1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 static inline bool extent_state_in_tree(const struct extent_state *state)
30 return !RB_EMPTY_NODE(&state->rb_node);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
37 static DEFINE_SPINLOCK(leak_lock);
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 spin_lock_irqsave(&leak_lock, flags);
46 spin_unlock_irqrestore(&leak_lock, flags);
50 void btrfs_leak_debug_del(struct list_head *entry)
54 spin_lock_irqsave(&leak_lock, flags);
56 spin_unlock_irqrestore(&leak_lock, flags);
60 void btrfs_leak_debug_check(void)
62 struct extent_state *state;
63 struct extent_buffer *eb;
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node;
119 struct extent_page_data {
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
142 if (set && (state->state & bits) == bits)
144 if (!set && (state->state & bits) == 0)
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
159 return btrfs_sb(tree->mapping->host->i_sb);
162 int __init extent_io_init(void)
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
179 goto free_buffer_cache;
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
187 bioset_free(btrfs_bioset);
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
214 bioset_free(btrfs_bioset);
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
220 tree->state = RB_ROOT;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
227 static struct extent_state *alloc_extent_state(gfp_t mask)
229 struct extent_state *state;
231 state = kmem_cache_alloc(extent_state_cache, mask);
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
244 void free_extent_state(struct extent_state *state)
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
267 if (p_in && parent_in) {
273 p = search_start ? &search_start : &root->rb_node;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
278 if (offset < entry->start)
280 else if (offset > entry->end)
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
310 if (offset < entry->start)
312 else if (offset > entry->end)
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
350 struct rb_node *prev = NULL;
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
362 return tree_search_for_insert(tree, offset, NULL, NULL);
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
380 * This should be called with the tree lock held.
382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
385 struct extent_state *other;
386 struct rb_node *other_node;
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
391 other_node = rb_prev(&state->rb_node);
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
403 other_node = rb_next(&state->rb_node);
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
451 struct rb_node *node;
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
456 state->start = start;
459 set_state_bits(tree, state, bits, changeset);
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
467 found->start, found->end, start, end);
470 merge_state(tree, state);
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
492 * The tree locks are not taken by this function. They need to be held
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
498 struct rb_node *node;
500 split_cb(tree, orig, split);
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
510 free_extent_state(prealloc);
516 static struct extent_state *next_state(struct extent_state *state)
518 struct rb_node *next = rb_next(&state->rb_node);
520 return rb_entry(next, struct extent_state, rb_node);
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
560 merge_state(tree, state);
561 next = next_state(state);
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
590 * the range [start, end] is inclusive.
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
607 btrfs_debug_check_extent_io_range(tree, start, end);
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
627 prealloc = alloc_extent_state(mask);
630 spin_lock(&tree->lock);
632 cached = *cached_state;
635 *cached_state = NULL;
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
642 atomic_dec(&cached->refs);
647 free_extent_state(cached);
650 * this search will find the extents that end after
653 node = tree_search(tree, start);
656 state = rb_entry(node, struct extent_state, rb_node);
658 if (state->start > end)
660 WARN_ON(state->end < start);
661 last_end = state->end;
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
670 * | ---- desired range ---- |
672 * | ------------- state -------------- |
674 * We need to split the extent we found, and may flip
675 * bits on second half.
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
688 err = split_state(tree, state, prealloc, start);
690 extent_io_tree_panic(tree, err);
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
703 * | ---- desired range ---- |
705 * We need to split the extent, and clear the bit
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
713 extent_io_tree_panic(tree, err);
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
726 if (last_end == (u64)-1)
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
734 spin_unlock(&tree->lock);
736 free_extent_state(prealloc);
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 struct extent_state *state;
771 struct rb_node *node;
773 btrfs_debug_check_extent_io_range(tree, start, end);
775 spin_lock(&tree->lock);
779 * this search will find all the extents that end after
782 node = tree_search(tree, start);
787 state = rb_entry(node, struct extent_state, rb_node);
789 if (state->start > end)
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
799 start = state->end + 1;
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
810 spin_unlock(&tree->lock);
813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
835 atomic_inc(&state->refs);
840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
855 * [start, end] is inclusive This takes the tree lock.
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
868 struct rb_node *parent;
873 btrfs_debug_check_extent_io_range(tree, start, end);
875 bits |= EXTENT_FIRST_DELALLOC;
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
892 * this search will find all the extents that end after
895 node = tree_search_for_insert(tree, start, &p, &parent);
897 prealloc = alloc_extent_state_atomic(prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
902 extent_io_tree_panic(tree, err);
904 cache_state(prealloc, cached_state);
908 state = rb_entry(node, struct extent_state, rb_node);
910 last_start = state->start;
911 last_end = state->end;
914 * | ---- desired range ---- |
917 * Just lock what we found and keep going
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
940 * | ---- desired range ---- |
943 * | ------------- state -------------- |
945 * We need to split the extent we found, and may flip bits on
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
952 * If the extent we found is inside our range, we set the
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
962 prealloc = alloc_extent_state_atomic(prealloc);
964 err = split_state(tree, state, prealloc, start);
966 extent_io_tree_panic(tree, err);
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
986 * | ---- desired range ---- |
987 * | state | or | state |
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
992 if (state->start > start) {
994 if (end < last_start)
997 this_end = last_start - 1;
999 prealloc = alloc_extent_state_atomic(prealloc);
1003 * Avoid to free 'prealloc' if it can be merged with
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1009 extent_io_tree_panic(tree, err);
1011 cache_state(prealloc, cached_state);
1013 start = this_end + 1;
1017 * | ---- desired range ---- |
1019 * We need to split the extent, and set the bit
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1029 prealloc = alloc_extent_state_atomic(prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1033 extent_io_tree_panic(tree, err);
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1045 spin_unlock(&tree->lock);
1047 free_extent_state(prealloc);
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1094 struct rb_node *parent;
1098 bool first_iteration = true;
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1127 * this search will find all the extents that end after
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1132 prealloc = alloc_extent_state_atomic(prealloc);
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1145 state = rb_entry(node, struct extent_state, rb_node);
1147 last_start = state->start;
1148 last_end = state->end;
1151 * | ---- desired range ---- |
1154 * Just lock what we found and keep going
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1170 * | ---- desired range ---- |
1173 * | ------------- state -------------- |
1175 * We need to split the extent we found, and may flip bits on
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1191 err = split_state(tree, state, prealloc, start);
1193 extent_io_tree_panic(tree, err);
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1202 if (last_end == (u64)-1)
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1218 if (state->start > start) {
1220 if (end < last_start)
1223 this_end = last_start - 1;
1225 prealloc = alloc_extent_state_atomic(prealloc);
1232 * Avoid to free 'prealloc' if it can be merged with
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1241 start = this_end + 1;
1245 * | ---- desired range ---- |
1247 * We need to split the extent, and set the bit
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1257 err = split_state(tree, state, prealloc, end + 1);
1259 extent_io_tree_panic(tree, err);
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1271 spin_unlock(&tree->lock);
1273 free_extent_state(prealloc);
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1283 first_iteration = false;
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296 unsigned bits, gfp_t mask)
1298 return set_extent_bit(tree, start, end, bits, NULL,
1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1312 BUG_ON(bits & EXTENT_LOCKED);
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327 unsigned bits, gfp_t mask)
1331 if (bits & EXTENT_LOCKED)
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1345 BUG_ON(bits & EXTENT_LOCKED);
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352 struct extent_state **cached_state, gfp_t mask)
1354 return set_extent_bit(tree, start, end,
1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
1356 NULL, cached_state, mask);
1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1370 return clear_extent_bit(tree, start, end,
1371 EXTENT_DIRTY | EXTENT_DELALLOC |
1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383 struct extent_state **cached_state, gfp_t mask)
1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386 cached_state, mask);
1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393 cached_state, mask);
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401 unsigned bits, struct extent_state **cached_state)
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
1409 cached_state, GFP_NOFS, NULL);
1410 if (err == -EEXIST) {
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
1415 WARN_ON(start > end);
1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1422 return lock_extent_bits(tree, start, end, 0, NULL);
1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431 &failed_start, NULL, GFP_NOFS, NULL);
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1454 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1470 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1472 unsigned long index = start >> PAGE_CACHE_SHIFT;
1473 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1476 while (index <= end_index) {
1477 page = find_get_page(inode->i_mapping, index);
1478 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1479 __set_page_dirty_nobuffers(page);
1480 account_page_redirty(page);
1481 page_cache_release(page);
1488 * helper function to set both pages and extents in the tree writeback
1490 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1492 unsigned long index = start >> PAGE_CACHE_SHIFT;
1493 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1496 while (index <= end_index) {
1497 page = find_get_page(tree->mapping, index);
1498 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1499 set_page_writeback(page);
1500 page_cache_release(page);
1506 /* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1510 static struct extent_state *
1511 find_first_extent_bit_state(struct extent_io_tree *tree,
1512 u64 start, unsigned bits)
1514 struct rb_node *node;
1515 struct extent_state *state;
1518 * this search will find all the extents that end after
1521 node = tree_search(tree, start);
1526 state = rb_entry(node, struct extent_state, rb_node);
1527 if (state->end >= start && (state->state & bits))
1530 node = rb_next(node);
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1543 * If nothing was found, 1 is returned. If found something, return 0.
