectorsize;
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
929 if (btrfs_is_free_space_inode(inode)) {
935 num_bytes = ALIGN(end - start + 1, blocksize);
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 btrfs_add_inode_defrag(NULL, inode);
945 /* lets try to make an inline extent */
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
951 EXTENT_DEFRAG, PAGE_UNLOCK |
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
959 } else if (ret < 0) {
964 BUG_ON(disk_num_bytes >
965 btrfs_super_total_bytes(root->fs_info->super_copy));
967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
970 while (disk_num_bytes > 0) {
973 cur_alloc_size = disk_num_bytes;
974 ret = btrfs_reserve_extent(root, cur_alloc_size,
975 root->sectorsize, 0, alloc_hint,
980 em = alloc_extent_map();
986 em->orig_start = em->start;
987 ram_size = ins.offset;
988 em->len = ins.offset;
989 em->mod_start = em->start;
990 em->mod_len = em->len;
992 em->block_start = ins.objectid;
993 em->block_len = ins.offset;
994 em->orig_block_len = ins.offset;
995 em->ram_bytes = ram_size;
996 em->bdev = root->fs_info->fs_devices->latest_bdev;
997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1001 write_lock(&em_tree->lock);
1002 ret = add_extent_mapping(em_tree, em, 1);
1003 write_unlock(&em_tree->lock);
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1008 btrfs_drop_extent_cache(inode, start,
1009 start + ram_size - 1, 0);
1014 cur_alloc_size = ins.offset;
1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 ram_size, cur_alloc_size, 0);
1018 goto out_drop_extent_cache;
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1025 goto out_drop_extent_cache;
1028 if (disk_num_bytes < cur_alloc_size)
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1045 disk_num_bytes -= cur_alloc_size;
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
1053 out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1067 * work queue call back to started compression on a file and pages
1069 static noinline void async_cow_start(struct btrfs_work *work)
1071 struct async_cow *async_cow;
1073 async_cow = container_of(work, struct async_cow, work);
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1078 if (num_added == 0) {
1079 btrfs_add_delayed_iput(async_cow->inode);
1080 async_cow->inode = NULL;
1085 * work queue call back to submit previously compressed pages
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1093 async_cow = container_of(work, struct async_cow, work);
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1101 waitqueue_active(&root->fs_info->async_submit_wait))
1102 wake_up(&root->fs_info->async_submit_wait);
1104 if (async_cow->inode)
1105 submit_compressed_extents(async_cow->inode, async_cow);
1108 static noinline void async_cow_free(struct btrfs_work *work)
1110 struct async_cow *async_cow;
1111 async_cow = container_of(work, struct async_cow, work);
1112 if (async_cow->inode)
1113 btrfs_add_delayed_iput(async_cow->inode);
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 u64 start, u64 end, int *page_started,
1119 unsigned long *nr_written)
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root = BTRFS_I(inode)->root;
1123 unsigned long nr_pages;
1125 int limit = 10 * 1024 * 1024;
1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 1, 0, NULL, GFP_NOFS);
1129 while (start < end) {
1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 BUG_ON(!async_cow); /* -ENOMEM */
1132 async_cow->inode = igrab(inode);
1133 async_cow->root = root;
1134 async_cow->locked_page = locked_page;
1135 async_cow->start = start;
1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 !btrfs_test_opt(root, FORCE_COMPRESS))
1141 cur_end = min(end, start + 512 * 1024 - 1);
1143 async_cow->end = cur_end;
1144 INIT_LIST_HEAD(&async_cow->extents);
1146 btrfs_init_work(&async_cow->work,
1147 btrfs_delalloc_helper,
1148 async_cow_start, async_cow_submit,
1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1155 btrfs_queue_work(root->fs_info->delalloc_workers,
1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) <
1164 while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 wait_event(root->fs_info->async_submit_wait,
1167 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1171 *nr_written += nr_pages;
1172 start = cur_end + 1;
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 u64 bytenr, u64 num_bytes)
1182 struct btrfs_ordered_sum *sums;
1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 bytenr + num_bytes - 1, &list, 0);
1187 if (ret == 0 && list_empty(&list))
1190 while (!list_empty(&list)) {
1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 list_del(&sums->list);
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1202 * If no cow copies or snapshots exist, we write directly to the existing
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 struct page *locked_page,
1207 u64 start, u64 end, int *page_started, int force,
1208 unsigned long *nr_written)
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1211 struct btrfs_trans_handle *trans;
1212 struct extent_buffer *leaf;
1213 struct btrfs_path *path;
1214 struct btrfs_file_extent_item *fi;
1215 struct btrfs_key found_key;
1230 u64 ino = btrfs_ino(inode);
1232 path = btrfs_alloc_path();
1234 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 EXTENT_LOCKED | EXTENT_DELALLOC |
1236 EXTENT_DO_ACCOUNTING |
1237 EXTENT_DEFRAG, PAGE_UNLOCK |
1239 PAGE_SET_WRITEBACK |
1240 PAGE_END_WRITEBACK);
1244 nolock = btrfs_is_free_space_inode(inode);
1247 trans = btrfs_join_transaction_nolock(root);
1249 trans = btrfs_join_transaction(root);
1251 if (IS_ERR(trans)) {
1252 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 EXTENT_LOCKED | EXTENT_DELALLOC |
1254 EXTENT_DO_ACCOUNTING |
1255 EXTENT_DEFRAG, PAGE_UNLOCK |
1257 PAGE_SET_WRITEBACK |
1258 PAGE_END_WRITEBACK);
1259 btrfs_free_path(path);
1260 return PTR_ERR(trans);
1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1265 cow_start = (u64)-1;
1268 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1272 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &found_key,
1275 path->slots[0] - 1);
1276 if (found_key.objectid == ino &&
1277 found_key.type == BTRFS_EXTENT_DATA_KEY)
1282 leaf = path->nodes[0];
1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
1289 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1297 if (found_key.objectid > ino ||
1298 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 found_key.offset > end)
1302 if (found_key.offset > cur_offset) {
1303 extent_end = found_key.offset;
1308 fi = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_file_extent_item);
1310 extent_type = btrfs_file_extent_type(leaf, fi);
1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 extent_end = found_key.offset +
1318 btrfs_file_extent_num_bytes(leaf, fi);
1320 btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 if (extent_end <= start) {
1325 if (disk_bytenr == 0)
1327 if (btrfs_file_extent_compression(leaf, fi) ||
1328 btrfs_file_extent_encryption(leaf, fi) ||
1329 btrfs_file_extent_other_encoding(leaf, fi))
1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1333 if (btrfs_extent_readonly(root, disk_bytenr))
1335 if (btrfs_cross_ref_exist(trans, root, ino,
1337 extent_offset, disk_bytenr))
1339 disk_bytenr += extent_offset;
1340 disk_bytenr += cur_offset - found_key.offset;
1341 num_bytes = min(end + 1, extent_end) - cur_offset;
1343 * if there are pending snapshots for this root,
1344 * we fall into common COW way.
1347 err = btrfs_start_write_no_snapshoting(root);
1352 * force cow if csum exists in the range.
1353 * this ensure that csum for a given extent are
1354 * either valid or do not exist.
1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 extent_end = found_key.offset +
1361 btrfs_file_extent_inline_len(leaf,
1362 path->slots[0], fi);
1363 extent_end = ALIGN(extent_end, root->sectorsize);
1368 if (extent_end <= start) {
1370 if (!nolock && nocow)
1371 btrfs_end_write_no_snapshoting(root);
1375 if (cow_start == (u64)-1)
1376 cow_start = cur_offset;
1377 cur_offset = extent_end;
1378 if (cur_offset > end)
1384 btrfs_release_path(path);
1385 if (cow_start != (u64)-1) {
1386 ret = cow_file_range(inode, locked_page,
1387 cow_start, found_key.offset - 1,
1388 page_started, nr_written, 1);
1390 if (!nolock && nocow)
1391 btrfs_end_write_no_snapshoting(root);
1394 cow_start = (u64)-1;
1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 struct extent_map *em;
1399 struct extent_map_tree *em_tree;
1400 em_tree = &BTRFS_I(inode)->extent_tree;
1401 em = alloc_extent_map();
1402 BUG_ON(!em); /* -ENOMEM */
1403 em->start = cur_offset;
1404 em->orig_start = found_key.offset - extent_offset;
1405 em->len = num_bytes;
1406 em->block_len = num_bytes;
1407 em->block_start = disk_bytenr;
1408 em->orig_block_len = disk_num_bytes;
1409 em->ram_bytes = ram_bytes;
1410 em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 em->mod_start = em->start;
1412 em->mod_len = em->len;
1413 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 em->generation = -1;
1417 write_lock(&em_tree->lock);
1418 ret = add_extent_mapping(em_tree, em, 1);
1419 write_unlock(&em_tree->lock);
1420 if (ret != -EEXIST) {
1421 free_extent_map(em);
1424 btrfs_drop_extent_cache(inode, em->start,
1425 em->start + em->len - 1, 0);
1427 type = BTRFS_ORDERED_PREALLOC;
1429 type = BTRFS_ORDERED_NOCOW;
1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 num_bytes, num_bytes, type);
1434 BUG_ON(ret); /* -ENOMEM */
1436 if (root->root_key.objectid ==
1437 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1441 if (!nolock && nocow)
1442 btrfs_end_write_no_snapshoting(root);
1447 extent_clear_unlock_delalloc(inode, cur_offset,
1448 cur_offset + num_bytes - 1,
1449 locked_page, EXTENT_LOCKED |
1450 EXTENT_DELALLOC, PAGE_UNLOCK |
1452 if (!nolock && nocow)
1453 btrfs_end_write_no_snapshoting(root);
1454 cur_offset = extent_end;
1455 if (cur_offset > end)
1458 btrfs_release_path(path);
1460 if (cur_offset <= end && cow_start == (u64)-1) {
1461 cow_start = cur_offset;
1465 if (cow_start != (u64)-1) {
1466 ret = cow_file_range(inode, locked_page, cow_start, end,
1467 page_started, nr_written, 1);
1473 err = btrfs_end_transaction(trans, root);
1477 if (ret && cur_offset < end)
1478 extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 locked_page, EXTENT_LOCKED |
1480 EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1483 PAGE_SET_WRITEBACK |
1484 PAGE_END_WRITEBACK);
1485 btrfs_free_path(path);
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1497 * @defrag_bytes is a hint value, no spinlock held here,
1498 * if is not zero, it means the file is defragging.
1499 * Force cow if given extent needs to be defragged.
1501 if (BTRFS_I(inode)->defrag_bytes &&
1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 EXTENT_DEFRAG, 0, NULL))
1510 * extent_io.c call back to do delayed allocation processing
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 u64 start, u64 end, int *page_started,
1514 unsigned long *nr_written)
1517 int force_cow = need_force_cow(inode, start, end);
1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 page_started, 1, nr_written);
1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 page_started, 0, nr_written);
1525 } else if (!inode_need_compress(inode)) {
1526 ret = cow_file_range(inode, locked_page, start, end,
1527 page_started, nr_written, 1);
1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 &BTRFS_I(inode)->runtime_flags);
1531 ret = cow_file_range_async(inode, locked_page, start, end,
1532 page_started, nr_written);
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 struct extent_state *orig, u64 split)
1542 /* not delalloc, ignore it */
1543 if (!(orig->state & EXTENT_DELALLOC))
1546 size = orig->end - orig->start + 1;
1547 if (size > BTRFS_MAX_EXTENT_SIZE) {
1552 * See the explanation in btrfs_merge_extent_hook, the same
1553 * applies here, just in reverse.
1555 new_size = orig->end - split + 1;
1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 BTRFS_MAX_EXTENT_SIZE);
1558 new_size = split - orig->start;
1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 BTRFS_MAX_EXTENT_SIZE);
1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1566 spin_lock(&BTRFS_I(inode)->lock);
1567 BTRFS_I(inode)->outstanding_extents++;
1568 spin_unlock(&BTRFS_I(inode)->lock);
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 struct extent_state *new,
1579 struct extent_state *other)
1581 u64 new_size, old_size;
1584 /* not delalloc, ignore it */
1585 if (!(other->state & EXTENT_DELALLOC))
1588 if (new->start > other->start)
1589 new_size = new->end - other->start + 1;
1591 new_size = other->end - new->start + 1;
1593 /* we're not bigger than the max, unreserve the space and go */
1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 spin_lock(&BTRFS_I(inode)->lock);
1596 BTRFS_I(inode)->outstanding_extents--;
1597 spin_unlock(&BTRFS_I(inode)->lock);
1602 * We have to add up either side to figure out how many extents were
1603 * accounted for before we merged into one big extent. If the number of
1604 * extents we accounted for is <= the amount we need for the new range
1605 * then we can return, otherwise drop. Think of it like this
1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 * need 2 outstanding extents, on one side we have 1 and the other side
1611 * we have 1 so they are == and we can return. But in this case
1613 * [MAX_SIZE+4k][MAX_SIZE+4k]
1615 * Each range on their own accounts for 2 extents, but merged together
1616 * they are only 3 extents worth of accounting, so we need to drop in
1619 old_size = other->end - other->start + 1;
1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 BTRFS_MAX_EXTENT_SIZE);
1622 old_size = new->end - new->start + 1;
1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1630 spin_lock(&BTRFS_I(inode)->lock);
1631 BTRFS_I(inode)->outstanding_extents--;
1632 spin_unlock(&BTRFS_I(inode)->lock);
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 struct inode *inode)
1638 spin_lock(&root->delalloc_lock);
1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 &root->delalloc_inodes);
1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 &BTRFS_I(inode)->runtime_flags);
1644 root->nr_delalloc_inodes++;
1645 if (root->nr_delalloc_inodes == 1) {
1646 spin_lock(&root->fs_info->delalloc_root_lock);
1647 BUG_ON(!list_empty(&root->delalloc_root));
1648 list_add_tail(&root->delalloc_root,
1649 &root->fs_info->delalloc_roots);
1650 spin_unlock(&root->fs_info->delalloc_root_lock);
1653 spin_unlock(&root->delalloc_lock);
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 struct inode *inode)
1659 spin_lock(&root->delalloc_lock);
1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 &BTRFS_I(inode)->runtime_flags);
1664 root->nr_delalloc_inodes--;
1665 if (!root->nr_delalloc_inodes) {
1666 spin_lock(&root->fs_info->delalloc_root_lock);
1667 BUG_ON(list_empty(&root->delalloc_root));
1668 list_del_init(&root->delalloc_root);
1669 spin_unlock(&root->fs_info->delalloc_root_lock);
1672 spin_unlock(&root->delalloc_lock);
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 struct extent_state *state, unsigned *bits)
1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1687 * set_bit and clear bit hooks normally require _irqsave/restore
1688 * but in this case, we are only testing for the DELALLOC
1689 * bit, which is only set or cleared with irqs on
1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 struct btrfs_root *root = BTRFS_I(inode)->root;
1693 u64 len = state->end + 1 - state->start;
1694 bool do_list = !btrfs_is_free_space_inode(inode);
1696 if (*bits & EXTENT_FIRST_DELALLOC) {
1697 *bits &= ~EXTENT_FIRST_DELALLOC;
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 BTRFS_I(inode)->outstanding_extents++;
1701 spin_unlock(&BTRFS_I(inode)->lock);
1704 /* For sanity tests */
1705 if (btrfs_test_is_dummy_root(root))
1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 root->fs_info->delalloc_batch);
1710 spin_lock(&BTRFS_I(inode)->lock);
1711 BTRFS_I(inode)->delalloc_bytes += len;
1712 if (*bits & EXTENT_DEFRAG)
1713 BTRFS_I(inode)->defrag_bytes += len;
1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 &BTRFS_I(inode)->runtime_flags))
1716 btrfs_add_delalloc_inodes(root, inode);
1717 spin_unlock(&BTRFS_I(inode)->lock);
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 struct extent_state *state,
1728 u64 len = state->end + 1 - state->start;
1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 BTRFS_MAX_EXTENT_SIZE);
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 BTRFS_I(inode)->defrag_bytes -= len;
1735 spin_unlock(&BTRFS_I(inode)->lock);
1738 * set_bit and clear bit hooks normally require _irqsave/restore
1739 * but in this case, we are only testing for the DELALLOC
1740 * bit, which is only set or cleared with irqs on
1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 struct btrfs_root *root = BTRFS_I(inode)->root;
1744 bool do_list = !btrfs_is_free_space_inode(inode);
1746 if (*bits & EXTENT_FIRST_DELALLOC) {
1747 *bits &= ~EXTENT_FIRST_DELALLOC;
1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 spin_lock(&BTRFS_I(inode)->lock);
1750 BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1755 * We don't reserve metadata space for space cache inodes so we
1756 * don't need to call dellalloc_release_metadata if there is an
1759 if (*bits & EXTENT_DO_ACCOUNTING &&
1760 root != root->fs_info->tree_root)
1761 btrfs_delalloc_release_metadata(inode, len);
1763 /* For sanity tests. */
1764 if (btrfs_test_is_dummy_root(root))
1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 && do_list && !(state->state & EXTENT_NORESERVE))
1769 btrfs_free_reserved_data_space(inode, len);
1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 root->fs_info->delalloc_batch);
1773 spin_lock(&BTRFS_I(inode)->lock);
1774 BTRFS_I(inode)->delalloc_bytes -= len;
1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 &BTRFS_I(inode)->runtime_flags))
1778 btrfs_del_delalloc_inode(root, inode);
1779 spin_unlock(&BTRFS_I(inode)->lock);
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 size_t size, struct bio *bio,
1789 unsigned long bio_flags)
1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1797 if (bio_flags & EXTENT_BIO_COMPRESSED)
1800 length = bio->bi_iter.bi_size;
1801 map_length = length;
1802 ret = btrfs_map_block(root->fs_info, rw, logical,
1803 &map_length, NULL, 0);
1804 /* Will always return 0 with map_multi == NULL */
1806 if (map_length < length + size)
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time. All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 struct bio *bio, int mirror_num,
1821 unsigned long bio_flags,
1824 struct btrfs_root *root = BTRFS_I(inode)->root;
1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 BUG_ON(ret); /* -ENOMEM */
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time. All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 int mirror_num, unsigned long bio_flags,
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1849 bio->bi_error = ret;
1856 * extent_io.c submission hook. This does the right thing for csum calculation
1857 * on write, or reading the csums from the tree before a read
1859 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1860 int mirror_num, unsigned long bio_flags,
1863 struct btrfs_root *root = BTRFS_I(inode)->root;
1867 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1869 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1871 if (btrfs_is_free_space_inode(inode))
1874 if (!(rw & REQ_WRITE)) {
1875 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1879 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1880 ret = btrfs_submit_compressed_read(inode, bio,
1884 } else if (!skip_sum) {
1885 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1890 } else if (async && !skip_sum) {
1891 /* csum items have already been cloned */
1892 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1894 /* we're doing a write, do the async checksumming */
1895 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1896 inode, rw, bio, mirror_num,
1897 bio_flags, bio_offset,
1898 __btrfs_submit_bio_start,
1899 __btrfs_submit_bio_done);
1901 } else if (!skip_sum) {
1902 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1908 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1912 bio->bi_error = ret;
1919 * given a list of ordered sums record them in the inode. This happens
1920 * at IO completion time based on sums calculated at bio submission time.
1922 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1923 struct inode *inode, u64 file_offset,
1924 struct list_head *list)
1926 struct btrfs_ordered_sum *sum;
1928 list_for_each_entry(sum, list, list) {
1929 trans->adding_csums = 1;
1930 btrfs_csum_file_blocks(trans,
1931 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1932 trans->adding_csums = 0;
1937 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1938 struct extent_state **cached_state)
1940 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1941 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1942 cached_state, GFP_NOFS);
1945 /* see btrfs_writepage_start_hook for details on why this is required */
1946 struct btrfs_writepage_fixup {
1948 struct btrfs_work work;
1951 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1953 struct btrfs_writepage_fixup *fixup;
1954 struct btrfs_ordered_extent *ordered;
1955 struct extent_state *cached_state = NULL;
1957 struct inode *inode;
1962 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1966 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1967 ClearPageChecked(page);
1971 inode = page->mapping->host;
1972 page_start = page_offset(page);
1973 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1975 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1978 /* already ordered? We're done */
1979 if (PagePrivate2(page))
1982 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1985 page_end, &cached_state, GFP_NOFS);
1987 btrfs_start_ordered_extent(inode, ordered, 1);
1988 btrfs_put_ordered_extent(ordered);
1992 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1994 mapping_set_error(page->mapping, ret);
1995 end_extent_writepage(page, ret, page_start, page_end);
1996 ClearPageChecked(page);
2000 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2001 ClearPageChecked(page);
2002 set_page_dirty(page);
2004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2005 &cached_state, GFP_NOFS);
2008 page_cache_release(page);
2013 * There are a few paths in the higher layers of the kernel that directly
2014 * set the page dirty bit without asking the filesystem if it is a
2015 * good idea. This causes problems because we want to make sure COW
2016 * properly happens and the data=ordered rules are followed.
2018 * In our case any range that doesn't have the ORDERED bit set
2019 * hasn't been properly setup for IO. We kick off an async process
2020 * to fix it up. The async helper will wait for ordered extents, set
2021 * the delalloc bit and make it safe to write the page.
2023 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2025 struct inode *inode = page->mapping->host;
2026 struct btrfs_writepage_fixup *fixup;
2027 struct btrfs_root *root = BTRFS_I(inode)->root;
2029 /* this page is properly in the ordered list */
2030 if (TestClearPagePrivate2(page))
2033 if (PageChecked(page))
2036 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2040 SetPageChecked(page);
2041 page_cache_get(page);
2042 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2043 btrfs_writepage_fixup_worker, NULL, NULL);
2045 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2049 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2050 struct inode *inode, u64 file_pos,
2051 u64 disk_bytenr, u64 disk_num_bytes,
2052 u64 num_bytes, u64 ram_bytes,
2053 u8 compression, u8 encryption,
2054 u16 other_encoding, int extent_type)
2056 struct btrfs_root *root = BTRFS_I(inode)->root;
2057 struct btrfs_file_extent_item *fi;
2058 struct btrfs_path *path;
2059 struct extent_buffer *leaf;
2060 struct btrfs_key ins;
2061 int extent_inserted = 0;
2064 path = btrfs_alloc_path();
2069 * we may be replacing one extent in the tree with another.
2070 * The new extent is pinned in the extent map, and we don't want
2071 * to drop it from the cache until it is completely in the btree.
2073 * So, tell btrfs_drop_extents to leave this extent in the cache.
2074 * the caller is expected to unpin it and allow it to be merged
2077 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2078 file_pos + num_bytes, NULL, 0,
2079 1, sizeof(*fi), &extent_inserted);
2083 if (!extent_inserted) {
2084 ins.objectid = btrfs_ino(inode);
2085 ins.offset = file_pos;
2086 ins.type = BTRFS_EXTENT_DATA_KEY;
2088 path->leave_spinning = 1;
2089 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2094 leaf = path->nodes[0];
2095 fi = btrfs_item_ptr(leaf, path->slots[0],
2096 struct btrfs_file_extent_item);
2097 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2098 btrfs_set_file_extent_type(leaf, fi, extent_type);
2099 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2100 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2101 btrfs_set_file_extent_offset(leaf, fi, 0);
2102 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2103 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2104 btrfs_set_file_extent_compression(leaf, fi, compression);
2105 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2106 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2108 btrfs_mark_buffer_dirty(leaf);
2109 btrfs_release_path(path);
2111 inode_add_bytes(inode, num_bytes);
2113 ins.objectid = disk_bytenr;
2114 ins.offset = disk_num_bytes;
2115 ins.type = BTRFS_EXTENT_ITEM_KEY;
2116 ret = btrfs_alloc_reserved_file_extent(trans, root,
2117 root->root_key.objectid,
2118 btrfs_ino(inode), file_pos, &ins);
2120 btrfs_free_path(path);
2125 /* snapshot-aware defrag */
2126 struct sa_defrag_extent_backref {
2127 struct rb_node node;
2128 struct old_sa_defrag_extent *old;
2137 struct old_sa_defrag_extent {
2138 struct list_head list;
2139 struct new_sa_defrag_extent *new;
2148 struct new_sa_defrag_extent {
2149 struct rb_root root;
2150 struct list_head head;
2151 struct btrfs_path *path;
2152 struct inode *inode;
2160 static int backref_comp(struct sa_defrag_extent_backref *b1,
2161 struct sa_defrag_extent_backref *b2)
2163 if (b1->root_id < b2->root_id)
2165 else if (b1->root_id > b2->root_id)
2168 if (b1->inum < b2->inum)
2170 else if (b1->inum > b2->inum)
2173 if (b1->file_pos < b2->file_pos)
2175 else if (b1->file_pos > b2->file_pos)
2179 * [------------------------------] ===> (a range of space)
2180 * |<--->| |<---->| =============> (fs/file tree A)
2181 * |<---------------------------->| ===> (fs/file tree B)
2183 * A range of space can refer to two file extents in one tree while
2184 * refer to only one file extent in another tree.
