]> Git Repo - linux.git/blob - virt/kvm/arm/mmu.c
arm64: allow ID map to be extended to 52 bits
[linux.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <[email protected]>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
51
52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56
57 /**
58  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59  * @kvm:        pointer to kvm structure.
60  *
61  * Interface to HYP function to flush all VM TLB entries
62  */
63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67
68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72
73 /*
74  * D-Cache management functions. They take the page table entries by
75  * value, as they are flushing the cache using the kernel mapping (or
76  * kmap on 32bit).
77  */
78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80         __kvm_flush_dcache_pte(pte);
81 }
82
83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85         __kvm_flush_dcache_pmd(pmd);
86 }
87
88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90         __kvm_flush_dcache_pud(pud);
91 }
92
93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95         return !pfn_valid(pfn);
96 }
97
98 /**
99  * stage2_dissolve_pmd() - clear and flush huge PMD entry
100  * @kvm:        pointer to kvm structure.
101  * @addr:       IPA
102  * @pmd:        pmd pointer for IPA
103  *
104  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105  * pages in the range dirty.
106  */
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109         if (!pmd_thp_or_huge(*pmd))
110                 return;
111
112         pmd_clear(pmd);
113         kvm_tlb_flush_vmid_ipa(kvm, addr);
114         put_page(virt_to_page(pmd));
115 }
116
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118                                   int min, int max)
119 {
120         void *page;
121
122         BUG_ON(max > KVM_NR_MEM_OBJS);
123         if (cache->nobjs >= min)
124                 return 0;
125         while (cache->nobjs < max) {
126                 page = (void *)__get_free_page(PGALLOC_GFP);
127                 if (!page)
128                         return -ENOMEM;
129                 cache->objects[cache->nobjs++] = page;
130         }
131         return 0;
132 }
133
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136         while (mc->nobjs)
137                 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142         void *p;
143
144         BUG_ON(!mc || !mc->nobjs);
145         p = mc->objects[--mc->nobjs];
146         return p;
147 }
148
149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152         stage2_pgd_clear(pgd);
153         kvm_tlb_flush_vmid_ipa(kvm, addr);
154         stage2_pud_free(pud_table);
155         put_page(virt_to_page(pgd));
156 }
157
158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161         VM_BUG_ON(stage2_pud_huge(*pud));
162         stage2_pud_clear(pud);
163         kvm_tlb_flush_vmid_ipa(kvm, addr);
164         stage2_pmd_free(pmd_table);
165         put_page(virt_to_page(pud));
166 }
167
168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170         pte_t *pte_table = pte_offset_kernel(pmd, 0);
171         VM_BUG_ON(pmd_thp_or_huge(*pmd));
172         pmd_clear(pmd);
173         kvm_tlb_flush_vmid_ipa(kvm, addr);
174         pte_free_kernel(NULL, pte_table);
175         put_page(virt_to_page(pmd));
176 }
177
178 /*
179  * Unmapping vs dcache management:
180  *
181  * If a guest maps certain memory pages as uncached, all writes will
182  * bypass the data cache and go directly to RAM.  However, the CPUs
183  * can still speculate reads (not writes) and fill cache lines with
184  * data.
185  *
186  * Those cache lines will be *clean* cache lines though, so a
187  * clean+invalidate operation is equivalent to an invalidate
188  * operation, because no cache lines are marked dirty.
189  *
190  * Those clean cache lines could be filled prior to an uncached write
191  * by the guest, and the cache coherent IO subsystem would therefore
192  * end up writing old data to disk.
193  *
194  * This is why right after unmapping a page/section and invalidating
195  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196  * the IO subsystem will never hit in the cache.
197  */
198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199                        phys_addr_t addr, phys_addr_t end)
200 {
201         phys_addr_t start_addr = addr;
202         pte_t *pte, *start_pte;
203
204         start_pte = pte = pte_offset_kernel(pmd, addr);
205         do {
206                 if (!pte_none(*pte)) {
207                         pte_t old_pte = *pte;
208
209                         kvm_set_pte(pte, __pte(0));
210                         kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212                         /* No need to invalidate the cache for device mappings */
213                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214                                 kvm_flush_dcache_pte(old_pte);
215
216                         put_page(virt_to_page(pte));
217                 }
218         } while (pte++, addr += PAGE_SIZE, addr != end);
219
220         if (stage2_pte_table_empty(start_pte))
221                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223
224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225                        phys_addr_t addr, phys_addr_t end)
226 {
227         phys_addr_t next, start_addr = addr;
228         pmd_t *pmd, *start_pmd;
229
230         start_pmd = pmd = stage2_pmd_offset(pud, addr);
231         do {
232                 next = stage2_pmd_addr_end(addr, end);
233                 if (!pmd_none(*pmd)) {
234                         if (pmd_thp_or_huge(*pmd)) {
235                                 pmd_t old_pmd = *pmd;
236
237                                 pmd_clear(pmd);
238                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240                                 kvm_flush_dcache_pmd(old_pmd);
241
242                                 put_page(virt_to_page(pmd));
243                         } else {
244                                 unmap_stage2_ptes(kvm, pmd, addr, next);
245                         }
246                 }
247         } while (pmd++, addr = next, addr != end);
248
249         if (stage2_pmd_table_empty(start_pmd))
250                 clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252
253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254                        phys_addr_t addr, phys_addr_t end)
255 {
256         phys_addr_t next, start_addr = addr;
257         pud_t *pud, *start_pud;
258
259         start_pud = pud = stage2_pud_offset(pgd, addr);
260         do {
261                 next = stage2_pud_addr_end(addr, end);
262                 if (!stage2_pud_none(*pud)) {
263                         if (stage2_pud_huge(*pud)) {
264                                 pud_t old_pud = *pud;
265
266                                 stage2_pud_clear(pud);
267                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
268                                 kvm_flush_dcache_pud(old_pud);
269                                 put_page(virt_to_page(pud));
270                         } else {
271                                 unmap_stage2_pmds(kvm, pud, addr, next);
272                         }
273                 }
274         } while (pud++, addr = next, addr != end);
275
276         if (stage2_pud_table_empty(start_pud))
277                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279
280 /**
281  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282  * @kvm:   The VM pointer
283  * @start: The intermediate physical base address of the range to unmap
284  * @size:  The size of the area to unmap
285  *
286  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
287  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288  * destroying the VM), otherwise another faulting VCPU may come in and mess
289  * with things behind our backs.
290  */
291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293         pgd_t *pgd;
294         phys_addr_t addr = start, end = start + size;
295         phys_addr_t next;
296
297         assert_spin_locked(&kvm->mmu_lock);
298         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299         do {
300                 /*
301                  * Make sure the page table is still active, as another thread
302                  * could have possibly freed the page table, while we released
303                  * the lock.
304                  */
305                 if (!READ_ONCE(kvm->arch.pgd))
306                         break;
307                 next = stage2_pgd_addr_end(addr, end);
308                 if (!stage2_pgd_none(*pgd))
309                         unmap_stage2_puds(kvm, pgd, addr, next);
310                 /*
311                  * If the range is too large, release the kvm->mmu_lock
312                  * to prevent starvation and lockup detector warnings.