1545 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1546 u64 *start_ret, u64 *end_ret, unsigned bits,
1547 struct extent_state **cached_state)
1549 struct extent_state *state;
1553 spin_lock(&tree->lock);
1554 if (cached_state && *cached_state) {
1555 state = *cached_state;
1556 if (state->end == start - 1 && extent_state_in_tree(state)) {
1557 n = rb_next(&state->rb_node);
1559 state = rb_entry(n, struct extent_state,
1561 if (state->state & bits)
1565 free_extent_state(*cached_state);
1566 *cached_state = NULL;
1569 free_extent_state(*cached_state);
1570 *cached_state = NULL;
1573 state = find_first_extent_bit_state(tree, start, bits);
1576 cache_state_if_flags(state, cached_state, 0);
1577 *start_ret = state->start;
1578 *end_ret = state->end;
1582 spin_unlock(&tree->lock);
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1592 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1593 u64 *start, u64 *end, u64 max_bytes,
1594 struct extent_state **cached_state)
1596 struct rb_node *node;
1597 struct extent_state *state;
1598 u64 cur_start = *start;
1600 u64 total_bytes = 0;
1602 spin_lock(&tree->lock);
1605 * this search will find all the extents that end after
1608 node = tree_search(tree, cur_start);
1616 state = rb_entry(node, struct extent_state, rb_node);
1617 if (found && (state->start != cur_start ||
1618 (state->state & EXTENT_BOUNDARY))) {
1621 if (!(state->state & EXTENT_DELALLOC)) {
1627 *start = state->start;
1628 *cached_state = state;
1629 atomic_inc(&state->refs);
1633 cur_start = state->end + 1;
1634 node = rb_next(node);
1635 total_bytes += state->end - state->start + 1;
1636 if (total_bytes >= max_bytes)
1642 spin_unlock(&tree->lock);
1646 static noinline void __unlock_for_delalloc(struct inode *inode,
1647 struct page *locked_page,
1651 struct page *pages[16];
1652 unsigned long index = start >> PAGE_CACHE_SHIFT;
1653 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654 unsigned long nr_pages = end_index - index + 1;
1657 if (index == locked_page->index && end_index == index)
1660 while (nr_pages > 0) {
1661 ret = find_get_pages_contig(inode->i_mapping, index,
1662 min_t(unsigned long, nr_pages,
1663 ARRAY_SIZE(pages)), pages);
1664 for (i = 0; i < ret; i++) {
1665 if (pages[i] != locked_page)
1666 unlock_page(pages[i]);
1667 page_cache_release(pages[i]);
1675 static noinline int lock_delalloc_pages(struct inode *inode,
1676 struct page *locked_page,
1680 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681 unsigned long start_index = index;
1682 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683 unsigned long pages_locked = 0;
1684 struct page *pages[16];
1685 unsigned long nrpages;
1689 /* the caller is responsible for locking the start index */
1690 if (index == locked_page->index && index == end_index)
1693 /* skip the page at the start index */
1694 nrpages = end_index - index + 1;
1695 while (nrpages > 0) {
1696 ret = find_get_pages_contig(inode->i_mapping, index,
1697 min_t(unsigned long,
1698 nrpages, ARRAY_SIZE(pages)), pages);
1703 /* now we have an array of pages, lock them all */
1704 for (i = 0; i < ret; i++) {
1706 * the caller is taking responsibility for
1709 if (pages[i] != locked_page) {
1710 lock_page(pages[i]);
1711 if (!PageDirty(pages[i]) ||
1712 pages[i]->mapping != inode->i_mapping) {
1714 unlock_page(pages[i]);
1715 page_cache_release(pages[i]);
1719 page_cache_release(pages[i]);
1728 if (ret && pages_locked) {
1729 __unlock_for_delalloc(inode, locked_page,
1731 ((u64)(start_index + pages_locked - 1)) <<
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1743 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744 struct extent_io_tree *tree,
1745 struct page *locked_page, u64 *start,
1746 u64 *end, u64 max_bytes)
1751 struct extent_state *cached_state = NULL;
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start = *start;
1759 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1760 max_bytes, &cached_state);
1761 if (!found || delalloc_end <= *start) {
1762 *start = delalloc_start;
1763 *end = delalloc_end;
1764 free_extent_state(cached_state);
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1773 if (delalloc_start < *start)
1774 delalloc_start = *start;
1777 * make sure to limit the number of pages we try to lock down
1779 if (delalloc_end + 1 - delalloc_start > max_bytes)
1780 delalloc_end = delalloc_start + max_bytes - 1;
1782 /* step two, lock all the pages after the page that has start */
1783 ret = lock_delalloc_pages(inode, locked_page,
1784 delalloc_start, delalloc_end);
1785 if (ret == -EAGAIN) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1789 free_extent_state(cached_state);
1790 cached_state = NULL;
1792 max_bytes = PAGE_CACHE_SIZE;
1800 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1802 /* step three, lock the state bits for the whole range */
1803 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1805 /* then test to make sure it is all still delalloc */
1806 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1807 EXTENT_DELALLOC, 1, cached_state);
1809 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810 &cached_state, GFP_NOFS);
1811 __unlock_for_delalloc(inode, locked_page,
1812 delalloc_start, delalloc_end);
1816 free_extent_state(cached_state);
1817 *start = delalloc_start;
1818 *end = delalloc_end;
1823 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1824 struct page *locked_page,
1825 unsigned clear_bits,
1826 unsigned long page_ops)
1828 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1830 struct page *pages[16];
1831 unsigned long index = start >> PAGE_CACHE_SHIFT;
1832 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833 unsigned long nr_pages = end_index - index + 1;
1836 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1840 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841 mapping_set_error(inode->i_mapping, -EIO);
1843 while (nr_pages > 0) {
1844 ret = find_get_pages_contig(inode->i_mapping, index,
1845 min_t(unsigned long,
1846 nr_pages, ARRAY_SIZE(pages)), pages);
1847 for (i = 0; i < ret; i++) {
1849 if (page_ops & PAGE_SET_PRIVATE2)
1850 SetPagePrivate2(pages[i]);
1852 if (pages[i] == locked_page) {
1853 page_cache_release(pages[i]);
1856 if (page_ops & PAGE_CLEAR_DIRTY)
1857 clear_page_dirty_for_io(pages[i]);
1858 if (page_ops & PAGE_SET_WRITEBACK)
1859 set_page_writeback(pages[i]);
1860 if (page_ops & PAGE_SET_ERROR)
1861 SetPageError(pages[i]);
1862 if (page_ops & PAGE_END_WRITEBACK)
1863 end_page_writeback(pages[i]);
1864 if (page_ops & PAGE_UNLOCK)
1865 unlock_page(pages[i]);
1866 page_cache_release(pages[i]);
1876 * count the number of bytes in the tree that have a given bit(s)
1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1878 * cached. The total number found is returned.
1880 u64 count_range_bits(struct extent_io_tree *tree,
1881 u64 *start, u64 search_end, u64 max_bytes,
1882 unsigned bits, int contig)
1884 struct rb_node *node;
1885 struct extent_state *state;
1886 u64 cur_start = *start;
1887 u64 total_bytes = 0;
1891 if (WARN_ON(search_end <= cur_start))
1894 spin_lock(&tree->lock);
1895 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1896 total_bytes = tree->dirty_bytes;
1900 * this search will find all the extents that end after
1903 node = tree_search(tree, cur_start);
1908 state = rb_entry(node, struct extent_state, rb_node);
1909 if (state->start > search_end)
1911 if (contig && found && state->start > last + 1)
1913 if (state->end >= cur_start && (state->state & bits) == bits) {
1914 total_bytes += min(search_end, state->end) + 1 -
1915 max(cur_start, state->start);
1916 if (total_bytes >= max_bytes)
1919 *start = max(cur_start, state->start);
1923 } else if (contig && found) {
1926 node = rb_next(node);
1931 spin_unlock(&tree->lock);
1936 * set the private field for a given byte offset in the tree. If there isn't
1937 * an extent_state there already, this does nothing.
1939 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1941 struct rb_node *node;
1942 struct extent_state *state;
1945 spin_lock(&tree->lock);
1947 * this search will find all the extents that end after
1950 node = tree_search(tree, start);
1955 state = rb_entry(node, struct extent_state, rb_node);
1956 if (state->start != start) {
1960 state->private = private;
1962 spin_unlock(&tree->lock);
1966 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1968 struct rb_node *node;
1969 struct extent_state *state;
1972 spin_lock(&tree->lock);
1974 * this search will find all the extents that end after
1977 node = tree_search(tree, start);
1982 state = rb_entry(node, struct extent_state, rb_node);
1983 if (state->start != start) {
1987 *private = state->private;
1989 spin_unlock(&tree->lock);
1994 * searches a range in the state tree for a given mask.
1995 * If 'filled' == 1, this returns 1 only if every extent in the tree
1996 * has the bits set. Otherwise, 1 is returned if any bit in the
1997 * range is found set.
1999 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2000 unsigned bits, int filled, struct extent_state *cached)
2002 struct extent_state *state = NULL;
2003 struct rb_node *node;
2006 spin_lock(&tree->lock);
2007 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2008 cached->end > start)
2009 node = &cached->rb_node;
2011 node = tree_search(tree, start);
2012 while (node && start <= end) {
2013 state = rb_entry(node, struct extent_state, rb_node);
2015 if (filled && state->start > start) {
2020 if (state->start > end)
2023 if (state->state & bits) {
2027 } else if (filled) {
2032 if (state->end == (u64)-1)
2035 start = state->end + 1;
2038 node = rb_next(node);
2045 spin_unlock(&tree->lock);
2050 * helper function to set a given page up to date if all the
2051 * extents in the tree for that page are up to date
2053 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2055 u64 start = page_offset(page);
2056 u64 end = start + PAGE_CACHE_SIZE - 1;
2057 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2058 SetPageUptodate(page);
2061 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2065 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2067 set_state_private(failure_tree, rec->start, 0);
2068 ret = clear_extent_bits(failure_tree, rec->start,
2069 rec->start + rec->len - 1,
2070 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2074 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2075 rec->start + rec->len - 1,
2076 EXTENT_DAMAGED, GFP_NOFS);
2085 * this bypasses the standard btrfs submit functions deliberately, as
2086 * the standard behavior is to write all copies in a raid setup. here we only
2087 * want to write the one bad copy. so we do the mapping for ourselves and issue
2088 * submit_bio directly.
2089 * to avoid any synchronization issues, wait for the data after writing, which
2090 * actually prevents the read that triggered the error from finishing.
2091 * currently, there can be no more than two copies of every data bit. thus,
2092 * exactly one rewrite is required.
2094 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2095 struct page *page, unsigned int pg_offset, int mirror_num)
2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2099 struct btrfs_device *dev;
2102 struct btrfs_bio *bbio = NULL;
2103 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2106 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2107 BUG_ON(!mirror_num);
2109 /* we can't repair anything in raid56 yet */
2110 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2113 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2116 bio->bi_iter.bi_size = 0;
2117 map_length = length;
2119 ret = btrfs_map_block(fs_info, WRITE, logical,
2120 &map_length, &bbio, mirror_num);
2125 BUG_ON(mirror_num != bbio->mirror_num);
2126 sector = bbio->stripes[mirror_num-1].physical >> 9;
2127 bio->bi_iter.bi_sector = sector;
2128 dev = bbio->stripes[mirror_num-1].dev;
2129 btrfs_put_bbio(bbio);
2130 if (!dev || !dev->bdev || !dev->writeable) {
2134 bio->bi_bdev = dev->bdev;
2135 bio_add_page(bio, page, length, pg_offset);
2137 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2138 /* try to remap that extent elsewhere? */
2140 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2144 btrfs_info_rl_in_rcu(fs_info,
2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146 btrfs_ino(inode), start,
2147 rcu_str_deref(dev->name), sector);
2152 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2155 u64 start = eb->start;
2156 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2159 if (root->fs_info->sb->s_flags & MS_RDONLY)
2162 for (i = 0; i < num_pages; i++) {
2163 struct page *p = eb->pages[i];
2165 ret = repair_io_failure(root->fs_info->btree_inode, start,
2166 PAGE_CACHE_SIZE, start, p,
2167 start - page_offset(p), mirror_num);
2170 start += PAGE_CACHE_SIZE;
2177 * each time an IO finishes, we do a fast check in the IO failure tree
2178 * to see if we need to process or clean up an io_failure_record
2180 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2181 unsigned int pg_offset)
2184 u64 private_failure;
2185 struct io_failure_record *failrec;
2186 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2187 struct extent_state *state;
2192 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2193 (u64)-1, 1, EXTENT_DIRTY, 0);
2197 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2202 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2203 BUG_ON(!failrec->this_mirror);
2205 if (failrec->in_validation) {
2206 /* there was no real error, just free the record */
2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2211 if (fs_info->sb->s_flags & MS_RDONLY)
2214 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2215 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2218 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2220 if (state && state->start <= failrec->start &&
2221 state->end >= failrec->start + failrec->len - 1) {
2222 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2224 if (num_copies > 1) {
2225 repair_io_failure(inode, start, failrec->len,
2226 failrec->logical, page,
2227 pg_offset, failrec->failed_mirror);
2232 free_io_failure(inode, failrec);
2238 * Can be called when
2239 * - hold extent lock
2240 * - under ordered extent
2241 * - the inode is freeing
2243 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2245 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2246 struct io_failure_record *failrec;
2247 struct extent_state *state, *next;
2249 if (RB_EMPTY_ROOT(&failure_tree->state))
2252 spin_lock(&failure_tree->lock);
2253 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2255 if (state->start > end)
2258 ASSERT(state->end <= end);
2260 next = next_state(state);
2262 failrec = (struct io_failure_record *)(unsigned long)state->private;
2263 free_extent_state(state);
2268 spin_unlock(&failure_tree->lock);
2271 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2272 struct io_failure_record **failrec_ret)
2274 struct io_failure_record *failrec;
2276 struct extent_map *em;
2277 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2278 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2279 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2283 ret = get_state_private(failure_tree, start, &private);
2285 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2289 failrec->start = start;
2290 failrec->len = end - start + 1;
2291 failrec->this_mirror = 0;
2292 failrec->bio_flags = 0;
2293 failrec->in_validation = 0;
2295 read_lock(&em_tree->lock);
2296 em = lookup_extent_mapping(em_tree, start, failrec->len);
2298 read_unlock(&em_tree->lock);
2303 if (em->start > start || em->start + em->len <= start) {
2304 free_extent_map(em);
2307 read_unlock(&em_tree->lock);
2313 logical = start - em->start;
2314 logical = em->block_start + logical;
2315 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2316 logical = em->block_start;
2317 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2318 extent_set_compress_type(&failrec->bio_flags,
2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 logical, start, failrec->len);
2325 failrec->logical = logical;
2326 free_extent_map(em);
2328 /* set the bits in the private failure tree */
2329 ret = set_extent_bits(failure_tree, start, end,
2330 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2332 ret = set_state_private(failure_tree, start,
2333 (u64)(unsigned long)failrec);
2334 /* set the bits in the inode's tree */
2336 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2343 failrec = (struct io_failure_record *)(unsigned long)private;
2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345 failrec->logical, failrec->start, failrec->len,
2346 failrec->in_validation);
2348 * when data can be on disk more than twice, add to failrec here
2349 * (e.g. with a list for failed_mirror) to make
2350 * clean_io_failure() clean all those errors at once.