2186 * So we may process a disk offset more than one time(two extents in A)
2187 * and locate at the same extent(one extent in B), then insert two same
2188 * backrefs(both refer to the extent in B).
2193 static void backref_insert(struct rb_root *root,
2194 struct sa_defrag_extent_backref *backref)
2196 struct rb_node **p = &root->rb_node;
2197 struct rb_node *parent = NULL;
2198 struct sa_defrag_extent_backref *entry;
2203 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2205 ret = backref_comp(backref, entry);
2209 p = &(*p)->rb_right;
2212 rb_link_node(&backref->node, parent, p);
2213 rb_insert_color(&backref->node, root);
2217 * Note the backref might has changed, and in this case we just return 0.
2219 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2222 struct btrfs_file_extent_item *extent;
2223 struct btrfs_fs_info *fs_info;
2224 struct old_sa_defrag_extent *old = ctx;
2225 struct new_sa_defrag_extent *new = old->new;
2226 struct btrfs_path *path = new->path;
2227 struct btrfs_key key;
2228 struct btrfs_root *root;
2229 struct sa_defrag_extent_backref *backref;
2230 struct extent_buffer *leaf;
2231 struct inode *inode = new->inode;
2237 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2238 inum == btrfs_ino(inode))
2241 key.objectid = root_id;
2242 key.type = BTRFS_ROOT_ITEM_KEY;
2243 key.offset = (u64)-1;
2245 fs_info = BTRFS_I(inode)->root->fs_info;
2246 root = btrfs_read_fs_root_no_name(fs_info, &key);
2248 if (PTR_ERR(root) == -ENOENT)
2251 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2252 inum, offset, root_id);
2253 return PTR_ERR(root);
2256 key.objectid = inum;
2257 key.type = BTRFS_EXTENT_DATA_KEY;
2258 if (offset > (u64)-1 << 32)
2261 key.offset = offset;
2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2264 if (WARN_ON(ret < 0))
2271 leaf = path->nodes[0];
2272 slot = path->slots[0];
2274 if (slot >= btrfs_header_nritems(leaf)) {
2275 ret = btrfs_next_leaf(root, path);
2278 } else if (ret > 0) {
2287 btrfs_item_key_to_cpu(leaf, &key, slot);
2289 if (key.objectid > inum)
2292 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2295 extent = btrfs_item_ptr(leaf, slot,
2296 struct btrfs_file_extent_item);
2298 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2302 * 'offset' refers to the exact key.offset,
2303 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2304 * (key.offset - extent_offset).
2306 if (key.offset != offset)
2309 extent_offset = btrfs_file_extent_offset(leaf, extent);
2310 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2312 if (extent_offset >= old->extent_offset + old->offset +
2313 old->len || extent_offset + num_bytes <=
2314 old->extent_offset + old->offset)
2319 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2325 backref->root_id = root_id;
2326 backref->inum = inum;
2327 backref->file_pos = offset;
2328 backref->num_bytes = num_bytes;
2329 backref->extent_offset = extent_offset;
2330 backref->generation = btrfs_file_extent_generation(leaf, extent);
2332 backref_insert(&new->root, backref);
2335 btrfs_release_path(path);
2340 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2341 struct new_sa_defrag_extent *new)
2343 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2344 struct old_sa_defrag_extent *old, *tmp;
2349 list_for_each_entry_safe(old, tmp, &new->head, list) {
2350 ret = iterate_inodes_from_logical(old->bytenr +
2351 old->extent_offset, fs_info,
2352 path, record_one_backref,
2354 if (ret < 0 && ret != -ENOENT)
2357 /* no backref to be processed for this extent */
2359 list_del(&old->list);
2364 if (list_empty(&new->head))
2370 static int relink_is_mergable(struct extent_buffer *leaf,
2371 struct btrfs_file_extent_item *fi,
2372 struct new_sa_defrag_extent *new)
2374 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2377 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2380 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2383 if (btrfs_file_extent_encryption(leaf, fi) ||
2384 btrfs_file_extent_other_encoding(leaf, fi))
2391 * Note the backref might has changed, and in this case we just return 0.
2393 static noinline int relink_extent_backref(struct btrfs_path *path,
2394 struct sa_defrag_extent_backref *prev,
2395 struct sa_defrag_extent_backref *backref)
2397 struct btrfs_file_extent_item *extent;
2398 struct btrfs_file_extent_item *item;
2399 struct btrfs_ordered_extent *ordered;
2400 struct btrfs_trans_handle *trans;
2401 struct btrfs_fs_info *fs_info;
2402 struct btrfs_root *root;
2403 struct btrfs_key key;
2404 struct extent_buffer *leaf;
2405 struct old_sa_defrag_extent *old = backref->old;
2406 struct new_sa_defrag_extent *new = old->new;
2407 struct inode *src_inode = new->inode;
2408 struct inode *inode;
2409 struct extent_state *cached = NULL;
2418 if (prev && prev->root_id == backref->root_id &&
2419 prev->inum == backref->inum &&
2420 prev->file_pos + prev->num_bytes == backref->file_pos)
2423 /* step 1: get root */
2424 key.objectid = backref->root_id;
2425 key.type = BTRFS_ROOT_ITEM_KEY;
2426 key.offset = (u64)-1;
2428 fs_info = BTRFS_I(src_inode)->root->fs_info;
2429 index = srcu_read_lock(&fs_info->subvol_srcu);
2431 root = btrfs_read_fs_root_no_name(fs_info, &key);
2433 srcu_read_unlock(&fs_info->subvol_srcu, index);
2434 if (PTR_ERR(root) == -ENOENT)
2436 return PTR_ERR(root);
2439 if (btrfs_root_readonly(root)) {
2440 srcu_read_unlock(&fs_info->subvol_srcu, index);
2444 /* step 2: get inode */
2445 key.objectid = backref->inum;
2446 key.type = BTRFS_INODE_ITEM_KEY;
2449 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2450 if (IS_ERR(inode)) {
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2455 srcu_read_unlock(&fs_info->subvol_srcu, index);
2457 /* step 3: relink backref */
2458 lock_start = backref->file_pos;
2459 lock_end = backref->file_pos + backref->num_bytes - 1;
2460 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2463 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2465 btrfs_put_ordered_extent(ordered);
2469 trans = btrfs_join_transaction(root);
2470 if (IS_ERR(trans)) {
2471 ret = PTR_ERR(trans);
2475 key.objectid = backref->inum;
2476 key.type = BTRFS_EXTENT_DATA_KEY;
2477 key.offset = backref->file_pos;
2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482 } else if (ret > 0) {
2487 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2488 struct btrfs_file_extent_item);
2490 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2491 backref->generation)
2494 btrfs_release_path(path);
2496 start = backref->file_pos;
2497 if (backref->extent_offset < old->extent_offset + old->offset)
2498 start += old->extent_offset + old->offset -
2499 backref->extent_offset;
2501 len = min(backref->extent_offset + backref->num_bytes,
2502 old->extent_offset + old->offset + old->len);
2503 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2505 ret = btrfs_drop_extents(trans, root, inode, start,
2510 key.objectid = btrfs_ino(inode);
2511 key.type = BTRFS_EXTENT_DATA_KEY;
2514 path->leave_spinning = 1;
2516 struct btrfs_file_extent_item *fi;
2518 struct btrfs_key found_key;
2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2525 leaf = path->nodes[0];
2526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2528 fi = btrfs_item_ptr(leaf, path->slots[0],
2529 struct btrfs_file_extent_item);
2530 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2532 if (extent_len + found_key.offset == start &&
2533 relink_is_mergable(leaf, fi, new)) {
2534 btrfs_set_file_extent_num_bytes(leaf, fi,
2536 btrfs_mark_buffer_dirty(leaf);
2537 inode_add_bytes(inode, len);
2543 btrfs_release_path(path);
2548 ret = btrfs_insert_empty_item(trans, root, path, &key,
2551 btrfs_abort_transaction(trans, root, ret);
2555 leaf = path->nodes[0];
2556 item = btrfs_item_ptr(leaf, path->slots[0],
2557 struct btrfs_file_extent_item);
2558 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2559 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2560 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2561 btrfs_set_file_extent_num_bytes(leaf, item, len);
2562 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2563 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2564 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2565 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2566 btrfs_set_file_extent_encryption(leaf, item, 0);
2567 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2569 btrfs_mark_buffer_dirty(leaf);
2570 inode_add_bytes(inode, len);
2571 btrfs_release_path(path);
2573 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2575 backref->root_id, backref->inum,
2576 new->file_pos, 0); /* start - extent_offset */
2578 btrfs_abort_transaction(trans, root, ret);
2584 btrfs_release_path(path);
2585 path->leave_spinning = 0;
2586 btrfs_end_transaction(trans, root);
2588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2594 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2596 struct old_sa_defrag_extent *old, *tmp;
2601 list_for_each_entry_safe(old, tmp, &new->head, list) {
2602 list_del(&old->list);
2608 static void relink_file_extents(struct new_sa_defrag_extent *new)
2610 struct btrfs_path *path;
2611 struct sa_defrag_extent_backref *backref;
2612 struct sa_defrag_extent_backref *prev = NULL;
2613 struct inode *inode;
2614 struct btrfs_root *root;
2615 struct rb_node *node;
2619 root = BTRFS_I(inode)->root;
2621 path = btrfs_alloc_path();
2625 if (!record_extent_backrefs(path, new)) {
2626 btrfs_free_path(path);
2629 btrfs_release_path(path);
2632 node = rb_first(&new->root);
2635 rb_erase(node, &new->root);
2637 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2639 ret = relink_extent_backref(path, prev, backref);
2652 btrfs_free_path(path);
2654 free_sa_defrag_extent(new);
2656 atomic_dec(&root->fs_info->defrag_running);
2657 wake_up(&root->fs_info->transaction_wait);
2660 static struct new_sa_defrag_extent *
2661 record_old_file_extents(struct inode *inode,
2662 struct btrfs_ordered_extent *ordered)
2664 struct btrfs_root *root = BTRFS_I(inode)->root;
2665 struct btrfs_path *path;
2666 struct btrfs_key key;
2667 struct old_sa_defrag_extent *old;
2668 struct new_sa_defrag_extent *new;
2671 new = kmalloc(sizeof(*new), GFP_NOFS);
2676 new->file_pos = ordered->file_offset;
2677 new->len = ordered->len;
2678 new->bytenr = ordered->start;
2679 new->disk_len = ordered->disk_len;
2680 new->compress_type = ordered->compress_type;
2681 new->root = RB_ROOT;
2682 INIT_LIST_HEAD(&new->head);
2684 path = btrfs_alloc_path();
2688 key.objectid = btrfs_ino(inode);
2689 key.type = BTRFS_EXTENT_DATA_KEY;
2690 key.offset = new->file_pos;
2692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2695 if (ret > 0 && path->slots[0] > 0)
2698 /* find out all the old extents for the file range */
2700 struct btrfs_file_extent_item *extent;
2701 struct extent_buffer *l;
2710 slot = path->slots[0];
2712 if (slot >= btrfs_header_nritems(l)) {
2713 ret = btrfs_next_leaf(root, path);
2721 btrfs_item_key_to_cpu(l, &key, slot);
2723 if (key.objectid != btrfs_ino(inode))
2725 if (key.type != BTRFS_EXTENT_DATA_KEY)
2727 if (key.offset >= new->file_pos + new->len)
2730 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2732 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2733 if (key.offset + num_bytes < new->file_pos)
2736 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2740 extent_offset = btrfs_file_extent_offset(l, extent);
2742 old = kmalloc(sizeof(*old), GFP_NOFS);
2746 offset = max(new->file_pos, key.offset);
2747 end = min(new->file_pos + new->len, key.offset + num_bytes);
2749 old->bytenr = disk_bytenr;
2750 old->extent_offset = extent_offset;
2751 old->offset = offset - key.offset;
2752 old->len = end - offset;
2755 list_add_tail(&old->list, &new->head);
2761 btrfs_free_path(path);
2762 atomic_inc(&root->fs_info->defrag_running);
2767 btrfs_free_path(path);
2769 free_sa_defrag_extent(new);
2773 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2776 struct btrfs_block_group_cache *cache;
2778 cache = btrfs_lookup_block_group(root->fs_info, start);
2781 spin_lock(&cache->lock);
2782 cache->delalloc_bytes -= len;
2783 spin_unlock(&cache->lock);
2785 btrfs_put_block_group(cache);
2788 /* as ordered data IO finishes, this gets called so we can finish
2789 * an ordered extent if the range of bytes in the file it covers are
2792 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2794 struct inode *inode = ordered_extent->inode;
2795 struct btrfs_root *root = BTRFS_I(inode)->root;
2796 struct btrfs_trans_handle *trans = NULL;
2797 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2798 struct extent_state *cached_state = NULL;
2799 struct new_sa_defrag_extent *new = NULL;
2800 int compress_type = 0;
2802 u64 logical_len = ordered_extent->len;
2804 bool truncated = false;
2806 nolock = btrfs_is_free_space_inode(inode);
2808 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2813 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2814 ordered_extent->file_offset +
2815 ordered_extent->len - 1);
2817 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2819 logical_len = ordered_extent->truncated_len;
2820 /* Truncated the entire extent, don't bother adding */
2825 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2826 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2827 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2829 trans = btrfs_join_transaction_nolock(root);
2831 trans = btrfs_join_transaction(root);
2832 if (IS_ERR(trans)) {
2833 ret = PTR_ERR(trans);
2837 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2838 ret = btrfs_update_inode_fallback(trans, root, inode);
2839 if (ret) /* -ENOMEM or corruption */
2840 btrfs_abort_transaction(trans, root, ret);
2844 lock_extent_bits(io_tree, ordered_extent->file_offset,
2845 ordered_extent->file_offset + ordered_extent->len - 1,
2848 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2849 ordered_extent->file_offset + ordered_extent->len - 1,
2850 EXTENT_DEFRAG, 1, cached_state);
2852 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2853 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2854 /* the inode is shared */
2855 new = record_old_file_extents(inode, ordered_extent);
2857 clear_extent_bit(io_tree, ordered_extent->file_offset,
2858 ordered_extent->file_offset + ordered_extent->len - 1,
2859 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2863 trans = btrfs_join_transaction_nolock(root);
2865 trans = btrfs_join_transaction(root);
2866 if (IS_ERR(trans)) {
2867 ret = PTR_ERR(trans);
2872 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2874 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2875 compress_type = ordered_extent->compress_type;
2876 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2877 BUG_ON(compress_type);
2878 ret = btrfs_mark_extent_written(trans, inode,
2879 ordered_extent->file_offset,
2880 ordered_extent->file_offset +
2883 BUG_ON(root == root->fs_info->tree_root);
2884 ret = insert_reserved_file_extent(trans, inode,
2885 ordered_extent->file_offset,
2886 ordered_extent->start,
2887 ordered_extent->disk_len,
2888 logical_len, logical_len,
2889 compress_type, 0, 0,
2890 BTRFS_FILE_EXTENT_REG);
2892 btrfs_release_delalloc_bytes(root,
2893 ordered_extent->start,
2894 ordered_extent->disk_len);
2896 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2897 ordered_extent->file_offset, ordered_extent->len,
2900 btrfs_abort_transaction(trans, root, ret);
2904 add_pending_csums(trans, inode, ordered_extent->file_offset,
2905 &ordered_extent->list);
2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 ret = btrfs_update_inode_fallback(trans, root, inode);
2909 if (ret) { /* -ENOMEM or corruption */
2910 btrfs_abort_transaction(trans, root, ret);
2915 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2916 ordered_extent->file_offset +
2917 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2919 if (root != root->fs_info->tree_root)
2920 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2922 btrfs_end_transaction(trans, root);
2924 if (ret || truncated) {
2928 start = ordered_extent->file_offset + logical_len;
2930 start = ordered_extent->file_offset;
2931 end = ordered_extent->file_offset + ordered_extent->len - 1;
2932 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2934 /* Drop the cache for the part of the extent we didn't write. */
2935 btrfs_drop_extent_cache(inode, start, end, 0);
2938 * If the ordered extent had an IOERR or something else went
2939 * wrong we need to return the space for this ordered extent
2940 * back to the allocator. We only free the extent in the
2941 * truncated case if we didn't write out the extent at all.
2943 if ((ret || !logical_len) &&
2944 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2945 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2946 btrfs_free_reserved_extent(root, ordered_extent->start,
2947 ordered_extent->disk_len, 1);
2952 * This needs to be done to make sure anybody waiting knows we are done
2953 * updating everything for this ordered extent.
2955 btrfs_remove_ordered_extent(inode, ordered_extent);
2957 /* for snapshot-aware defrag */
2960 free_sa_defrag_extent(new);
2961 atomic_dec(&root->fs_info->defrag_running);
2963 relink_file_extents(new);
2968 btrfs_put_ordered_extent(ordered_extent);
2969 /* once for the tree */
2970 btrfs_put_ordered_extent(ordered_extent);
2975 static void finish_ordered_fn(struct btrfs_work *work)
2977 struct btrfs_ordered_extent *ordered_extent;
2978 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2979 btrfs_finish_ordered_io(ordered_extent);
2982 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2983 struct extent_state *state, int uptodate)
2985 struct inode *inode = page->mapping->host;
2986 struct btrfs_root *root = BTRFS_I(inode)->root;
2987 struct btrfs_ordered_extent *ordered_extent = NULL;
2988 struct btrfs_workqueue *wq;
2989 btrfs_work_func_t func;
2991 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2993 ClearPagePrivate2(page);
2994 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2995 end - start + 1, uptodate))
2998 if (btrfs_is_free_space_inode(inode)) {
2999 wq = root->fs_info->endio_freespace_worker;
3000 func = btrfs_freespace_write_helper;
3002 wq = root->fs_info->endio_write_workers;
3003 func = btrfs_endio_write_helper;
3006 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3008 btrfs_queue_work(wq, &ordered_extent->work);
3013 static int __readpage_endio_check(struct inode *inode,
3014 struct btrfs_io_bio *io_bio,
3015 int icsum, struct page *page,
3016 int pgoff, u64 start, size_t len)
3021 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3022 DEFAULT_RATELIMIT_BURST);
3024 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3026 kaddr = kmap_atomic(page);
3027 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3028 btrfs_csum_final(csum, (char *)&csum);
3029 if (csum != csum_expected)
3032 kunmap_atomic(kaddr);
3035 if (__ratelimit(&_rs))
3036 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3037 "csum failed ino %llu off %llu csum %u expected csum %u",
3038 btrfs_ino(inode), start, csum, csum_expected);
3039 memset(kaddr + pgoff, 1, len);
3040 flush_dcache_page(page);
3041 kunmap_atomic(kaddr);
3042 if (csum_expected == 0)
3048 * when reads are done, we need to check csums to verify the data is correct
3049 * if there's a match, we allow the bio to finish. If not, the code in
3050 * extent_io.c will try to find good copies for us.
3052 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3053 u64 phy_offset, struct page *page,
3054 u64 start, u64 end, int mirror)
3056 size_t offset = start - page_offset(page);
3057 struct inode *inode = page->mapping->host;
3058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3059 struct btrfs_root *root = BTRFS_I(inode)->root;
3061 if (PageChecked(page)) {
3062 ClearPageChecked(page);
3066 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3069 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3070 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3071 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3076 phy_offset >>= inode->i_sb->s_blocksize_bits;
3077 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3078 start, (size_t)(end - start + 1));
3081 struct delayed_iput {
3082 struct list_head list;
3083 struct inode *inode;
3086 /* JDM: If this is fs-wide, why can't we add a pointer to
3087 * btrfs_inode instead and avoid the allocation? */
3088 void btrfs_add_delayed_iput(struct inode *inode)
3090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3091 struct delayed_iput *delayed;
3093 if (atomic_add_unless(&inode->i_count, -1, 1))
3096 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3097 delayed->inode = inode;
3099 spin_lock(&fs_info->delayed_iput_lock);
3100 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3101 spin_unlock(&fs_info->delayed_iput_lock);
3104 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3107 struct btrfs_fs_info *fs_info = root->fs_info;
3108 struct delayed_iput *delayed;
3111 spin_lock(&fs_info->delayed_iput_lock);
3112 empty = list_empty(&fs_info->delayed_iputs);
3113 spin_unlock(&fs_info->delayed_iput_lock);
3117 down_read(&fs_info->delayed_iput_sem);
3119 spin_lock(&fs_info->delayed_iput_lock);
3120 list_splice_init(&fs_info->delayed_iputs, &list);
3121 spin_unlock(&fs_info->delayed_iput_lock);
3123 while (!list_empty(&list)) {
3124 delayed = list_entry(list.next, struct delayed_iput, list);
3125 list_del(&delayed->list);
3126 iput(delayed->inode);
3130 up_read(&root->fs_info->delayed_iput_sem);
3134 * This is called in transaction commit time. If there are no orphan
3135 * files in the subvolume, it removes orphan item and frees block_rsv
3138 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3139 struct btrfs_root *root)
3141 struct btrfs_block_rsv *block_rsv;
3144 if (atomic_read(&root->orphan_inodes) ||
3145 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3148 spin_lock(&root->orphan_lock);
3149 if (atomic_read(&root->orphan_inodes)) {
3150 spin_unlock(&root->orphan_lock);
3154 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3155 spin_unlock(&root->orphan_lock);
3159 block_rsv = root->orphan_block_rsv;
3160 root->orphan_block_rsv = NULL;
3161 spin_unlock(&root->orphan_lock);
3163 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3164 btrfs_root_refs(&root->root_item) > 0) {
3165 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3166 root->root_key.objectid);
3168 btrfs_abort_transaction(trans, root, ret);
3170 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3175 WARN_ON(block_rsv->size > 0);
3176 btrfs_free_block_rsv(root, block_rsv);
3181 * This creates an orphan entry for the given inode in case something goes
3182 * wrong in the middle of an unlink/truncate.
3184 * NOTE: caller of this function should reserve 5 units of metadata for
3187 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3189 struct btrfs_root *root = BTRFS_I(inode)->root;
3190 struct btrfs_block_rsv *block_rsv = NULL;
3195 if (!root->orphan_block_rsv) {
3196 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3201 spin_lock(&root->orphan_lock);
3202 if (!root->orphan_block_rsv) {
3203 root->orphan_block_rsv = block_rsv;
3204 } else if (block_rsv) {
3205 btrfs_free_block_rsv(root, block_rsv);
3209 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3210 &BTRFS_I(inode)->runtime_flags)) {
3213 * For proper ENOSPC handling, we should do orphan
3214 * cleanup when mounting. But this introduces backward
3215 * compatibility issue.
3217 if (!xchg(&root->orphan_item_inserted, 1))
3223 atomic_inc(&root->orphan_inodes);
3226 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3227 &BTRFS_I(inode)->runtime_flags))
3229 spin_unlock(&root->orphan_lock);
3231 /* grab metadata reservation from transaction handle */
3233 ret = btrfs_orphan_reserve_metadata(trans, inode);
3234 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3237 /* insert an orphan item to track this unlinked/truncated file */
3239 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3241 atomic_dec(&root->orphan_inodes);
3243 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3244 &BTRFS_I(inode)->runtime_flags);
3245 btrfs_orphan_release_metadata(inode);
3247 if (ret != -EEXIST) {
3248 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 &BTRFS_I(inode)->runtime_flags);
3250 btrfs_abort_transaction(trans, root, ret);
3257 /* insert an orphan item to track subvolume contains orphan files */
3259 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3260 root->root_key.objectid);
3261 if (ret && ret != -EEXIST) {
3262 btrfs_abort_transaction(trans, root, ret);
3270 * We have done the truncate/delete so we can go ahead and remove the orphan
3271 * item for this particular inode.