313                  */
314                 if (next != end)
315                         cond_resched_lock(&kvm->mmu_lock);
316         } while (pgd++, addr = next, addr != end);
317 }
318
319 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
320                               phys_addr_t addr, phys_addr_t end)
321 {
322         pte_t *pte;
323
324         pte = pte_offset_kernel(pmd, addr);
325         do {
326                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327                         kvm_flush_dcache_pte(*pte);
328         } while (pte++, addr += PAGE_SIZE, addr != end);
329 }
330
331 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
332                               phys_addr_t addr, phys_addr_t end)
333 {
334         pmd_t *pmd;
335         phys_addr_t next;
336
337         pmd = stage2_pmd_offset(pud, addr);
338         do {
339                 next = stage2_pmd_addr_end(addr, end);
340                 if (!pmd_none(*pmd)) {
341                         if (pmd_thp_or_huge(*pmd))
342                                 kvm_flush_dcache_pmd(*pmd);
343                         else
344                                 stage2_flush_ptes(kvm, pmd, addr, next);
345                 }
346         } while (pmd++, addr = next, addr != end);
347 }
348
349 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
350                               phys_addr_t addr, phys_addr_t end)
351 {
352         pud_t *pud;
353         phys_addr_t next;
354
355         pud = stage2_pud_offset(pgd, addr);
356         do {
357                 next = stage2_pud_addr_end(addr, end);
358                 if (!stage2_pud_none(*pud)) {
359                         if (stage2_pud_huge(*pud))
360                                 kvm_flush_dcache_pud(*pud);
361                         else
362                                 stage2_flush_pmds(kvm, pud, addr, next);
363                 }
364         } while (pud++, addr = next, addr != end);
365 }
366
367 static void stage2_flush_memslot(struct kvm *kvm,
368                                  struct kvm_memory_slot *memslot)
369 {
370         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
371         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
372         phys_addr_t next;
373         pgd_t *pgd;
374
375         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376         do {
377                 next = stage2_pgd_addr_end(addr, end);
378                 stage2_flush_puds(kvm, pgd, addr, next);
379         } while (pgd++, addr = next, addr != end);
380 }
381
382 /**
383  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
384  * @kvm: The struct kvm pointer
385  *
386  * Go through the stage 2 page tables and invalidate any cache lines
387  * backing memory already mapped to the VM.
388  */
389 static void stage2_flush_vm(struct kvm *kvm)
390 {
391         struct kvm_memslots *slots;
392         struct kvm_memory_slot *memslot;
393         int idx;
394
395         idx = srcu_read_lock(&kvm->srcu);
396         spin_lock(&kvm->mmu_lock);
397
398         slots = kvm_memslots(kvm);
399         kvm_for_each_memslot(memslot, slots)
400                 stage2_flush_memslot(kvm, memslot);
401
402         spin_unlock(&kvm->mmu_lock);
403         srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static void clear_hyp_pgd_entry(pgd_t *pgd)
407 {
408         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
409         pgd_clear(pgd);
410         pud_free(NULL, pud_table);
411         put_page(virt_to_page(pgd));
412 }
413
414 static void clear_hyp_pud_entry(pud_t *pud)
415 {
416         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
417         VM_BUG_ON(pud_huge(*pud));
418         pud_clear(pud);
419         pmd_free(NULL, pmd_table);
420         put_page(virt_to_page(pud));
421 }
422
423 static void clear_hyp_pmd_entry(pmd_t *pmd)
424 {
425         pte_t *pte_table = pte_offset_kernel(pmd, 0);
426         VM_BUG_ON(pmd_thp_or_huge(*pmd));
427         pmd_clear(pmd);
428         pte_free_kernel(NULL, pte_table);
429         put_page(virt_to_page(pmd));
430 }
431
432 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
433 {
434         pte_t *pte, *start_pte;
435
436         start_pte = pte = pte_offset_kernel(pmd, addr);
437         do {
438                 if (!pte_none(*pte)) {
439                         kvm_set_pte(pte, __pte(0));
440                         put_page(virt_to_page(pte));
441                 }
442         } while (pte++, addr += PAGE_SIZE, addr != end);
443
444         if (hyp_pte_table_empty(start_pte))
445                 clear_hyp_pmd_entry(pmd);
446 }
447
448 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
449 {
450         phys_addr_t next;
451         pmd_t *pmd, *start_pmd;
452
453         start_pmd = pmd = pmd_offset(pud, addr);
454         do {
455                 next = pmd_addr_end(addr, end);
456                 /* Hyp doesn't use huge pmds */
457                 if (!pmd_none(*pmd))
458                         unmap_hyp_ptes(pmd, addr, next);
459         } while (pmd++, addr = next, addr != end);
460
461         if (hyp_pmd_table_empty(start_pmd))
462                 clear_hyp_pud_entry(pud);
463 }
464
465 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
466 {
467         phys_addr_t next;
468         pud_t *pud, *start_pud;
469
470         start_pud = pud = pud_offset(pgd, addr);
471         do {
472                 next = pud_addr_end(addr, end);
473                 /* Hyp doesn't use huge puds */
474                 if (!pud_none(*pud))
475                         unmap_hyp_pmds(pud, addr, next);
476         } while (pud++, addr = next, addr != end);
477
478         if (hyp_pud_table_empty(start_pud))
479                 clear_hyp_pgd_entry(pgd);
480 }
481
482 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
483 {
484         pgd_t *pgd;
485         phys_addr_t addr = start, end = start + size;
486         phys_addr_t next;
487
488         /*
489          * We don't unmap anything from HYP, except at the hyp tear down.
490          * Hence, we don't have to invalidate the TLBs here.
491          */
492         pgd = pgdp + pgd_index(addr);
493         do {
494                 next = pgd_addr_end(addr, end);
495                 if (!pgd_none(*pgd))
496                         unmap_hyp_puds(pgd, addr, next);
497         } while (pgd++, addr = next, addr != end);
498 }
499
500 /**
501  * free_hyp_pgds - free Hyp-mode page tables
502  *
503  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
504  * therefore contains either mappings in the kernel memory area (above
505  * PAGE_OFFSET), or device mappings in the vmalloc range (from
506  * VMALLOC_START to VMALLOC_END).
507  *
508  * boot_hyp_pgd should only map two pages for the init code.