2354 *failrec_ret = failrec;
2359 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2360 struct io_failure_record *failrec, int failed_mirror)
2364 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2365 failrec->logical, failrec->len);
2366 if (num_copies == 1) {
2368 * we only have a single copy of the data, so don't bother with
2369 * all the retry and error correction code that follows. no
2370 * matter what the error is, it is very likely to persist.
2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373 num_copies, failrec->this_mirror, failed_mirror);
2378 * there are two premises:
2379 * a) deliver good data to the caller
2380 * b) correct the bad sectors on disk
2382 if (failed_bio->bi_vcnt > 1) {
2384 * to fulfill b), we need to know the exact failing sectors, as
2385 * we don't want to rewrite any more than the failed ones. thus,
2386 * we need separate read requests for the failed bio
2388 * if the following BUG_ON triggers, our validation request got
2389 * merged. we need separate requests for our algorithm to work.
2391 BUG_ON(failrec->in_validation);
2392 failrec->in_validation = 1;
2393 failrec->this_mirror = failed_mirror;
2396 * we're ready to fulfill a) and b) alongside. get a good copy
2397 * of the failed sector and if we succeed, we have setup
2398 * everything for repair_io_failure to do the rest for us.
2400 if (failrec->in_validation) {
2401 BUG_ON(failrec->this_mirror != failed_mirror);
2402 failrec->in_validation = 0;
2403 failrec->this_mirror = 0;
2405 failrec->failed_mirror = failed_mirror;
2406 failrec->this_mirror++;
2407 if (failrec->this_mirror == failed_mirror)
2408 failrec->this_mirror++;
2411 if (failrec->this_mirror > num_copies) {
2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413 num_copies, failrec->this_mirror, failed_mirror);
2421 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2422 struct io_failure_record *failrec,
2423 struct page *page, int pg_offset, int icsum,
2424 bio_end_io_t *endio_func, void *data)
2427 struct btrfs_io_bio *btrfs_failed_bio;
2428 struct btrfs_io_bio *btrfs_bio;
2430 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2434 bio->bi_end_io = endio_func;
2435 bio->bi_iter.bi_sector = failrec->logical >> 9;
2436 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2437 bio->bi_iter.bi_size = 0;
2438 bio->bi_private = data;
2440 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2441 if (btrfs_failed_bio->csum) {
2442 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2443 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2445 btrfs_bio = btrfs_io_bio(bio);
2446 btrfs_bio->csum = btrfs_bio->csum_inline;
2448 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2452 bio_add_page(bio, page, failrec->len, pg_offset);
2458 * this is a generic handler for readpage errors (default
2459 * readpage_io_failed_hook). if other copies exist, read those and write back
2460 * good data to the failed position. does not investigate in remapping the
2461 * failed extent elsewhere, hoping the device will be smart enough to do this as
2465 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2466 struct page *page, u64 start, u64 end,
2469 struct io_failure_record *failrec;
2470 struct inode *inode = page->mapping->host;
2471 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2476 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2478 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2482 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2484 free_io_failure(inode, failrec);
2488 if (failed_bio->bi_vcnt > 1)
2489 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2491 read_mode = READ_SYNC;
2493 phy_offset >>= inode->i_sb->s_blocksize_bits;
2494 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2495 start - page_offset(page),
2496 (int)phy_offset, failed_bio->bi_end_io,
2499 free_io_failure(inode, failrec);
2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 read_mode, failrec->this_mirror, failrec->in_validation);
2506 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2507 failrec->this_mirror,
2508 failrec->bio_flags, 0);
2510 free_io_failure(inode, failrec);
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2519 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2521 int uptodate = (err == 0);
2522 struct extent_io_tree *tree;
2525 tree = &BTRFS_I(page->mapping->host)->io_tree;
2527 if (tree->ops && tree->ops->writepage_end_io_hook) {
2528 ret = tree->ops->writepage_end_io_hook(page, start,
2529 end, NULL, uptodate);
2535 ClearPageUptodate(page);
2537 ret = ret < 0 ? ret : -EIO;
2538 mapping_set_error(page->mapping, ret);
2544 * after a writepage IO is done, we need to:
2545 * clear the uptodate bits on error
2546 * clear the writeback bits in the extent tree for this IO
2547 * end_page_writeback if the page has no more pending IO
2549 * Scheduling is not allowed, so the extent state tree is expected
2550 * to have one and only one object corresponding to this IO.
2552 static void end_bio_extent_writepage(struct bio *bio)
2554 struct bio_vec *bvec;
2559 bio_for_each_segment_all(bvec, bio, i) {
2560 struct page *page = bvec->bv_page;
2562 /* We always issue full-page reads, but if some block
2563 * in a page fails to read, blk_update_request() will
2564 * advance bv_offset and adjust bv_len to compensate.
2565 * Print a warning for nonzero offsets, and an error
2566 * if they don't add up to a full page. */
2567 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2568 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2569 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2570 "partial page write in btrfs with offset %u and length %u",
2571 bvec->bv_offset, bvec->bv_len);
2573 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2574 "incomplete page write in btrfs with offset %u and "
2576 bvec->bv_offset, bvec->bv_len);
2579 start = page_offset(page);
2580 end = start + bvec->bv_offset + bvec->bv_len - 1;
2582 if (end_extent_writepage(page, bio->bi_error, start, end))
2585 end_page_writeback(page);
2592 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2595 struct extent_state *cached = NULL;
2596 u64 end = start + len - 1;
2598 if (uptodate && tree->track_uptodate)
2599 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2600 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2604 * after a readpage IO is done, we need to:
2605 * clear the uptodate bits on error
2606 * set the uptodate bits if things worked
2607 * set the page up to date if all extents in the tree are uptodate
2608 * clear the lock bit in the extent tree
2609 * unlock the page if there are no other extents locked for it
2611 * Scheduling is not allowed, so the extent state tree is expected
2612 * to have one and only one object corresponding to this IO.
2614 static void end_bio_extent_readpage(struct bio *bio)
2616 struct bio_vec *bvec;
2617 int uptodate = !bio->bi_error;
2618 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2619 struct extent_io_tree *tree;
2624 u64 extent_start = 0;
2630 bio_for_each_segment_all(bvec, bio, i) {
2631 struct page *page = bvec->bv_page;
2632 struct inode *inode = page->mapping->host;
2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2636 bio->bi_error, io_bio->mirror_num);
2637 tree = &BTRFS_I(inode)->io_tree;
2639 /* We always issue full-page reads, but if some block
2640 * in a page fails to read, blk_update_request() will
2641 * advance bv_offset and adjust bv_len to compensate.
2642 * Print a warning for nonzero offsets, and an error
2643 * if they don't add up to a full page. */
2644 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2645 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2646 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2647 "partial page read in btrfs with offset %u and length %u",
2648 bvec->bv_offset, bvec->bv_len);
2650 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2651 "incomplete page read in btrfs with offset %u and "
2653 bvec->bv_offset, bvec->bv_len);
2656 start = page_offset(page);
2657 end = start + bvec->bv_offset + bvec->bv_len - 1;
2660 mirror = io_bio->mirror_num;
2661 if (likely(uptodate && tree->ops &&
2662 tree->ops->readpage_end_io_hook)) {
2663 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2669 clean_io_failure(inode, start, page, 0);
2672 if (likely(uptodate))
2675 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2676 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2677 if (!ret && !bio->bi_error)
2681 * The generic bio_readpage_error handles errors the
2682 * following way: If possible, new read requests are
2683 * created and submitted and will end up in
2684 * end_bio_extent_readpage as well (if we're lucky, not
2685 * in the !uptodate case). In that case it returns 0 and
2686 * we just go on with the next page in our bio. If it
2687 * can't handle the error it will return -EIO and we
2688 * remain responsible for that page.
2690 ret = bio_readpage_error(bio, offset, page, start, end,
2693 uptodate = !bio->bi_error;
2699 if (likely(uptodate)) {
2700 loff_t i_size = i_size_read(inode);
2701 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2704 /* Zero out the end if this page straddles i_size */
2705 off = i_size & (PAGE_CACHE_SIZE-1);
2706 if (page->index == end_index && off)
2707 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2708 SetPageUptodate(page);
2710 ClearPageUptodate(page);
2716 if (unlikely(!uptodate)) {
2718 endio_readpage_release_extent(tree,
2724 endio_readpage_release_extent(tree, start,
2725 end - start + 1, 0);
2726 } else if (!extent_len) {
2727 extent_start = start;
2728 extent_len = end + 1 - start;
2729 } else if (extent_start + extent_len == start) {
2730 extent_len += end + 1 - start;
2732 endio_readpage_release_extent(tree, extent_start,
2733 extent_len, uptodate);
2734 extent_start = start;
2735 extent_len = end + 1 - start;
2740 endio_readpage_release_extent(tree, extent_start, extent_len,
2743 io_bio->end_io(io_bio, bio->bi_error);
2748 * this allocates from the btrfs_bioset. We're returning a bio right now
2749 * but you can call btrfs_io_bio for the appropriate container_of magic
2752 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2755 struct btrfs_io_bio *btrfs_bio;
2758 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2760 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2761 while (!bio && (nr_vecs /= 2)) {
2762 bio = bio_alloc_bioset(gfp_flags,
2763 nr_vecs, btrfs_bioset);
2768 bio->bi_bdev = bdev;
2769 bio->bi_iter.bi_sector = first_sector;
2770 btrfs_bio = btrfs_io_bio(bio);
2771 btrfs_bio->csum = NULL;
2772 btrfs_bio->csum_allocated = NULL;
2773 btrfs_bio->end_io = NULL;
2778 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2780 struct btrfs_io_bio *btrfs_bio;
2783 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2785 btrfs_bio = btrfs_io_bio(new);
2786 btrfs_bio->csum = NULL;
2787 btrfs_bio->csum_allocated = NULL;
2788 btrfs_bio->end_io = NULL;
2790 #ifdef CONFIG_BLK_CGROUP
2791 /* FIXME, put this into bio_clone_bioset */
2793 bio_associate_blkcg(new, bio->bi_css);
2799 /* this also allocates from the btrfs_bioset */
2800 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2802 struct btrfs_io_bio *btrfs_bio;
2805 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2807 btrfs_bio = btrfs_io_bio(bio);
2808 btrfs_bio->csum = NULL;
2809 btrfs_bio->csum_allocated = NULL;
2810 btrfs_bio->end_io = NULL;
2816 static int __must_check submit_one_bio(int rw, struct bio *bio,
2817 int mirror_num, unsigned long bio_flags)
2820 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2821 struct page *page = bvec->bv_page;
2822 struct extent_io_tree *tree = bio->bi_private;
2825 start = page_offset(page) + bvec->bv_offset;
2827 bio->bi_private = NULL;
2831 if (tree->ops && tree->ops->submit_bio_hook)
2832 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2833 mirror_num, bio_flags, start);
2835 btrfsic_submit_bio(rw, bio);
2841 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2842 unsigned long offset, size_t size, struct bio *bio,
2843 unsigned long bio_flags)
2846 if (tree->ops && tree->ops->merge_bio_hook)
2847 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2854 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2855 struct writeback_control *wbc,
2856 struct page *page, sector_t sector,
2857 size_t size, unsigned long offset,