3273 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3274 struct inode *inode)
3276 struct btrfs_root *root = BTRFS_I(inode)->root;
3277 int delete_item = 0;
3278 int release_rsv = 0;
3281 spin_lock(&root->orphan_lock);
3282 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3283 &BTRFS_I(inode)->runtime_flags))
3286 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3287 &BTRFS_I(inode)->runtime_flags))
3289 spin_unlock(&root->orphan_lock);
3292 atomic_dec(&root->orphan_inodes);
3294 ret = btrfs_del_orphan_item(trans, root,
3299 btrfs_orphan_release_metadata(inode);
3305 * this cleans up any orphans that may be left on the list from the last use
3308 int btrfs_orphan_cleanup(struct btrfs_root *root)
3310 struct btrfs_path *path;
3311 struct extent_buffer *leaf;
3312 struct btrfs_key key, found_key;
3313 struct btrfs_trans_handle *trans;
3314 struct inode *inode;
3315 u64 last_objectid = 0;
3316 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3321 path = btrfs_alloc_path();
3328 key.objectid = BTRFS_ORPHAN_OBJECTID;
3329 key.type = BTRFS_ORPHAN_ITEM_KEY;
3330 key.offset = (u64)-1;
3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3338 * if ret == 0 means we found what we were searching for, which
3339 * is weird, but possible, so only screw with path if we didn't
3340 * find the key and see if we have stuff that matches
3344 if (path->slots[0] == 0)
3349 /* pull out the item */
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3353 /* make sure the item matches what we want */
3354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3356 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3359 /* release the path since we're done with it */
3360 btrfs_release_path(path);
3363 * this is where we are basically btrfs_lookup, without the
3364 * crossing root thing. we store the inode number in the
3365 * offset of the orphan item.
3368 if (found_key.offset == last_objectid) {
3369 btrfs_err(root->fs_info,
3370 "Error removing orphan entry, stopping orphan cleanup");
3375 last_objectid = found_key.offset;
3377 found_key.objectid = found_key.offset;
3378 found_key.type = BTRFS_INODE_ITEM_KEY;
3379 found_key.offset = 0;
3380 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3381 ret = PTR_ERR_OR_ZERO(inode);
3382 if (ret && ret != -ESTALE)
3385 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3386 struct btrfs_root *dead_root;
3387 struct btrfs_fs_info *fs_info = root->fs_info;
3388 int is_dead_root = 0;
3391 * this is an orphan in the tree root. Currently these
3392 * could come from 2 sources:
3393 * a) a snapshot deletion in progress
3394 * b) a free space cache inode
3395 * We need to distinguish those two, as the snapshot
3396 * orphan must not get deleted.
3397 * find_dead_roots already ran before us, so if this
3398 * is a snapshot deletion, we should find the root
3399 * in the dead_roots list
3401 spin_lock(&fs_info->trans_lock);
3402 list_for_each_entry(dead_root, &fs_info->dead_roots,
3404 if (dead_root->root_key.objectid ==
3405 found_key.objectid) {
3410 spin_unlock(&fs_info->trans_lock);
3412 /* prevent this orphan from being found again */
3413 key.offset = found_key.objectid - 1;
3418 * Inode is already gone but the orphan item is still there,
3419 * kill the orphan item.
3421 if (ret == -ESTALE) {
3422 trans = btrfs_start_transaction(root, 1);
3423 if (IS_ERR(trans)) {
3424 ret = PTR_ERR(trans);
3427 btrfs_debug(root->fs_info, "auto deleting %Lu",
3428 found_key.objectid);
3429 ret = btrfs_del_orphan_item(trans, root,
3430 found_key.objectid);
3431 btrfs_end_transaction(trans, root);
3438 * add this inode to the orphan list so btrfs_orphan_del does
3439 * the proper thing when we hit it
3441 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3442 &BTRFS_I(inode)->runtime_flags);
3443 atomic_inc(&root->orphan_inodes);
3445 /* if we have links, this was a truncate, lets do that */
3446 if (inode->i_nlink) {
3447 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3453 /* 1 for the orphan item deletion. */
3454 trans = btrfs_start_transaction(root, 1);
3455 if (IS_ERR(trans)) {
3457 ret = PTR_ERR(trans);
3460 ret = btrfs_orphan_add(trans, inode);
3461 btrfs_end_transaction(trans, root);
3467 ret = btrfs_truncate(inode);
3469 btrfs_orphan_del(NULL, inode);
3474 /* this will do delete_inode and everything for us */
3479 /* release the path since we're done with it */
3480 btrfs_release_path(path);
3482 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3484 if (root->orphan_block_rsv)
3485 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3488 if (root->orphan_block_rsv ||
3489 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3490 trans = btrfs_join_transaction(root);
3492 btrfs_end_transaction(trans, root);
3496 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3498 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3502 btrfs_err(root->fs_info,
3503 "could not do orphan cleanup %d", ret);
3504 btrfs_free_path(path);
3509 * very simple check to peek ahead in the leaf looking for xattrs. If we
3510 * don't find any xattrs, we know there can't be any acls.
3512 * slot is the slot the inode is in, objectid is the objectid of the inode
3514 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3515 int slot, u64 objectid,
3516 int *first_xattr_slot)
3518 u32 nritems = btrfs_header_nritems(leaf);
3519 struct btrfs_key found_key;
3520 static u64 xattr_access = 0;
3521 static u64 xattr_default = 0;
3524 if (!xattr_access) {
3525 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3526 strlen(POSIX_ACL_XATTR_ACCESS));
3527 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3528 strlen(POSIX_ACL_XATTR_DEFAULT));
3532 *first_xattr_slot = -1;
3533 while (slot < nritems) {
3534 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3536 /* we found a different objectid, there must not be acls */
3537 if (found_key.objectid != objectid)
3540 /* we found an xattr, assume we've got an acl */
3541 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3542 if (*first_xattr_slot == -1)
3543 *first_xattr_slot = slot;
3544 if (found_key.offset == xattr_access ||
3545 found_key.offset == xattr_default)
3550 * we found a key greater than an xattr key, there can't
3551 * be any acls later on
3553 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3560 * it goes inode, inode backrefs, xattrs, extents,
3561 * so if there are a ton of hard links to an inode there can
3562 * be a lot of backrefs. Don't waste time searching too hard,
3563 * this is just an optimization
3568 /* we hit the end of the leaf before we found an xattr or
3569 * something larger than an xattr. We have to assume the inode
3572 if (*first_xattr_slot == -1)
3573 *first_xattr_slot = slot;
3578 * read an inode from the btree into the in-memory inode
3580 static void btrfs_read_locked_inode(struct inode *inode)
3582 struct btrfs_path *path;
3583 struct extent_buffer *leaf;
3584 struct btrfs_inode_item *inode_item;
3585 struct btrfs_root *root = BTRFS_I(inode)->root;
3586 struct btrfs_key location;
3591 bool filled = false;
3592 int first_xattr_slot;
3594 ret = btrfs_fill_inode(inode, &rdev);
3598 path = btrfs_alloc_path();
3602 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3604 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3608 leaf = path->nodes[0];
3613 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3614 struct btrfs_inode_item);
3615 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3616 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3617 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3618 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3619 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3621 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3622 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3627 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3628 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3630 BTRFS_I(inode)->i_otime.tv_sec =
3631 btrfs_timespec_sec(leaf, &inode_item->otime);
3632 BTRFS_I(inode)->i_otime.tv_nsec =
3633 btrfs_timespec_nsec(leaf, &inode_item->otime);
3635 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3636 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3637 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3639 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3640 inode->i_generation = BTRFS_I(inode)->generation;
3642 rdev = btrfs_inode_rdev(leaf, inode_item);
3644 BTRFS_I(inode)->index_cnt = (u64)-1;
3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3649 * If we were modified in the current generation and evicted from memory
3650 * and then re-read we need to do a full sync since we don't have any
3651 * idea about which extents were modified before we were evicted from
3654 * This is required for both inode re-read from disk and delayed inode
3655 * in delayed_nodes_tree.
3657 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3659 &BTRFS_I(inode)->runtime_flags);
3662 * We don't persist the id of the transaction where an unlink operation
3663 * against the inode was last made. So here we assume the inode might
3664 * have been evicted, and therefore the exact value of last_unlink_trans
3665 * lost, and set it to last_trans to avoid metadata inconsistencies
3666 * between the inode and its parent if the inode is fsync'ed and the log
3667 * replayed. For example, in the scenario:
3670 * ln mydir/foo mydir/bar
3673 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3674 * xfs_io -c fsync mydir/foo
3676 * mount fs, triggers fsync log replay
3678 * We must make sure that when we fsync our inode foo we also log its
3679 * parent inode, otherwise after log replay the parent still has the
3680 * dentry with the "bar" name but our inode foo has a link count of 1
3681 * and doesn't have an inode ref with the name "bar" anymore.
3683 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3684 * but it guarantees correctness at the expense of ocassional full
3685 * transaction commits on fsync if our inode is a directory, or if our
3686 * inode is not a directory, logging its parent unnecessarily.
3688 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3691 if (inode->i_nlink != 1 ||
3692 path->slots[0] >= btrfs_header_nritems(leaf))
3695 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3696 if (location.objectid != btrfs_ino(inode))
3699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3700 if (location.type == BTRFS_INODE_REF_KEY) {
3701 struct btrfs_inode_ref *ref;
3703 ref = (struct btrfs_inode_ref *)ptr;
3704 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3705 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3706 struct btrfs_inode_extref *extref;
3708 extref = (struct btrfs_inode_extref *)ptr;
3709 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3714 * try to precache a NULL acl entry for files that don't have
3715 * any xattrs or acls
3717 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3718 btrfs_ino(inode), &first_xattr_slot);
3719 if (first_xattr_slot != -1) {
3720 path->slots[0] = first_xattr_slot;
3721 ret = btrfs_load_inode_props(inode, path);
3723 btrfs_err(root->fs_info,
3724 "error loading props for ino %llu (root %llu): %d",
3726 root->root_key.objectid, ret);
3728 btrfs_free_path(path);
3731 cache_no_acl(inode);
3733 switch (inode->i_mode & S_IFMT) {
3735 inode->i_mapping->a_ops = &btrfs_aops;
3736 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3737 inode->i_fop = &btrfs_file_operations;
3738 inode->i_op = &btrfs_file_inode_operations;
3741 inode->i_fop = &btrfs_dir_file_operations;
3742 if (root == root->fs_info->tree_root)
3743 inode->i_op = &btrfs_dir_ro_inode_operations;
3745 inode->i_op = &btrfs_dir_inode_operations;
3748 inode->i_op = &btrfs_symlink_inode_operations;
3749 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3752 inode->i_op = &btrfs_special_inode_operations;
3753 init_special_inode(inode, inode->i_mode, rdev);
3757 btrfs_update_iflags(inode);
3761 btrfs_free_path(path);
3762 make_bad_inode(inode);
3766 * given a leaf and an inode, copy the inode fields into the leaf
3768 static void fill_inode_item(struct btrfs_trans_handle *trans,
3769 struct extent_buffer *leaf,
3770 struct btrfs_inode_item *item,
3771 struct inode *inode)
3773 struct btrfs_map_token token;
3775 btrfs_init_map_token(&token);
3777 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3778 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3779 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3781 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3782 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3784 btrfs_set_token_timespec_sec(leaf, &item->atime,
3785 inode->i_atime.tv_sec, &token);
3786 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3787 inode->i_atime.tv_nsec, &token);
3789 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3790 inode->i_mtime.tv_sec, &token);
3791 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3792 inode->i_mtime.tv_nsec, &token);
3794 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3795 inode->i_ctime.tv_sec, &token);
3796 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3797 inode->i_ctime.tv_nsec, &token);
3799 btrfs_set_token_timespec_sec(leaf, &item->otime,
3800 BTRFS_I(inode)->i_otime.tv_sec, &token);
3801 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3802 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3804 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3806 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3808 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3809 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3810 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3811 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3812 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3816 * copy everything in the in-memory inode into the btree.
3818 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *root, struct inode *inode)
3821 struct btrfs_inode_item *inode_item;
3822 struct btrfs_path *path;
3823 struct extent_buffer *leaf;
3826 path = btrfs_alloc_path();
3830 path->leave_spinning = 1;
3831 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3839 leaf = path->nodes[0];
3840 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3841 struct btrfs_inode_item);
3843 fill_inode_item(trans, leaf, inode_item, inode);
3844 btrfs_mark_buffer_dirty(leaf);
3845 btrfs_set_inode_last_trans(trans, inode);
3848 btrfs_free_path(path);
3853 * copy everything in the in-memory inode into the btree.
3855 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3856 struct btrfs_root *root, struct inode *inode)
3861 * If the inode is a free space inode, we can deadlock during commit
3862 * if we put it into the delayed code.
3864 * The data relocation inode should also be directly updated
3867 if (!btrfs_is_free_space_inode(inode)
3868 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3869 && !root->fs_info->log_root_recovering) {
3870 btrfs_update_root_times(trans, root);
3872 ret = btrfs_delayed_update_inode(trans, root, inode);
3874 btrfs_set_inode_last_trans(trans, inode);
3878 return btrfs_update_inode_item(trans, root, inode);
3881 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root,
3883 struct inode *inode)
3887 ret = btrfs_update_inode(trans, root, inode);
3889 return btrfs_update_inode_item(trans, root, inode);
3894 * unlink helper that gets used here in inode.c and in the tree logging
3895 * recovery code. It remove a link in a directory with a given name, and
3896 * also drops the back refs in the inode to the directory
3898 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3899 struct btrfs_root *root,
3900 struct inode *dir, struct inode *inode,
3901 const char *name, int name_len)
3903 struct btrfs_path *path;
3905 struct extent_buffer *leaf;
3906 struct btrfs_dir_item *di;
3907 struct btrfs_key key;
3909 u64 ino = btrfs_ino(inode);
3910 u64 dir_ino = btrfs_ino(dir);
3912 path = btrfs_alloc_path();
3918 path->leave_spinning = 1;
3919 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3920 name, name_len, -1);
3929 leaf = path->nodes[0];
3930 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3931 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3934 btrfs_release_path(path);
3937 * If we don't have dir index, we have to get it by looking up
3938 * the inode ref, since we get the inode ref, remove it directly,
3939 * it is unnecessary to do delayed deletion.
3941 * But if we have dir index, needn't search inode ref to get it.
3942 * Since the inode ref is close to the inode item, it is better
3943 * that we delay to delete it, and just do this deletion when
3944 * we update the inode item.
3946 if (BTRFS_I(inode)->dir_index) {
3947 ret = btrfs_delayed_delete_inode_ref(inode);
3949 index = BTRFS_I(inode)->dir_index;
3954 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3957 btrfs_info(root->fs_info,
3958 "failed to delete reference to %.*s, inode %llu parent %llu",
3959 name_len, name, ino, dir_ino);
3960 btrfs_abort_transaction(trans, root, ret);
3964 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3966 btrfs_abort_transaction(trans, root, ret);
3970 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3972 if (ret != 0 && ret != -ENOENT) {
3973 btrfs_abort_transaction(trans, root, ret);
3977 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3982 btrfs_abort_transaction(trans, root, ret);
3984 btrfs_free_path(path);
3988 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3989 inode_inc_iversion(inode);
3990 inode_inc_iversion(dir);
3991 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3992 ret = btrfs_update_inode(trans, root, dir);
3997 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3998 struct btrfs_root *root,
3999 struct inode *dir, struct inode *inode,
4000 const char *name, int name_len)
4003 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4006 ret = btrfs_update_inode(trans, root, inode);
4012 * helper to start transaction for unlink and rmdir.
4014 * unlink and rmdir are special in btrfs, they do not always free space, so
4015 * if we cannot make our reservations the normal way try and see if there is
4016 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4017 * allow the unlink to occur.
4019 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4021 struct btrfs_trans_handle *trans;
4022 struct btrfs_root *root = BTRFS_I(dir)->root;
4026 * 1 for the possible orphan item
4027 * 1 for the dir item
4028 * 1 for the dir index
4029 * 1 for the inode ref
4032 trans = btrfs_start_transaction(root, 5);
4033 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4036 if (PTR_ERR(trans) == -ENOSPC) {
4037 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4039 trans = btrfs_start_transaction(root, 0);
4042 ret = btrfs_cond_migrate_bytes(root->fs_info,
4043 &root->fs_info->trans_block_rsv,
4046 btrfs_end_transaction(trans, root);
4047 return ERR_PTR(ret);
4049 trans->block_rsv = &root->fs_info->trans_block_rsv;
4050 trans->bytes_reserved = num_bytes;
4055 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4057 struct btrfs_root *root = BTRFS_I(dir)->root;
4058 struct btrfs_trans_handle *trans;
4059 struct inode *inode = d_inode(dentry);
4062 trans = __unlink_start_trans(dir);
4064 return PTR_ERR(trans);
4066 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4068 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4069 dentry->d_name.name, dentry->d_name.len);
4073 if (inode->i_nlink == 0) {
4074 ret = btrfs_orphan_add(trans, inode);
4080 btrfs_end_transaction(trans, root);
4081 btrfs_btree_balance_dirty(root);
4085 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4086 struct btrfs_root *root,
4087 struct inode *dir, u64 objectid,
4088 const char *name, int name_len)
4090 struct btrfs_path *path;
4091 struct extent_buffer *leaf;
4092 struct btrfs_dir_item *di;
4093 struct btrfs_key key;
4096 u64 dir_ino = btrfs_ino(dir);
4098 path = btrfs_alloc_path();
4102 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4103 name, name_len, -1);
4104 if (IS_ERR_OR_NULL(di)) {
4112 leaf = path->nodes[0];
4113 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4114 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4115 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4117 btrfs_abort_transaction(trans, root, ret);
4120 btrfs_release_path(path);
4122 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4123 objectid, root->root_key.objectid,
4124 dir_ino, &index, name, name_len);
4126 if (ret != -ENOENT) {
4127 btrfs_abort_transaction(trans, root, ret);
4130 di = btrfs_search_dir_index_item(root, path, dir_ino,
4132 if (IS_ERR_OR_NULL(di)) {
4137 btrfs_abort_transaction(trans, root, ret);
4141 leaf = path->nodes[0];
4142 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4143 btrfs_release_path(path);
4146 btrfs_release_path(path);
4148 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4150 btrfs_abort_transaction(trans, root, ret);
4154 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4155 inode_inc_iversion(dir);
4156 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4157 ret = btrfs_update_inode_fallback(trans, root, dir);
4159 btrfs_abort_transaction(trans, root, ret);
4161 btrfs_free_path(path);
4165 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4167 struct inode *inode = d_inode(dentry);
4169 struct btrfs_root *root = BTRFS_I(dir)->root;
4170 struct btrfs_trans_handle *trans;
4172 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4174 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4177 trans = __unlink_start_trans(dir);
4179 return PTR_ERR(trans);
4181 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4182 err = btrfs_unlink_subvol(trans, root, dir,
4183 BTRFS_I(inode)->location.objectid,
4184 dentry->d_name.name,
4185 dentry->d_name.len);
4189 err = btrfs_orphan_add(trans, inode);
4193 /* now the directory is empty */
4194 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4195 dentry->d_name.name, dentry->d_name.len);
4197 btrfs_i_size_write(inode, 0);
4199 btrfs_end_transaction(trans, root);
4200 btrfs_btree_balance_dirty(root);
4205 static int truncate_space_check(struct btrfs_trans_handle *trans,
4206 struct btrfs_root *root,
4211 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4212 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4213 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4215 trans->bytes_reserved += bytes_deleted;
4221 * this can truncate away extent items, csum items and directory items.
4222 * It starts at a high offset and removes keys until it can't find
4223 * any higher than new_size
4225 * csum items that cross the new i_size are truncated to the new size
4228 * min_type is the minimum key type to truncate down to. If set to 0, this
4229 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4231 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4232 struct btrfs_root *root,
4233 struct inode *inode,
4234 u64 new_size, u32 min_type)
4236 struct btrfs_path *path;
4237 struct extent_buffer *leaf;
4238 struct btrfs_file_extent_item *fi;
4239 struct btrfs_key key;
4240 struct btrfs_key found_key;
4241 u64 extent_start = 0;
4242 u64 extent_num_bytes = 0;
4243 u64 extent_offset = 0;
4245 u64 last_size = new_size;
4246 u32 found_type = (u8)-1;
4249 int pending_del_nr = 0;
4250 int pending_del_slot = 0;
4251 int extent_type = -1;
4254 u64 ino = btrfs_ino(inode);
4255 u64 bytes_deleted = 0;
4257 bool should_throttle = 0;
4258 bool should_end = 0;
4260 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4263 * for non-free space inodes and ref cows, we want to back off from
4266 if (!btrfs_is_free_space_inode(inode) &&
4267 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4270 path = btrfs_alloc_path();
4276 * We want to drop from the next block forward in case this new size is
4277 * not block aligned since we will be keeping the last block of the
4278 * extent just the way it is.
4280 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4281 root == root->fs_info->tree_root)
4282 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4283 root->sectorsize), (u64)-1, 0);
4286 * This function is also used to drop the items in the log tree before
4287 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4288 * it is used to drop the loged items. So we shouldn't kill the delayed
4291 if (min_type == 0 && root == BTRFS_I(inode)->root)
4292 btrfs_kill_delayed_inode_items(inode);
4295 key.offset = (u64)-1;
4300 * with a 16K leaf size and 128MB extents, you can actually queue
4301 * up a huge file in a single leaf. Most of the time that
4302 * bytes_deleted is > 0, it will be huge by the time we get here
4304 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4305 if (btrfs_should_end_transaction(trans, root)) {
4312 path->leave_spinning = 1;
4313 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4320 /* there are no items in the tree for us to truncate, we're
4323 if (path->slots[0] == 0)
4330 leaf = path->nodes[0];
4331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332 found_type = found_key.type;
4334 if (found_key.objectid != ino)
4337 if (found_type < min_type)
4340 item_end = found_key.offset;
4341 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4342 fi = btrfs_item_ptr(leaf, path->slots[0],
4343 struct btrfs_file_extent_item);
4344 extent_type = btrfs_file_extent_type(leaf, fi);
4345 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4347 btrfs_file_extent_num_bytes(leaf, fi);
4348 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4349 item_end += btrfs_file_extent_inline_len(leaf,
4350 path->slots[0], fi);
4354 if (found_type > min_type) {
4357 if (item_end < new_size)
4359 if (found_key.offset >= new_size)
4365 /* FIXME, shrink the extent if the ref count is only 1 */
4366 if (found_type != BTRFS_EXTENT_DATA_KEY)
4370 last_size = found_key.offset;
4372 last_size = new_size;
4374 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4376 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4378 u64 orig_num_bytes =
4379 btrfs_file_extent_num_bytes(leaf, fi);
4380 extent_num_bytes = ALIGN(new_size -
4383 btrfs_set_file_extent_num_bytes(leaf, fi,
4385 num_dec = (orig_num_bytes -
4387 if (test_bit(BTRFS_ROOT_REF_COWS,
4390 inode_sub_bytes(inode, num_dec);
4391 btrfs_mark_buffer_dirty(leaf);
4394 btrfs_file_extent_disk_num_bytes(leaf,
4396 extent_offset = found_key.offset -
4397 btrfs_file_extent_offset(leaf, fi);
4399 /* FIXME blocksize != 4096 */
4400 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4401 if (extent_start != 0) {
4403 if (test_bit(BTRFS_ROOT_REF_COWS,
4405 inode_sub_bytes(inode, num_dec);
4408 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4410 * we can't truncate inline items that have had
4414 btrfs_file_extent_compression(leaf, fi) == 0 &&
4415 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4416 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4417 u32 size = new_size - found_key.offset;
4419 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4420 inode_sub_bytes(inode, item_end + 1 -
4424 * update the ram bytes to properly reflect
4425 * the new size of our item
4427 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4429 btrfs_file_extent_calc_inline_size(size);
4430 btrfs_truncate_item(root, path, size, 1);
4431 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4433 inode_sub_bytes(inode, item_end + 1 -
4439 if (!pending_del_nr) {
4440 /* no pending yet, add ourselves */
4441 pending_del_slot = path->slots[0];
4443 } else if (pending_del_nr &&
4444 path->slots[0] + 1 == pending_del_slot) {
4445 /* hop on the pending chunk */
4447 pending_del_slot = path->slots[0];
4454 should_throttle = 0;
4457 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4458 root == root->fs_info->tree_root)) {
4459 btrfs_set_path_blocking(path);
4460 bytes_deleted += extent_num_bytes;
4461 ret = btrfs_free_extent(trans, root, extent_start,
4462 extent_num_bytes, 0,
4463 btrfs_header_owner(leaf),
4464 ino, extent_offset, 0);
4466 if (btrfs_should_throttle_delayed_refs(trans, root))
4467 btrfs_async_run_delayed_refs(root,
4468 trans->delayed_ref_updates * 2, 0);
4470 if (truncate_space_check(trans, root,
4471 extent_num_bytes)) {
4474 if (btrfs_should_throttle_delayed_refs(trans,
4476 should_throttle = 1;
4481 if (found_type == BTRFS_INODE_ITEM_KEY)
4484 if (path->slots[0] == 0 ||
4485 path->slots[0] != pending_del_slot ||
4486 should_throttle || should_end) {
4487 if (pending_del_nr) {
4488 ret = btrfs_del_items(trans, root, path,
4492 btrfs_abort_transaction(trans,
4498 btrfs_release_path(path);
4499 if (should_throttle) {
4500 unsigned long updates = trans->delayed_ref_updates;
4502 trans->delayed_ref_updates = 0;
4503 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4509 * if we failed to refill our space rsv, bail out
4510 * and let the transaction restart
4522 if (pending_del_nr) {
4523 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4526 btrfs_abort_transaction(trans, root, ret);
4529 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4530 btrfs_ordered_update_i_size(inode, last_size, NULL);
4532 btrfs_free_path(path);
4534 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4535 unsigned long updates = trans->delayed_ref_updates;
4537 trans->delayed_ref_updates = 0;
4538 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4547 * btrfs_truncate_page - read, zero a chunk and write a page
4548 * @inode - inode that we're zeroing
4549 * @from - the offset to start zeroing
4550 * @len - the length to zero, 0 to zero the entire range respective to the
4552 * @front - zero up to the offset instead of from the offset on
4554 * This will find the page for the "from" offset and cow the page and zero the
4555 * part we want to zero. This is used with truncate and hole punching.