509  */
510 void free_hyp_pgds(void)
511 {
512         unsigned long addr;
513
514         mutex_lock(&kvm_hyp_pgd_mutex);
515
516         if (boot_hyp_pgd) {
517                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
518                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
519                 boot_hyp_pgd = NULL;
520         }
521
522         if (hyp_pgd) {
523                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
524                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
525                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
526                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
527                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
528
529                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
530                 hyp_pgd = NULL;
531         }
532         if (merged_hyp_pgd) {
533                 clear_page(merged_hyp_pgd);
534                 free_page((unsigned long)merged_hyp_pgd);
535                 merged_hyp_pgd = NULL;
536         }
537
538         mutex_unlock(&kvm_hyp_pgd_mutex);
539 }
540
541 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
542                                     unsigned long end, unsigned long pfn,
543                                     pgprot_t prot)
544 {
545         pte_t *pte;
546         unsigned long addr;
547
548         addr = start;
549         do {
550                 pte = pte_offset_kernel(pmd, addr);
551                 kvm_set_pte(pte, pfn_pte(pfn, prot));
552                 get_page(virt_to_page(pte));
553                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
554                 pfn++;
555         } while (addr += PAGE_SIZE, addr != end);
556 }
557
558 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
559                                    unsigned long end, unsigned long pfn,
560                                    pgprot_t prot)
561 {
562         pmd_t *pmd;
563         pte_t *pte;
564         unsigned long addr, next;
565
566         addr = start;
567         do {
568                 pmd = pmd_offset(pud, addr);
569
570                 BUG_ON(pmd_sect(*pmd));
571
572                 if (pmd_none(*pmd)) {
573                         pte = pte_alloc_one_kernel(NULL, addr);
574                         if (!pte) {
575                                 kvm_err("Cannot allocate Hyp pte\n");
576                                 return -ENOMEM;
577                         }
578                         pmd_populate_kernel(NULL, pmd, pte);
579                         get_page(virt_to_page(pmd));
580                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
581                 }
582
583                 next = pmd_addr_end(addr, end);
584
585                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
586                 pfn += (next - addr) >> PAGE_SHIFT;
587         } while (addr = next, addr != end);
588
589         return 0;
590 }
591
592 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
593                                    unsigned long end, unsigned long pfn,
594                                    pgprot_t prot)
595 {
596         pud_t *pud;
597         pmd_t *pmd;
598         unsigned long addr, next;
599         int ret;
600
601         addr = start;
602         do {
603                 pud = pud_offset(pgd, addr);
604
605                 if (pud_none_or_clear_bad(pud)) {
606                         pmd = pmd_alloc_one(NULL, addr);
607                         if (!pmd) {
608                                 kvm_err("Cannot allocate Hyp pmd\n");
609                                 return -ENOMEM;
610                         }
611                         pud_populate(NULL, pud, pmd);
612                         get_page(virt_to_page(pud));
613                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
614                 }
615
616                 next = pud_addr_end(addr, end);
617                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
618                 if (ret)
619                         return ret;
620                 pfn += (next - addr) >> PAGE_SHIFT;
621         } while (addr = next, addr != end);
622
623         return 0;
624 }
625
626 static int __create_hyp_mappings(pgd_t *pgdp,
627                                  unsigned long start, unsigned long end,
628                                  unsigned long pfn, pgprot_t prot)
629 {
630         pgd_t *pgd;
631         pud_t *pud;
632         unsigned long addr, next, ptrs_per_pgd = PTRS_PER_PGD;
633         int err = 0;
634
635         /*
636          * If it's not the hyp_pgd, fall back to the kvm idmap layout.
637          */
638         if (pgdp != hyp_pgd)
639                 ptrs_per_pgd = __kvm_idmap_ptrs_per_pgd();
640
641         mutex_lock(&kvm_hyp_pgd_mutex);
642         addr = start & PAGE_MASK;
643         end = PAGE_ALIGN(end);
644         do {
645                 pgd = pgdp + ((addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1));
646
647                 if (pgd_none(*pgd)) {
648                         pud = pud_alloc_one(NULL, addr);
649                         if (!pud) {
650                                 kvm_err("Cannot allocate Hyp pud\n");
651                                 err = -ENOMEM;
652                                 goto out;
653                         }
654                         pgd_populate(NULL, pgd, pud);
655                         get_page(virt_to_page(pgd));
656                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
657                 }
658
659                 next = pgd_addr_end(addr, end);
660                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
661                 if (err)
662                         goto out;
663                 pfn += (next - addr) >> PAGE_SHIFT;
664         } while (addr = next, addr != end);
665 out:
666         mutex_unlock(&kvm_hyp_pgd_mutex);
667         return err;
668 }
669
670 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
671 {
672         if (!is_vmalloc_addr(kaddr)) {
673                 BUG_ON(!virt_addr_valid(kaddr));
674                 return __pa(kaddr);
675         } else {
676                 return page_to_phys(vmalloc_to_page(kaddr)) +
677                        offset_in_page(kaddr);
678         }
679 }
680
681 /**
682  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
683  * @from:       The virtual kernel start address of the range
684  * @to:         The virtual kernel end address of the range (exclusive)
685  * @prot:       The protection to be applied to this range
686  *
687  * The same virtual address as the kernel virtual address is also used
688  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
689  * physical pages.
690  */
691 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
692 {
693         phys_addr_t phys_addr;
694         unsigned long virt_addr;
695         unsigned long start = kern_hyp_va((unsigned long)from);
696         unsigned long end = kern_hyp_va((unsigned long)to);
697
698         if (is_kernel_in_hyp_mode())
699                 return 0;
700
701         start = start & PAGE_MASK;
702         end = PAGE_ALIGN(end);
703
704         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
705                 int err;
706
707                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
708                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
709                                             virt_addr + PAGE_SIZE,
710                                             __phys_to_pfn(phys_addr),
711                                             prot);
712                 if (err)
713                         return err;
714         }
715
716         return 0;
717 }
718
719 /**
720  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
721  * @from:       The kernel start VA of the range
722  * @to:         The kernel end VA of the range (exclusive)
723  * @phys_addr:  The physical start address which gets mapped
724  *
725  * The resulting HYP VA is the same as the kernel VA, modulo
726  * HYP_PAGE_OFFSET.
727  */
728 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
729 {
730         unsigned long start = kern_hyp_va((unsigned long)from);
731         unsigned long end = kern_hyp_va((unsigned long)to);
732
733         if (is_kernel_in_hyp_mode())
734                 return 0;
735
736         /* Check for a valid kernel IO mapping */
737         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
738                 return -EINVAL;
739
740         return __create_hyp_mappings(hyp_pgd, start, end,
741                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
742 }
743
744 /**
745  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
746  * @kvm:        The KVM struct pointer for the VM.
747  *
748  * Allocates only the stage-2 HW PGD level table(s) (can support either full
749  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
750  * allocated pages.
751  *
752  * Note we don't need locking here as this is only called when the VM is
753  * created, which can only be done once.
754  */
755 int kvm_alloc_stage2_pgd(struct kvm *kvm)
756 {
757         pgd_t *pgd;
758
759         if (kvm->arch.pgd != NULL) {
760                 kvm_err("kvm_arch already initialized?\n");
761                 return -EINVAL;
762         }
763
764         /* Allocate the HW PGD, making sure that each page gets its own refcount */
765         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
766         if (!pgd)
767                 return -ENOMEM;
768
769         kvm->arch.pgd = pgd;
770         return 0;
771 }
772
773 static void stage2_unmap_memslot(struct kvm *kvm,
774                                  struct kvm_memory_slot *memslot)
775 {
776         hva_t hva = memslot->userspace_addr;
777         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
778         phys_addr_t size = PAGE_SIZE * memslot->npages;
779         hva_t reg_end = hva + size;
780
781         /*
782          * A memory region could potentially cover multiple VMAs, and any holes
783          * between them, so iterate over all of them to find out if we should
784          * unmap any of them.
785          *
786          *     +--------------------------------------------+
787          * +---------------+----------------+   +----------------+
788          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
789          * +---------------+----------------+   +----------------+
790          *     |               memory region                |
791          *     +--------------------------------------------+
792          */
793         do {
794                 struct vm_area_struct *vma = find_vma(current->mm, hva);
795                 hva_t vm_start, vm_end;
796
797                 if (!vma || vma->vm_start >= reg_end)
798                         break;
799
800                 /*
801                  * Take the intersection of this VMA with the memory region
802                  */
803                 vm_start = max(hva, vma->vm_start);
804                 vm_end = min(reg_end, vma->vm_end);
805
806                 if (!(vma->vm_flags & VM_PFNMAP)) {
807                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
808                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
809                 }
810                 hva = vm_end;
811         } while (hva < reg_end);
812 }
813
814 /**
815  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
816  * @kvm: The struct kvm pointer
817  *
818  * Go through the memregions and unmap any reguler RAM
819  * backing memory already mapped to the VM.