2858 struct block_device *bdev,
2859 struct bio **bio_ret,
2860 unsigned long max_pages,
2861 bio_end_io_t end_io_func,
2863 unsigned long prev_bio_flags,
2864 unsigned long bio_flags,
2865 bool force_bio_submit)
2870 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2871 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2873 if (bio_ret && *bio_ret) {
2876 contig = bio->bi_iter.bi_sector == sector;
2878 contig = bio_end_sector(bio) == sector;
2880 if (prev_bio_flags != bio_flags || !contig ||
2882 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2883 bio_add_page(bio, page, page_size, offset) < page_size) {
2884 ret = submit_one_bio(rw, bio, mirror_num,
2893 wbc_account_io(wbc, page, page_size);
2898 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2899 GFP_NOFS | __GFP_HIGH);
2903 bio_add_page(bio, page, page_size, offset);
2904 bio->bi_end_io = end_io_func;
2905 bio->bi_private = tree;
2907 wbc_init_bio(wbc, bio);
2908 wbc_account_io(wbc, page, page_size);
2914 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2919 static void attach_extent_buffer_page(struct extent_buffer *eb,
2922 if (!PagePrivate(page)) {
2923 SetPagePrivate(page);
2924 page_cache_get(page);
2925 set_page_private(page, (unsigned long)eb);
2927 WARN_ON(page->private != (unsigned long)eb);
2931 void set_page_extent_mapped(struct page *page)
2933 if (!PagePrivate(page)) {
2934 SetPagePrivate(page);
2935 page_cache_get(page);
2936 set_page_private(page, EXTENT_PAGE_PRIVATE);
2940 static struct extent_map *
2941 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2942 u64 start, u64 len, get_extent_t *get_extent,
2943 struct extent_map **em_cached)
2945 struct extent_map *em;
2947 if (em_cached && *em_cached) {
2949 if (extent_map_in_tree(em) && start >= em->start &&
2950 start < extent_map_end(em)) {
2951 atomic_inc(&em->refs);
2955 free_extent_map(em);
2959 em = get_extent(inode, page, pg_offset, start, len, 0);
2960 if (em_cached && !IS_ERR_OR_NULL(em)) {
2962 atomic_inc(&em->refs);
2968 * basic readpage implementation. Locked extent state structs are inserted
2969 * into the tree that are removed when the IO is done (by the end_io
2971 * XXX JDM: This needs looking at to ensure proper page locking
2973 static int __do_readpage(struct extent_io_tree *tree,
2975 get_extent_t *get_extent,
2976 struct extent_map **em_cached,
2977 struct bio **bio, int mirror_num,
2978 unsigned long *bio_flags, int rw,
2981 struct inode *inode = page->mapping->host;
2982 u64 start = page_offset(page);
2983 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2987 u64 last_byte = i_size_read(inode);
2991 struct extent_map *em;
2992 struct block_device *bdev;
2995 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2996 size_t pg_offset = 0;
2998 size_t disk_io_size;
2999 size_t blocksize = inode->i_sb->s_blocksize;
3000 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
3002 set_page_extent_mapped(page);
3005 if (!PageUptodate(page)) {
3006 if (cleancache_get_page(page) == 0) {
3007 BUG_ON(blocksize != PAGE_SIZE);
3008 unlock_extent(tree, start, end);
3013 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3015 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3018 iosize = PAGE_CACHE_SIZE - zero_offset;
3019 userpage = kmap_atomic(page);
3020 memset(userpage + zero_offset, 0, iosize);
3021 flush_dcache_page(page);
3022 kunmap_atomic(userpage);
3025 while (cur <= end) {
3026 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3027 bool force_bio_submit = false;
3029 if (cur >= last_byte) {
3031 struct extent_state *cached = NULL;
3033 iosize = PAGE_CACHE_SIZE - pg_offset;
3034 userpage = kmap_atomic(page);
3035 memset(userpage + pg_offset, 0, iosize);
3036 flush_dcache_page(page);
3037 kunmap_atomic(userpage);
3038 set_extent_uptodate(tree, cur, cur + iosize - 1,
3041 unlock_extent_cached(tree, cur,
3046 em = __get_extent_map(inode, page, pg_offset, cur,
3047 end - cur + 1, get_extent, em_cached);
3048 if (IS_ERR_OR_NULL(em)) {
3051 unlock_extent(tree, cur, end);
3054 extent_offset = cur - em->start;
3055 BUG_ON(extent_map_end(em) <= cur);
3058 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3059 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3060 extent_set_compress_type(&this_bio_flag,
3064 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3065 cur_end = min(extent_map_end(em) - 1, end);
3066 iosize = ALIGN(iosize, blocksize);
3067 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3068 disk_io_size = em->block_len;
3069 sector = em->block_start >> 9;
3071 sector = (em->block_start + extent_offset) >> 9;
3072 disk_io_size = iosize;
3075 block_start = em->block_start;
3076 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3077 block_start = EXTENT_MAP_HOLE;
3080 * If we have a file range that points to a compressed extent
3081 * and it's followed by a consecutive file range that points to
3082 * to the same compressed extent (possibly with a different
3083 * offset and/or length, so it either points to the whole extent
3084 * or only part of it), we must make sure we do not submit a
3085 * single bio to populate the pages for the 2 ranges because
3086 * this makes the compressed extent read zero out the pages
3087 * belonging to the 2nd range. Imagine the following scenario:
3090 * [0 - 8K] [8K - 24K]
3093 * points to extent X, points to extent X,
3094 * offset 4K, length of 8K offset 0, length 16K
3096 * [extent X, compressed length = 4K uncompressed length = 16K]
3098 * If the bio to read the compressed extent covers both ranges,
3099 * it will decompress extent X into the pages belonging to the
3100 * first range and then it will stop, zeroing out the remaining
3101 * pages that belong to the other range that points to extent X.
3102 * So here we make sure we submit 2 bios, one for the first
3103 * range and another one for the third range. Both will target
3104 * the same physical extent from disk, but we can't currently
3105 * make the compressed bio endio callback populate the pages
3106 * for both ranges because each compressed bio is tightly
3107 * coupled with a single extent map, and each range can have
3108 * an extent map with a different offset value relative to the
3109 * uncompressed data of our extent and different lengths. This
3110 * is a corner case so we prioritize correctness over
3111 * non-optimal behavior (submitting 2 bios for the same extent).
3113 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3114 prev_em_start && *prev_em_start != (u64)-1 &&
3115 *prev_em_start != em->orig_start)
3116 force_bio_submit = true;
3119 *prev_em_start = em->orig_start;
3121 free_extent_map(em);
3124 /* we've found a hole, just zero and go on */
3125 if (block_start == EXTENT_MAP_HOLE) {
3127 struct extent_state *cached = NULL;
3129 userpage = kmap_atomic(page);
3130 memset(userpage + pg_offset, 0, iosize);
3131 flush_dcache_page(page);
3132 kunmap_atomic(userpage);
3134 set_extent_uptodate(tree, cur, cur + iosize - 1,
3137 free_extent_state(cached);
3139 unlock_extent_cached(tree, cur,
3143 pg_offset += iosize;
3146 /* the get_extent function already copied into the page */
3147 if (test_range_bit(tree, cur, cur_end,
3148 EXTENT_UPTODATE, 1, NULL)) {
3149 check_page_uptodate(tree, page);
3151 unlock_extent(tree, cur, cur + iosize - 1);
3153 pg_offset += iosize;
3156 /* we have an inline extent but it didn't get marked up
3157 * to date. Error out
3159 if (block_start == EXTENT_MAP_INLINE) {
3162 unlock_extent(tree, cur, cur + iosize - 1);
3164 pg_offset += iosize;
3169 ret = submit_extent_page(rw, tree, NULL, page,
3170 sector, disk_io_size, pg_offset,
3172 end_bio_extent_readpage, mirror_num,
3178 *bio_flags = this_bio_flag;
3182 unlock_extent(tree, cur, cur + iosize - 1);
3185 pg_offset += iosize;
3189 if (!PageError(page))
3190 SetPageUptodate(page);
3196 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3197 struct page *pages[], int nr_pages,
3199 get_extent_t *get_extent,
3200 struct extent_map **em_cached,
3201 struct bio **bio, int mirror_num,
3202 unsigned long *bio_flags, int rw,
3205 struct inode *inode;
3206 struct btrfs_ordered_extent *ordered;
3209 inode = pages[0]->mapping->host;
3211 lock_extent(tree, start, end);
3212 ordered = btrfs_lookup_ordered_range(inode, start,
3216 unlock_extent(tree, start, end);
3217 btrfs_start_ordered_extent(inode, ordered, 1);
3218 btrfs_put_ordered_extent(ordered);
3221 for (index = 0; index < nr_pages; index++) {
3222 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3223 mirror_num, bio_flags, rw, prev_em_start);
3224 page_cache_release(pages[index]);
3228 static void __extent_readpages(struct extent_io_tree *tree,
3229 struct page *pages[],
3230 int nr_pages, get_extent_t *get_extent,
3231 struct extent_map **em_cached,
3232 struct bio **bio, int mirror_num,
3233 unsigned long *bio_flags, int rw,
3240 int first_index = 0;
3242 for (index = 0; index < nr_pages; index++) {
3243 page_start = page_offset(pages[index]);
3246 end = start + PAGE_CACHE_SIZE - 1;
3247 first_index = index;
3248 } else if (end + 1 == page_start) {
3249 end += PAGE_CACHE_SIZE;
3251 __do_contiguous_readpages(tree, &pages[first_index],
3252 index - first_index, start,
3253 end, get_extent, em_cached,
3254 bio, mirror_num, bio_flags,
3257 end = start + PAGE_CACHE_SIZE - 1;
3258 first_index = index;
3263 __do_contiguous_readpages(tree, &pages[first_index],
3264 index - first_index, start,
3265 end, get_extent, em_cached, bio,
3266 mirror_num, bio_flags, rw,
3270 static int __extent_read_full_page(struct extent_io_tree *tree,
3272 get_extent_t *get_extent,
3273 struct bio **bio, int mirror_num,
3274 unsigned long *bio_flags, int rw)
3276 struct inode *inode = page->mapping->host;
3277 struct btrfs_ordered_extent *ordered;
3278 u64 start = page_offset(page);
3279 u64 end = start + PAGE_CACHE_SIZE - 1;
3283 lock_extent(tree, start, end);
3284 ordered = btrfs_lookup_ordered_extent(inode, start);
3287 unlock_extent(tree, start, end);
3288 btrfs_start_ordered_extent(inode, ordered, 1);
3289 btrfs_put_ordered_extent(ordered);
3292 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3293 bio_flags, rw, NULL);
3297 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3298 get_extent_t *get_extent, int mirror_num)
3300 struct bio *bio = NULL;
3301 unsigned long bio_flags = 0;
3304 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3311 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3312 get_extent_t *get_extent, int mirror_num)
3314 struct bio *bio = NULL;
3315 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3318 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3319 &bio_flags, READ, NULL);
3321 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3325 static noinline void update_nr_written(struct page *page,
3326 struct writeback_control *wbc,
3327 unsigned long nr_written)
3329 wbc->nr_to_write -= nr_written;
3330 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3331 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3332 page->mapping->writeback_index = page->index + nr_written;
3336 * helper for __extent_writepage, doing all of the delayed allocation setup.
3338 * This returns 1 if our fill_delalloc function did all the work required
3339 * to write the page (copy into inline extent). In this case the IO has
3340 * been started and the page is already unlocked.
3342 * This returns 0 if all went well (page still locked)
3343 * This returns < 0 if there were errors (page still locked)
3345 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3346 struct page *page, struct writeback_control *wbc,
3347 struct extent_page_data *epd,
3349 unsigned long *nr_written)
3351 struct extent_io_tree *tree = epd->tree;
3352 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3354 u64 delalloc_to_write = 0;
3355 u64 delalloc_end = 0;
3357 int page_started = 0;
3359 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3362 while (delalloc_end < page_end) {
3363 nr_delalloc = find_lock_delalloc_range(inode, tree,
3367 BTRFS_MAX_EXTENT_SIZE);
3368 if (nr_delalloc == 0) {
3369 delalloc_start = delalloc_end + 1;
3372 ret = tree->ops->fill_delalloc(inode, page,
3377 /* File system has been set read-only */
3380 /* fill_delalloc should be return < 0 for error
3381 * but just in case, we use > 0 here meaning the
3382 * IO is started, so we don't want to return > 0
3383 * unless things are going well.