4557 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4560 struct address_space *mapping = inode->i_mapping;
4561 struct btrfs_root *root = BTRFS_I(inode)->root;
4562 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4563 struct btrfs_ordered_extent *ordered;
4564 struct extent_state *cached_state = NULL;
4566 u32 blocksize = root->sectorsize;
4567 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4568 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4570 gfp_t mask = btrfs_alloc_write_mask(mapping);
4575 if ((offset & (blocksize - 1)) == 0 &&
4576 (!len || ((len & (blocksize - 1)) == 0)))
4578 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4583 page = find_or_create_page(mapping, index, mask);
4585 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4590 page_start = page_offset(page);
4591 page_end = page_start + PAGE_CACHE_SIZE - 1;
4593 if (!PageUptodate(page)) {
4594 ret = btrfs_readpage(NULL, page);
4596 if (page->mapping != mapping) {
4598 page_cache_release(page);
4601 if (!PageUptodate(page)) {
4606 wait_on_page_writeback(page);
4608 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4609 set_page_extent_mapped(page);
4611 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4613 unlock_extent_cached(io_tree, page_start, page_end,
4614 &cached_state, GFP_NOFS);
4616 page_cache_release(page);
4617 btrfs_start_ordered_extent(inode, ordered, 1);
4618 btrfs_put_ordered_extent(ordered);
4622 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4623 EXTENT_DIRTY | EXTENT_DELALLOC |
4624 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4625 0, 0, &cached_state, GFP_NOFS);
4627 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4630 unlock_extent_cached(io_tree, page_start, page_end,
4631 &cached_state, GFP_NOFS);
4635 if (offset != PAGE_CACHE_SIZE) {
4637 len = PAGE_CACHE_SIZE - offset;
4640 memset(kaddr, 0, offset);
4642 memset(kaddr + offset, 0, len);
4643 flush_dcache_page(page);
4646 ClearPageChecked(page);
4647 set_page_dirty(page);
4648 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4653 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4655 page_cache_release(page);
4660 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4661 u64 offset, u64 len)
4663 struct btrfs_trans_handle *trans;
4667 * Still need to make sure the inode looks like it's been updated so
4668 * that any holes get logged if we fsync.
4670 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4671 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4672 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4673 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4678 * 1 - for the one we're dropping
4679 * 1 - for the one we're adding
4680 * 1 - for updating the inode.
4682 trans = btrfs_start_transaction(root, 3);
4684 return PTR_ERR(trans);
4686 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4688 btrfs_abort_transaction(trans, root, ret);
4689 btrfs_end_transaction(trans, root);
4693 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4694 0, 0, len, 0, len, 0, 0, 0);
4696 btrfs_abort_transaction(trans, root, ret);
4698 btrfs_update_inode(trans, root, inode);
4699 btrfs_end_transaction(trans, root);
4704 * This function puts in dummy file extents for the area we're creating a hole
4705 * for. So if we are truncating this file to a larger size we need to insert
4706 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4707 * the range between oldsize and size
4709 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4711 struct btrfs_root *root = BTRFS_I(inode)->root;
4712 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4713 struct extent_map *em = NULL;
4714 struct extent_state *cached_state = NULL;
4715 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4716 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4717 u64 block_end = ALIGN(size, root->sectorsize);
4724 * If our size started in the middle of a page we need to zero out the
4725 * rest of the page before we expand the i_size, otherwise we could
4726 * expose stale data.
4728 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4732 if (size <= hole_start)
4736 struct btrfs_ordered_extent *ordered;
4738 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4740 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4741 block_end - hole_start);
4744 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4745 &cached_state, GFP_NOFS);
4746 btrfs_start_ordered_extent(inode, ordered, 1);
4747 btrfs_put_ordered_extent(ordered);
4750 cur_offset = hole_start;
4752 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4753 block_end - cur_offset, 0);
4759 last_byte = min(extent_map_end(em), block_end);
4760 last_byte = ALIGN(last_byte , root->sectorsize);
4761 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4762 struct extent_map *hole_em;
4763 hole_size = last_byte - cur_offset;
4765 err = maybe_insert_hole(root, inode, cur_offset,
4769 btrfs_drop_extent_cache(inode, cur_offset,
4770 cur_offset + hole_size - 1, 0);
4771 hole_em = alloc_extent_map();
4773 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4774 &BTRFS_I(inode)->runtime_flags);
4777 hole_em->start = cur_offset;
4778 hole_em->len = hole_size;
4779 hole_em->orig_start = cur_offset;
4781 hole_em->block_start = EXTENT_MAP_HOLE;
4782 hole_em->block_len = 0;
4783 hole_em->orig_block_len = 0;
4784 hole_em->ram_bytes = hole_size;
4785 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4786 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4787 hole_em->generation = root->fs_info->generation;
4790 write_lock(&em_tree->lock);
4791 err = add_extent_mapping(em_tree, hole_em, 1);
4792 write_unlock(&em_tree->lock);
4795 btrfs_drop_extent_cache(inode, cur_offset,
4799 free_extent_map(hole_em);
4802 free_extent_map(em);
4804 cur_offset = last_byte;
4805 if (cur_offset >= block_end)
4808 free_extent_map(em);
4809 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4814 static int wait_snapshoting_atomic_t(atomic_t *a)
4820 static void wait_for_snapshot_creation(struct btrfs_root *root)
4825 ret = btrfs_start_write_no_snapshoting(root);
4828 wait_on_atomic_t(&root->will_be_snapshoted,
4829 wait_snapshoting_atomic_t,
4830 TASK_UNINTERRUPTIBLE);
4834 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4836 struct btrfs_root *root = BTRFS_I(inode)->root;
4837 struct btrfs_trans_handle *trans;
4838 loff_t oldsize = i_size_read(inode);
4839 loff_t newsize = attr->ia_size;
4840 int mask = attr->ia_valid;
4844 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4845 * special case where we need to update the times despite not having
4846 * these flags set. For all other operations the VFS set these flags
4847 * explicitly if it wants a timestamp update.
4849 if (newsize != oldsize) {
4850 inode_inc_iversion(inode);
4851 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4852 inode->i_ctime = inode->i_mtime =
4853 current_fs_time(inode->i_sb);
4856 if (newsize > oldsize) {
4857 truncate_pagecache(inode, newsize);
4859 * Don't do an expanding truncate while snapshoting is ongoing.
4860 * This is to ensure the snapshot captures a fully consistent
4861 * state of this file - if the snapshot captures this expanding
4862 * truncation, it must capture all writes that happened before
4865 wait_for_snapshot_creation(root);
4866 ret = btrfs_cont_expand(inode, oldsize, newsize);
4868 btrfs_end_write_no_snapshoting(root);
4872 trans = btrfs_start_transaction(root, 1);
4873 if (IS_ERR(trans)) {
4874 btrfs_end_write_no_snapshoting(root);
4875 return PTR_ERR(trans);
4878 i_size_write(inode, newsize);
4879 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4880 ret = btrfs_update_inode(trans, root, inode);
4881 btrfs_end_write_no_snapshoting(root);
4882 btrfs_end_transaction(trans, root);
4886 * We're truncating a file that used to have good data down to
4887 * zero. Make sure it gets into the ordered flush list so that
4888 * any new writes get down to disk quickly.
4891 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4892 &BTRFS_I(inode)->runtime_flags);
4895 * 1 for the orphan item we're going to add
4896 * 1 for the orphan item deletion.
4898 trans = btrfs_start_transaction(root, 2);
4900 return PTR_ERR(trans);
4903 * We need to do this in case we fail at _any_ point during the
4904 * actual truncate. Once we do the truncate_setsize we could
4905 * invalidate pages which forces any outstanding ordered io to
4906 * be instantly completed which will give us extents that need
4907 * to be truncated. If we fail to get an orphan inode down we
4908 * could have left over extents that were never meant to live,
4909 * so we need to garuntee from this point on that everything
4910 * will be consistent.
4912 ret = btrfs_orphan_add(trans, inode);
4913 btrfs_end_transaction(trans, root);
4917 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4918 truncate_setsize(inode, newsize);
4920 /* Disable nonlocked read DIO to avoid the end less truncate */
4921 btrfs_inode_block_unlocked_dio(inode);
4922 inode_dio_wait(inode);
4923 btrfs_inode_resume_unlocked_dio(inode);
4925 ret = btrfs_truncate(inode);
4926 if (ret && inode->i_nlink) {
4930 * failed to truncate, disk_i_size is only adjusted down
4931 * as we remove extents, so it should represent the true
4932 * size of the inode, so reset the in memory size and
4933 * delete our orphan entry.
4935 trans = btrfs_join_transaction(root);
4936 if (IS_ERR(trans)) {
4937 btrfs_orphan_del(NULL, inode);
4940 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4941 err = btrfs_orphan_del(trans, inode);
4943 btrfs_abort_transaction(trans, root, err);
4944 btrfs_end_transaction(trans, root);
4951 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4953 struct inode *inode = d_inode(dentry);
4954 struct btrfs_root *root = BTRFS_I(inode)->root;
4957 if (btrfs_root_readonly(root))
4960 err = inode_change_ok(inode, attr);
4964 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4965 err = btrfs_setsize(inode, attr);
4970 if (attr->ia_valid) {
4971 setattr_copy(inode, attr);
4972 inode_inc_iversion(inode);
4973 err = btrfs_dirty_inode(inode);
4975 if (!err && attr->ia_valid & ATTR_MODE)
4976 err = posix_acl_chmod(inode, inode->i_mode);
4983 * While truncating the inode pages during eviction, we get the VFS calling
4984 * btrfs_invalidatepage() against each page of the inode. This is slow because
4985 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4986 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4987 * extent_state structures over and over, wasting lots of time.
4989 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4990 * those expensive operations on a per page basis and do only the ordered io
4991 * finishing, while we release here the extent_map and extent_state structures,
4992 * without the excessive merging and splitting.
4994 static void evict_inode_truncate_pages(struct inode *inode)
4996 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4997 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4998 struct rb_node *node;
5000 ASSERT(inode->i_state & I_FREEING);
5001 truncate_inode_pages_final(&inode->i_data);
5003 write_lock(&map_tree->lock);
5004 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5005 struct extent_map *em;
5007 node = rb_first(&map_tree->map);
5008 em = rb_entry(node, struct extent_map, rb_node);
5009 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5010 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5011 remove_extent_mapping(map_tree, em);
5012 free_extent_map(em);
5013 if (need_resched()) {
5014 write_unlock(&map_tree->lock);
5016 write_lock(&map_tree->lock);
5019 write_unlock(&map_tree->lock);
5022 * Keep looping until we have no more ranges in the io tree.
5023 * We can have ongoing bios started by readpages (called from readahead)
5024 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5025 * still in progress (unlocked the pages in the bio but did not yet
5026 * unlocked the ranges in the io tree). Therefore this means some
5027 * ranges can still be locked and eviction started because before
5028 * submitting those bios, which are executed by a separate task (work
5029 * queue kthread), inode references (inode->i_count) were not taken
5030 * (which would be dropped in the end io callback of each bio).
5031 * Therefore here we effectively end up waiting for those bios and
5032 * anyone else holding locked ranges without having bumped the inode's
5033 * reference count - if we don't do it, when they access the inode's
5034 * io_tree to unlock a range it may be too late, leading to an
5035 * use-after-free issue.
5037 spin_lock(&io_tree->lock);
5038 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5039 struct extent_state *state;
5040 struct extent_state *cached_state = NULL;
5044 node = rb_first(&io_tree->state);
5045 state = rb_entry(node, struct extent_state, rb_node);
5046 start = state->start;
5048 spin_unlock(&io_tree->lock);
5050 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5051 clear_extent_bit(io_tree, start, end,
5052 EXTENT_LOCKED | EXTENT_DIRTY |
5053 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5054 EXTENT_DEFRAG, 1, 1,
5055 &cached_state, GFP_NOFS);
5058 spin_lock(&io_tree->lock);
5060 spin_unlock(&io_tree->lock);
5063 void btrfs_evict_inode(struct inode *inode)
5065 struct btrfs_trans_handle *trans;
5066 struct btrfs_root *root = BTRFS_I(inode)->root;
5067 struct btrfs_block_rsv *rsv, *global_rsv;
5068 int steal_from_global = 0;
5069 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5072 trace_btrfs_inode_evict(inode);
5074 evict_inode_truncate_pages(inode);
5076 if (inode->i_nlink &&
5077 ((btrfs_root_refs(&root->root_item) != 0 &&
5078 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5079 btrfs_is_free_space_inode(inode)))
5082 if (is_bad_inode(inode)) {
5083 btrfs_orphan_del(NULL, inode);
5086 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5087 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5089 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5091 if (root->fs_info->log_root_recovering) {
5092 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5093 &BTRFS_I(inode)->runtime_flags));
5097 if (inode->i_nlink > 0) {
5098 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5099 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5103 ret = btrfs_commit_inode_delayed_inode(inode);
5105 btrfs_orphan_del(NULL, inode);
5109 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5111 btrfs_orphan_del(NULL, inode);
5114 rsv->size = min_size;
5116 global_rsv = &root->fs_info->global_block_rsv;
5118 btrfs_i_size_write(inode, 0);
5121 * This is a bit simpler than btrfs_truncate since we've already
5122 * reserved our space for our orphan item in the unlink, so we just
5123 * need to reserve some slack space in case we add bytes and update
5124 * inode item when doing the truncate.
5127 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5128 BTRFS_RESERVE_FLUSH_LIMIT);
5131 * Try and steal from the global reserve since we will
5132 * likely not use this space anyway, we want to try as
5133 * hard as possible to get this to work.
5136 steal_from_global++;
5138 steal_from_global = 0;
5142 * steal_from_global == 0: we reserved stuff, hooray!
5143 * steal_from_global == 1: we didn't reserve stuff, boo!
5144 * steal_from_global == 2: we've committed, still not a lot of
5145 * room but maybe we'll have room in the global reserve this
5147 * steal_from_global == 3: abandon all hope!
5149 if (steal_from_global > 2) {
5150 btrfs_warn(root->fs_info,
5151 "Could not get space for a delete, will truncate on mount %d",
5153 btrfs_orphan_del(NULL, inode);
5154 btrfs_free_block_rsv(root, rsv);
5158 trans = btrfs_join_transaction(root);
5159 if (IS_ERR(trans)) {
5160 btrfs_orphan_del(NULL, inode);
5161 btrfs_free_block_rsv(root, rsv);
5166 * We can't just steal from the global reserve, we need tomake
5167 * sure there is room to do it, if not we need to commit and try
5170 if (steal_from_global) {
5171 if (!btrfs_check_space_for_delayed_refs(trans, root))
5172 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5179 * Couldn't steal from the global reserve, we have too much
5180 * pending stuff built up, commit the transaction and try it
5184 ret = btrfs_commit_transaction(trans, root);
5186 btrfs_orphan_del(NULL, inode);
5187 btrfs_free_block_rsv(root, rsv);
5192 steal_from_global = 0;
5195 trans->block_rsv = rsv;
5197 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5198 if (ret != -ENOSPC && ret != -EAGAIN)
5201 trans->block_rsv = &root->fs_info->trans_block_rsv;
5202 btrfs_end_transaction(trans, root);
5204 btrfs_btree_balance_dirty(root);
5207 btrfs_free_block_rsv(root, rsv);
5210 * Errors here aren't a big deal, it just means we leave orphan items
5211 * in the tree. They will be cleaned up on the next mount.
5214 trans->block_rsv = root->orphan_block_rsv;
5215 btrfs_orphan_del(trans, inode);
5217 btrfs_orphan_del(NULL, inode);
5220 trans->block_rsv = &root->fs_info->trans_block_rsv;
5221 if (!(root == root->fs_info->tree_root ||
5222 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5223 btrfs_return_ino(root, btrfs_ino(inode));
5225 btrfs_end_transaction(trans, root);
5226 btrfs_btree_balance_dirty(root);
5228 btrfs_remove_delayed_node(inode);
5234 * this returns the key found in the dir entry in the location pointer.
5235 * If no dir entries were found, location->objectid is 0.
5237 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5238 struct btrfs_key *location)
5240 const char *name = dentry->d_name.name;
5241 int namelen = dentry->d_name.len;
5242 struct btrfs_dir_item *di;
5243 struct btrfs_path *path;
5244 struct btrfs_root *root = BTRFS_I(dir)->root;
5247 path = btrfs_alloc_path();
5251 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5256 if (IS_ERR_OR_NULL(di))
5259 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5261 btrfs_free_path(path);
5264 location->objectid = 0;
5269 * when we hit a tree root in a directory, the btrfs part of the inode
5270 * needs to be changed to reflect the root directory of the tree root. This
5271 * is kind of like crossing a mount point.
5273 static int fixup_tree_root_location(struct btrfs_root *root,
5275 struct dentry *dentry,
5276 struct btrfs_key *location,
5277 struct btrfs_root **sub_root)
5279 struct btrfs_path *path;
5280 struct btrfs_root *new_root;
5281 struct btrfs_root_ref *ref;
5282 struct extent_buffer *leaf;
5283 struct btrfs_key key;
5287 path = btrfs_alloc_path();
5294 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5295 key.type = BTRFS_ROOT_REF_KEY;
5296 key.offset = location->objectid;
5298 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5306 leaf = path->nodes[0];
5307 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5308 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5309 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5312 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5313 (unsigned long)(ref + 1),
5314 dentry->d_name.len);
5318 btrfs_release_path(path);
5320 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5321 if (IS_ERR(new_root)) {
5322 err = PTR_ERR(new_root);
5326 *sub_root = new_root;
5327 location->objectid = btrfs_root_dirid(&new_root->root_item);
5328 location->type = BTRFS_INODE_ITEM_KEY;
5329 location->offset = 0;
5332 btrfs_free_path(path);
5336 static void inode_tree_add(struct inode *inode)
5338 struct btrfs_root *root = BTRFS_I(inode)->root;
5339 struct btrfs_inode *entry;
5341 struct rb_node *parent;
5342 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5343 u64 ino = btrfs_ino(inode);
5345 if (inode_unhashed(inode))
5348 spin_lock(&root->inode_lock);
5349 p = &root->inode_tree.rb_node;
5352 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5354 if (ino < btrfs_ino(&entry->vfs_inode))
5355 p = &parent->rb_left;
5356 else if (ino > btrfs_ino(&entry->vfs_inode))
5357 p = &parent->rb_right;
5359 WARN_ON(!(entry->vfs_inode.i_state &
5360 (I_WILL_FREE | I_FREEING)));
5361 rb_replace_node(parent, new, &root->inode_tree);
5362 RB_CLEAR_NODE(parent);
5363 spin_unlock(&root->inode_lock);
5367 rb_link_node(new, parent, p);
5368 rb_insert_color(new, &root->inode_tree);
5369 spin_unlock(&root->inode_lock);
5372 static void inode_tree_del(struct inode *inode)
5374 struct btrfs_root *root = BTRFS_I(inode)->root;
5377 spin_lock(&root->inode_lock);
5378 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5379 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5380 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5381 empty = RB_EMPTY_ROOT(&root->inode_tree);
5383 spin_unlock(&root->inode_lock);
5385 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5386 synchronize_srcu(&root->fs_info->subvol_srcu);
5387 spin_lock(&root->inode_lock);
5388 empty = RB_EMPTY_ROOT(&root->inode_tree);
5389 spin_unlock(&root->inode_lock);
5391 btrfs_add_dead_root(root);
5395 void btrfs_invalidate_inodes(struct btrfs_root *root)
5397 struct rb_node *node;
5398 struct rb_node *prev;
5399 struct btrfs_inode *entry;
5400 struct inode *inode;
5403 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5404 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5406 spin_lock(&root->inode_lock);
5408 node = root->inode_tree.rb_node;
5412 entry = rb_entry(node, struct btrfs_inode, rb_node);
5414 if (objectid < btrfs_ino(&entry->vfs_inode))
5415 node = node->rb_left;
5416 else if (objectid > btrfs_ino(&entry->vfs_inode))
5417 node = node->rb_right;
5423 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5424 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5428 prev = rb_next(prev);
5432 entry = rb_entry(node, struct btrfs_inode, rb_node);
5433 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5434 inode = igrab(&entry->vfs_inode);
5436 spin_unlock(&root->inode_lock);
5437 if (atomic_read(&inode->i_count) > 1)
5438 d_prune_aliases(inode);
5440 * btrfs_drop_inode will have it removed from
5441 * the inode cache when its usage count
5446 spin_lock(&root->inode_lock);
5450 if (cond_resched_lock(&root->inode_lock))
5453 node = rb_next(node);
5455 spin_unlock(&root->inode_lock);
5458 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5460 struct btrfs_iget_args *args = p;
5461 inode->i_ino = args->location->objectid;
5462 memcpy(&BTRFS_I(inode)->location, args->location,
5463 sizeof(*args->location));
5464 BTRFS_I(inode)->root = args->root;
5468 static int btrfs_find_actor(struct inode *inode, void *opaque)
5470 struct btrfs_iget_args *args = opaque;
5471 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5472 args->root == BTRFS_I(inode)->root;
5475 static struct inode *btrfs_iget_locked(struct super_block *s,
5476 struct btrfs_key *location,
5477 struct btrfs_root *root)
5479 struct inode *inode;
5480 struct btrfs_iget_args args;
5481 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5483 args.location = location;
5486 inode = iget5_locked(s, hashval, btrfs_find_actor,
5487 btrfs_init_locked_inode,
5492 /* Get an inode object given its location and corresponding root.