820  */
821 void stage2_unmap_vm(struct kvm *kvm)
822 {
823         struct kvm_memslots *slots;
824         struct kvm_memory_slot *memslot;
825         int idx;
826
827         idx = srcu_read_lock(&kvm->srcu);
828         down_read(&current->mm->mmap_sem);
829         spin_lock(&kvm->mmu_lock);
830
831         slots = kvm_memslots(kvm);
832         kvm_for_each_memslot(memslot, slots)
833                 stage2_unmap_memslot(kvm, memslot);
834
835         spin_unlock(&kvm->mmu_lock);
836         up_read(&current->mm->mmap_sem);
837         srcu_read_unlock(&kvm->srcu, idx);
838 }
839
840 /**
841  * kvm_free_stage2_pgd - free all stage-2 tables
842  * @kvm:        The KVM struct pointer for the VM.
843  *
844  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
845  * underlying level-2 and level-3 tables before freeing the actual level-1 table
846  * and setting the struct pointer to NULL.
847  */
848 void kvm_free_stage2_pgd(struct kvm *kvm)
849 {
850         void *pgd = NULL;
851
852         spin_lock(&kvm->mmu_lock);
853         if (kvm->arch.pgd) {
854                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
855                 pgd = READ_ONCE(kvm->arch.pgd);
856                 kvm->arch.pgd = NULL;
857         }
858         spin_unlock(&kvm->mmu_lock);
859
860         /* Free the HW pgd, one page at a time */
861         if (pgd)
862                 free_pages_exact(pgd, S2_PGD_SIZE);
863 }
864
865 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
866                              phys_addr_t addr)
867 {
868         pgd_t *pgd;
869         pud_t *pud;
870
871         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
872         if (WARN_ON(stage2_pgd_none(*pgd))) {
873                 if (!cache)
874                         return NULL;
875                 pud = mmu_memory_cache_alloc(cache);
876                 stage2_pgd_populate(pgd, pud);
877                 get_page(virt_to_page(pgd));
878         }
879
880         return stage2_pud_offset(pgd, addr);
881 }
882
883 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
884                              phys_addr_t addr)
885 {
886         pud_t *pud;
887         pmd_t *pmd;
888
889         pud = stage2_get_pud(kvm, cache, addr);
890         if (!pud)
891                 return NULL;
892
893         if (stage2_pud_none(*pud)) {
894                 if (!cache)
895                         return NULL;
896                 pmd = mmu_memory_cache_alloc(cache);
897                 stage2_pud_populate(pud, pmd);
898                 get_page(virt_to_page(pud));
899         }
900
901         return stage2_pmd_offset(pud, addr);
902 }
903
904 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
905                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
906 {
907         pmd_t *pmd, old_pmd;
908
909         pmd = stage2_get_pmd(kvm, cache, addr);
910         VM_BUG_ON(!pmd);
911
912         /*
913          * Mapping in huge pages should only happen through a fault.  If a
914          * page is merged into a transparent huge page, the individual
915          * subpages of that huge page should be unmapped through MMU
916          * notifiers before we get here.
917          *
918          * Merging of CompoundPages is not supported; they should become
919          * splitting first, unmapped, merged, and mapped back in on-demand.
920          */
921         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
922
923         old_pmd = *pmd;
924         if (pmd_present(old_pmd)) {
925                 pmd_clear(pmd);
926                 kvm_tlb_flush_vmid_ipa(kvm, addr);
927         } else {
928                 get_page(virt_to_page(pmd));
929         }
930
931         kvm_set_pmd(pmd, *new_pmd);
932         return 0;
933 }
934
935 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
936                           phys_addr_t addr, const pte_t *new_pte,
937                           unsigned long flags)
938 {
939         pmd_t *pmd;
940         pte_t *pte, old_pte;
941         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
942         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
943
944         VM_BUG_ON(logging_active && !cache);
945
946         /* Create stage-2 page table mapping - Levels 0 and 1 */
947         pmd = stage2_get_pmd(kvm, cache, addr);
948         if (!pmd) {
949                 /*
950                  * Ignore calls from kvm_set_spte_hva for unallocated
951                  * address ranges.
952                  */
953                 return 0;
954         }
955
956         /*
957          * While dirty page logging - dissolve huge PMD, then continue on to
958          * allocate page.
959          */
960         if (logging_active)
961                 stage2_dissolve_pmd(kvm, addr, pmd);
962
963         /* Create stage-2 page mappings - Level 2 */
964         if (pmd_none(*pmd)) {
965                 if (!cache)
966                         return 0; /* ignore calls from kvm_set_spte_hva */
967                 pte = mmu_memory_cache_alloc(cache);
968                 pmd_populate_kernel(NULL, pmd, pte);
969                 get_page(virt_to_page(pmd));
970         }
971
972         pte = pte_offset_kernel(pmd, addr);
973
974         if (iomap && pte_present(*pte))
975                 return -EFAULT;
976
977         /* Create 2nd stage page table mapping - Level 3 */
978         old_pte = *pte;
979         if (pte_present(old_pte)) {
980                 kvm_set_pte(pte, __pte(0));
981                 kvm_tlb_flush_vmid_ipa(kvm, addr);
982         } else {
983                 get_page(virt_to_page(pte));
984         }
985
986         kvm_set_pte(pte, *new_pte);
987         return 0;
988 }
989
990 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
991 static int stage2_ptep_test_and_clear_young(pte_t *pte)
992 {
993         if (pte_young(*pte)) {
994                 *pte = pte_mkold(*pte);
995                 return 1;
996         }
997         return 0;
998 }
999 #else
1000 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1001 {
1002         return __ptep_test_and_clear_young(pte);
1003 }
1004 #endif
1005
1006 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1007 {
1008         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1009 }
1010
1011 /**
1012  * kvm_phys_addr_ioremap - map a device range to guest IPA
1013  *
1014  * @kvm:        The KVM pointer
1015  * @guest_ipa:  The IPA at which to insert the mapping
1016  * @pa:         The physical address of the device
1017  * @size:       The size of the mapping
1018  */
1019 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1020                           phys_addr_t pa, unsigned long size, bool writable)
1021 {
1022         phys_addr_t addr, end;
1023         int ret = 0;
1024         unsigned long pfn;
1025         struct kvm_mmu_memory_cache cache = { 0, };
1026
1027         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1028         pfn = __phys_to_pfn(pa);
1029
1030         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1031                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1032
1033                 if (writable)
1034                         pte = kvm_s2pte_mkwrite(pte);
1035
1036                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1037                                                 KVM_NR_MEM_OBJS);
1038                 if (ret)
1039                         goto out;
1040                 spin_lock(&kvm->mmu_lock);
1041                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1042                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1043                 spin_unlock(&kvm->mmu_lock);
1044                 if (ret)
1045                         goto out;
1046
1047                 pfn++;
1048         }
1049
1050 out:
1051         mmu_free_memory_cache(&cache);
1052         return ret;
1053 }
1054
1055 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1056 {
1057         kvm_pfn_t pfn = *pfnp;
1058         gfn_t gfn = *ipap >> PAGE_SHIFT;
1059
1060         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1061                 unsigned long mask;
1062                 /*
1063                  * The address we faulted on is backed by a transparent huge
1064                  * page.  However, because we map the compound huge page and
1065                  * not the individual tail page, we need to transfer the
1066                  * refcount to the head page.  We have to be careful that the
1067                  * THP doesn't start to split while we are adjusting the
1068                  * refcounts.