3385 ret = ret < 0 ? ret : -EIO;
3389 * delalloc_end is already one less than the total
3390 * length, so we don't subtract one from
3393 delalloc_to_write += (delalloc_end - delalloc_start +
3396 delalloc_start = delalloc_end + 1;
3398 if (wbc->nr_to_write < delalloc_to_write) {
3401 if (delalloc_to_write < thresh * 2)
3402 thresh = delalloc_to_write;
3403 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3407 /* did the fill delalloc function already unlock and start
3412 * we've unlocked the page, so we can't update
3413 * the mapping's writeback index, just update
3416 wbc->nr_to_write -= *nr_written;
3427 * helper for __extent_writepage. This calls the writepage start hooks,
3428 * and does the loop to map the page into extents and bios.
3430 * We return 1 if the IO is started and the page is unlocked,
3431 * 0 if all went well (page still locked)
3432 * < 0 if there were errors (page still locked)
3434 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3436 struct writeback_control *wbc,
3437 struct extent_page_data *epd,
3439 unsigned long nr_written,
3440 int write_flags, int *nr_ret)
3442 struct extent_io_tree *tree = epd->tree;
3443 u64 start = page_offset(page);
3444 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3451 struct extent_state *cached_state = NULL;
3452 struct extent_map *em;
3453 struct block_device *bdev;
3454 size_t pg_offset = 0;
3460 if (tree->ops && tree->ops->writepage_start_hook) {
3461 ret = tree->ops->writepage_start_hook(page, start,
3464 /* Fixup worker will requeue */
3466 wbc->pages_skipped++;
3468 redirty_page_for_writepage(wbc, page);
3470 update_nr_written(page, wbc, nr_written);
3478 * we don't want to touch the inode after unlocking the page,
3479 * so we update the mapping writeback index now
3481 update_nr_written(page, wbc, nr_written + 1);
3484 if (i_size <= start) {
3485 if (tree->ops && tree->ops->writepage_end_io_hook)
3486 tree->ops->writepage_end_io_hook(page, start,
3491 blocksize = inode->i_sb->s_blocksize;
3493 while (cur <= end) {
3495 if (cur >= i_size) {
3496 if (tree->ops && tree->ops->writepage_end_io_hook)
3497 tree->ops->writepage_end_io_hook(page, cur,
3501 em = epd->get_extent(inode, page, pg_offset, cur,
3503 if (IS_ERR_OR_NULL(em)) {
3505 ret = PTR_ERR_OR_ZERO(em);
3509 extent_offset = cur - em->start;
3510 em_end = extent_map_end(em);
3511 BUG_ON(em_end <= cur);
3513 iosize = min(em_end - cur, end - cur + 1);
3514 iosize = ALIGN(iosize, blocksize);
3515 sector = (em->block_start + extent_offset) >> 9;
3517 block_start = em->block_start;
3518 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3519 free_extent_map(em);
3523 * compressed and inline extents are written through other
3526 if (compressed || block_start == EXTENT_MAP_HOLE ||
3527 block_start == EXTENT_MAP_INLINE) {
3529 * end_io notification does not happen here for
3530 * compressed extents
3532 if (!compressed && tree->ops &&
3533 tree->ops->writepage_end_io_hook)
3534 tree->ops->writepage_end_io_hook(page, cur,
3537 else if (compressed) {
3538 /* we don't want to end_page_writeback on
3539 * a compressed extent. this happens
3546 pg_offset += iosize;
3550 if (tree->ops && tree->ops->writepage_io_hook) {
3551 ret = tree->ops->writepage_io_hook(page, cur,
3559 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3561 set_range_writeback(tree, cur, cur + iosize - 1);
3562 if (!PageWriteback(page)) {
3563 btrfs_err(BTRFS_I(inode)->root->fs_info,
3564 "page %lu not writeback, cur %llu end %llu",
3565 page->index, cur, end);
3568 ret = submit_extent_page(write_flags, tree, wbc, page,
3569 sector, iosize, pg_offset,
3570 bdev, &epd->bio, max_nr,
3571 end_bio_extent_writepage,
3577 pg_offset += iosize;
3585 /* drop our reference on any cached states */
3586 free_extent_state(cached_state);
3591 * the writepage semantics are similar to regular writepage. extent
3592 * records are inserted to lock ranges in the tree, and as dirty areas
3593 * are found, they are marked writeback. Then the lock bits are removed
3594 * and the end_io handler clears the writeback ranges
3596 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3599 struct inode *inode = page->mapping->host;
3600 struct extent_page_data *epd = data;
3601 u64 start = page_offset(page);
3602 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3605 size_t pg_offset = 0;
3606 loff_t i_size = i_size_read(inode);
3607 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3609 unsigned long nr_written = 0;
3611 if (wbc->sync_mode == WB_SYNC_ALL)
3612 write_flags = WRITE_SYNC;
3614 write_flags = WRITE;
3616 trace___extent_writepage(page, inode, wbc);
3618 WARN_ON(!PageLocked(page));
3620 ClearPageError(page);
3622 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3623 if (page->index > end_index ||
3624 (page->index == end_index && !pg_offset)) {
3625 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3630 if (page->index == end_index) {
3633 userpage = kmap_atomic(page);
3634 memset(userpage + pg_offset, 0,
3635 PAGE_CACHE_SIZE - pg_offset);
3636 kunmap_atomic(userpage);
3637 flush_dcache_page(page);
3642 set_page_extent_mapped(page);
3644 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3650 ret = __extent_writepage_io(inode, page, wbc, epd,
3651 i_size, nr_written, write_flags, &nr);
3657 /* make sure the mapping tag for page dirty gets cleared */
3658 set_page_writeback(page);
3659 end_page_writeback(page);
3661 if (PageError(page)) {
3662 ret = ret < 0 ? ret : -EIO;
3663 end_extent_writepage(page, ret, start, page_end);
3672 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3674 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3675 TASK_UNINTERRUPTIBLE);
3678 static noinline_for_stack int
3679 lock_extent_buffer_for_io(struct extent_buffer *eb,
3680 struct btrfs_fs_info *fs_info,
3681 struct extent_page_data *epd)
3683 unsigned long i, num_pages;
3687 if (!btrfs_try_tree_write_lock(eb)) {
3689 flush_write_bio(epd);
3690 btrfs_tree_lock(eb);
3693 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3694 btrfs_tree_unlock(eb);
3698 flush_write_bio(epd);
3702 wait_on_extent_buffer_writeback(eb);
3703 btrfs_tree_lock(eb);
3704 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3706 btrfs_tree_unlock(eb);
3711 * We need to do this to prevent races in people who check if the eb is
3712 * under IO since we can end up having no IO bits set for a short period
3715 spin_lock(&eb->refs_lock);
3716 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3717 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3718 spin_unlock(&eb->refs_lock);
3719 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3720 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3722 fs_info->dirty_metadata_batch);
3725 spin_unlock(&eb->refs_lock);
3728 btrfs_tree_unlock(eb);
3733 num_pages = num_extent_pages(eb->start, eb->len);
3734 for (i = 0; i < num_pages; i++) {
3735 struct page *p = eb->pages[i];
3737 if (!trylock_page(p)) {
3739 flush_write_bio(epd);
3749 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3751 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3752 smp_mb__after_atomic();
3753 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3756 static void set_btree_ioerr(struct page *page)
3758 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3759 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3762 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3766 * If writeback for a btree extent that doesn't belong to a log tree
3767 * failed, increment the counter transaction->eb_write_errors.
3768 * We do this because while the transaction is running and before it's
3769 * committing (when we call filemap_fdata[write|wait]_range against
3770 * the btree inode), we might have
3771 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3772 * returns an error or an error happens during writeback, when we're
3773 * committing the transaction we wouldn't know about it, since the pages
3774 * can be no longer dirty nor marked anymore for writeback (if a
3775 * subsequent modification to the extent buffer didn't happen before the
3776 * transaction commit), which makes filemap_fdata[write|wait]_range not
3777 * able to find the pages tagged with SetPageError at transaction
3778 * commit time. So if this happens we must abort the transaction,
3779 * otherwise we commit a super block with btree roots that point to
3780 * btree nodes/leafs whose content on disk is invalid - either garbage
3781 * or the content of some node/leaf from a past generation that got
3782 * cowed or deleted and is no longer valid.
3784 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3785 * not be enough - we need to distinguish between log tree extents vs
3786 * non-log tree extents, and the next filemap_fdatawait_range() call
3787 * will catch and clear such errors in the mapping - and that call might
3788 * be from a log sync and not from a transaction commit. Also, checking
3789 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3790 * not done and would not be reliable - the eb might have been released
3791 * from memory and reading it back again means that flag would not be
3792 * set (since it's a runtime flag, not persisted on disk).
3794 * Using the flags below in the btree inode also makes us achieve the
3795 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3796 * writeback for all dirty pages and before filemap_fdatawait_range()
3797 * is called, the writeback for all dirty pages had already finished
3798 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3799 * filemap_fdatawait_range() would return success, as it could not know
3800 * that writeback errors happened (the pages were no longer tagged for
3803 switch (eb->log_index) {
3805 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3808 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3811 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3814 BUG(); /* unexpected, logic error */
3818 static void end_bio_extent_buffer_writepage(struct bio *bio)
3820 struct bio_vec *bvec;
3821 struct extent_buffer *eb;
3824 bio_for_each_segment_all(bvec, bio, i) {
3825 struct page *page = bvec->bv_page;
3827 eb = (struct extent_buffer *)page->private;
3829 done = atomic_dec_and_test(&eb->io_pages);
3831 if (bio->bi_error ||
3832 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3833 ClearPageUptodate(page);
3834 set_btree_ioerr(page);
3837 end_page_writeback(page);
3842 end_extent_buffer_writeback(eb);
3848 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3849 struct btrfs_fs_info *fs_info,
3850 struct writeback_control *wbc,
3851 struct extent_page_data *epd)
3853 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3854 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3855 u64 offset = eb->start;
3856 unsigned long i, num_pages;
3857 unsigned long bio_flags = 0;
3858 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862 num_pages = num_extent_pages(eb->start, eb->len);
3863 atomic_set(&eb->io_pages, num_pages);
3864 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3865 bio_flags = EXTENT_BIO_TREE_LOG;
3867 for (i = 0; i < num_pages; i++) {
3868 struct page *p = eb->pages[i];
3870 clear_page_dirty_for_io(p);
3871 set_page_writeback(p);
3872 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3873 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3874 -1, end_bio_extent_buffer_writepage,
3875 0, epd->bio_flags, bio_flags, false);
3876 epd->bio_flags = bio_flags;
3879 end_page_writeback(p);
3880 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3881 end_extent_buffer_writeback(eb);
3885 offset += PAGE_CACHE_SIZE;
3886 update_nr_written(p, wbc, 1);
3890 if (unlikely(ret)) {
3891 for (; i < num_pages; i++) {
3892 struct page *p = eb->pages[i];
3893 clear_page_dirty_for_io(p);
3901 int btree_write_cache_pages(struct address_space *mapping,
3902 struct writeback_control *wbc)
3904 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3905 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3906 struct extent_buffer *eb, *prev_eb = NULL;
3907 struct extent_page_data epd = {
3911 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3916 int nr_to_write_done = 0;
3917 struct pagevec pvec;
3920 pgoff_t end; /* Inclusive */
3924 pagevec_init(&pvec, 0);
3925 if (wbc->range_cyclic) {
3926 index = mapping->writeback_index; /* Start from prev offset */
3929 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3930 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3933 if (wbc->sync_mode == WB_SYNC_ALL)
3934 tag = PAGECACHE_TAG_TOWRITE;
3936 tag = PAGECACHE_TAG_DIRTY;
3938 if (wbc->sync_mode == WB_SYNC_ALL)
3939 tag_pages_for_writeback(mapping, index, end);
3940 while (!done && !nr_to_write_done && (index <= end) &&
3941 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3942 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3946 for (i = 0; i < nr_pages; i++) {
3947 struct page *page = pvec.pages[i];
3949 if (!PagePrivate(page))
3952 if (!wbc->range_cyclic && page->index > end) {
3957 spin_lock(&mapping->private_lock);
3958 if (!PagePrivate(page)) {
3959 spin_unlock(&mapping->private_lock);
3963 eb = (struct extent_buffer *)page->private;
3966 * Shouldn't happen and normally this would be a BUG_ON
3967 * but no sense in crashing the users box for something
3968 * we can survive anyway.