5493 * Returns in *is_new if the inode was read from disk
5495 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5496 struct btrfs_root *root, int *new)
5498 struct inode *inode;
5500 inode = btrfs_iget_locked(s, location, root);
5502 return ERR_PTR(-ENOMEM);
5504 if (inode->i_state & I_NEW) {
5505 btrfs_read_locked_inode(inode);
5506 if (!is_bad_inode(inode)) {
5507 inode_tree_add(inode);
5508 unlock_new_inode(inode);
5512 unlock_new_inode(inode);
5514 inode = ERR_PTR(-ESTALE);
5521 static struct inode *new_simple_dir(struct super_block *s,
5522 struct btrfs_key *key,
5523 struct btrfs_root *root)
5525 struct inode *inode = new_inode(s);
5528 return ERR_PTR(-ENOMEM);
5530 BTRFS_I(inode)->root = root;
5531 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5532 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5534 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5535 inode->i_op = &btrfs_dir_ro_inode_operations;
5536 inode->i_fop = &simple_dir_operations;
5537 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5538 inode->i_mtime = CURRENT_TIME;
5539 inode->i_atime = inode->i_mtime;
5540 inode->i_ctime = inode->i_mtime;
5541 BTRFS_I(inode)->i_otime = inode->i_mtime;
5546 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5548 struct inode *inode;
5549 struct btrfs_root *root = BTRFS_I(dir)->root;
5550 struct btrfs_root *sub_root = root;
5551 struct btrfs_key location;
5555 if (dentry->d_name.len > BTRFS_NAME_LEN)
5556 return ERR_PTR(-ENAMETOOLONG);
5558 ret = btrfs_inode_by_name(dir, dentry, &location);
5560 return ERR_PTR(ret);
5562 if (location.objectid == 0)
5563 return ERR_PTR(-ENOENT);
5565 if (location.type == BTRFS_INODE_ITEM_KEY) {
5566 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5570 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5572 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5573 ret = fixup_tree_root_location(root, dir, dentry,
5574 &location, &sub_root);
5577 inode = ERR_PTR(ret);
5579 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5581 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5583 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5585 if (!IS_ERR(inode) && root != sub_root) {
5586 down_read(&root->fs_info->cleanup_work_sem);
5587 if (!(inode->i_sb->s_flags & MS_RDONLY))
5588 ret = btrfs_orphan_cleanup(sub_root);
5589 up_read(&root->fs_info->cleanup_work_sem);
5592 inode = ERR_PTR(ret);
5599 static int btrfs_dentry_delete(const struct dentry *dentry)
5601 struct btrfs_root *root;
5602 struct inode *inode = d_inode(dentry);
5604 if (!inode && !IS_ROOT(dentry))
5605 inode = d_inode(dentry->d_parent);
5608 root = BTRFS_I(inode)->root;
5609 if (btrfs_root_refs(&root->root_item) == 0)
5612 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5618 static void btrfs_dentry_release(struct dentry *dentry)
5620 kfree(dentry->d_fsdata);
5623 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5626 struct inode *inode;
5628 inode = btrfs_lookup_dentry(dir, dentry);
5629 if (IS_ERR(inode)) {
5630 if (PTR_ERR(inode) == -ENOENT)
5633 return ERR_CAST(inode);
5636 return d_splice_alias(inode, dentry);
5639 unsigned char btrfs_filetype_table[] = {
5640 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5643 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5645 struct inode *inode = file_inode(file);
5646 struct btrfs_root *root = BTRFS_I(inode)->root;
5647 struct btrfs_item *item;
5648 struct btrfs_dir_item *di;
5649 struct btrfs_key key;
5650 struct btrfs_key found_key;
5651 struct btrfs_path *path;
5652 struct list_head ins_list;
5653 struct list_head del_list;
5655 struct extent_buffer *leaf;
5657 unsigned char d_type;
5662 int key_type = BTRFS_DIR_INDEX_KEY;
5666 int is_curr = 0; /* ctx->pos points to the current index? */
5668 /* FIXME, use a real flag for deciding about the key type */
5669 if (root->fs_info->tree_root == root)
5670 key_type = BTRFS_DIR_ITEM_KEY;
5672 if (!dir_emit_dots(file, ctx))
5675 path = btrfs_alloc_path();
5681 if (key_type == BTRFS_DIR_INDEX_KEY) {
5682 INIT_LIST_HEAD(&ins_list);
5683 INIT_LIST_HEAD(&del_list);
5684 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5687 key.type = key_type;
5688 key.offset = ctx->pos;
5689 key.objectid = btrfs_ino(inode);
5691 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5696 leaf = path->nodes[0];
5697 slot = path->slots[0];
5698 if (slot >= btrfs_header_nritems(leaf)) {
5699 ret = btrfs_next_leaf(root, path);
5707 item = btrfs_item_nr(slot);
5708 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5710 if (found_key.objectid != key.objectid)
5712 if (found_key.type != key_type)
5714 if (found_key.offset < ctx->pos)
5716 if (key_type == BTRFS_DIR_INDEX_KEY &&
5717 btrfs_should_delete_dir_index(&del_list,
5721 ctx->pos = found_key.offset;
5724 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5726 di_total = btrfs_item_size(leaf, item);
5728 while (di_cur < di_total) {
5729 struct btrfs_key location;
5731 if (verify_dir_item(root, leaf, di))
5734 name_len = btrfs_dir_name_len(leaf, di);
5735 if (name_len <= sizeof(tmp_name)) {
5736 name_ptr = tmp_name;
5738 name_ptr = kmalloc(name_len, GFP_NOFS);
5744 read_extent_buffer(leaf, name_ptr,
5745 (unsigned long)(di + 1), name_len);
5747 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5748 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5751 /* is this a reference to our own snapshot? If so
5754 * In contrast to old kernels, we insert the snapshot's
5755 * dir item and dir index after it has been created, so
5756 * we won't find a reference to our own snapshot. We
5757 * still keep the following code for backward
5760 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5761 location.objectid == root->root_key.objectid) {
5765 over = !dir_emit(ctx, name_ptr, name_len,
5766 location.objectid, d_type);
5769 if (name_ptr != tmp_name)
5774 di_len = btrfs_dir_name_len(leaf, di) +
5775 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5777 di = (struct btrfs_dir_item *)((char *)di + di_len);
5783 if (key_type == BTRFS_DIR_INDEX_KEY) {
5786 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5791 /* Reached end of directory/root. Bump pos past the last item. */
5795 * Stop new entries from being returned after we return the last
5798 * New directory entries are assigned a strictly increasing
5799 * offset. This means that new entries created during readdir
5800 * are *guaranteed* to be seen in the future by that readdir.
5801 * This has broken buggy programs which operate on names as
5802 * they're returned by readdir. Until we re-use freed offsets
5803 * we have this hack to stop new entries from being returned
5804 * under the assumption that they'll never reach this huge
5807 * This is being careful not to overflow 32bit loff_t unless the
5808 * last entry requires it because doing so has broken 32bit apps
5811 if (key_type == BTRFS_DIR_INDEX_KEY) {
5812 if (ctx->pos >= INT_MAX)
5813 ctx->pos = LLONG_MAX;
5820 if (key_type == BTRFS_DIR_INDEX_KEY)
5821 btrfs_put_delayed_items(&ins_list, &del_list);
5822 btrfs_free_path(path);
5826 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5828 struct btrfs_root *root = BTRFS_I(inode)->root;
5829 struct btrfs_trans_handle *trans;
5831 bool nolock = false;
5833 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5836 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5839 if (wbc->sync_mode == WB_SYNC_ALL) {
5841 trans = btrfs_join_transaction_nolock(root);
5843 trans = btrfs_join_transaction(root);
5845 return PTR_ERR(trans);
5846 ret = btrfs_commit_transaction(trans, root);
5852 * This is somewhat expensive, updating the tree every time the
5853 * inode changes. But, it is most likely to find the inode in cache.
5854 * FIXME, needs more benchmarking...there are no reasons other than performance
5855 * to keep or drop this code.
5857 static int btrfs_dirty_inode(struct inode *inode)
5859 struct btrfs_root *root = BTRFS_I(inode)->root;
5860 struct btrfs_trans_handle *trans;
5863 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5866 trans = btrfs_join_transaction(root);
5868 return PTR_ERR(trans);
5870 ret = btrfs_update_inode(trans, root, inode);
5871 if (ret && ret == -ENOSPC) {
5872 /* whoops, lets try again with the full transaction */
5873 btrfs_end_transaction(trans, root);
5874 trans = btrfs_start_transaction(root, 1);
5876 return PTR_ERR(trans);
5878 ret = btrfs_update_inode(trans, root, inode);
5880 btrfs_end_transaction(trans, root);
5881 if (BTRFS_I(inode)->delayed_node)
5882 btrfs_balance_delayed_items(root);
5888 * This is a copy of file_update_time. We need this so we can return error on
5889 * ENOSPC for updating the inode in the case of file write and mmap writes.
5891 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5894 struct btrfs_root *root = BTRFS_I(inode)->root;
5896 if (btrfs_root_readonly(root))
5899 if (flags & S_VERSION)
5900 inode_inc_iversion(inode);
5901 if (flags & S_CTIME)
5902 inode->i_ctime = *now;
5903 if (flags & S_MTIME)
5904 inode->i_mtime = *now;
5905 if (flags & S_ATIME)
5906 inode->i_atime = *now;
5907 return btrfs_dirty_inode(inode);
5911 * find the highest existing sequence number in a directory
5912 * and then set the in-memory index_cnt variable to reflect
5913 * free sequence numbers
5915 static int btrfs_set_inode_index_count(struct inode *inode)
5917 struct btrfs_root *root = BTRFS_I(inode)->root;
5918 struct btrfs_key key, found_key;
5919 struct btrfs_path *path;
5920 struct extent_buffer *leaf;
5923 key.objectid = btrfs_ino(inode);
5924 key.type = BTRFS_DIR_INDEX_KEY;
5925 key.offset = (u64)-1;
5927 path = btrfs_alloc_path();
5931 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5934 /* FIXME: we should be able to handle this */
5940 * MAGIC NUMBER EXPLANATION:
5941 * since we search a directory based on f_pos we have to start at 2
5942 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5943 * else has to start at 2
5945 if (path->slots[0] == 0) {
5946 BTRFS_I(inode)->index_cnt = 2;
5952 leaf = path->nodes[0];
5953 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5955 if (found_key.objectid != btrfs_ino(inode) ||
5956 found_key.type != BTRFS_DIR_INDEX_KEY) {
5957 BTRFS_I(inode)->index_cnt = 2;
5961 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5963 btrfs_free_path(path);
5968 * helper to find a free sequence number in a given directory. This current
5969 * code is very simple, later versions will do smarter things in the btree
5971 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5975 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5976 ret = btrfs_inode_delayed_dir_index_count(dir);
5978 ret = btrfs_set_inode_index_count(dir);
5984 *index = BTRFS_I(dir)->index_cnt;
5985 BTRFS_I(dir)->index_cnt++;
5990 static int btrfs_insert_inode_locked(struct inode *inode)
5992 struct btrfs_iget_args args;
5993 args.location = &BTRFS_I(inode)->location;
5994 args.root = BTRFS_I(inode)->root;
5996 return insert_inode_locked4(inode,
5997 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5998 btrfs_find_actor, &args);
6001 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6002 struct btrfs_root *root,
6004 const char *name, int name_len,
6005 u64 ref_objectid, u64 objectid,
6006 umode_t mode, u64 *index)
6008 struct inode *inode;
6009 struct btrfs_inode_item *inode_item;
6010 struct btrfs_key *location;
6011 struct btrfs_path *path;
6012 struct btrfs_inode_ref *ref;
6013 struct btrfs_key key[2];
6015 int nitems = name ? 2 : 1;
6019 path = btrfs_alloc_path();
6021 return ERR_PTR(-ENOMEM);
6023 inode = new_inode(root->fs_info->sb);
6025 btrfs_free_path(path);
6026 return ERR_PTR(-ENOMEM);
6030 * O_TMPFILE, set link count to 0, so that after this point,
6031 * we fill in an inode item with the correct link count.
6034 set_nlink(inode, 0);
6037 * we have to initialize this early, so we can reclaim the inode
6038 * number if we fail afterwards in this function.
6040 inode->i_ino = objectid;
6043 trace_btrfs_inode_request(dir);
6045 ret = btrfs_set_inode_index(dir, index);
6047 btrfs_free_path(path);
6049 return ERR_PTR(ret);
6055 * index_cnt is ignored for everything but a dir,
6056 * btrfs_get_inode_index_count has an explanation for the magic
6059 BTRFS_I(inode)->index_cnt = 2;
6060 BTRFS_I(inode)->dir_index = *index;
6061 BTRFS_I(inode)->root = root;
6062 BTRFS_I(inode)->generation = trans->transid;
6063 inode->i_generation = BTRFS_I(inode)->generation;
6066 * We could have gotten an inode number from somebody who was fsynced
6067 * and then removed in this same transaction, so let's just set full
6068 * sync since it will be a full sync anyway and this will blow away the
6069 * old info in the log.
6071 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6073 key[0].objectid = objectid;
6074 key[0].type = BTRFS_INODE_ITEM_KEY;
6077 sizes[0] = sizeof(struct btrfs_inode_item);
6081 * Start new inodes with an inode_ref. This is slightly more
6082 * efficient for small numbers of hard links since they will
6083 * be packed into one item. Extended refs will kick in if we
6084 * add more hard links than can fit in the ref item.
6086 key[1].objectid = objectid;
6087 key[1].type = BTRFS_INODE_REF_KEY;
6088 key[1].offset = ref_objectid;
6090 sizes[1] = name_len + sizeof(*ref);
6093 location = &BTRFS_I(inode)->location;
6094 location->objectid = objectid;
6095 location->offset = 0;
6096 location->type = BTRFS_INODE_ITEM_KEY;
6098 ret = btrfs_insert_inode_locked(inode);
6102 path->leave_spinning = 1;
6103 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6107 inode_init_owner(inode, dir, mode);
6108 inode_set_bytes(inode, 0);
6110 inode->i_mtime = CURRENT_TIME;
6111 inode->i_atime = inode->i_mtime;
6112 inode->i_ctime = inode->i_mtime;
6113 BTRFS_I(inode)->i_otime = inode->i_mtime;
6115 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6116 struct btrfs_inode_item);
6117 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6118 sizeof(*inode_item));
6119 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6122 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6123 struct btrfs_inode_ref);
6124 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6125 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6126 ptr = (unsigned long)(ref + 1);
6127 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6130 btrfs_mark_buffer_dirty(path->nodes[0]);
6131 btrfs_free_path(path);
6133 btrfs_inherit_iflags(inode, dir);
6135 if (S_ISREG(mode)) {
6136 if (btrfs_test_opt(root, NODATASUM))
6137 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6138 if (btrfs_test_opt(root, NODATACOW))
6139 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6140 BTRFS_INODE_NODATASUM;
6143 inode_tree_add(inode);
6145 trace_btrfs_inode_new(inode);
6146 btrfs_set_inode_last_trans(trans, inode);
6148 btrfs_update_root_times(trans, root);
6150 ret = btrfs_inode_inherit_props(trans, inode, dir);
6152 btrfs_err(root->fs_info,
6153 "error inheriting props for ino %llu (root %llu): %d",
6154 btrfs_ino(inode), root->root_key.objectid, ret);
6159 unlock_new_inode(inode);
6162 BTRFS_I(dir)->index_cnt--;
6163 btrfs_free_path(path);
6165 return ERR_PTR(ret);
6168 static inline u8 btrfs_inode_type(struct inode *inode)
6170 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6174 * utility function to add 'inode' into 'parent_inode' with
6175 * a give name and a given sequence number.
6176 * if 'add_backref' is true, also insert a backref from the
6177 * inode to the parent directory.
6179 int btrfs_add_link(struct btrfs_trans_handle *trans,
6180 struct inode *parent_inode, struct inode *inode,
6181 const char *name, int name_len, int add_backref, u64 index)
6184 struct btrfs_key key;
6185 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6186 u64 ino = btrfs_ino(inode);
6187 u64 parent_ino = btrfs_ino(parent_inode);
6189 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6190 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6193 key.type = BTRFS_INODE_ITEM_KEY;
6197 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6198 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6199 key.objectid, root->root_key.objectid,
6200 parent_ino, index, name, name_len);
6201 } else if (add_backref) {
6202 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6206 /* Nothing to clean up yet */
6210 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6212 btrfs_inode_type(inode), index);
6213 if (ret == -EEXIST || ret == -EOVERFLOW)
6216 btrfs_abort_transaction(trans, root, ret);
6220 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6222 inode_inc_iversion(parent_inode);
6223 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6224 ret = btrfs_update_inode(trans, root, parent_inode);
6226 btrfs_abort_transaction(trans, root, ret);
6230 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6233 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6234 key.objectid, root->root_key.objectid,
6235 parent_ino, &local_index, name, name_len);
6237 } else if (add_backref) {
6241 err = btrfs_del_inode_ref(trans, root, name, name_len,
6242 ino, parent_ino, &local_index);
6247 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6248 struct inode *dir, struct dentry *dentry,
6249 struct inode *inode, int backref, u64 index)
6251 int err = btrfs_add_link(trans, dir, inode,
6252 dentry->d_name.name, dentry->d_name.len,
6259 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6260 umode_t mode, dev_t rdev)
6262 struct btrfs_trans_handle *trans;
6263 struct btrfs_root *root = BTRFS_I(dir)->root;
6264 struct inode *inode = NULL;
6270 if (!new_valid_dev(rdev))
6274 * 2 for inode item and ref
6276 * 1 for xattr if selinux is on
6278 trans = btrfs_start_transaction(root, 5);
6280 return PTR_ERR(trans);
6282 err = btrfs_find_free_ino(root, &objectid);
6286 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6287 dentry->d_name.len, btrfs_ino(dir), objectid,
6289 if (IS_ERR(inode)) {
6290 err = PTR_ERR(inode);
6295 * If the active LSM wants to access the inode during
6296 * d_instantiate it needs these. Smack checks to see
6297 * if the filesystem supports xattrs by looking at the
6300 inode->i_op = &btrfs_special_inode_operations;
6301 init_special_inode(inode, inode->i_mode, rdev);
6303 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6305 goto out_unlock_inode;
6307 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6309 goto out_unlock_inode;
6311 btrfs_update_inode(trans, root, inode);
6312 unlock_new_inode(inode);
6313 d_instantiate(dentry, inode);
6317 btrfs_end_transaction(trans, root);
6318 btrfs_balance_delayed_items(root);
6319 btrfs_btree_balance_dirty(root);
6321 inode_dec_link_count(inode);
6328 unlock_new_inode(inode);
6333 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6334 umode_t mode, bool excl)
6336 struct btrfs_trans_handle *trans;
6337 struct btrfs_root *root = BTRFS_I(dir)->root;
6338 struct inode *inode = NULL;
6339 int drop_inode_on_err = 0;
6345 * 2 for inode item and ref
6347 * 1 for xattr if selinux is on
6349 trans = btrfs_start_transaction(root, 5);
6351 return PTR_ERR(trans);
6353 err = btrfs_find_free_ino(root, &objectid);
6357 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6358 dentry->d_name.len, btrfs_ino(dir), objectid,
6360 if (IS_ERR(inode)) {
6361 err = PTR_ERR(inode);
6364 drop_inode_on_err = 1;
6366 * If the active LSM wants to access the inode during
6367 * d_instantiate it needs these. Smack checks to see
6368 * if the filesystem supports xattrs by looking at the
6371 inode->i_fop = &btrfs_file_operations;
6372 inode->i_op = &btrfs_file_inode_operations;
6373 inode->i_mapping->a_ops = &btrfs_aops;
6375 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6377 goto out_unlock_inode;
6379 err = btrfs_update_inode(trans, root, inode);
6381 goto out_unlock_inode;
6383 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6385 goto out_unlock_inode;
6387 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6388 unlock_new_inode(inode);
6389 d_instantiate(dentry, inode);
6392 btrfs_end_transaction(trans, root);
6393 if (err && drop_inode_on_err) {
6394 inode_dec_link_count(inode);
6397 btrfs_balance_delayed_items(root);
6398 btrfs_btree_balance_dirty(root);
6402 unlock_new_inode(inode);
6407 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6408 struct dentry *dentry)
6410 struct btrfs_trans_handle *trans;
6411 struct btrfs_root *root = BTRFS_I(dir)->root;
6412 struct inode *inode = d_inode(old_dentry);
6417 /* do not allow sys_link's with other subvols of the same device */
6418 if (root->objectid != BTRFS_I(inode)->root->objectid)
6421 if (inode->i_nlink >= BTRFS_LINK_MAX)
6424 err = btrfs_set_inode_index(dir, &index);
6429 * 2 items for inode and inode ref
6430 * 2 items for dir items
6431 * 1 item for parent inode
6433 trans = btrfs_start_transaction(root, 5);
6434 if (IS_ERR(trans)) {
6435 err = PTR_ERR(trans);
6439 /* There are several dir indexes for this inode, clear the cache. */
6440 BTRFS_I(inode)->dir_index = 0ULL;
6442 inode_inc_iversion(inode);
6443 inode->i_ctime = CURRENT_TIME;
6445 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6447 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6452 struct dentry *parent = dentry->d_parent;
6453 err = btrfs_update_inode(trans, root, inode);
6456 if (inode->i_nlink == 1) {
6458 * If new hard link count is 1, it's a file created
6459 * with open(2) O_TMPFILE flag.
6461 err = btrfs_orphan_del(trans, inode);
6465 d_instantiate(dentry, inode);
6466 btrfs_log_new_name(trans, inode, NULL, parent);
6469 btrfs_end_transaction(trans, root);
6470 btrfs_balance_delayed_items(root);
6473 inode_dec_link_count(inode);
6476 btrfs_btree_balance_dirty(root);
6480 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6482 struct inode *inode = NULL;
6483 struct btrfs_trans_handle *trans;
6484 struct btrfs_root *root = BTRFS_I(dir)->root;
6486 int drop_on_err = 0;
6491 * 2 items for inode and ref
6492 * 2 items for dir items
6493 * 1 for xattr if selinux is on
6495 trans = btrfs_start_transaction(root, 5);
6497 return PTR_ERR(trans);
6499 err = btrfs_find_free_ino(root, &objectid);
6503 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6504 dentry->d_name.len, btrfs_ino(dir), objectid,
6505 S_IFDIR | mode, &index);
6506 if (IS_ERR(inode)) {
6507 err = PTR_ERR(inode);
6512 /* these must be set before we unlock the inode */
6513 inode->i_op = &btrfs_dir_inode_operations;
6514 inode->i_fop = &btrfs_dir_file_operations;
6516 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6518 goto out_fail_inode;
6520 btrfs_i_size_write(inode, 0);
6521 err = btrfs_update_inode(trans, root, inode);
6523 goto out_fail_inode;
6525 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6526 dentry->d_name.len, 0, index);
6528 goto out_fail_inode;
6530 d_instantiate(dentry, inode);
6532 * mkdir is special. We're unlocking after we call d_instantiate
6533 * to avoid a race with nfsd calling d_instantiate.
6535 unlock_new_inode(inode);
6539 btrfs_end_transaction(trans, root);
6541 inode_dec_link_count(inode);
6544 btrfs_balance_delayed_items(root);
6545 btrfs_btree_balance_dirty(root);
6549 unlock_new_inode(inode);
6553 /* Find next extent map of a given extent map, caller needs to ensure locks */
6554 static struct extent_map *next_extent_map(struct extent_map *em)
6556 struct rb_node *next;
6558 next = rb_next(&em->rb_node);
6561 return container_of(next, struct extent_map, rb_node);
6564 static struct extent_map *prev_extent_map(struct extent_map *em)
6566 struct rb_node *prev;
6568 prev = rb_prev(&em->rb_node);
6571 return container_of(prev, struct extent_map, rb_node);
6574 /* helper for btfs_get_extent. Given an existing extent in the tree,
6575 * the existing extent is the nearest extent to map_start,
6576 * and an extent that you want to insert, deal with overlap and insert
6577 * the best fitted new extent into the tree.
6579 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6580 struct extent_map *existing,
6581 struct extent_map *em,
6584 struct extent_map *prev;
6585 struct extent_map *next;
6590 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6592 if (existing->start > map_start) {
6594 prev = prev_extent_map(next);
6597 next = next_extent_map(prev);
6600 start = prev ? extent_map_end(prev) : em->start;
6601 start = max_t(u64, start, em->start);
6602 end = next ? next->start : extent_map_end(em);
6603 end = min_t(u64, end, extent_map_end(em));
6604 start_diff = start - em->start;
6606 em->len = end - start;
6607 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6608 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6609 em->block_start += start_diff;
6610 em->block_len -= start_diff;
6612 return add_extent_mapping(em_tree, em, 0);
6615 static noinline int uncompress_inline(struct btrfs_path *path,
6616 struct inode *inode, struct page *page,
6617 size_t pg_offset, u64 extent_offset,
6618 struct btrfs_file_extent_item *item)
6621 struct extent_buffer *leaf = path->nodes[0];
6624 unsigned long inline_size;
6628 WARN_ON(pg_offset != 0);
6629 compress_type = btrfs_file_extent_compression(leaf, item);
6630 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6631 inline_size = btrfs_file_extent_inline_item_len(leaf,
6632 btrfs_item_nr(path->slots[0]));
6633 tmp = kmalloc(inline_size, GFP_NOFS);
6636 ptr = btrfs_file_extent_inline_start(item);
6638 read_extent_buffer(leaf, tmp, ptr, inline_size);
6640 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6641 ret = btrfs_decompress(compress_type, tmp, page,
6642 extent_offset, inline_size, max_size);
6648 * a bit scary, this does extent mapping from logical file offset to the disk.
6649 * the ugly parts come from merging extents from the disk with the in-ram
6650 * representation. This gets more complex because of the data=ordered code,
6651 * where the in-ram extents might be locked pending data=ordered completion.
6653 * This also copies inline extents directly into the page.