1069                  *
1070                  * We are sure this doesn't happen, because mmu_notifier_retry
1071                  * was successful and we are holding the mmu_lock, so if this
1072                  * THP is trying to split, it will be blocked in the mmu
1073                  * notifier before touching any of the pages, specifically
1074                  * before being able to call __split_huge_page_refcount().
1075                  *
1076                  * We can therefore safely transfer the refcount from PG_tail
1077                  * to PG_head and switch the pfn from a tail page to the head
1078                  * page accordingly.
1079                  */
1080                 mask = PTRS_PER_PMD - 1;
1081                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1082                 if (pfn & mask) {
1083                         *ipap &= PMD_MASK;
1084                         kvm_release_pfn_clean(pfn);
1085                         pfn &= ~mask;
1086                         kvm_get_pfn(pfn);
1087                         *pfnp = pfn;
1088                 }
1089
1090                 return true;
1091         }
1092
1093         return false;
1094 }
1095
1096 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1097 {
1098         if (kvm_vcpu_trap_is_iabt(vcpu))
1099                 return false;
1100
1101         return kvm_vcpu_dabt_iswrite(vcpu);
1102 }
1103
1104 /**
1105  * stage2_wp_ptes - write protect PMD range
1106  * @pmd:        pointer to pmd entry
1107  * @addr:       range start address
1108  * @end:        range end address
1109  */
1110 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1111 {
1112         pte_t *pte;
1113
1114         pte = pte_offset_kernel(pmd, addr);
1115         do {
1116                 if (!pte_none(*pte)) {
1117                         if (!kvm_s2pte_readonly(pte))
1118                                 kvm_set_s2pte_readonly(pte);
1119                 }
1120         } while (pte++, addr += PAGE_SIZE, addr != end);
1121 }
1122
1123 /**
1124  * stage2_wp_pmds - write protect PUD range
1125  * @pud:        pointer to pud entry
1126  * @addr:       range start address
1127  * @end:        range end address
1128  */
1129 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1130 {
1131         pmd_t *pmd;
1132         phys_addr_t next;
1133
1134         pmd = stage2_pmd_offset(pud, addr);
1135
1136         do {
1137                 next = stage2_pmd_addr_end(addr, end);
1138                 if (!pmd_none(*pmd)) {
1139                         if (pmd_thp_or_huge(*pmd)) {
1140                                 if (!kvm_s2pmd_readonly(pmd))
1141                                         kvm_set_s2pmd_readonly(pmd);
1142                         } else {
1143                                 stage2_wp_ptes(pmd, addr, next);
1144                         }
1145                 }
1146         } while (pmd++, addr = next, addr != end);
1147 }
1148
1149 /**
1150   * stage2_wp_puds - write protect PGD range
1151   * @pgd:       pointer to pgd entry
1152   * @addr:      range start address
1153   * @end:       range end address
1154   *
1155   * Process PUD entries, for a huge PUD we cause a panic.
1156   */
1157 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1158 {
1159         pud_t *pud;
1160         phys_addr_t next;
1161
1162         pud = stage2_pud_offset(pgd, addr);
1163         do {
1164                 next = stage2_pud_addr_end(addr, end);
1165                 if (!stage2_pud_none(*pud)) {
1166                         /* TODO:PUD not supported, revisit later if supported */
1167                         BUG_ON(stage2_pud_huge(*pud));
1168                         stage2_wp_pmds(pud, addr, next);
1169                 }
1170         } while (pud++, addr = next, addr != end);
1171 }
1172
1173 /**
1174  * stage2_wp_range() - write protect stage2 memory region range
1175  * @kvm:        The KVM pointer
1176  * @addr:       Start address of range
1177  * @end:        End address of range
1178  */
1179 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1180 {
1181         pgd_t *pgd;
1182         phys_addr_t next;
1183
1184         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1185         do {
1186                 /*
1187                  * Release kvm_mmu_lock periodically if the memory region is
1188                  * large. Otherwise, we may see kernel panics with
1189                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1190                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1191                  * will also starve other vCPUs. We have to also make sure
1192                  * that the page tables are not freed while we released
1193                  * the lock.
1194                  */
1195                 cond_resched_lock(&kvm->mmu_lock);
1196                 if (!READ_ONCE(kvm->arch.pgd))
1197                         break;
1198                 next = stage2_pgd_addr_end(addr, end);
1199                 if (stage2_pgd_present(*pgd))
1200                         stage2_wp_puds(pgd, addr, next);
1201         } while (pgd++, addr = next, addr != end);
1202 }
1203
1204 /**
1205  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1206  * @kvm:        The KVM pointer
1207  * @slot:       The memory slot to write protect
1208  *
1209  * Called to start logging dirty pages after memory region
1210  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1211  * all present PMD and PTEs are write protected in the memory region.
1212  * Afterwards read of dirty page log can be called.
1213  *
1214  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1215  * serializing operations for VM memory regions.
1216  */
1217 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1218 {
1219         struct kvm_memslots *slots = kvm_memslots(kvm);
1220         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1221         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1222         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1223
1224         spin_lock(&kvm->mmu_lock);
1225         stage2_wp_range(kvm, start, end);
1226         spin_unlock(&kvm->mmu_lock);
1227         kvm_flush_remote_tlbs(kvm);
1228 }
1229
1230 /**
1231  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1232  * @kvm:        The KVM pointer
1233  * @slot:       The memory slot associated with mask
1234  * @gfn_offset: The gfn offset in memory slot
1235  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1236  *              slot to be write protected
1237  *
1238  * Walks bits set in mask write protects the associated pte's. Caller must
1239  * acquire kvm_mmu_lock.
1240  */
1241 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1242                 struct kvm_memory_slot *slot,
1243                 gfn_t gfn_offset, unsigned long mask)
1244 {
1245         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1246         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1247         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1248
1249         stage2_wp_range(kvm, start, end);
1250 }
1251
1252 /*
1253  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1254  * dirty pages.
1255  *
1256  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1257  * enable dirty logging for them.