3971 spin_unlock(&mapping->private_lock);
3975 if (eb == prev_eb) {
3976 spin_unlock(&mapping->private_lock);
3980 ret = atomic_inc_not_zero(&eb->refs);
3981 spin_unlock(&mapping->private_lock);
3986 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3988 free_extent_buffer(eb);
3992 ret = write_one_eb(eb, fs_info, wbc, &epd);
3995 free_extent_buffer(eb);
3998 free_extent_buffer(eb);
4001 * the filesystem may choose to bump up nr_to_write.
4002 * We have to make sure to honor the new nr_to_write
4005 nr_to_write_done = wbc->nr_to_write <= 0;
4007 pagevec_release(&pvec);
4010 if (!scanned && !done) {
4012 * We hit the last page and there is more work to be done: wrap
4013 * back to the start of the file
4019 flush_write_bio(&epd);
4024 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4025 * @mapping: address space structure to write
4026 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4027 * @writepage: function called for each page
4028 * @data: data passed to writepage function
4030 * If a page is already under I/O, write_cache_pages() skips it, even
4031 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4032 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4033 * and msync() need to guarantee that all the data which was dirty at the time
4034 * the call was made get new I/O started against them. If wbc->sync_mode is
4035 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4036 * existing IO to complete.
4038 static int extent_write_cache_pages(struct extent_io_tree *tree,
4039 struct address_space *mapping,
4040 struct writeback_control *wbc,
4041 writepage_t writepage, void *data,
4042 void (*flush_fn)(void *))
4044 struct inode *inode = mapping->host;
4048 int nr_to_write_done = 0;
4049 struct pagevec pvec;
4052 pgoff_t end; /* Inclusive */
4057 * We have to hold onto the inode so that ordered extents can do their
4058 * work when the IO finishes. The alternative to this is failing to add
4059 * an ordered extent if the igrab() fails there and that is a huge pain
4060 * to deal with, so instead just hold onto the inode throughout the
4061 * writepages operation. If it fails here we are freeing up the inode
4062 * anyway and we'd rather not waste our time writing out stuff that is
4063 * going to be truncated anyway.
4068 pagevec_init(&pvec, 0);
4069 if (wbc->range_cyclic) {
4070 index = mapping->writeback_index; /* Start from prev offset */
4073 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4074 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4077 if (wbc->sync_mode == WB_SYNC_ALL)
4078 tag = PAGECACHE_TAG_TOWRITE;
4080 tag = PAGECACHE_TAG_DIRTY;
4082 if (wbc->sync_mode == WB_SYNC_ALL)
4083 tag_pages_for_writeback(mapping, index, end);
4084 while (!done && !nr_to_write_done && (index <= end) &&
4085 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4086 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4090 for (i = 0; i < nr_pages; i++) {
4091 struct page *page = pvec.pages[i];
4094 * At this point we hold neither mapping->tree_lock nor
4095 * lock on the page itself: the page may be truncated or
4096 * invalidated (changing page->mapping to NULL), or even
4097 * swizzled back from swapper_space to tmpfs file
4100 if (!trylock_page(page)) {
4105 if (unlikely(page->mapping != mapping)) {
4110 if (!wbc->range_cyclic && page->index > end) {
4116 if (wbc->sync_mode != WB_SYNC_NONE) {
4117 if (PageWriteback(page))
4119 wait_on_page_writeback(page);
4122 if (PageWriteback(page) ||
4123 !clear_page_dirty_for_io(page)) {
4128 ret = (*writepage)(page, wbc, data);
4130 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4134 if (!err && ret < 0)
4138 * the filesystem may choose to bump up nr_to_write.
4139 * We have to make sure to honor the new nr_to_write
4142 nr_to_write_done = wbc->nr_to_write <= 0;
4144 pagevec_release(&pvec);
4147 if (!scanned && !done && !err) {
4149 * We hit the last page and there is more work to be done: wrap
4150 * back to the start of the file
4156 btrfs_add_delayed_iput(inode);
4160 static void flush_epd_write_bio(struct extent_page_data *epd)
4169 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4170 BUG_ON(ret < 0); /* -ENOMEM */
4175 static noinline void flush_write_bio(void *data)
4177 struct extent_page_data *epd = data;
4178 flush_epd_write_bio(epd);
4181 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4182 get_extent_t *get_extent,
4183 struct writeback_control *wbc)
4186 struct extent_page_data epd = {
4189 .get_extent = get_extent,
4191 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4195 ret = __extent_writepage(page, wbc, &epd);
4197 flush_epd_write_bio(&epd);
4201 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4202 u64 start, u64 end, get_extent_t *get_extent,
4206 struct address_space *mapping = inode->i_mapping;
4208 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4211 struct extent_page_data epd = {
4214 .get_extent = get_extent,
4216 .sync_io = mode == WB_SYNC_ALL,
4219 struct writeback_control wbc_writepages = {
4221 .nr_to_write = nr_pages * 2,
4222 .range_start = start,
4223 .range_end = end + 1,
4226 while (start <= end) {
4227 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4228 if (clear_page_dirty_for_io(page))
4229 ret = __extent_writepage(page, &wbc_writepages, &epd);
4231 if (tree->ops && tree->ops->writepage_end_io_hook)
4232 tree->ops->writepage_end_io_hook(page, start,
4233 start + PAGE_CACHE_SIZE - 1,
4237 page_cache_release(page);
4238 start += PAGE_CACHE_SIZE;
4241 flush_epd_write_bio(&epd);
4245 int extent_writepages(struct extent_io_tree *tree,
4246 struct address_space *mapping,
4247 get_extent_t *get_extent,
4248 struct writeback_control *wbc)
4251 struct extent_page_data epd = {
4254 .get_extent = get_extent,
4256 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4260 ret = extent_write_cache_pages(tree, mapping, wbc,
4261 __extent_writepage, &epd,
4263 flush_epd_write_bio(&epd);
4267 int extent_readpages(struct extent_io_tree *tree,
4268 struct address_space *mapping,
4269 struct list_head *pages, unsigned nr_pages,
4270 get_extent_t get_extent)
4272 struct bio *bio = NULL;
4274 unsigned long bio_flags = 0;
4275 struct page *pagepool[16];
4277 struct extent_map *em_cached = NULL;
4279 u64 prev_em_start = (u64)-1;
4281 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4282 page = list_entry(pages->prev, struct page, lru);
4284 prefetchw(&page->flags);
4285 list_del(&page->lru);
4286 if (add_to_page_cache_lru(page, mapping,
4287 page->index, GFP_NOFS)) {
4288 page_cache_release(page);
4292 pagepool[nr++] = page;
4293 if (nr < ARRAY_SIZE(pagepool))
4295 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4296 &bio, 0, &bio_flags, READ, &prev_em_start);
4300 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4301 &bio, 0, &bio_flags, READ, &prev_em_start);
4304 free_extent_map(em_cached);
4306 BUG_ON(!list_empty(pages));
4308 return submit_one_bio(READ, bio, 0, bio_flags);
4313 * basic invalidatepage code, this waits on any locked or writeback
4314 * ranges corresponding to the page, and then deletes any extent state
4315 * records from the tree
4317 int extent_invalidatepage(struct extent_io_tree *tree,
4318 struct page *page, unsigned long offset)
4320 struct extent_state *cached_state = NULL;
4321 u64 start = page_offset(page);
4322 u64 end = start + PAGE_CACHE_SIZE - 1;
4323 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4325 start += ALIGN(offset, blocksize);
4329 lock_extent_bits(tree, start, end, 0, &cached_state);
4330 wait_on_page_writeback(page);
4331 clear_extent_bit(tree, start, end,
4332 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4333 EXTENT_DO_ACCOUNTING,
4334 1, 1, &cached_state, GFP_NOFS);
4339 * a helper for releasepage, this tests for areas of the page that
4340 * are locked or under IO and drops the related state bits if it is safe
4343 static int try_release_extent_state(struct extent_map_tree *map,
4344 struct extent_io_tree *tree,
4345 struct page *page, gfp_t mask)
4347 u64 start = page_offset(page);
4348 u64 end = start + PAGE_CACHE_SIZE - 1;
4351 if (test_range_bit(tree, start, end,
4352 EXTENT_IOBITS, 0, NULL))
4355 if ((mask & GFP_NOFS) == GFP_NOFS)
4358 * at this point we can safely clear everything except the
4359 * locked bit and the nodatasum bit
4361 ret = clear_extent_bit(tree, start, end,
4362 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4365 /* if clear_extent_bit failed for enomem reasons,
4366 * we can't allow the release to continue.
4377 * a helper for releasepage. As long as there are no locked extents
4378 * in the range corresponding to the page, both state records and extent
4379 * map records are removed
4381 int try_release_extent_mapping(struct extent_map_tree *map,
4382 struct extent_io_tree *tree, struct page *page,
4385 struct extent_map *em;
4386 u64 start = page_offset(page);
4387 u64 end = start + PAGE_CACHE_SIZE - 1;
4389 if (gfpflags_allow_blocking(mask) &&
4390 page->mapping->host->i_size > 16 * 1024 * 1024) {
4392 while (start <= end) {
4393 len = end - start + 1;
4394 write_lock(&map->lock);
4395 em = lookup_extent_mapping(map, start, len);
4397 write_unlock(&map->lock);
4400 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4401 em->start != start) {
4402 write_unlock(&map->lock);
4403 free_extent_map(em);
4406 if (!test_range_bit(tree, em->start,
4407 extent_map_end(em) - 1,
4408 EXTENT_LOCKED | EXTENT_WRITEBACK,
4410 remove_extent_mapping(map, em);
4411 /* once for the rb tree */
4412 free_extent_map(em);
4414 start = extent_map_end(em);
4415 write_unlock(&map->lock);
4418 free_extent_map(em);
4421 return try_release_extent_state(map, tree, page, mask);
4425 * helper function for fiemap, which doesn't want to see any holes.
4426 * This maps until we find something past 'last'
4428 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4431 get_extent_t *get_extent)
4433 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4434 struct extent_map *em;
4441 len = last - offset;
4444 len = ALIGN(len, sectorsize);
4445 em = get_extent(inode, NULL, 0, offset, len, 0);
4446 if (IS_ERR_OR_NULL(em))
4449 /* if this isn't a hole return it */
4450 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4451 em->block_start != EXTENT_MAP_HOLE) {
4455 /* this is a hole, advance to the next extent */
4456 offset = extent_map_end(em);
4457 free_extent_map(em);
4464 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4465 __u64 start, __u64 len, get_extent_t *get_extent)
4469 u64 max = start + len;
4473 u64 last_for_get_extent = 0;
4475 u64 isize = i_size_read(inode);
4476 struct btrfs_key found_key;
4477 struct extent_map *em = NULL;
4478 struct extent_state *cached_state = NULL;
4479 struct btrfs_path *path;
4480 struct btrfs_root *root = BTRFS_I(inode)->root;
4489 path = btrfs_alloc_path();
4492 path->leave_spinning = 1;
4494 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4495 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4498 * lookup the last file extent. We're not using i_size here
4499 * because there might be preallocation past i_size
4501 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4504 btrfs_free_path(path);
4509 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4510 found_type = found_key.type;
4512 /* No extents, but there might be delalloc bits */
4513 if (found_key.objectid != btrfs_ino(inode) ||
4514 found_type != BTRFS_EXTENT_DATA_KEY) {
4515 /* have to trust i_size as the end */
4517 last_for_get_extent = isize;
4520 * remember the start of the last extent. There are a
4521 * bunch of different factors that go into the length of the
4522 * extent, so its much less complex to remember where it started
4524 last = found_key.offset;
4525 last_for_get_extent = last + 1;
4527 btrfs_release_path(path);
4530 * we might have some extents allocated but more delalloc past those
4531 * extents. so, we trust isize unless the start of the last extent is
4536 last_for_get_extent = isize;
4539 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4542 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4552 u64 offset_in_extent = 0;
4554 /* break if the extent we found is outside the range */
4555 if (em->start >= max || extent_map_end(em) < off)
4559 * get_extent may return an extent that starts before our
4560 * requested range. We have to make sure the ranges
4561 * we return to fiemap always move forward and don't
4562 * overlap, so adjust the offsets here
4564 em_start = max(em->start, off);
4567 * record the offset from the start of the extent
4568 * for adjusting the disk offset below. Only do this if the
4569 * extent isn't compressed since our in ram offset may be past
4570 * what we have actually allocated on disk.