6656 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6657 size_t pg_offset, u64 start, u64 len,
6662 u64 extent_start = 0;
6664 u64 objectid = btrfs_ino(inode);
6666 struct btrfs_path *path = NULL;
6667 struct btrfs_root *root = BTRFS_I(inode)->root;
6668 struct btrfs_file_extent_item *item;
6669 struct extent_buffer *leaf;
6670 struct btrfs_key found_key;
6671 struct extent_map *em = NULL;
6672 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6673 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6674 struct btrfs_trans_handle *trans = NULL;
6675 const bool new_inline = !page || create;
6678 read_lock(&em_tree->lock);
6679 em = lookup_extent_mapping(em_tree, start, len);
6681 em->bdev = root->fs_info->fs_devices->latest_bdev;
6682 read_unlock(&em_tree->lock);
6685 if (em->start > start || em->start + em->len <= start)
6686 free_extent_map(em);
6687 else if (em->block_start == EXTENT_MAP_INLINE && page)
6688 free_extent_map(em);
6692 em = alloc_extent_map();
6697 em->bdev = root->fs_info->fs_devices->latest_bdev;
6698 em->start = EXTENT_MAP_HOLE;
6699 em->orig_start = EXTENT_MAP_HOLE;
6701 em->block_len = (u64)-1;
6704 path = btrfs_alloc_path();
6710 * Chances are we'll be called again, so go ahead and do
6716 ret = btrfs_lookup_file_extent(trans, root, path,
6717 objectid, start, trans != NULL);
6724 if (path->slots[0] == 0)
6729 leaf = path->nodes[0];
6730 item = btrfs_item_ptr(leaf, path->slots[0],
6731 struct btrfs_file_extent_item);
6732 /* are we inside the extent that was found? */
6733 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6734 found_type = found_key.type;
6735 if (found_key.objectid != objectid ||
6736 found_type != BTRFS_EXTENT_DATA_KEY) {
6738 * If we backup past the first extent we want to move forward
6739 * and see if there is an extent in front of us, otherwise we'll
6740 * say there is a hole for our whole search range which can
6747 found_type = btrfs_file_extent_type(leaf, item);
6748 extent_start = found_key.offset;
6749 if (found_type == BTRFS_FILE_EXTENT_REG ||
6750 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6751 extent_end = extent_start +
6752 btrfs_file_extent_num_bytes(leaf, item);
6753 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6755 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6756 extent_end = ALIGN(extent_start + size, root->sectorsize);
6759 if (start >= extent_end) {
6761 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6762 ret = btrfs_next_leaf(root, path);
6769 leaf = path->nodes[0];
6771 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6772 if (found_key.objectid != objectid ||
6773 found_key.type != BTRFS_EXTENT_DATA_KEY)
6775 if (start + len <= found_key.offset)
6777 if (start > found_key.offset)
6780 em->orig_start = start;
6781 em->len = found_key.offset - start;
6785 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6787 if (found_type == BTRFS_FILE_EXTENT_REG ||
6788 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6790 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6794 size_t extent_offset;
6800 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6801 extent_offset = page_offset(page) + pg_offset - extent_start;
6802 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6803 size - extent_offset);
6804 em->start = extent_start + extent_offset;
6805 em->len = ALIGN(copy_size, root->sectorsize);
6806 em->orig_block_len = em->len;
6807 em->orig_start = em->start;
6808 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6809 if (create == 0 && !PageUptodate(page)) {
6810 if (btrfs_file_extent_compression(leaf, item) !=
6811 BTRFS_COMPRESS_NONE) {
6812 ret = uncompress_inline(path, inode, page,
6814 extent_offset, item);
6821 read_extent_buffer(leaf, map + pg_offset, ptr,
6823 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6824 memset(map + pg_offset + copy_size, 0,
6825 PAGE_CACHE_SIZE - pg_offset -
6830 flush_dcache_page(page);
6831 } else if (create && PageUptodate(page)) {
6835 free_extent_map(em);
6838 btrfs_release_path(path);
6839 trans = btrfs_join_transaction(root);
6842 return ERR_CAST(trans);
6846 write_extent_buffer(leaf, map + pg_offset, ptr,
6849 btrfs_mark_buffer_dirty(leaf);
6851 set_extent_uptodate(io_tree, em->start,
6852 extent_map_end(em) - 1, NULL, GFP_NOFS);
6857 em->orig_start = start;
6860 em->block_start = EXTENT_MAP_HOLE;
6861 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6863 btrfs_release_path(path);
6864 if (em->start > start || extent_map_end(em) <= start) {
6865 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6866 em->start, em->len, start, len);
6872 write_lock(&em_tree->lock);
6873 ret = add_extent_mapping(em_tree, em, 0);
6874 /* it is possible that someone inserted the extent into the tree
6875 * while we had the lock dropped. It is also possible that
6876 * an overlapping map exists in the tree
6878 if (ret == -EEXIST) {
6879 struct extent_map *existing;
6883 existing = search_extent_mapping(em_tree, start, len);
6885 * existing will always be non-NULL, since there must be
6886 * extent causing the -EEXIST.
6888 if (start >= extent_map_end(existing) ||
6889 start <= existing->start) {
6891 * The existing extent map is the one nearest to
6892 * the [start, start + len) range which overlaps
6894 err = merge_extent_mapping(em_tree, existing,
6896 free_extent_map(existing);
6898 free_extent_map(em);
6902 free_extent_map(em);
6907 write_unlock(&em_tree->lock);
6910 trace_btrfs_get_extent(root, em);
6912 btrfs_free_path(path);
6914 ret = btrfs_end_transaction(trans, root);
6919 free_extent_map(em);
6920 return ERR_PTR(err);
6922 BUG_ON(!em); /* Error is always set */
6926 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6927 size_t pg_offset, u64 start, u64 len,
6930 struct extent_map *em;
6931 struct extent_map *hole_em = NULL;
6932 u64 range_start = start;
6938 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6945 * - a pre-alloc extent,
6946 * there might actually be delalloc bytes behind it.
6948 if (em->block_start != EXTENT_MAP_HOLE &&
6949 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6955 /* check to see if we've wrapped (len == -1 or similar) */
6964 /* ok, we didn't find anything, lets look for delalloc */
6965 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6966 end, len, EXTENT_DELALLOC, 1);
6967 found_end = range_start + found;
6968 if (found_end < range_start)
6969 found_end = (u64)-1;
6972 * we didn't find anything useful, return
6973 * the original results from get_extent()
6975 if (range_start > end || found_end <= start) {
6981 /* adjust the range_start to make sure it doesn't
6982 * go backwards from the start they passed in
6984 range_start = max(start, range_start);
6985 found = found_end - range_start;
6988 u64 hole_start = start;
6991 em = alloc_extent_map();
6997 * when btrfs_get_extent can't find anything it
6998 * returns one huge hole
7000 * make sure what it found really fits our range, and
7001 * adjust to make sure it is based on the start from
7005 u64 calc_end = extent_map_end(hole_em);
7007 if (calc_end <= start || (hole_em->start > end)) {
7008 free_extent_map(hole_em);
7011 hole_start = max(hole_em->start, start);
7012 hole_len = calc_end - hole_start;
7016 if (hole_em && range_start > hole_start) {
7017 /* our hole starts before our delalloc, so we
7018 * have to return just the parts of the hole
7019 * that go until the delalloc starts
7021 em->len = min(hole_len,
7022 range_start - hole_start);
7023 em->start = hole_start;
7024 em->orig_start = hole_start;
7026 * don't adjust block start at all,
7027 * it is fixed at EXTENT_MAP_HOLE
7029 em->block_start = hole_em->block_start;
7030 em->block_len = hole_len;
7031 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7032 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7034 em->start = range_start;
7036 em->orig_start = range_start;
7037 em->block_start = EXTENT_MAP_DELALLOC;
7038 em->block_len = found;
7040 } else if (hole_em) {
7045 free_extent_map(hole_em);
7047 free_extent_map(em);
7048 return ERR_PTR(err);
7053 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7056 struct btrfs_root *root = BTRFS_I(inode)->root;
7057 struct extent_map *em;
7058 struct btrfs_key ins;
7062 alloc_hint = get_extent_allocation_hint(inode, start, len);
7063 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7064 alloc_hint, &ins, 1, 1);
7066 return ERR_PTR(ret);
7068 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7069 ins.offset, ins.offset, ins.offset, 0);
7071 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7075 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7076 ins.offset, ins.offset, 0);
7078 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7079 free_extent_map(em);
7080 return ERR_PTR(ret);
7087 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7088 * block must be cow'd
7090 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7091 u64 *orig_start, u64 *orig_block_len,
7094 struct btrfs_trans_handle *trans;
7095 struct btrfs_path *path;
7097 struct extent_buffer *leaf;
7098 struct btrfs_root *root = BTRFS_I(inode)->root;
7099 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7100 struct btrfs_file_extent_item *fi;
7101 struct btrfs_key key;
7108 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7110 path = btrfs_alloc_path();
7114 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7119 slot = path->slots[0];
7122 /* can't find the item, must cow */
7129 leaf = path->nodes[0];
7130 btrfs_item_key_to_cpu(leaf, &key, slot);
7131 if (key.objectid != btrfs_ino(inode) ||
7132 key.type != BTRFS_EXTENT_DATA_KEY) {
7133 /* not our file or wrong item type, must cow */
7137 if (key.offset > offset) {
7138 /* Wrong offset, must cow */
7142 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7143 found_type = btrfs_file_extent_type(leaf, fi);
7144 if (found_type != BTRFS_FILE_EXTENT_REG &&
7145 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7146 /* not a regular extent, must cow */
7150 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7153 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7154 if (extent_end <= offset)
7157 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7158 if (disk_bytenr == 0)
7161 if (btrfs_file_extent_compression(leaf, fi) ||
7162 btrfs_file_extent_encryption(leaf, fi) ||
7163 btrfs_file_extent_other_encoding(leaf, fi))
7166 backref_offset = btrfs_file_extent_offset(leaf, fi);
7169 *orig_start = key.offset - backref_offset;
7170 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7171 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7174 if (btrfs_extent_readonly(root, disk_bytenr))
7177 num_bytes = min(offset + *len, extent_end) - offset;
7178 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7181 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7182 ret = test_range_bit(io_tree, offset, range_end,
7183 EXTENT_DELALLOC, 0, NULL);
7190 btrfs_release_path(path);
7193 * look for other files referencing this extent, if we
7194 * find any we must cow
7196 trans = btrfs_join_transaction(root);
7197 if (IS_ERR(trans)) {
7202 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7203 key.offset - backref_offset, disk_bytenr);
7204 btrfs_end_transaction(trans, root);
7211 * adjust disk_bytenr and num_bytes to cover just the bytes
7212 * in this extent we are about to write. If there
7213 * are any csums in that range we have to cow in order
7214 * to keep the csums correct
7216 disk_bytenr += backref_offset;
7217 disk_bytenr += offset - key.offset;
7218 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7221 * all of the above have passed, it is safe to overwrite this extent
7227 btrfs_free_path(path);
7231 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7233 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7235 void **pagep = NULL;
7236 struct page *page = NULL;
7240 start_idx = start >> PAGE_CACHE_SHIFT;
7243 * end is the last byte in the last page. end == start is legal
7245 end_idx = end >> PAGE_CACHE_SHIFT;
7249 /* Most of the code in this while loop is lifted from
7250 * find_get_page. It's been modified to begin searching from a
7251 * page and return just the first page found in that range. If the
7252 * found idx is less than or equal to the end idx then we know that
7253 * a page exists. If no pages are found or if those pages are
7254 * outside of the range then we're fine (yay!) */
7255 while (page == NULL &&
7256 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7257 page = radix_tree_deref_slot(pagep);
7258 if (unlikely(!page))
7261 if (radix_tree_exception(page)) {
7262 if (radix_tree_deref_retry(page)) {
7267 * Otherwise, shmem/tmpfs must be storing a swap entry
7268 * here as an exceptional entry: so return it without
7269 * attempting to raise page count.
7272 break; /* TODO: Is this relevant for this use case? */
7275 if (!page_cache_get_speculative(page)) {
7281 * Has the page moved?
7282 * This is part of the lockless pagecache protocol. See
7283 * include/linux/pagemap.h for details.
7285 if (unlikely(page != *pagep)) {
7286 page_cache_release(page);
7292 if (page->index <= end_idx)
7294 page_cache_release(page);
7301 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7302 struct extent_state **cached_state, int writing)
7304 struct btrfs_ordered_extent *ordered;
7308 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7311 * We're concerned with the entire range that we're going to be
7312 * doing DIO to, so we need to make sure theres no ordered
7313 * extents in this range.
7315 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7316 lockend - lockstart + 1);
7319 * We need to make sure there are no buffered pages in this
7320 * range either, we could have raced between the invalidate in
7321 * generic_file_direct_write and locking the extent. The
7322 * invalidate needs to happen so that reads after a write do not
7327 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7330 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7331 cached_state, GFP_NOFS);
7334 btrfs_start_ordered_extent(inode, ordered, 1);
7335 btrfs_put_ordered_extent(ordered);
7337 /* Screw you mmap */
7338 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7341 ret = filemap_fdatawait_range(inode->i_mapping,
7348 * If we found a page that couldn't be invalidated just
7349 * fall back to buffered.
7351 ret = invalidate_inode_pages2_range(inode->i_mapping,
7352 lockstart >> PAGE_CACHE_SHIFT,
7353 lockend >> PAGE_CACHE_SHIFT);
7364 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7365 u64 len, u64 orig_start,
7366 u64 block_start, u64 block_len,
7367 u64 orig_block_len, u64 ram_bytes,
7370 struct extent_map_tree *em_tree;
7371 struct extent_map *em;
7372 struct btrfs_root *root = BTRFS_I(inode)->root;
7375 em_tree = &BTRFS_I(inode)->extent_tree;
7376 em = alloc_extent_map();
7378 return ERR_PTR(-ENOMEM);
7381 em->orig_start = orig_start;
7382 em->mod_start = start;
7385 em->block_len = block_len;
7386 em->block_start = block_start;
7387 em->bdev = root->fs_info->fs_devices->latest_bdev;
7388 em->orig_block_len = orig_block_len;
7389 em->ram_bytes = ram_bytes;
7390 em->generation = -1;
7391 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7392 if (type == BTRFS_ORDERED_PREALLOC)
7393 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7396 btrfs_drop_extent_cache(inode, em->start,
7397 em->start + em->len - 1, 0);
7398 write_lock(&em_tree->lock);
7399 ret = add_extent_mapping(em_tree, em, 1);
7400 write_unlock(&em_tree->lock);
7401 } while (ret == -EEXIST);
7404 free_extent_map(em);
7405 return ERR_PTR(ret);
7412 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7413 struct buffer_head *bh_result, int create)
7415 struct extent_map *em;
7416 struct btrfs_root *root = BTRFS_I(inode)->root;
7417 struct extent_state *cached_state = NULL;
7418 u64 start = iblock << inode->i_blkbits;
7419 u64 lockstart, lockend;
7420 u64 len = bh_result->b_size;
7421 u64 *outstanding_extents = NULL;
7422 int unlock_bits = EXTENT_LOCKED;
7426 unlock_bits |= EXTENT_DIRTY;
7428 len = min_t(u64, len, root->sectorsize);
7431 lockend = start + len - 1;
7433 if (current->journal_info) {
7435 * Need to pull our outstanding extents and set journal_info to NULL so
7436 * that anything that needs to check if there's a transction doesn't get
7439 outstanding_extents = current->journal_info;
7440 current->journal_info = NULL;
7444 * If this errors out it's because we couldn't invalidate pagecache for
7445 * this range and we need to fallback to buffered.
7447 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7450 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7457 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7458 * io. INLINE is special, and we could probably kludge it in here, but
7459 * it's still buffered so for safety lets just fall back to the generic
7462 * For COMPRESSED we _have_ to read the entire extent in so we can
7463 * decompress it, so there will be buffering required no matter what we
7464 * do, so go ahead and fallback to buffered.
7466 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7467 * to buffered IO. Don't blame me, this is the price we pay for using
7470 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7471 em->block_start == EXTENT_MAP_INLINE) {
7472 free_extent_map(em);
7477 /* Just a good old fashioned hole, return */
7478 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7479 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7480 free_extent_map(em);
7485 * We don't allocate a new extent in the following cases
7487 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7489 * 2) The extent is marked as PREALLOC. We're good to go here and can
7490 * just use the extent.
7494 len = min(len, em->len - (start - em->start));
7495 lockstart = start + len;
7499 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7500 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7501 em->block_start != EXTENT_MAP_HOLE)) {
7503 u64 block_start, orig_start, orig_block_len, ram_bytes;
7505 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7506 type = BTRFS_ORDERED_PREALLOC;
7508 type = BTRFS_ORDERED_NOCOW;
7509 len = min(len, em->len - (start - em->start));
7510 block_start = em->block_start + (start - em->start);
7512 if (can_nocow_extent(inode, start, &len, &orig_start,
7513 &orig_block_len, &ram_bytes) == 1) {
7514 if (type == BTRFS_ORDERED_PREALLOC) {
7515 free_extent_map(em);
7516 em = create_pinned_em(inode, start, len,
7527 ret = btrfs_add_ordered_extent_dio(inode, start,
7528 block_start, len, len, type);
7530 free_extent_map(em);
7538 * this will cow the extent, reset the len in case we changed
7541 len = bh_result->b_size;
7542 free_extent_map(em);
7543 em = btrfs_new_extent_direct(inode, start, len);
7548 len = min(len, em->len - (start - em->start));
7550 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7552 bh_result->b_size = len;
7553 bh_result->b_bdev = em->bdev;
7554 set_buffer_mapped(bh_result);
7556 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7557 set_buffer_new(bh_result);
7560 * Need to update the i_size under the extent lock so buffered
7561 * readers will get the updated i_size when we unlock.
7563 if (start + len > i_size_read(inode))
7564 i_size_write(inode, start + len);
7567 * If we have an outstanding_extents count still set then we're
7568 * within our reservation, otherwise we need to adjust our inode
7569 * counter appropriately.
7571 if (*outstanding_extents) {
7572 (*outstanding_extents)--;
7574 spin_lock(&BTRFS_I(inode)->lock);
7575 BTRFS_I(inode)->outstanding_extents++;
7576 spin_unlock(&BTRFS_I(inode)->lock);
7579 current->journal_info = outstanding_extents;
7580 btrfs_free_reserved_data_space(inode, len);
7581 set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags);
7585 * In the case of write we need to clear and unlock the entire range,
7586 * in the case of read we need to unlock only the end area that we
7587 * aren't using if there is any left over space.
7589 if (lockstart < lockend) {
7590 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7591 lockend, unlock_bits, 1, 0,
7592 &cached_state, GFP_NOFS);
7594 free_extent_state(cached_state);
7597 free_extent_map(em);
7602 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7603 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7604 if (outstanding_extents)
7605 current->journal_info = outstanding_extents;
7609 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7610 int rw, int mirror_num)
7612 struct btrfs_root *root = BTRFS_I(inode)->root;
7615 BUG_ON(rw & REQ_WRITE);
7619 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7620 BTRFS_WQ_ENDIO_DIO_REPAIR);
7624 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7630 static int btrfs_check_dio_repairable(struct inode *inode,
7631 struct bio *failed_bio,
7632 struct io_failure_record *failrec,
7637 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7638 failrec->logical, failrec->len);
7639 if (num_copies == 1) {
7641 * we only have a single copy of the data, so don't bother with
7642 * all the retry and error correction code that follows. no
7643 * matter what the error is, it is very likely to persist.
7645 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7646 num_copies, failrec->this_mirror, failed_mirror);
7650 failrec->failed_mirror = failed_mirror;
7651 failrec->this_mirror++;
7652 if (failrec->this_mirror == failed_mirror)
7653 failrec->this_mirror++;
7655 if (failrec->this_mirror > num_copies) {
7656 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7657 num_copies, failrec->this_mirror, failed_mirror);
7664 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7665 struct page *page, u64 start, u64 end,
7666 int failed_mirror, bio_end_io_t *repair_endio,
7669 struct io_failure_record *failrec;
7675 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7677 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7681 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7684 free_io_failure(inode, failrec);
7688 if (failed_bio->bi_vcnt > 1)
7689 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7691 read_mode = READ_SYNC;
7693 isector = start - btrfs_io_bio(failed_bio)->logical;
7694 isector >>= inode->i_sb->s_blocksize_bits;
7695 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7696 0, isector, repair_endio, repair_arg);
7698 free_io_failure(inode, failrec);
7702 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7703 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7704 read_mode, failrec->this_mirror, failrec->in_validation);
7706 ret = submit_dio_repair_bio(inode, bio, read_mode,
7707 failrec->this_mirror);
7709 free_io_failure(inode, failrec);
7716 struct btrfs_retry_complete {
7717 struct completion done;
7718 struct inode *inode;
7723 static void btrfs_retry_endio_nocsum(struct bio *bio)
7725 struct btrfs_retry_complete *done = bio->bi_private;
7726 struct bio_vec *bvec;
7733 bio_for_each_segment_all(bvec, bio, i)
7734 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7736 complete(&done->done);
7740 static int __btrfs_correct_data_nocsum(struct inode *inode,
7741 struct btrfs_io_bio *io_bio)
7743 struct bio_vec *bvec;
7744 struct btrfs_retry_complete done;
7749 start = io_bio->logical;
7752 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7756 init_completion(&done.done);
7758 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7759 start + bvec->bv_len - 1,
7761 btrfs_retry_endio_nocsum, &done);
7765 wait_for_completion(&done.done);
7767 if (!done.uptodate) {
7768 /* We might have another mirror, so try again */
7772 start += bvec->bv_len;
7778 static void btrfs_retry_endio(struct bio *bio)
7780 struct btrfs_retry_complete *done = bio->bi_private;
7781 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7782 struct bio_vec *bvec;
7791 bio_for_each_segment_all(bvec, bio, i) {
7792 ret = __readpage_endio_check(done->inode, io_bio, i,
7794 done->start, bvec->bv_len);
7796 clean_io_failure(done->inode, done->start,
7802 done->uptodate = uptodate;
7804 complete(&done->done);
7808 static int __btrfs_subio_endio_read(struct inode *inode,
7809 struct btrfs_io_bio *io_bio, int err)
7811 struct bio_vec *bvec;
7812 struct btrfs_retry_complete done;
7819 start = io_bio->logical;
7822 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7823 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7824 0, start, bvec->bv_len);
7830 init_completion(&done.done);
7832 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7833 start + bvec->bv_len - 1,
7835 btrfs_retry_endio, &done);
7841 wait_for_completion(&done.done);
7843 if (!done.uptodate) {
7844 /* We might have another mirror, so try again */
7848 offset += bvec->bv_len;
7849 start += bvec->bv_len;
7855 static int btrfs_subio_endio_read(struct inode *inode,
7856 struct btrfs_io_bio *io_bio, int err)
7858 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7862 return __btrfs_correct_data_nocsum(inode, io_bio);
7866 return __btrfs_subio_endio_read(inode, io_bio, err);
7870 static void btrfs_endio_direct_read(struct bio *bio)
7872 struct btrfs_dio_private *dip = bio->bi_private;
7873 struct inode *inode = dip->inode;
7874 struct bio *dio_bio;
7875 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7876 int err = bio->bi_error;
7878 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7879 err = btrfs_subio_endio_read(inode, io_bio, err);
7881 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7882 dip->logical_offset + dip->bytes - 1);
7883 dio_bio = dip->dio_bio;
7887 dio_end_io(dio_bio, bio->bi_error);
7890 io_bio->end_io(io_bio, err);
7894 static void btrfs_endio_direct_write(struct bio *bio)
7896 struct btrfs_dio_private *dip = bio->bi_private;
7897 struct inode *inode = dip->inode;
7898 struct btrfs_root *root = BTRFS_I(inode)->root;
7899 struct btrfs_ordered_extent *ordered = NULL;
7900 u64 ordered_offset = dip->logical_offset;
7901 u64 ordered_bytes = dip->bytes;
7902 struct bio *dio_bio;
7906 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7913 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7914 finish_ordered_fn, NULL, NULL);
7915 btrfs_queue_work(root->fs_info->endio_write_workers,
7919 * our bio might span multiple ordered extents. If we haven't
7920 * completed the accounting for the whole dio, go back and try again
7922 if (ordered_offset < dip->logical_offset + dip->bytes) {
7923 ordered_bytes = dip->logical_offset + dip->bytes -
7928 dio_bio = dip->dio_bio;
7932 dio_end_io(dio_bio, bio->bi_error);
7936 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7937 struct bio *bio, int mirror_num,
7938 unsigned long bio_flags, u64 offset)
7941 struct btrfs_root *root = BTRFS_I(inode)->root;
7942 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7943 BUG_ON(ret); /* -ENOMEM */
7947 static void btrfs_end_dio_bio(struct bio *bio)
7949 struct btrfs_dio_private *dip = bio->bi_private;
7950 int err = bio->bi_error;
7953 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7954 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7955 btrfs_ino(dip->inode), bio->bi_rw,
7956 (unsigned long long)bio->bi_iter.bi_sector,
7957 bio->bi_iter.bi_size, err);
7959 if (dip->subio_endio)
7960 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7966 * before atomic variable goto zero, we must make sure
7967 * dip->errors is perceived to be set.