1258  */
1259 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1260                 struct kvm_memory_slot *slot,
1261                 gfn_t gfn_offset, unsigned long mask)
1262 {
1263         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1264 }
1265
1266 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1267                                       unsigned long size)
1268 {
1269         __coherent_cache_guest_page(vcpu, pfn, size);
1270 }
1271
1272 static void kvm_send_hwpoison_signal(unsigned long address,
1273                                      struct vm_area_struct *vma)
1274 {
1275         siginfo_t info;
1276
1277         info.si_signo   = SIGBUS;
1278         info.si_errno   = 0;
1279         info.si_code    = BUS_MCEERR_AR;
1280         info.si_addr    = (void __user *)address;
1281
1282         if (is_vm_hugetlb_page(vma))
1283                 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1284         else
1285                 info.si_addr_lsb = PAGE_SHIFT;
1286
1287         send_sig_info(SIGBUS, &info, current);
1288 }
1289
1290 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1291                           struct kvm_memory_slot *memslot, unsigned long hva,
1292                           unsigned long fault_status)
1293 {
1294         int ret;
1295         bool write_fault, writable, hugetlb = false, force_pte = false;
1296         unsigned long mmu_seq;
1297         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1298         struct kvm *kvm = vcpu->kvm;
1299         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1300         struct vm_area_struct *vma;
1301         kvm_pfn_t pfn;
1302         pgprot_t mem_type = PAGE_S2;
1303         bool logging_active = memslot_is_logging(memslot);
1304         unsigned long flags = 0;
1305
1306         write_fault = kvm_is_write_fault(vcpu);
1307         if (fault_status == FSC_PERM && !write_fault) {
1308                 kvm_err("Unexpected L2 read permission error\n");
1309                 return -EFAULT;
1310         }
1311
1312         /* Let's check if we will get back a huge page backed by hugetlbfs */
1313         down_read(&current->mm->mmap_sem);
1314         vma = find_vma_intersection(current->mm, hva, hva + 1);
1315         if (unlikely(!vma)) {
1316                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1317                 up_read(&current->mm->mmap_sem);
1318                 return -EFAULT;
1319         }
1320
1321         if (is_vm_hugetlb_page(vma) && !logging_active) {
1322                 hugetlb = true;
1323                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1324         } else {
1325                 /*
1326                  * Pages belonging to memslots that don't have the same
1327                  * alignment for userspace and IPA cannot be mapped using
1328                  * block descriptors even if the pages belong to a THP for
1329                  * the process, because the stage-2 block descriptor will
1330                  * cover more than a single THP and we loose atomicity for
1331                  * unmapping, updates, and splits of the THP or other pages
1332                  * in the stage-2 block range.
1333                  */
1334                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1335                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1336                         force_pte = true;
1337         }
1338         up_read(&current->mm->mmap_sem);
1339
1340         /* We need minimum second+third level pages */
1341         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1342                                      KVM_NR_MEM_OBJS);
1343         if (ret)
1344                 return ret;
1345
1346         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1347         /*
1348          * Ensure the read of mmu_notifier_seq happens before we call
1349          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1350          * the page we just got a reference to gets unmapped before we have a
1351          * chance to grab the mmu_lock, which ensure that if the page gets
1352          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1353          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1354          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1355          */
1356         smp_rmb();
1357
1358         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1359         if (pfn == KVM_PFN_ERR_HWPOISON) {
1360                 kvm_send_hwpoison_signal(hva, vma);
1361                 return 0;
1362         }
1363         if (is_error_noslot_pfn(pfn))
1364                 return -EFAULT;
1365
1366         if (kvm_is_device_pfn(pfn)) {
1367                 mem_type = PAGE_S2_DEVICE;
1368                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1369         } else if (logging_active) {
1370                 /*
1371                  * Faults on pages in a memslot with logging enabled
1372                  * should not be mapped with huge pages (it introduces churn
1373                  * and performance degradation), so force a pte mapping.
1374                  */
1375                 force_pte = true;
1376                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1377
1378                 /*
1379                  * Only actually map the page as writable if this was a write
1380                  * fault.
1381                  */
1382                 if (!write_fault)
1383                         writable = false;
1384         }
1385
1386         spin_lock(&kvm->mmu_lock);
1387         if (mmu_notifier_retry(kvm, mmu_seq))
1388                 goto out_unlock;
1389
1390         if (!hugetlb && !force_pte)
1391                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1392
1393         if (hugetlb) {
1394                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1395                 new_pmd = pmd_mkhuge(new_pmd);
1396                 if (writable) {
1397                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1398                         kvm_set_pfn_dirty(pfn);
1399                 }
1400                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1401                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1402         } else {
1403                 pte_t new_pte = pfn_pte(pfn, mem_type);
1404
1405                 if (writable) {
1406                         new_pte = kvm_s2pte_mkwrite(new_pte);
1407                         kvm_set_pfn_dirty(pfn);
1408                         mark_page_dirty(kvm, gfn);
1409                 }
1410                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1411                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1412         }
1413
1414 out_unlock:
1415         spin_unlock(&kvm->mmu_lock);
1416         kvm_set_pfn_accessed(pfn);
1417         kvm_release_pfn_clean(pfn);
1418         return ret;
1419 }
1420
1421 /*
1422  * Resolve the access fault by making the page young again.
1423  * Note that because the faulting entry is guaranteed not to be
1424  * cached in the TLB, we don't need to invalidate anything.
1425  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1426  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1427  */
1428 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1429 {
1430         pmd_t *pmd;
1431         pte_t *pte;
1432         kvm_pfn_t pfn;
1433         bool pfn_valid = false;
1434
1435         trace_kvm_access_fault(fault_ipa);
1436
1437         spin_lock(&vcpu->kvm->mmu_lock);
1438
1439         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1440         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1441                 goto out;
1442
1443         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1444                 *pmd = pmd_mkyoung(*pmd);
1445                 pfn = pmd_pfn(*pmd);
1446                 pfn_valid = true;
1447                 goto out;
1448         }
1449
1450         pte = pte_offset_kernel(pmd, fault_ipa);
1451         if (pte_none(*pte))             /* Nothing there either */
1452                 goto out;
1453
1454         *pte = pte_mkyoung(*pte);       /* Just a page... */
1455         pfn = pte_pfn(*pte);
1456         pfn_valid = true;
1457 out:
1458         spin_unlock(&vcpu->kvm->mmu_lock);
1459         if (pfn_valid)
1460                 kvm_set_pfn_accessed(pfn);
1461 }
1462
1463 /**
1464  * kvm_handle_guest_abort - handles all 2nd stage aborts
1465  * @vcpu:       the VCPU pointer
1466  * @run:        the kvm_run structure
1467  *
1468  * Any abort that gets to the host is almost guaranteed to be caused by a
1469  * missing second stage translation table entry, which can mean that either the
1470  * guest simply needs more memory and we must allocate an appropriate page or it
1471  * can mean that the guest tried to access I/O memory, which is emulated by user
1472  * space. The distinction is based on the IPA causing the fault and whether this
1473  * memory region has been registered as standard RAM by user space.
1474  */
1475 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1476 {
1477         unsigned long fault_status;
1478         phys_addr_t fault_ipa;
1479         struct kvm_memory_slot *memslot;
1480         unsigned long hva;
1481         bool is_iabt, write_fault, writable;
1482         gfn_t gfn;
1483         int ret, idx;
1484
1485         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1486
1487         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1488         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1489
1490         /* Synchronous External Abort? */
1491         if (kvm_vcpu_dabt_isextabt(vcpu)) {
1492                 /*
1493                  * For RAS the host kernel may handle this abort.
1494                  * There is no need to pass the error into the guest.