4572 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4573 offset_in_extent = em_start - em->start;
4574 em_end = extent_map_end(em);
4575 em_len = em_end - em_start;
4580 * bump off for our next call to get_extent
4582 off = extent_map_end(em);
4586 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4588 flags |= FIEMAP_EXTENT_LAST;
4589 } else if (em->block_start == EXTENT_MAP_INLINE) {
4590 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4591 FIEMAP_EXTENT_NOT_ALIGNED);
4592 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4593 flags |= (FIEMAP_EXTENT_DELALLOC |
4594 FIEMAP_EXTENT_UNKNOWN);
4595 } else if (fieinfo->fi_extents_max) {
4596 u64 bytenr = em->block_start -
4597 (em->start - em->orig_start);
4599 disko = em->block_start + offset_in_extent;
4602 * As btrfs supports shared space, this information
4603 * can be exported to userspace tools via
4604 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4605 * then we're just getting a count and we can skip the
4608 ret = btrfs_check_shared(NULL, root->fs_info,
4610 btrfs_ino(inode), bytenr);
4614 flags |= FIEMAP_EXTENT_SHARED;
4617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4618 flags |= FIEMAP_EXTENT_ENCODED;
4619 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4620 flags |= FIEMAP_EXTENT_UNWRITTEN;
4622 free_extent_map(em);
4624 if ((em_start >= last) || em_len == (u64)-1 ||
4625 (last == (u64)-1 && isize <= em_end)) {
4626 flags |= FIEMAP_EXTENT_LAST;
4630 /* now scan forward to see if this is really the last extent. */
4631 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4638 flags |= FIEMAP_EXTENT_LAST;
4641 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4650 free_extent_map(em);
4652 btrfs_free_path(path);
4653 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4654 &cached_state, GFP_NOFS);
4658 static void __free_extent_buffer(struct extent_buffer *eb)
4660 btrfs_leak_debug_del(&eb->leak_list);
4661 kmem_cache_free(extent_buffer_cache, eb);
4664 int extent_buffer_under_io(struct extent_buffer *eb)
4666 return (atomic_read(&eb->io_pages) ||
4667 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4668 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4672 * Helper for releasing extent buffer page.
4674 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4676 unsigned long index;
4678 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4680 BUG_ON(extent_buffer_under_io(eb));
4682 index = num_extent_pages(eb->start, eb->len);
4688 page = eb->pages[index];
4692 spin_lock(&page->mapping->private_lock);
4694 * We do this since we'll remove the pages after we've
4695 * removed the eb from the radix tree, so we could race
4696 * and have this page now attached to the new eb. So
4697 * only clear page_private if it's still connected to
4700 if (PagePrivate(page) &&
4701 page->private == (unsigned long)eb) {
4702 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4703 BUG_ON(PageDirty(page));
4704 BUG_ON(PageWriteback(page));
4706 * We need to make sure we haven't be attached
4709 ClearPagePrivate(page);
4710 set_page_private(page, 0);
4711 /* One for the page private */
4712 page_cache_release(page);
4716 spin_unlock(&page->mapping->private_lock);
4718 /* One for when we alloced the page */
4719 page_cache_release(page);
4720 } while (index != 0);
4724 * Helper for releasing the extent buffer.
4726 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4728 btrfs_release_extent_buffer_page(eb);
4729 __free_extent_buffer(eb);
4732 static struct extent_buffer *
4733 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4736 struct extent_buffer *eb = NULL;
4738 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4741 eb->fs_info = fs_info;
4743 rwlock_init(&eb->lock);
4744 atomic_set(&eb->write_locks, 0);
4745 atomic_set(&eb->read_locks, 0);
4746 atomic_set(&eb->blocking_readers, 0);
4747 atomic_set(&eb->blocking_writers, 0);
4748 atomic_set(&eb->spinning_readers, 0);
4749 atomic_set(&eb->spinning_writers, 0);
4750 eb->lock_nested = 0;
4751 init_waitqueue_head(&eb->write_lock_wq);
4752 init_waitqueue_head(&eb->read_lock_wq);
4754 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4756 spin_lock_init(&eb->refs_lock);
4757 atomic_set(&eb->refs, 1);
4758 atomic_set(&eb->io_pages, 0);
4761 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4763 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4764 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4765 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4770 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4774 struct extent_buffer *new;
4775 unsigned long num_pages = num_extent_pages(src->start, src->len);
4777 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4781 for (i = 0; i < num_pages; i++) {
4782 p = alloc_page(GFP_NOFS);
4784 btrfs_release_extent_buffer(new);
4787 attach_extent_buffer_page(new, p);
4788 WARN_ON(PageDirty(p));
4793 copy_extent_buffer(new, src, 0, 0, src->len);
4794 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4795 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4800 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4803 struct extent_buffer *eb;
4805 unsigned long num_pages;
4810 * Called only from tests that don't always have a fs_info
4811 * available, but we know that nodesize is 4096
4815 len = fs_info->tree_root->nodesize;
4817 num_pages = num_extent_pages(0, len);
4819 eb = __alloc_extent_buffer(fs_info, start, len);
4823 for (i = 0; i < num_pages; i++) {
4824 eb->pages[i] = alloc_page(GFP_NOFS);
4828 set_extent_buffer_uptodate(eb);
4829 btrfs_set_header_nritems(eb, 0);
4830 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4835 __free_page(eb->pages[i - 1]);
4836 __free_extent_buffer(eb);
4840 static void check_buffer_tree_ref(struct extent_buffer *eb)
4843 /* the ref bit is tricky. We have to make sure it is set
4844 * if we have the buffer dirty. Otherwise the
4845 * code to free a buffer can end up dropping a dirty
4848 * Once the ref bit is set, it won't go away while the
4849 * buffer is dirty or in writeback, and it also won't
4850 * go away while we have the reference count on the
4853 * We can't just set the ref bit without bumping the
4854 * ref on the eb because free_extent_buffer might
4855 * see the ref bit and try to clear it. If this happens
4856 * free_extent_buffer might end up dropping our original
4857 * ref by mistake and freeing the page before we are able
4858 * to add one more ref.
4860 * So bump the ref count first, then set the bit. If someone
4861 * beat us to it, drop the ref we added.
4863 refs = atomic_read(&eb->refs);
4864 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4867 spin_lock(&eb->refs_lock);
4868 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4869 atomic_inc(&eb->refs);
4870 spin_unlock(&eb->refs_lock);
4873 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4874 struct page *accessed)
4876 unsigned long num_pages, i;
4878 check_buffer_tree_ref(eb);
4880 num_pages = num_extent_pages(eb->start, eb->len);
4881 for (i = 0; i < num_pages; i++) {
4882 struct page *p = eb->pages[i];
4885 mark_page_accessed(p);
4889 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4892 struct extent_buffer *eb;
4895 eb = radix_tree_lookup(&fs_info->buffer_radix,
4896 start >> PAGE_CACHE_SHIFT);
4897 if (eb && atomic_inc_not_zero(&eb->refs)) {
4900 * Lock our eb's refs_lock to avoid races with
4901 * free_extent_buffer. When we get our eb it might be flagged
4902 * with EXTENT_BUFFER_STALE and another task running
4903 * free_extent_buffer might have seen that flag set,
4904 * eb->refs == 2, that the buffer isn't under IO (dirty and
4905 * writeback flags not set) and it's still in the tree (flag
4906 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4907 * of decrementing the extent buffer's reference count twice.
4908 * So here we could race and increment the eb's reference count,
4909 * clear its stale flag, mark it as dirty and drop our reference
4910 * before the other task finishes executing free_extent_buffer,
4911 * which would later result in an attempt to free an extent
4912 * buffer that is dirty.
4914 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4915 spin_lock(&eb->refs_lock);
4916 spin_unlock(&eb->refs_lock);
4918 mark_extent_buffer_accessed(eb, NULL);
4926 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4927 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4930 struct extent_buffer *eb, *exists = NULL;
4933 eb = find_extent_buffer(fs_info, start);
4936 eb = alloc_dummy_extent_buffer(fs_info, start);
4939 eb->fs_info = fs_info;
4941 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4944 spin_lock(&fs_info->buffer_lock);
4945 ret = radix_tree_insert(&fs_info->buffer_radix,
4946 start >> PAGE_CACHE_SHIFT, eb);
4947 spin_unlock(&fs_info->buffer_lock);
4948 radix_tree_preload_end();
4949 if (ret == -EEXIST) {
4950 exists = find_extent_buffer(fs_info, start);
4956 check_buffer_tree_ref(eb);
4957 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4960 * We will free dummy extent buffer's if they come into
4961 * free_extent_buffer with a ref count of 2, but if we are using this we
4962 * want the buffers to stay in memory until we're done with them, so
4963 * bump the ref count again.
4965 atomic_inc(&eb->refs);
4968 btrfs_release_extent_buffer(eb);
4973 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4976 unsigned long len = fs_info->tree_root->nodesize;
4977 unsigned long num_pages = num_extent_pages(start, len);
4979 unsigned long index = start >> PAGE_CACHE_SHIFT;
4980 struct extent_buffer *eb;
4981 struct extent_buffer *exists = NULL;
4983 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4987 eb = find_extent_buffer(fs_info, start);
4991 eb = __alloc_extent_buffer(fs_info, start, len);
4995 for (i = 0; i < num_pages; i++, index++) {
4996 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5000 spin_lock(&mapping->private_lock);
5001 if (PagePrivate(p)) {
5003 * We could have already allocated an eb for this page
5004 * and attached one so lets see if we can get a ref on
5005 * the existing eb, and if we can we know it's good and
5006 * we can just return that one, else we know we can just
5007 * overwrite page->private.
5009 exists = (struct extent_buffer *)p->private;
5010 if (atomic_inc_not_zero(&exists->refs)) {
5011 spin_unlock(&mapping->private_lock);
5013 page_cache_release(p);
5014 mark_extent_buffer_accessed(exists, p);
5020 * Do this so attach doesn't complain and we need to
5021 * drop the ref the old guy had.
5023 ClearPagePrivate(p);
5024 WARN_ON(PageDirty(p));
5025 page_cache_release(p);
5027 attach_extent_buffer_page(eb, p);
5028 spin_unlock(&mapping->private_lock);
5029 WARN_ON(PageDirty(p));
5031 if (!PageUptodate(p))
5035 * see below about how we avoid a nasty race with release page
5036 * and why we unlock later
5040 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5042 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5046 spin_lock(&fs_info->buffer_lock);
5047 ret = radix_tree_insert(&fs_info->buffer_radix,
5048 start >> PAGE_CACHE_SHIFT, eb);
5049 spin_unlock(&fs_info->buffer_lock);
5050 radix_tree_preload_end();
5051 if (ret == -EEXIST) {
5052 exists = find_extent_buffer(fs_info, start);
5058 /* add one reference for the tree */
5059 check_buffer_tree_ref(eb);
5060 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5063 * there is a race where release page may have
5064 * tried to find this extent buffer in the radix
5065 * but failed. It will tell the VM it is safe to
5066 * reclaim the, and it will clear the page private bit.