7969 smp_mb__before_atomic();
7972 /* if there are more bios still pending for this dio, just exit */
7973 if (!atomic_dec_and_test(&dip->pending_bios))
7977 bio_io_error(dip->orig_bio);
7979 dip->dio_bio->bi_error = 0;
7980 bio_endio(dip->orig_bio);
7986 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7987 u64 first_sector, gfp_t gfp_flags)
7990 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
7992 bio_associate_current(bio);
7996 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7997 struct inode *inode,
7998 struct btrfs_dio_private *dip,
8002 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8003 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8007 * We load all the csum data we need when we submit
8008 * the first bio to reduce the csum tree search and
8011 if (dip->logical_offset == file_offset) {
8012 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8018 if (bio == dip->orig_bio)
8021 file_offset -= dip->logical_offset;
8022 file_offset >>= inode->i_sb->s_blocksize_bits;
8023 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8028 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8029 int rw, u64 file_offset, int skip_sum,
8032 struct btrfs_dio_private *dip = bio->bi_private;
8033 int write = rw & REQ_WRITE;
8034 struct btrfs_root *root = BTRFS_I(inode)->root;
8038 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8043 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8044 BTRFS_WQ_ENDIO_DATA);
8052 if (write && async_submit) {
8053 ret = btrfs_wq_submit_bio(root->fs_info,
8054 inode, rw, bio, 0, 0,
8056 __btrfs_submit_bio_start_direct_io,
8057 __btrfs_submit_bio_done);
8061 * If we aren't doing async submit, calculate the csum of the
8064 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8068 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8074 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8080 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8083 struct inode *inode = dip->inode;
8084 struct btrfs_root *root = BTRFS_I(inode)->root;
8086 struct bio *orig_bio = dip->orig_bio;
8087 struct bio_vec *bvec = orig_bio->bi_io_vec;
8088 u64 start_sector = orig_bio->bi_iter.bi_sector;
8089 u64 file_offset = dip->logical_offset;
8094 int async_submit = 0;
8096 map_length = orig_bio->bi_iter.bi_size;
8097 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8098 &map_length, NULL, 0);
8102 if (map_length >= orig_bio->bi_iter.bi_size) {
8104 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8108 /* async crcs make it difficult to collect full stripe writes. */
8109 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8114 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8118 bio->bi_private = dip;
8119 bio->bi_end_io = btrfs_end_dio_bio;
8120 btrfs_io_bio(bio)->logical = file_offset;
8121 atomic_inc(&dip->pending_bios);
8123 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8124 if (map_length < submit_len + bvec->bv_len ||
8125 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8126 bvec->bv_offset) < bvec->bv_len) {
8128 * inc the count before we submit the bio so
8129 * we know the end IO handler won't happen before
8130 * we inc the count. Otherwise, the dip might get freed
8131 * before we're done setting it up
8133 atomic_inc(&dip->pending_bios);
8134 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8135 file_offset, skip_sum,
8139 atomic_dec(&dip->pending_bios);
8143 start_sector += submit_len >> 9;
8144 file_offset += submit_len;
8149 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8150 start_sector, GFP_NOFS);
8153 bio->bi_private = dip;
8154 bio->bi_end_io = btrfs_end_dio_bio;
8155 btrfs_io_bio(bio)->logical = file_offset;
8157 map_length = orig_bio->bi_iter.bi_size;
8158 ret = btrfs_map_block(root->fs_info, rw,
8160 &map_length, NULL, 0);
8166 submit_len += bvec->bv_len;
8173 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8182 * before atomic variable goto zero, we must
8183 * make sure dip->errors is perceived to be set.
8185 smp_mb__before_atomic();
8186 if (atomic_dec_and_test(&dip->pending_bios))
8187 bio_io_error(dip->orig_bio);
8189 /* bio_end_io() will handle error, so we needn't return it */
8193 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8194 struct inode *inode, loff_t file_offset)
8196 struct btrfs_dio_private *dip = NULL;
8197 struct bio *io_bio = NULL;
8198 struct btrfs_io_bio *btrfs_bio;
8200 int write = rw & REQ_WRITE;
8203 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8205 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8211 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8217 dip->private = dio_bio->bi_private;
8219 dip->logical_offset = file_offset;
8220 dip->bytes = dio_bio->bi_iter.bi_size;
8221 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8222 io_bio->bi_private = dip;
8223 dip->orig_bio = io_bio;
8224 dip->dio_bio = dio_bio;
8225 atomic_set(&dip->pending_bios, 0);
8226 btrfs_bio = btrfs_io_bio(io_bio);
8227 btrfs_bio->logical = file_offset;
8230 io_bio->bi_end_io = btrfs_endio_direct_write;
8232 io_bio->bi_end_io = btrfs_endio_direct_read;
8233 dip->subio_endio = btrfs_subio_endio_read;
8236 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8240 if (btrfs_bio->end_io)
8241 btrfs_bio->end_io(btrfs_bio, ret);
8245 * If we arrived here it means either we failed to submit the dip
8246 * or we either failed to clone the dio_bio or failed to allocate the
8247 * dip. If we cloned the dio_bio and allocated the dip, we can just
8248 * call bio_endio against our io_bio so that we get proper resource
8249 * cleanup if we fail to submit the dip, otherwise, we must do the
8250 * same as btrfs_endio_direct_[write|read] because we can't call these
8251 * callbacks - they require an allocated dip and a clone of dio_bio.
8253 if (io_bio && dip) {
8254 io_bio->bi_error = -EIO;
8257 * The end io callbacks free our dip, do the final put on io_bio
8258 * and all the cleanup and final put for dio_bio (through
8265 struct btrfs_ordered_extent *ordered;
8267 ordered = btrfs_lookup_ordered_extent(inode,
8269 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8271 * Decrements our ref on the ordered extent and removes
8272 * the ordered extent from the inode's ordered tree,
8273 * doing all the proper resource cleanup such as for the
8274 * reserved space and waking up any waiters for this
8275 * ordered extent (through btrfs_remove_ordered_extent).
8277 btrfs_finish_ordered_io(ordered);
8279 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8280 file_offset + dio_bio->bi_iter.bi_size - 1);
8282 dio_bio->bi_error = -EIO;
8284 * Releases and cleans up our dio_bio, no need to bio_put()
8285 * nor bio_endio()/bio_io_error() against dio_bio.
8287 dio_end_io(dio_bio, ret);
8294 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8295 const struct iov_iter *iter, loff_t offset)
8299 unsigned blocksize_mask = root->sectorsize - 1;
8300 ssize_t retval = -EINVAL;
8302 if (offset & blocksize_mask)
8305 if (iov_iter_alignment(iter) & blocksize_mask)
8308 /* If this is a write we don't need to check anymore */
8309 if (iov_iter_rw(iter) == WRITE)
8312 * Check to make sure we don't have duplicate iov_base's in this
8313 * iovec, if so return EINVAL, otherwise we'll get csum errors
8314 * when reading back.
8316 for (seg = 0; seg < iter->nr_segs; seg++) {
8317 for (i = seg + 1; i < iter->nr_segs; i++) {
8318 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8327 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8330 struct file *file = iocb->ki_filp;
8331 struct inode *inode = file->f_mapping->host;
8332 u64 outstanding_extents = 0;
8336 bool relock = false;
8339 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8342 inode_dio_begin(inode);
8343 smp_mb__after_atomic();
8346 * The generic stuff only does filemap_write_and_wait_range, which
8347 * isn't enough if we've written compressed pages to this area, so
8348 * we need to flush the dirty pages again to make absolutely sure
8349 * that any outstanding dirty pages are on disk.
8351 count = iov_iter_count(iter);
8352 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8353 &BTRFS_I(inode)->runtime_flags))
8354 filemap_fdatawrite_range(inode->i_mapping, offset,
8355 offset + count - 1);
8357 if (iov_iter_rw(iter) == WRITE) {
8359 * If the write DIO is beyond the EOF, we need update
8360 * the isize, but it is protected by i_mutex. So we can
8361 * not unlock the i_mutex at this case.
8363 if (offset + count <= inode->i_size) {
8364 mutex_unlock(&inode->i_mutex);
8367 ret = btrfs_delalloc_reserve_space(inode, count);
8370 outstanding_extents = div64_u64(count +
8371 BTRFS_MAX_EXTENT_SIZE - 1,
8372 BTRFS_MAX_EXTENT_SIZE);
8375 * We need to know how many extents we reserved so that we can
8376 * do the accounting properly if we go over the number we
8377 * originally calculated. Abuse current->journal_info for this.
8379 current->journal_info = &outstanding_extents;
8380 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8381 &BTRFS_I(inode)->runtime_flags)) {
8382 inode_dio_end(inode);
8383 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8387 ret = __blockdev_direct_IO(iocb, inode,
8388 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8389 iter, offset, btrfs_get_blocks_direct, NULL,
8390 btrfs_submit_direct, flags);
8391 if (iov_iter_rw(iter) == WRITE) {
8392 current->journal_info = NULL;
8393 if (ret < 0 && ret != -EIOCBQUEUED) {
8395 * If the error comes from submitting stage,
8396 * btrfs_get_blocsk_direct() has free'd data space,
8397 * and metadata space will be handled by
8398 * finish_ordered_fn, don't do that again to make
8399 * sure bytes_may_use is correct.
8401 if (!test_and_clear_bit(BTRFS_INODE_DIO_READY,
8402 &BTRFS_I(inode)->runtime_flags))
8403 btrfs_delalloc_release_space(inode, count);
8404 } else if (ret >= 0 && (size_t)ret < count)
8405 btrfs_delalloc_release_space(inode,
8406 count - (size_t)ret);
8410 inode_dio_end(inode);
8412 mutex_lock(&inode->i_mutex);
8417 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8419 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8420 __u64 start, __u64 len)
8424 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8428 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8431 int btrfs_readpage(struct file *file, struct page *page)
8433 struct extent_io_tree *tree;
8434 tree = &BTRFS_I(page->mapping->host)->io_tree;
8435 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8438 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8440 struct extent_io_tree *tree;
8443 if (current->flags & PF_MEMALLOC) {
8444 redirty_page_for_writepage(wbc, page);
8448 tree = &BTRFS_I(page->mapping->host)->io_tree;
8449 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8452 static int btrfs_writepages(struct address_space *mapping,
8453 struct writeback_control *wbc)
8455 struct extent_io_tree *tree;
8457 tree = &BTRFS_I(mapping->host)->io_tree;
8458 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8462 btrfs_readpages(struct file *file, struct address_space *mapping,
8463 struct list_head *pages, unsigned nr_pages)
8465 struct extent_io_tree *tree;
8466 tree = &BTRFS_I(mapping->host)->io_tree;
8467 return extent_readpages(tree, mapping, pages, nr_pages,
8470 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8472 struct extent_io_tree *tree;
8473 struct extent_map_tree *map;
8476 tree = &BTRFS_I(page->mapping->host)->io_tree;
8477 map = &BTRFS_I(page->mapping->host)->extent_tree;
8478 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8480 ClearPagePrivate(page);
8481 set_page_private(page, 0);
8482 page_cache_release(page);
8487 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8489 if (PageWriteback(page) || PageDirty(page))
8491 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8494 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8495 unsigned int length)
8497 struct inode *inode = page->mapping->host;
8498 struct extent_io_tree *tree;
8499 struct btrfs_ordered_extent *ordered;
8500 struct extent_state *cached_state = NULL;
8501 u64 page_start = page_offset(page);
8502 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8503 int inode_evicting = inode->i_state & I_FREEING;
8506 * we have the page locked, so new writeback can't start,
8507 * and the dirty bit won't be cleared while we are here.
8509 * Wait for IO on this page so that we can safely clear
8510 * the PagePrivate2 bit and do ordered accounting
8512 wait_on_page_writeback(page);
8514 tree = &BTRFS_I(inode)->io_tree;
8516 btrfs_releasepage(page, GFP_NOFS);
8520 if (!inode_evicting)
8521 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8522 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8525 * IO on this page will never be started, so we need
8526 * to account for any ordered extents now
8528 if (!inode_evicting)
8529 clear_extent_bit(tree, page_start, page_end,
8530 EXTENT_DIRTY | EXTENT_DELALLOC |
8531 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8532 EXTENT_DEFRAG, 1, 0, &cached_state,
8535 * whoever cleared the private bit is responsible
8536 * for the finish_ordered_io
8538 if (TestClearPagePrivate2(page)) {
8539 struct btrfs_ordered_inode_tree *tree;
8542 tree = &BTRFS_I(inode)->ordered_tree;
8544 spin_lock_irq(&tree->lock);
8545 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8546 new_len = page_start - ordered->file_offset;
8547 if (new_len < ordered->truncated_len)
8548 ordered->truncated_len = new_len;
8549 spin_unlock_irq(&tree->lock);
8551 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8553 PAGE_CACHE_SIZE, 1))
8554 btrfs_finish_ordered_io(ordered);
8556 btrfs_put_ordered_extent(ordered);
8557 if (!inode_evicting) {
8558 cached_state = NULL;
8559 lock_extent_bits(tree, page_start, page_end, 0,
8564 if (!inode_evicting) {
8565 clear_extent_bit(tree, page_start, page_end,
8566 EXTENT_LOCKED | EXTENT_DIRTY |
8567 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8568 EXTENT_DEFRAG, 1, 1,
8569 &cached_state, GFP_NOFS);
8571 __btrfs_releasepage(page, GFP_NOFS);
8574 ClearPageChecked(page);
8575 if (PagePrivate(page)) {
8576 ClearPagePrivate(page);
8577 set_page_private(page, 0);
8578 page_cache_release(page);
8583 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8584 * called from a page fault handler when a page is first dirtied. Hence we must
8585 * be careful to check for EOF conditions here. We set the page up correctly
8586 * for a written page which means we get ENOSPC checking when writing into
8587 * holes and correct delalloc and unwritten extent mapping on filesystems that
8588 * support these features.
8590 * We are not allowed to take the i_mutex here so we have to play games to
8591 * protect against truncate races as the page could now be beyond EOF. Because
8592 * vmtruncate() writes the inode size before removing pages, once we have the
8593 * page lock we can determine safely if the page is beyond EOF. If it is not
8594 * beyond EOF, then the page is guaranteed safe against truncation until we
8597 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8599 struct page *page = vmf->page;
8600 struct inode *inode = file_inode(vma->vm_file);
8601 struct btrfs_root *root = BTRFS_I(inode)->root;
8602 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8603 struct btrfs_ordered_extent *ordered;
8604 struct extent_state *cached_state = NULL;
8606 unsigned long zero_start;
8613 sb_start_pagefault(inode->i_sb);
8614 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8616 ret = file_update_time(vma->vm_file);
8622 else /* -ENOSPC, -EIO, etc */
8623 ret = VM_FAULT_SIGBUS;
8629 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8632 size = i_size_read(inode);
8633 page_start = page_offset(page);
8634 page_end = page_start + PAGE_CACHE_SIZE - 1;
8636 if ((page->mapping != inode->i_mapping) ||
8637 (page_start >= size)) {
8638 /* page got truncated out from underneath us */
8641 wait_on_page_writeback(page);
8643 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8644 set_page_extent_mapped(page);
8647 * we can't set the delalloc bits if there are pending ordered
8648 * extents. Drop our locks and wait for them to finish
8650 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8652 unlock_extent_cached(io_tree, page_start, page_end,
8653 &cached_state, GFP_NOFS);
8655 btrfs_start_ordered_extent(inode, ordered, 1);
8656 btrfs_put_ordered_extent(ordered);
8661 * XXX - page_mkwrite gets called every time the page is dirtied, even
8662 * if it was already dirty, so for space accounting reasons we need to
8663 * clear any delalloc bits for the range we are fixing to save. There
8664 * is probably a better way to do this, but for now keep consistent with
8665 * prepare_pages in the normal write path.
8667 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8668 EXTENT_DIRTY | EXTENT_DELALLOC |
8669 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8670 0, 0, &cached_state, GFP_NOFS);
8672 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8675 unlock_extent_cached(io_tree, page_start, page_end,
8676 &cached_state, GFP_NOFS);
8677 ret = VM_FAULT_SIGBUS;
8682 /* page is wholly or partially inside EOF */
8683 if (page_start + PAGE_CACHE_SIZE > size)
8684 zero_start = size & ~PAGE_CACHE_MASK;
8686 zero_start = PAGE_CACHE_SIZE;
8688 if (zero_start != PAGE_CACHE_SIZE) {
8690 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8691 flush_dcache_page(page);
8694 ClearPageChecked(page);
8695 set_page_dirty(page);
8696 SetPageUptodate(page);
8698 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8699 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8700 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8702 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8706 sb_end_pagefault(inode->i_sb);
8707 return VM_FAULT_LOCKED;
8711 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8713 sb_end_pagefault(inode->i_sb);
8717 static int btrfs_truncate(struct inode *inode)
8719 struct btrfs_root *root = BTRFS_I(inode)->root;
8720 struct btrfs_block_rsv *rsv;
8723 struct btrfs_trans_handle *trans;
8724 u64 mask = root->sectorsize - 1;
8725 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8727 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8733 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8734 * 3 things going on here
8736 * 1) We need to reserve space for our orphan item and the space to
8737 * delete our orphan item. Lord knows we don't want to have a dangling
8738 * orphan item because we didn't reserve space to remove it.
8740 * 2) We need to reserve space to update our inode.
8742 * 3) We need to have something to cache all the space that is going to
8743 * be free'd up by the truncate operation, but also have some slack
8744 * space reserved in case it uses space during the truncate (thank you
8745 * very much snapshotting).
8747 * And we need these to all be seperate. The fact is we can use alot of
8748 * space doing the truncate, and we have no earthly idea how much space
8749 * we will use, so we need the truncate reservation to be seperate so it
8750 * doesn't end up using space reserved for updating the inode or
8751 * removing the orphan item. We also need to be able to stop the
8752 * transaction and start a new one, which means we need to be able to
8753 * update the inode several times, and we have no idea of knowing how
8754 * many times that will be, so we can't just reserve 1 item for the
8755 * entirety of the opration, so that has to be done seperately as well.
8756 * Then there is the orphan item, which does indeed need to be held on
8757 * to for the whole operation, and we need nobody to touch this reserved
8758 * space except the orphan code.
8760 * So that leaves us with
8762 * 1) root->orphan_block_rsv - for the orphan deletion.
8763 * 2) rsv - for the truncate reservation, which we will steal from the
8764 * transaction reservation.
8765 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8766 * updating the inode.
8768 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8771 rsv->size = min_size;
8775 * 1 for the truncate slack space
8776 * 1 for updating the inode.
8778 trans = btrfs_start_transaction(root, 2);
8779 if (IS_ERR(trans)) {
8780 err = PTR_ERR(trans);
8784 /* Migrate the slack space for the truncate to our reserve */
8785 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8790 * So if we truncate and then write and fsync we normally would just
8791 * write the extents that changed, which is a problem if we need to
8792 * first truncate that entire inode. So set this flag so we write out
8793 * all of the extents in the inode to the sync log so we're completely
8796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8797 trans->block_rsv = rsv;
8800 ret = btrfs_truncate_inode_items(trans, root, inode,
8802 BTRFS_EXTENT_DATA_KEY);
8803 if (ret != -ENOSPC && ret != -EAGAIN) {
8808 trans->block_rsv = &root->fs_info->trans_block_rsv;
8809 ret = btrfs_update_inode(trans, root, inode);
8815 btrfs_end_transaction(trans, root);
8816 btrfs_btree_balance_dirty(root);
8818 trans = btrfs_start_transaction(root, 2);
8819 if (IS_ERR(trans)) {
8820 ret = err = PTR_ERR(trans);
8825 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8827 BUG_ON(ret); /* shouldn't happen */
8828 trans->block_rsv = rsv;
8831 if (ret == 0 && inode->i_nlink > 0) {
8832 trans->block_rsv = root->orphan_block_rsv;
8833 ret = btrfs_orphan_del(trans, inode);
8839 trans->block_rsv = &root->fs_info->trans_block_rsv;
8840 ret = btrfs_update_inode(trans, root, inode);
8844 ret = btrfs_end_transaction(trans, root);
8845 btrfs_btree_balance_dirty(root);
8849 btrfs_free_block_rsv(root, rsv);
8858 * create a new subvolume directory/inode (helper for the ioctl).
8860 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8861 struct btrfs_root *new_root,
8862 struct btrfs_root *parent_root,
8865 struct inode *inode;
8869 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8870 new_dirid, new_dirid,
8871 S_IFDIR | (~current_umask() & S_IRWXUGO),
8874 return PTR_ERR(inode);
8875 inode->i_op = &btrfs_dir_inode_operations;
8876 inode->i_fop = &btrfs_dir_file_operations;
8878 set_nlink(inode, 1);
8879 btrfs_i_size_write(inode, 0);
8880 unlock_new_inode(inode);
8882 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8884 btrfs_err(new_root->fs_info,
8885 "error inheriting subvolume %llu properties: %d",
8886 new_root->root_key.objectid, err);
8888 err = btrfs_update_inode(trans, new_root, inode);
8894 struct inode *btrfs_alloc_inode(struct super_block *sb)
8896 struct btrfs_inode *ei;
8897 struct inode *inode;
8899 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8906 ei->last_sub_trans = 0;
8907 ei->logged_trans = 0;
8908 ei->delalloc_bytes = 0;
8909 ei->defrag_bytes = 0;
8910 ei->disk_i_size = 0;
8913 ei->index_cnt = (u64)-1;
8915 ei->last_unlink_trans = 0;
8916 ei->last_log_commit = 0;
8918 spin_lock_init(&ei->lock);
8919 ei->outstanding_extents = 0;
8920 ei->reserved_extents = 0;
8922 ei->runtime_flags = 0;
8923 ei->force_compress = BTRFS_COMPRESS_NONE;
8925 ei->delayed_node = NULL;
8927 ei->i_otime.tv_sec = 0;
8928 ei->i_otime.tv_nsec = 0;
8930 inode = &ei->vfs_inode;
8931 extent_map_tree_init(&ei->extent_tree);
8932 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8933 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8934 ei->io_tree.track_uptodate = 1;
8935 ei->io_failure_tree.track_uptodate = 1;
8936 atomic_set(&ei->sync_writers, 0);
8937 mutex_init(&ei->log_mutex);
8938 mutex_init(&ei->delalloc_mutex);
8939 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8940 INIT_LIST_HEAD(&ei->delalloc_inodes);
8941 RB_CLEAR_NODE(&ei->rb_node);
8946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8947 void btrfs_test_destroy_inode(struct inode *inode)
8949 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8950 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8954 static void btrfs_i_callback(struct rcu_head *head)
8956 struct inode *inode = container_of(head, struct inode, i_rcu);
8957 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8960 void btrfs_destroy_inode(struct inode *inode)
8962 struct btrfs_ordered_extent *ordered;
8963 struct btrfs_root *root = BTRFS_I(inode)->root;
8965 WARN_ON(!hlist_empty(&inode->i_dentry));
8966 WARN_ON(inode->i_data.nrpages);
8967 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8968 WARN_ON(BTRFS_I(inode)->reserved_extents);
8969 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8970 WARN_ON(BTRFS_I(inode)->csum_bytes);
8971 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8974 * This can happen where we create an inode, but somebody else also
8975 * created the same inode and we need to destroy the one we already
8981 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8982 &BTRFS_I(inode)->runtime_flags)) {
8983 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8985 atomic_dec(&root->orphan_inodes);
8989 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8993 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8994 ordered->file_offset, ordered->len);
8995 btrfs_remove_ordered_extent(inode, ordered);
8996 btrfs_put_ordered_extent(ordered);
8997 btrfs_put_ordered_extent(ordered);
9000 inode_tree_del(inode);
9001 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9003 call_rcu(&inode->i_rcu, btrfs_i_callback);
9006 int btrfs_drop_inode(struct inode *inode)
9008 struct btrfs_root *root = BTRFS_I(inode)->root;
9013 /* the snap/subvol tree is on deleting */
9014 if (btrfs_root_refs(&root->root_item) == 0)
9017 return generic_drop_inode(inode);
9020 static void init_once(void *foo)
9022 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9024 inode_init_once(&ei->vfs_inode);
9027 void btrfs_destroy_cachep(void)
9030 * Make sure all delayed rcu free inodes are flushed before we
9034 if (btrfs_inode_cachep)
9035 kmem_cache_destroy(btrfs_inode_cachep);
9036 if (btrfs_trans_handle_cachep)
9037 kmem_cache_destroy(btrfs_trans_handle_cachep);
9038 if (btrfs_transaction_cachep)
9039 kmem_cache_destroy(btrfs_transaction_cachep);
9040 if (btrfs_path_cachep)
9041 kmem_cache_destroy(btrfs_path_cachep);
9042 if (btrfs_free_space_cachep)
9043 kmem_cache_destroy(btrfs_free_space_cachep);
9044 if (btrfs_delalloc_work_cachep)
9045 kmem_cache_destroy(btrfs_delalloc_work_cachep);
9048 int btrfs_init_cachep(void)
9050 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9051 sizeof(struct btrfs_inode), 0,
9052 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9053 if (!btrfs_inode_cachep)
9056 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9057 sizeof(struct btrfs_trans_handle), 0,
9058 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9059 if (!btrfs_trans_handle_cachep)
9062 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9063 sizeof(struct btrfs_transaction), 0,
9064 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9065 if (!btrfs_transaction_cachep)
9068 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9069 sizeof(struct btrfs_path), 0,
9070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9071 if (!btrfs_path_cachep)
9074 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9075 sizeof(struct btrfs_free_space), 0,
9076 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9077 if (!btrfs_free_space_cachep)
9080 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9081 sizeof(struct btrfs_delalloc_work), 0,
9082 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9084 if (!btrfs_delalloc_work_cachep)
9089 btrfs_destroy_cachep();
9093 static int btrfs_getattr(struct vfsmount *mnt,
9094 struct dentry *dentry, struct kstat *stat)
9097 struct inode *inode = d_inode(dentry);
9098 u32 blocksize = inode->i_sb->s_blocksize;
9100 generic_fillattr(inode, stat);
9101 stat->dev = BTRFS_I(inode)->root->anon_dev;
9102 stat->blksize = PAGE_CACHE_SIZE;
9104 spin_lock(&BTRFS_I(inode)->lock);
9105 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9106 spin_unlock(&BTRFS_I(inode)->lock);
9107 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9108 ALIGN(delalloc_bytes, blocksize)) >> 9;
9112 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9113 struct inode *new_dir, struct dentry *new_dentry)
9115 struct btrfs_trans_handle *trans;
9116 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9117 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9118 struct inode *new_inode = d_inode(new_dentry);
9119 struct inode *old_inode = d_inode(old_dentry);
9120 struct timespec ctime = CURRENT_TIME;
9124 u64 old_ino = btrfs_ino(old_inode);
9126 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9129 /* we only allow rename subvolume link between subvolumes */
9130 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9133 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9134 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9137 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9138 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9142 /* check for collisions, even if the name isn't there */
9143 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9144 new_dentry->d_name.name,
9145 new_dentry->d_name.len);
9148 if (ret == -EEXIST) {
9150 * eexist without a new_inode */
9151 if (WARN_ON(!new_inode)) {
9155 /* maybe -EOVERFLOW */
9162 * we're using rename to replace one file with another. Start IO on it
9163 * now so we don't add too much work to the end of the transaction
9165 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9166 filemap_flush(old_inode->i_mapping);
9168 /* close the racy window with snapshot create/destroy ioctl */
9169 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9170 down_read(&root->fs_info->subvol_sem);
9172 * We want to reserve the absolute worst case amount of items. So if
9173 * both inodes are subvols and we need to unlink them then that would
9174 * require 4 item modifications, but if they are both normal inodes it
9175 * would require 5 item modifications, so we'll assume their normal
9176 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9177 * should cover the worst case number of items we'll modify.