1495                  */
1496                 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1497                         return 1;
1498
1499                 if (unlikely(!is_iabt)) {
1500                         kvm_inject_vabt(vcpu);
1501                         return 1;
1502                 }
1503         }
1504
1505         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1506                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1507
1508         /* Check the stage-2 fault is trans. fault or write fault */
1509         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1510             fault_status != FSC_ACCESS) {
1511                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1512                         kvm_vcpu_trap_get_class(vcpu),
1513                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1514                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1515                 return -EFAULT;
1516         }
1517
1518         idx = srcu_read_lock(&vcpu->kvm->srcu);
1519
1520         gfn = fault_ipa >> PAGE_SHIFT;
1521         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1522         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1523         write_fault = kvm_is_write_fault(vcpu);
1524         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1525                 if (is_iabt) {
1526                         /* Prefetch Abort on I/O address */
1527                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1528                         ret = 1;
1529                         goto out_unlock;
1530                 }
1531
1532                 /*
1533                  * Check for a cache maintenance operation. Since we
1534                  * ended-up here, we know it is outside of any memory
1535                  * slot. But we can't find out if that is for a device,
1536                  * or if the guest is just being stupid. The only thing
1537                  * we know for sure is that this range cannot be cached.
1538                  *
1539                  * So let's assume that the guest is just being
1540                  * cautious, and skip the instruction.
1541                  */
1542                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1543                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1544                         ret = 1;
1545                         goto out_unlock;
1546                 }
1547
1548                 /*
1549                  * The IPA is reported as [MAX:12], so we need to
1550                  * complement it with the bottom 12 bits from the
1551                  * faulting VA. This is always 12 bits, irrespective
1552                  * of the page size.
1553                  */
1554                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1555                 ret = io_mem_abort(vcpu, run, fault_ipa);
1556                 goto out_unlock;
1557         }
1558
1559         /* Userspace should not be able to register out-of-bounds IPAs */
1560         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1561
1562         if (fault_status == FSC_ACCESS) {
1563                 handle_access_fault(vcpu, fault_ipa);
1564                 ret = 1;
1565                 goto out_unlock;
1566         }
1567
1568         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1569         if (ret == 0)
1570                 ret = 1;
1571 out_unlock:
1572         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1573         return ret;
1574 }
1575
1576 static int handle_hva_to_gpa(struct kvm *kvm,
1577                              unsigned long start,
1578                              unsigned long end,
1579                              int (*handler)(struct kvm *kvm,
1580                                             gpa_t gpa, u64 size,
1581                                             void *data),
1582                              void *data)
1583 {
1584         struct kvm_memslots *slots;
1585         struct kvm_memory_slot *memslot;
1586         int ret = 0;
1587
1588         slots = kvm_memslots(kvm);
1589
1590         /* we only care about the pages that the guest sees */
1591         kvm_for_each_memslot(memslot, slots) {
1592                 unsigned long hva_start, hva_end;
1593                 gfn_t gpa;
1594
1595                 hva_start = max(start, memslot->userspace_addr);
1596                 hva_end = min(end, memslot->userspace_addr +
1597                                         (memslot->npages << PAGE_SHIFT));
1598                 if (hva_start >= hva_end)
1599                         continue;
1600
1601                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1602                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1603         }
1604
1605         return ret;
1606 }
1607
1608 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1609 {
1610         unmap_stage2_range(kvm, gpa, size);
1611         return 0;
1612 }
1613
1614 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1615 {
1616         unsigned long end = hva + PAGE_SIZE;
1617
1618         if (!kvm->arch.pgd)
1619                 return 0;
1620
1621         trace_kvm_unmap_hva(hva);
1622         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1623         return 0;
1624 }
1625
1626 int kvm_unmap_hva_range(struct kvm *kvm,
1627                         unsigned long start, unsigned long end)
1628 {
1629         if (!kvm->arch.pgd)
1630                 return 0;
1631
1632         trace_kvm_unmap_hva_range(start, end);
1633         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1634         return 0;
1635 }
1636
1637 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1638 {
1639         pte_t *pte = (pte_t *)data;
1640
1641         WARN_ON(size != PAGE_SIZE);
1642         /*
1643          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1644          * flag clear because MMU notifiers will have unmapped a huge PMD before
1645          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1646          * therefore stage2_set_pte() never needs to clear out a huge PMD
1647          * through this calling path.
1648          */
1649         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1650         return 0;
1651 }
1652
1653
1654 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1655 {
1656         unsigned long end = hva + PAGE_SIZE;
1657         pte_t stage2_pte;
1658
1659         if (!kvm->arch.pgd)
1660                 return;
1661
1662         trace_kvm_set_spte_hva(hva);
1663         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1664         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1665 }
1666
1667 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1668 {
1669         pmd_t *pmd;
1670         pte_t *pte;
1671
1672         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1673         pmd = stage2_get_pmd(kvm, NULL, gpa);
1674         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1675                 return 0;
1676
1677         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1678                 return stage2_pmdp_test_and_clear_young(pmd);
1679
1680         pte = pte_offset_kernel(pmd, gpa);
1681         if (pte_none(*pte))
1682                 return 0;
1683
1684         return stage2_ptep_test_and_clear_young(pte);
1685 }
1686
1687 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1688 {
1689         pmd_t *pmd;
1690         pte_t *pte;
1691
1692         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1693         pmd = stage2_get_pmd(kvm, NULL, gpa);
1694         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1695                 return 0;
1696
1697         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1698                 return pmd_young(*pmd);
1699
1700         pte = pte_offset_kernel(pmd, gpa);
1701         if (!pte_none(*pte))            /* Just a page... */
1702                 return pte_young(*pte);
1703
1704         return 0;
1705 }
1706
1707 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1708 {
1709         if (!kvm->arch.pgd)
1710                 return 0;
1711         trace_kvm_age_hva(start, end);
1712         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1713 }
1714
1715 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1716 {
1717         if (!kvm->arch.pgd)
1718                 return 0;
1719         trace_kvm_test_age_hva(hva);
1720         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1721 }
1722
1723 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1724 {
1725         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1726 }
1727
1728 phys_addr_t kvm_mmu_get_httbr(void)
1729 {
1730         if (__kvm_cpu_uses_extended_idmap())
1731                 return virt_to_phys(merged_hyp_pgd);
1732         else
1733                 return virt_to_phys(hyp_pgd);
1734 }
1735
1736 phys_addr_t kvm_get_idmap_vector(void)
1737 {
1738         return hyp_idmap_vector;
1739 }
1740
1741 static int kvm_map_idmap_text(pgd_t *pgd)
1742 {
1743         int err;
1744
1745         /* Create the idmap in the boot page tables */
1746         err =   __create_hyp_mappings(pgd,
1747                                       hyp_idmap_start, hyp_idmap_end,
1748                                       __phys_to_pfn(hyp_idmap_start),
1749                                       PAGE_HYP_EXEC);
1750         if (err)
1751                 kvm_err("Failed to idmap %lx-%lx\n",
1752                         hyp_idmap_start, hyp_idmap_end);
1753
1754         return err;
1755 }
1756
1757 int kvm_mmu_init(void)
1758 {
1759         int err;
1760
1761         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1762         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1763         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1764
1765         /*
1766          * We rely on the linker script to ensure at build time that the HYP
1767          * init code does not cross a page boundary.
1768          */
1769         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1770
1771         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1772         kvm_info("HYP VA range: %lx:%lx\n",
1773                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1774
1775         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1776             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1777             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1778                 /*
1779                  * The idmap page is intersecting with the VA space,
1780                  * it is not safe to continue further.