5067 * We must make sure to set the page private bit properly
5068 * after the extent buffer is in the radix tree so
5069 * it doesn't get lost
5071 SetPageChecked(eb->pages[0]);
5072 for (i = 1; i < num_pages; i++) {
5074 ClearPageChecked(p);
5077 unlock_page(eb->pages[0]);
5081 WARN_ON(!atomic_dec_and_test(&eb->refs));
5082 for (i = 0; i < num_pages; i++) {
5084 unlock_page(eb->pages[i]);
5087 btrfs_release_extent_buffer(eb);
5091 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5093 struct extent_buffer *eb =
5094 container_of(head, struct extent_buffer, rcu_head);
5096 __free_extent_buffer(eb);
5099 /* Expects to have eb->eb_lock already held */
5100 static int release_extent_buffer(struct extent_buffer *eb)
5102 WARN_ON(atomic_read(&eb->refs) == 0);
5103 if (atomic_dec_and_test(&eb->refs)) {
5104 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5105 struct btrfs_fs_info *fs_info = eb->fs_info;
5107 spin_unlock(&eb->refs_lock);
5109 spin_lock(&fs_info->buffer_lock);
5110 radix_tree_delete(&fs_info->buffer_radix,
5111 eb->start >> PAGE_CACHE_SHIFT);
5112 spin_unlock(&fs_info->buffer_lock);
5114 spin_unlock(&eb->refs_lock);
5117 /* Should be safe to release our pages at this point */
5118 btrfs_release_extent_buffer_page(eb);
5119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5120 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5121 __free_extent_buffer(eb);
5125 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5128 spin_unlock(&eb->refs_lock);
5133 void free_extent_buffer(struct extent_buffer *eb)
5141 refs = atomic_read(&eb->refs);
5144 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5149 spin_lock(&eb->refs_lock);
5150 if (atomic_read(&eb->refs) == 2 &&
5151 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5152 atomic_dec(&eb->refs);
5154 if (atomic_read(&eb->refs) == 2 &&
5155 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5156 !extent_buffer_under_io(eb) &&
5157 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5158 atomic_dec(&eb->refs);
5161 * I know this is terrible, but it's temporary until we stop tracking
5162 * the uptodate bits and such for the extent buffers.
5164 release_extent_buffer(eb);
5167 void free_extent_buffer_stale(struct extent_buffer *eb)
5172 spin_lock(&eb->refs_lock);
5173 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5175 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5176 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5177 atomic_dec(&eb->refs);
5178 release_extent_buffer(eb);
5181 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5184 unsigned long num_pages;
5187 num_pages = num_extent_pages(eb->start, eb->len);
5189 for (i = 0; i < num_pages; i++) {
5190 page = eb->pages[i];
5191 if (!PageDirty(page))
5195 WARN_ON(!PagePrivate(page));
5197 clear_page_dirty_for_io(page);
5198 spin_lock_irq(&page->mapping->tree_lock);
5199 if (!PageDirty(page)) {
5200 radix_tree_tag_clear(&page->mapping->page_tree,
5202 PAGECACHE_TAG_DIRTY);
5204 spin_unlock_irq(&page->mapping->tree_lock);
5205 ClearPageError(page);
5208 WARN_ON(atomic_read(&eb->refs) == 0);
5211 int set_extent_buffer_dirty(struct extent_buffer *eb)
5214 unsigned long num_pages;
5217 check_buffer_tree_ref(eb);
5219 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5221 num_pages = num_extent_pages(eb->start, eb->len);
5222 WARN_ON(atomic_read(&eb->refs) == 0);
5223 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5225 for (i = 0; i < num_pages; i++)
5226 set_page_dirty(eb->pages[i]);
5230 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5234 unsigned long num_pages;
5236 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5237 num_pages = num_extent_pages(eb->start, eb->len);
5238 for (i = 0; i < num_pages; i++) {
5239 page = eb->pages[i];
5241 ClearPageUptodate(page);
5246 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5250 unsigned long num_pages;
5252 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5253 num_pages = num_extent_pages(eb->start, eb->len);
5254 for (i = 0; i < num_pages; i++) {
5255 page = eb->pages[i];
5256 SetPageUptodate(page);
5261 int extent_buffer_uptodate(struct extent_buffer *eb)
5263 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5266 int read_extent_buffer_pages(struct extent_io_tree *tree,
5267 struct extent_buffer *eb, u64 start, int wait,
5268 get_extent_t *get_extent, int mirror_num)
5271 unsigned long start_i;
5275 int locked_pages = 0;
5276 int all_uptodate = 1;
5277 unsigned long num_pages;
5278 unsigned long num_reads = 0;
5279 struct bio *bio = NULL;
5280 unsigned long bio_flags = 0;
5282 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5286 WARN_ON(start < eb->start);
5287 start_i = (start >> PAGE_CACHE_SHIFT) -
5288 (eb->start >> PAGE_CACHE_SHIFT);
5293 num_pages = num_extent_pages(eb->start, eb->len);
5294 for (i = start_i; i < num_pages; i++) {
5295 page = eb->pages[i];
5296 if (wait == WAIT_NONE) {
5297 if (!trylock_page(page))
5303 if (!PageUptodate(page)) {
5310 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5314 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5315 eb->read_mirror = 0;
5316 atomic_set(&eb->io_pages, num_reads);
5317 for (i = start_i; i < num_pages; i++) {
5318 page = eb->pages[i];
5319 if (!PageUptodate(page)) {
5320 ClearPageError(page);
5321 err = __extent_read_full_page(tree, page,
5323 mirror_num, &bio_flags,
5333 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5339 if (ret || wait != WAIT_COMPLETE)
5342 for (i = start_i; i < num_pages; i++) {
5343 page = eb->pages[i];
5344 wait_on_page_locked(page);
5345 if (!PageUptodate(page))
5353 while (locked_pages > 0) {
5354 page = eb->pages[i];
5362 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5363 unsigned long start,
5370 char *dst = (char *)dstv;
5371 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5372 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5374 WARN_ON(start > eb->len);
5375 WARN_ON(start + len > eb->start + eb->len);
5377 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5380 page = eb->pages[i];
5382 cur = min(len, (PAGE_CACHE_SIZE - offset));
5383 kaddr = page_address(page);
5384 memcpy(dst, kaddr + offset, cur);
5393 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5394 unsigned long start,
5401 char __user *dst = (char __user *)dstv;
5402 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5403 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5406 WARN_ON(start > eb->len);
5407 WARN_ON(start + len > eb->start + eb->len);
5409 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5412 page = eb->pages[i];
5414 cur = min(len, (PAGE_CACHE_SIZE - offset));
5415 kaddr = page_address(page);
5416 if (copy_to_user(dst, kaddr + offset, cur)) {
5430 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5431 unsigned long min_len, char **map,
5432 unsigned long *map_start,
5433 unsigned long *map_len)
5435 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5438 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5439 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5440 unsigned long end_i = (start_offset + start + min_len - 1) >>
5447 offset = start_offset;
5451 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5454 if (start + min_len > eb->len) {
5455 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5457 eb->start, eb->len, start, min_len);
5462 kaddr = page_address(p);
5463 *map = kaddr + offset;
5464 *map_len = PAGE_CACHE_SIZE - offset;
5468 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5469 unsigned long start,
5476 char *ptr = (char *)ptrv;
5477 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5478 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5481 WARN_ON(start > eb->len);
5482 WARN_ON(start + len > eb->start + eb->len);
5484 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5487 page = eb->pages[i];
5489 cur = min(len, (PAGE_CACHE_SIZE - offset));
5491 kaddr = page_address(page);
5492 ret = memcmp(ptr, kaddr + offset, cur);
5504 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5505 unsigned long start, unsigned long len)
5511 char *src = (char *)srcv;
5512 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5513 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5515 WARN_ON(start > eb->len);
5516 WARN_ON(start + len > eb->start + eb->len);
5518 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5521 page = eb->pages[i];
5522 WARN_ON(!PageUptodate(page));
5524 cur = min(len, PAGE_CACHE_SIZE - offset);
5525 kaddr = page_address(page);
5526 memcpy(kaddr + offset, src, cur);
5535 void memset_extent_buffer(struct extent_buffer *eb, char c,
5536 unsigned long start, unsigned long len)
5542 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5543 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5545 WARN_ON(start > eb->len);
5546 WARN_ON(start + len > eb->start + eb->len);
5548 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5551 page = eb->pages[i];
5552 WARN_ON(!PageUptodate(page));
5554 cur = min(len, PAGE_CACHE_SIZE - offset);
5555 kaddr = page_address(page);
5556 memset(kaddr + offset, c, cur);
5564 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5565 unsigned long dst_offset, unsigned long src_offset,
5568 u64 dst_len = dst->len;
5573 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5574 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5576 WARN_ON(src->len != dst_len);
5578 offset = (start_offset + dst_offset) &
5579 (PAGE_CACHE_SIZE - 1);
5582 page = dst->pages[i];
5583 WARN_ON(!PageUptodate(page));
5585 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5587 kaddr = page_address(page);
5588 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5597 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5599 unsigned long distance = (src > dst) ? src - dst : dst - src;
5600 return distance < len;
5603 static void copy_pages(struct page *dst_page, struct page *src_page,
5604 unsigned long dst_off, unsigned long src_off,
5607 char *dst_kaddr = page_address(dst_page);
5609 int must_memmove = 0;
5611 if (dst_page != src_page) {
5612 src_kaddr = page_address(src_page);
5614 src_kaddr = dst_kaddr;
5615 if (areas_overlap(src_off, dst_off, len))
5620 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5622 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5625 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5626 unsigned long src_offset, unsigned long len)
5629 size_t dst_off_in_page;
5630 size_t src_off_in_page;
5631 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5632 unsigned long dst_i;
5633 unsigned long src_i;
5635 if (src_offset + len > dst->len) {
5636 btrfs_err(dst->fs_info,
5637 "memmove bogus src_offset %lu move "
5638 "len %lu dst len %lu", src_offset, len, dst->len);
5641 if (dst_offset + len > dst->len) {
5642 btrfs_err(dst->fs_info,
5643 "memmove bogus dst_offset %lu move "
5644 "len %lu dst len %lu", dst_offset, len, dst->len);
5649 dst_off_in_page = (start_offset + dst_offset) &
5650 (PAGE_CACHE_SIZE - 1);
5651 src_off_in_page = (start_offset + src_offset) &
5652 (PAGE_CACHE_SIZE - 1);
5654 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5655 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5657 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5659 cur = min_t(unsigned long, cur,
5660 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5662 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5663 dst_off_in_page, src_off_in_page, cur);
5671 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5672 unsigned long src_offset, unsigned long len)
5675 size_t dst_off_in_page;
5676 size_t src_off_in_page;
5677 unsigned long dst_end = dst_offset + len - 1;
5678 unsigned long src_end = src_offset + len - 1;
5679 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5680 unsigned long dst_i;
5681 unsigned long src_i;
5683 if (src_offset + len > dst->len) {
5684 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5685 "len %lu len %lu", src_offset, len, dst->len);
5688 if (dst_offset + len > dst->len) {
5689 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5690 "len %lu len %lu", dst_offset, len, dst->len);
5693 if (dst_offset < src_offset) {
5694 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5698 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5699 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5701 dst_off_in_page = (start_offset + dst_end) &
5702 (PAGE_CACHE_SIZE - 1);
5703 src_off_in_page = (start_offset + src_end) &
5704 (PAGE_CACHE_SIZE - 1);
5706 cur = min_t(unsigned long, len, src_off_in_page + 1);
5707 cur = min(cur, dst_off_in_page + 1);
5708 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5709 dst_off_in_page - cur + 1,
5710 src_off_in_page - cur + 1, cur);
5718 int try_release_extent_buffer(struct page *page)
5720 struct extent_buffer *eb;
5723 * We need to make sure noboody is attaching this page to an eb right
5726 spin_lock(&page->mapping->private_lock);
5727 if (!PagePrivate(page)) {
5728 spin_unlock(&page->mapping->private_lock);
5732 eb = (struct extent_buffer *)page->private;
5736 * This is a little awful but should be ok, we need to make sure that
5737 * the eb doesn't disappear out from under us while we're looking at
5740 spin_lock(&eb->refs_lock);
5741 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5742 spin_unlock(&eb->refs_lock);
5743 spin_unlock(&page->mapping->private_lock);
5746 spin_unlock(&page->mapping->private_lock);
5749 * If tree ref isn't set then we know the ref on this eb is a real ref,
5750 * so just return, this page will likely be freed soon anyway.
5752 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5753 spin_unlock(&eb->refs_lock);
5757 return release_extent_buffer(eb);