9179 trans = btrfs_start_transaction(root, 11);
9180 if (IS_ERR(trans)) {
9181 ret = PTR_ERR(trans);
9186 btrfs_record_root_in_trans(trans, dest);
9188 ret = btrfs_set_inode_index(new_dir, &index);
9192 BTRFS_I(old_inode)->dir_index = 0ULL;
9193 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9194 /* force full log commit if subvolume involved. */
9195 btrfs_set_log_full_commit(root->fs_info, trans);
9197 ret = btrfs_insert_inode_ref(trans, dest,
9198 new_dentry->d_name.name,
9199 new_dentry->d_name.len,
9201 btrfs_ino(new_dir), index);
9205 * this is an ugly little race, but the rename is required
9206 * to make sure that if we crash, the inode is either at the
9207 * old name or the new one. pinning the log transaction lets
9208 * us make sure we don't allow a log commit to come in after
9209 * we unlink the name but before we add the new name back in.
9211 btrfs_pin_log_trans(root);
9214 inode_inc_iversion(old_dir);
9215 inode_inc_iversion(new_dir);
9216 inode_inc_iversion(old_inode);
9217 old_dir->i_ctime = old_dir->i_mtime = ctime;
9218 new_dir->i_ctime = new_dir->i_mtime = ctime;
9219 old_inode->i_ctime = ctime;
9221 if (old_dentry->d_parent != new_dentry->d_parent)
9222 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9224 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9225 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9226 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9227 old_dentry->d_name.name,
9228 old_dentry->d_name.len);
9230 ret = __btrfs_unlink_inode(trans, root, old_dir,
9231 d_inode(old_dentry),
9232 old_dentry->d_name.name,
9233 old_dentry->d_name.len);
9235 ret = btrfs_update_inode(trans, root, old_inode);
9238 btrfs_abort_transaction(trans, root, ret);
9243 inode_inc_iversion(new_inode);
9244 new_inode->i_ctime = CURRENT_TIME;
9245 if (unlikely(btrfs_ino(new_inode) ==
9246 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9247 root_objectid = BTRFS_I(new_inode)->location.objectid;
9248 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9250 new_dentry->d_name.name,
9251 new_dentry->d_name.len);
9252 BUG_ON(new_inode->i_nlink == 0);
9254 ret = btrfs_unlink_inode(trans, dest, new_dir,
9255 d_inode(new_dentry),
9256 new_dentry->d_name.name,
9257 new_dentry->d_name.len);
9259 if (!ret && new_inode->i_nlink == 0)
9260 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9262 btrfs_abort_transaction(trans, root, ret);
9267 ret = btrfs_add_link(trans, new_dir, old_inode,
9268 new_dentry->d_name.name,
9269 new_dentry->d_name.len, 0, index);
9271 btrfs_abort_transaction(trans, root, ret);
9275 if (old_inode->i_nlink == 1)
9276 BTRFS_I(old_inode)->dir_index = index;
9278 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9279 struct dentry *parent = new_dentry->d_parent;
9280 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9281 btrfs_end_log_trans(root);
9284 btrfs_end_transaction(trans, root);
9286 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9287 up_read(&root->fs_info->subvol_sem);
9292 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9293 struct inode *new_dir, struct dentry *new_dentry,
9296 if (flags & ~RENAME_NOREPLACE)
9299 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9302 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9304 struct btrfs_delalloc_work *delalloc_work;
9305 struct inode *inode;
9307 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9309 inode = delalloc_work->inode;
9310 if (delalloc_work->wait) {
9311 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9313 filemap_flush(inode->i_mapping);
9314 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9315 &BTRFS_I(inode)->runtime_flags))
9316 filemap_flush(inode->i_mapping);
9319 if (delalloc_work->delay_iput)
9320 btrfs_add_delayed_iput(inode);
9323 complete(&delalloc_work->completion);
9326 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9327 int wait, int delay_iput)
9329 struct btrfs_delalloc_work *work;
9331 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9335 init_completion(&work->completion);
9336 INIT_LIST_HEAD(&work->list);
9337 work->inode = inode;
9339 work->delay_iput = delay_iput;
9340 WARN_ON_ONCE(!inode);
9341 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9342 btrfs_run_delalloc_work, NULL, NULL);
9347 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9349 wait_for_completion(&work->completion);
9350 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9354 * some fairly slow code that needs optimization. This walks the list
9355 * of all the inodes with pending delalloc and forces them to disk.
9357 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9360 struct btrfs_inode *binode;
9361 struct inode *inode;
9362 struct btrfs_delalloc_work *work, *next;
9363 struct list_head works;
9364 struct list_head splice;
9367 INIT_LIST_HEAD(&works);
9368 INIT_LIST_HEAD(&splice);
9370 mutex_lock(&root->delalloc_mutex);
9371 spin_lock(&root->delalloc_lock);
9372 list_splice_init(&root->delalloc_inodes, &splice);
9373 while (!list_empty(&splice)) {
9374 binode = list_entry(splice.next, struct btrfs_inode,
9377 list_move_tail(&binode->delalloc_inodes,
9378 &root->delalloc_inodes);
9379 inode = igrab(&binode->vfs_inode);
9381 cond_resched_lock(&root->delalloc_lock);
9384 spin_unlock(&root->delalloc_lock);
9386 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9389 btrfs_add_delayed_iput(inode);
9395 list_add_tail(&work->list, &works);
9396 btrfs_queue_work(root->fs_info->flush_workers,
9399 if (nr != -1 && ret >= nr)
9402 spin_lock(&root->delalloc_lock);
9404 spin_unlock(&root->delalloc_lock);
9407 list_for_each_entry_safe(work, next, &works, list) {
9408 list_del_init(&work->list);
9409 btrfs_wait_and_free_delalloc_work(work);
9412 if (!list_empty_careful(&splice)) {
9413 spin_lock(&root->delalloc_lock);
9414 list_splice_tail(&splice, &root->delalloc_inodes);
9415 spin_unlock(&root->delalloc_lock);
9417 mutex_unlock(&root->delalloc_mutex);
9421 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9425 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9428 ret = __start_delalloc_inodes(root, delay_iput, -1);
9432 * the filemap_flush will queue IO into the worker threads, but
9433 * we have to make sure the IO is actually started and that
9434 * ordered extents get created before we return
9436 atomic_inc(&root->fs_info->async_submit_draining);
9437 while (atomic_read(&root->fs_info->nr_async_submits) ||
9438 atomic_read(&root->fs_info->async_delalloc_pages)) {
9439 wait_event(root->fs_info->async_submit_wait,
9440 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9441 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9443 atomic_dec(&root->fs_info->async_submit_draining);
9447 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9450 struct btrfs_root *root;
9451 struct list_head splice;
9454 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9457 INIT_LIST_HEAD(&splice);
9459 mutex_lock(&fs_info->delalloc_root_mutex);
9460 spin_lock(&fs_info->delalloc_root_lock);
9461 list_splice_init(&fs_info->delalloc_roots, &splice);
9462 while (!list_empty(&splice) && nr) {
9463 root = list_first_entry(&splice, struct btrfs_root,
9465 root = btrfs_grab_fs_root(root);
9467 list_move_tail(&root->delalloc_root,
9468 &fs_info->delalloc_roots);
9469 spin_unlock(&fs_info->delalloc_root_lock);
9471 ret = __start_delalloc_inodes(root, delay_iput, nr);
9472 btrfs_put_fs_root(root);
9480 spin_lock(&fs_info->delalloc_root_lock);
9482 spin_unlock(&fs_info->delalloc_root_lock);
9485 atomic_inc(&fs_info->async_submit_draining);
9486 while (atomic_read(&fs_info->nr_async_submits) ||
9487 atomic_read(&fs_info->async_delalloc_pages)) {
9488 wait_event(fs_info->async_submit_wait,
9489 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9490 atomic_read(&fs_info->async_delalloc_pages) == 0));
9492 atomic_dec(&fs_info->async_submit_draining);
9494 if (!list_empty_careful(&splice)) {
9495 spin_lock(&fs_info->delalloc_root_lock);
9496 list_splice_tail(&splice, &fs_info->delalloc_roots);
9497 spin_unlock(&fs_info->delalloc_root_lock);
9499 mutex_unlock(&fs_info->delalloc_root_mutex);
9503 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9504 const char *symname)
9506 struct btrfs_trans_handle *trans;
9507 struct btrfs_root *root = BTRFS_I(dir)->root;
9508 struct btrfs_path *path;
9509 struct btrfs_key key;
9510 struct inode *inode = NULL;
9518 struct btrfs_file_extent_item *ei;
9519 struct extent_buffer *leaf;
9521 name_len = strlen(symname);
9522 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9523 return -ENAMETOOLONG;
9526 * 2 items for inode item and ref
9527 * 2 items for dir items
9528 * 1 item for xattr if selinux is on
9530 trans = btrfs_start_transaction(root, 5);
9532 return PTR_ERR(trans);
9534 err = btrfs_find_free_ino(root, &objectid);
9538 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9539 dentry->d_name.len, btrfs_ino(dir), objectid,
9540 S_IFLNK|S_IRWXUGO, &index);
9541 if (IS_ERR(inode)) {
9542 err = PTR_ERR(inode);
9547 * If the active LSM wants to access the inode during
9548 * d_instantiate it needs these. Smack checks to see
9549 * if the filesystem supports xattrs by looking at the
9552 inode->i_fop = &btrfs_file_operations;
9553 inode->i_op = &btrfs_file_inode_operations;
9554 inode->i_mapping->a_ops = &btrfs_aops;
9555 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9559 goto out_unlock_inode;
9561 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9563 goto out_unlock_inode;
9565 path = btrfs_alloc_path();
9568 goto out_unlock_inode;
9570 key.objectid = btrfs_ino(inode);
9572 key.type = BTRFS_EXTENT_DATA_KEY;
9573 datasize = btrfs_file_extent_calc_inline_size(name_len);
9574 err = btrfs_insert_empty_item(trans, root, path, &key,
9577 btrfs_free_path(path);
9578 goto out_unlock_inode;
9580 leaf = path->nodes[0];
9581 ei = btrfs_item_ptr(leaf, path->slots[0],
9582 struct btrfs_file_extent_item);
9583 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9584 btrfs_set_file_extent_type(leaf, ei,
9585 BTRFS_FILE_EXTENT_INLINE);
9586 btrfs_set_file_extent_encryption(leaf, ei, 0);
9587 btrfs_set_file_extent_compression(leaf, ei, 0);
9588 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9589 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9591 ptr = btrfs_file_extent_inline_start(ei);
9592 write_extent_buffer(leaf, symname, ptr, name_len);
9593 btrfs_mark_buffer_dirty(leaf);
9594 btrfs_free_path(path);
9596 inode->i_op = &btrfs_symlink_inode_operations;
9597 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9598 inode_set_bytes(inode, name_len);
9599 btrfs_i_size_write(inode, name_len);
9600 err = btrfs_update_inode(trans, root, inode);
9603 goto out_unlock_inode;
9606 unlock_new_inode(inode);
9607 d_instantiate(dentry, inode);
9610 btrfs_end_transaction(trans, root);
9612 inode_dec_link_count(inode);
9615 btrfs_btree_balance_dirty(root);
9620 unlock_new_inode(inode);
9624 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9625 u64 start, u64 num_bytes, u64 min_size,
9626 loff_t actual_len, u64 *alloc_hint,
9627 struct btrfs_trans_handle *trans)
9629 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9630 struct extent_map *em;
9631 struct btrfs_root *root = BTRFS_I(inode)->root;
9632 struct btrfs_key ins;
9633 u64 cur_offset = start;
9637 bool own_trans = true;
9641 while (num_bytes > 0) {
9643 trans = btrfs_start_transaction(root, 3);
9644 if (IS_ERR(trans)) {
9645 ret = PTR_ERR(trans);
9650 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9651 cur_bytes = max(cur_bytes, min_size);
9652 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9653 *alloc_hint, &ins, 1, 0);
9656 btrfs_end_transaction(trans, root);
9660 ret = insert_reserved_file_extent(trans, inode,
9661 cur_offset, ins.objectid,
9662 ins.offset, ins.offset,
9663 ins.offset, 0, 0, 0,
9664 BTRFS_FILE_EXTENT_PREALLOC);
9666 btrfs_free_reserved_extent(root, ins.objectid,
9668 btrfs_abort_transaction(trans, root, ret);
9670 btrfs_end_transaction(trans, root);
9674 btrfs_drop_extent_cache(inode, cur_offset,
9675 cur_offset + ins.offset -1, 0);
9677 em = alloc_extent_map();
9679 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9680 &BTRFS_I(inode)->runtime_flags);
9684 em->start = cur_offset;
9685 em->orig_start = cur_offset;
9686 em->len = ins.offset;
9687 em->block_start = ins.objectid;
9688 em->block_len = ins.offset;
9689 em->orig_block_len = ins.offset;
9690 em->ram_bytes = ins.offset;
9691 em->bdev = root->fs_info->fs_devices->latest_bdev;
9692 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9693 em->generation = trans->transid;
9696 write_lock(&em_tree->lock);
9697 ret = add_extent_mapping(em_tree, em, 1);
9698 write_unlock(&em_tree->lock);
9701 btrfs_drop_extent_cache(inode, cur_offset,
9702 cur_offset + ins.offset - 1,
9705 free_extent_map(em);
9707 num_bytes -= ins.offset;
9708 cur_offset += ins.offset;
9709 *alloc_hint = ins.objectid + ins.offset;
9711 inode_inc_iversion(inode);
9712 inode->i_ctime = CURRENT_TIME;
9713 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9714 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9715 (actual_len > inode->i_size) &&
9716 (cur_offset > inode->i_size)) {
9717 if (cur_offset > actual_len)
9718 i_size = actual_len;
9720 i_size = cur_offset;
9721 i_size_write(inode, i_size);
9722 btrfs_ordered_update_i_size(inode, i_size, NULL);
9725 ret = btrfs_update_inode(trans, root, inode);
9728 btrfs_abort_transaction(trans, root, ret);
9730 btrfs_end_transaction(trans, root);
9735 btrfs_end_transaction(trans, root);
9740 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9741 u64 start, u64 num_bytes, u64 min_size,
9742 loff_t actual_len, u64 *alloc_hint)
9744 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9745 min_size, actual_len, alloc_hint,
9749 int btrfs_prealloc_file_range_trans(struct inode *inode,
9750 struct btrfs_trans_handle *trans, int mode,
9751 u64 start, u64 num_bytes, u64 min_size,
9752 loff_t actual_len, u64 *alloc_hint)
9754 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9755 min_size, actual_len, alloc_hint, trans);
9758 static int btrfs_set_page_dirty(struct page *page)
9760 return __set_page_dirty_nobuffers(page);
9763 static int btrfs_permission(struct inode *inode, int mask)
9765 struct btrfs_root *root = BTRFS_I(inode)->root;
9766 umode_t mode = inode->i_mode;
9768 if (mask & MAY_WRITE &&
9769 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9770 if (btrfs_root_readonly(root))
9772 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9775 return generic_permission(inode, mask);
9778 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9780 struct btrfs_trans_handle *trans;
9781 struct btrfs_root *root = BTRFS_I(dir)->root;
9782 struct inode *inode = NULL;
9788 * 5 units required for adding orphan entry
9790 trans = btrfs_start_transaction(root, 5);
9792 return PTR_ERR(trans);
9794 ret = btrfs_find_free_ino(root, &objectid);
9798 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9799 btrfs_ino(dir), objectid, mode, &index);
9800 if (IS_ERR(inode)) {
9801 ret = PTR_ERR(inode);
9806 inode->i_fop = &btrfs_file_operations;
9807 inode->i_op = &btrfs_file_inode_operations;
9809 inode->i_mapping->a_ops = &btrfs_aops;
9810 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9812 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9816 ret = btrfs_update_inode(trans, root, inode);
9819 ret = btrfs_orphan_add(trans, inode);
9824 * We set number of links to 0 in btrfs_new_inode(), and here we set
9825 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9828 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9830 set_nlink(inode, 1);
9831 unlock_new_inode(inode);
9832 d_tmpfile(dentry, inode);
9833 mark_inode_dirty(inode);
9836 btrfs_end_transaction(trans, root);
9839 btrfs_balance_delayed_items(root);
9840 btrfs_btree_balance_dirty(root);
9844 unlock_new_inode(inode);
9849 /* Inspired by filemap_check_errors() */
9850 int btrfs_inode_check_errors(struct inode *inode)
9854 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9855 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9857 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9858 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9864 static const struct inode_operations btrfs_dir_inode_operations = {
9865 .getattr = btrfs_getattr,
9866 .lookup = btrfs_lookup,
9867 .create = btrfs_create,
9868 .unlink = btrfs_unlink,
9870 .mkdir = btrfs_mkdir,
9871 .rmdir = btrfs_rmdir,
9872 .rename2 = btrfs_rename2,
9873 .symlink = btrfs_symlink,
9874 .setattr = btrfs_setattr,
9875 .mknod = btrfs_mknod,
9876 .setxattr = btrfs_setxattr,
9877 .getxattr = btrfs_getxattr,
9878 .listxattr = btrfs_listxattr,
9879 .removexattr = btrfs_removexattr,
9880 .permission = btrfs_permission,
9881 .get_acl = btrfs_get_acl,
9882 .set_acl = btrfs_set_acl,
9883 .update_time = btrfs_update_time,
9884 .tmpfile = btrfs_tmpfile,
9886 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9887 .lookup = btrfs_lookup,
9888 .permission = btrfs_permission,
9889 .get_acl = btrfs_get_acl,
9890 .set_acl = btrfs_set_acl,
9891 .update_time = btrfs_update_time,
9894 static const struct file_operations btrfs_dir_file_operations = {
9895 .llseek = generic_file_llseek,
9896 .read = generic_read_dir,
9897 .iterate = btrfs_real_readdir,
9898 .unlocked_ioctl = btrfs_ioctl,
9899 #ifdef CONFIG_COMPAT
9900 .compat_ioctl = btrfs_ioctl,
9902 .release = btrfs_release_file,
9903 .fsync = btrfs_sync_file,
9906 static struct extent_io_ops btrfs_extent_io_ops = {
9907 .fill_delalloc = run_delalloc_range,
9908 .submit_bio_hook = btrfs_submit_bio_hook,
9909 .merge_bio_hook = btrfs_merge_bio_hook,
9910 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9911 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9912 .writepage_start_hook = btrfs_writepage_start_hook,
9913 .set_bit_hook = btrfs_set_bit_hook,
9914 .clear_bit_hook = btrfs_clear_bit_hook,
9915 .merge_extent_hook = btrfs_merge_extent_hook,
9916 .split_extent_hook = btrfs_split_extent_hook,
9920 * btrfs doesn't support the bmap operation because swapfiles
9921 * use bmap to make a mapping of extents in the file. They assume
9922 * these extents won't change over the life of the file and they
9923 * use the bmap result to do IO directly to the drive.
9925 * the btrfs bmap call would return logical addresses that aren't
9926 * suitable for IO and they also will change frequently as COW
9927 * operations happen. So, swapfile + btrfs == corruption.
9929 * For now we're avoiding this by dropping bmap.
9931 static const struct address_space_operations btrfs_aops = {
9932 .readpage = btrfs_readpage,
9933 .writepage = btrfs_writepage,
9934 .writepages = btrfs_writepages,
9935 .readpages = btrfs_readpages,
9936 .direct_IO = btrfs_direct_IO,
9937 .invalidatepage = btrfs_invalidatepage,
9938 .releasepage = btrfs_releasepage,
9939 .set_page_dirty = btrfs_set_page_dirty,
9940 .error_remove_page = generic_error_remove_page,
9943 static const struct address_space_operations btrfs_symlink_aops = {
9944 .readpage = btrfs_readpage,
9945 .writepage = btrfs_writepage,
9946 .invalidatepage = btrfs_invalidatepage,
9947 .releasepage = btrfs_releasepage,
9950 static const struct inode_operations btrfs_file_inode_operations = {
9951 .getattr = btrfs_getattr,
9952 .setattr = btrfs_setattr,
9953 .setxattr = btrfs_setxattr,
9954 .getxattr = btrfs_getxattr,
9955 .listxattr = btrfs_listxattr,
9956 .removexattr = btrfs_removexattr,
9957 .permission = btrfs_permission,
9958 .fiemap = btrfs_fiemap,
9959 .get_acl = btrfs_get_acl,
9960 .set_acl = btrfs_set_acl,
9961 .update_time = btrfs_update_time,
9963 static const struct inode_operations btrfs_special_inode_operations = {
9964 .getattr = btrfs_getattr,
9965 .setattr = btrfs_setattr,
9966 .permission = btrfs_permission,
9967 .setxattr = btrfs_setxattr,
9968 .getxattr = btrfs_getxattr,
9969 .listxattr = btrfs_listxattr,
9970 .removexattr = btrfs_removexattr,
9971 .get_acl = btrfs_get_acl,
9972 .set_acl = btrfs_set_acl,
9973 .update_time = btrfs_update_time,
9975 static const struct inode_operations btrfs_symlink_inode_operations = {
9976 .readlink = generic_readlink,
9977 .follow_link = page_follow_link_light,
9978 .put_link = page_put_link,
9979 .getattr = btrfs_getattr,
9980 .setattr = btrfs_setattr,
9981 .permission = btrfs_permission,
9982 .setxattr = btrfs_setxattr,
9983 .getxattr = btrfs_getxattr,
9984 .listxattr = btrfs_listxattr,
9985 .removexattr = btrfs_removexattr,
9986 .update_time = btrfs_update_time,
9989 const struct dentry_operations btrfs_dentry_operations = {
9990 .d_delete = btrfs_dentry_delete,
9991 .d_release = btrfs_dentry_release,