1781                  */
1782                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1783                 err = -EINVAL;
1784                 goto out;
1785         }
1786
1787         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1788         if (!hyp_pgd) {
1789                 kvm_err("Hyp mode PGD not allocated\n");
1790                 err = -ENOMEM;
1791                 goto out;
1792         }
1793
1794         if (__kvm_cpu_uses_extended_idmap()) {
1795                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1796                                                          hyp_pgd_order);
1797                 if (!boot_hyp_pgd) {
1798                         kvm_err("Hyp boot PGD not allocated\n");
1799                         err = -ENOMEM;
1800                         goto out;
1801                 }
1802
1803                 err = kvm_map_idmap_text(boot_hyp_pgd);
1804                 if (err)
1805                         goto out;
1806
1807                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1808                 if (!merged_hyp_pgd) {
1809                         kvm_err("Failed to allocate extra HYP pgd\n");
1810                         goto out;
1811                 }
1812                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1813                                     hyp_idmap_start);
1814         } else {
1815                 err = kvm_map_idmap_text(hyp_pgd);
1816                 if (err)
1817                         goto out;
1818         }
1819
1820         return 0;
1821 out:
1822         free_hyp_pgds();
1823         return err;
1824 }
1825
1826 void kvm_arch_commit_memory_region(struct kvm *kvm,
1827                                    const struct kvm_userspace_memory_region *mem,
1828                                    const struct kvm_memory_slot *old,
1829                                    const struct kvm_memory_slot *new,
1830                                    enum kvm_mr_change change)
1831 {
1832         /*
1833          * At this point memslot has been committed and there is an
1834          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1835          * memory slot is write protected.
1836          */
1837         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1838                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1839 }
1840
1841 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1842                                    struct kvm_memory_slot *memslot,
1843                                    const struct kvm_userspace_memory_region *mem,
1844                                    enum kvm_mr_change change)
1845 {
1846         hva_t hva = mem->userspace_addr;
1847         hva_t reg_end = hva + mem->memory_size;
1848         bool writable = !(mem->flags & KVM_MEM_READONLY);
1849         int ret = 0;
1850
1851         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1852                         change != KVM_MR_FLAGS_ONLY)
1853                 return 0;
1854
1855         /*
1856          * Prevent userspace from creating a memory region outside of the IPA
1857          * space addressable by the KVM guest IPA space.
1858          */
1859         if (memslot->base_gfn + memslot->npages >=
1860             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1861                 return -EFAULT;
1862
1863         down_read(&current->mm->mmap_sem);
1864         /*
1865          * A memory region could potentially cover multiple VMAs, and any holes
1866          * between them, so iterate over all of them to find out if we can map
1867          * any of them right now.
1868          *
1869          *     +--------------------------------------------+
1870          * +---------------+----------------+   +----------------+
1871          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1872          * +---------------+----------------+   +----------------+
1873          *     |               memory region                |
1874          *     +--------------------------------------------+
1875          */
1876         do {
1877                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1878                 hva_t vm_start, vm_end;
1879
1880                 if (!vma || vma->vm_start >= reg_end)
1881                         break;
1882
1883                 /*
1884                  * Mapping a read-only VMA is only allowed if the
1885                  * memory region is configured as read-only.
1886                  */
1887                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1888                         ret = -EPERM;
1889                         break;
1890                 }
1891
1892                 /*
1893                  * Take the intersection of this VMA with the memory region
1894                  */
1895                 vm_start = max(hva, vma->vm_start);
1896                 vm_end = min(reg_end, vma->vm_end);
1897
1898                 if (vma->vm_flags & VM_PFNMAP) {
1899                         gpa_t gpa = mem->guest_phys_addr +
1900                                     (vm_start - mem->userspace_addr);
1901                         phys_addr_t pa;
1902
1903                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1904                         pa += vm_start - vma->vm_start;
1905
1906                         /* IO region dirty page logging not allowed */
1907                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1908                                 ret = -EINVAL;
1909                                 goto out;
1910                         }
1911
1912                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1913                                                     vm_end - vm_start,
1914                                                     writable);
1915                         if (ret)
1916                                 break;
1917                 }
1918                 hva = vm_end;
1919         } while (hva < reg_end);
1920
1921         if (change == KVM_MR_FLAGS_ONLY)
1922                 goto out;
1923
1924         spin_lock(&kvm->mmu_lock);
1925         if (ret)
1926                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1927         else
1928                 stage2_flush_memslot(kvm, memslot);
1929         spin_unlock(&kvm->mmu_lock);
1930 out:
1931         up_read(&current->mm->mmap_sem);
1932         return ret;
1933 }
1934
1935 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1936                            struct kvm_memory_slot *dont)
1937 {
1938 }
1939
1940 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1941                             unsigned long npages)
1942 {
1943         return 0;
1944 }
1945
1946 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1947 {
1948 }
1949
1950 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1951 {
1952         kvm_free_stage2_pgd(kvm);
1953 }
1954
1955 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1956                                    struct kvm_memory_slot *slot)
1957 {
1958         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1959         phys_addr_t size = slot->npages << PAGE_SHIFT;
1960
1961         spin_lock(&kvm->mmu_lock);
1962         unmap_stage2_range(kvm, gpa, size);
1963         spin_unlock(&kvm->mmu_lock);
1964 }
1965
1966 /*
1967  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1968  *
1969  * Main problems:
1970  * - S/W ops are local to a CPU (not broadcast)
1971  * - We have line migration behind our back (speculation)
1972  * - System caches don't support S/W at all (damn!)
1973  *
1974  * In the face of the above, the best we can do is to try and convert
1975  * S/W ops to VA ops. Because the guest is not allowed to infer the
1976  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1977  * which is a rather good thing for us.
1978  *
1979  * Also, it is only used when turning caches on/off ("The expected
1980  * usage of the cache maintenance instructions that operate by set/way
1981  * is associated with the cache maintenance instructions associated
1982  * with the powerdown and powerup of caches, if this is required by
1983  * the implementation.").
1984  *
1985  * We use the following policy:
1986  *
1987  * - If we trap a S/W operation, we enable VM trapping to detect
1988  *   caches being turned on/off, and do a full clean.
1989  *
1990  * - We flush the caches on both caches being turned on and off.
1991  *
1992  * - Once the caches are enabled, we stop trapping VM ops.
1993  */
1994 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1995 {
1996         unsigned long hcr = vcpu_get_hcr(vcpu);
1997
1998         /*
1999          * If this is the first time we do a S/W operation
2000          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2001          * VM trapping.
2002          *
2003          * Otherwise, rely on the VM trapping to wait for the MMU +
2004          * Caches to be turned off. At that point, we'll be able to
2005          * clean the caches again.
2006          */
2007         if (!(hcr & HCR_TVM)) {
2008                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2009                                         vcpu_has_cache_enabled(vcpu));
2010                 stage2_flush_vm(vcpu->kvm);
2011                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2012         }
2013 }
2014
2015 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2016 {
2017         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2018
2019         /*
2020          * If switching the MMU+caches on, need to invalidate the caches.
2021          * If switching it off, need to clean the caches.
2022          * Clean + invalidate does the trick always.
2023          */
2024         if (now_enabled != was_enabled)
2025                 stage2_flush_vm(vcpu->kvm);
2026
2027         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2028         if (now_enabled)
2029                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2030
2031         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2032 }
This page took 0.142091 seconds and 4 git commands to generate.