1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1994 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/memory-tiers.h>
35 #include <asm/cacheflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
42 static inline bool can_change_pte_writable(struct vm_area_struct *vma,
43 unsigned long addr, pte_t pte)
47 VM_BUG_ON(!(vma->vm_flags & VM_WRITE) || pte_write(pte));
49 if (pte_protnone(pte) || !pte_dirty(pte))
52 /* Do we need write faults for softdirty tracking? */
53 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
56 /* Do we need write faults for uffd-wp tracking? */
57 if (userfaultfd_pte_wp(vma, pte))
60 if (!(vma->vm_flags & VM_SHARED)) {
62 * We can only special-case on exclusive anonymous pages,
63 * because we know that our write-fault handler similarly would
64 * map them writable without any additional checks while holding
67 page = vm_normal_page(vma, addr, pte);
68 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
75 static unsigned long change_pte_range(struct mmu_gather *tlb,
76 struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
77 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
81 unsigned long pages = 0;
82 int target_node = NUMA_NO_NODE;
83 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
84 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
85 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
87 tlb_change_page_size(tlb, PAGE_SIZE);
90 * Can be called with only the mmap_lock for reading by
91 * prot_numa so we must check the pmd isn't constantly
92 * changing from under us from pmd_none to pmd_trans_huge
93 * and/or the other way around.
95 if (pmd_trans_unstable(pmd))
99 * The pmd points to a regular pte so the pmd can't change
100 * from under us even if the mmap_lock is only hold for
103 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
105 /* Get target node for single threaded private VMAs */
106 if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
107 atomic_read(&vma->vm_mm->mm_users) == 1)
108 target_node = numa_node_id();
110 flush_tlb_batched_pending(vma->vm_mm);
111 arch_enter_lazy_mmu_mode();
114 if (pte_present(oldpte)) {
116 bool preserve_write = prot_numa && pte_write(oldpte);
119 * Avoid trapping faults against the zero or KSM
120 * pages. See similar comment in change_huge_pmd.
127 /* Avoid TLB flush if possible */
128 if (pte_protnone(oldpte))
131 page = vm_normal_page(vma, addr, oldpte);
132 if (!page || is_zone_device_page(page) || PageKsm(page))
135 /* Also skip shared copy-on-write pages */
136 if (is_cow_mapping(vma->vm_flags) &&
137 page_count(page) != 1)
141 * While migration can move some dirty pages,
142 * it cannot move them all from MIGRATE_ASYNC
145 if (page_is_file_lru(page) && PageDirty(page))
149 * Don't mess with PTEs if page is already on the node
150 * a single-threaded process is running on.
152 nid = page_to_nid(page);
153 if (target_node == nid)
155 toptier = node_is_toptier(nid);
158 * Skip scanning top tier node if normal numa
159 * balancing is disabled
161 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
164 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
166 xchg_page_access_time(page,
167 jiffies_to_msecs(jiffies));
170 oldpte = ptep_modify_prot_start(vma, addr, pte);
171 ptent = pte_modify(oldpte, newprot);
173 ptent = pte_mk_savedwrite(ptent);
176 ptent = pte_wrprotect(ptent);
177 ptent = pte_mkuffd_wp(ptent);
178 } else if (uffd_wp_resolve) {
179 ptent = pte_clear_uffd_wp(ptent);
183 * In some writable, shared mappings, we might want
184 * to catch actual write access -- see
185 * vma_wants_writenotify().
187 * In all writable, private mappings, we have to
188 * properly handle COW.
190 * In both cases, we can sometimes still change PTEs
191 * writable and avoid the write-fault handler, for
192 * example, if a PTE is already dirty and no other
193 * COW or special handling is required.
195 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
197 can_change_pte_writable(vma, addr, ptent))
198 ptent = pte_mkwrite(ptent);
200 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
201 if (pte_needs_flush(oldpte, ptent))
202 tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
204 } else if (is_swap_pte(oldpte)) {
205 swp_entry_t entry = pte_to_swp_entry(oldpte);
208 if (is_writable_migration_entry(entry)) {
209 struct page *page = pfn_swap_entry_to_page(entry);
212 * A protection check is difficult so
213 * just be safe and disable write
216 entry = make_readable_exclusive_migration_entry(
219 entry = make_readable_migration_entry(swp_offset(entry));
220 newpte = swp_entry_to_pte(entry);
221 if (pte_swp_soft_dirty(oldpte))
222 newpte = pte_swp_mksoft_dirty(newpte);
223 if (pte_swp_uffd_wp(oldpte))
224 newpte = pte_swp_mkuffd_wp(newpte);
225 } else if (is_writable_device_private_entry(entry)) {
227 * We do not preserve soft-dirtiness. See
228 * copy_one_pte() for explanation.
230 entry = make_readable_device_private_entry(
232 newpte = swp_entry_to_pte(entry);
233 if (pte_swp_uffd_wp(oldpte))
234 newpte = pte_swp_mkuffd_wp(newpte);
235 } else if (is_writable_device_exclusive_entry(entry)) {
236 entry = make_readable_device_exclusive_entry(
238 newpte = swp_entry_to_pte(entry);
239 if (pte_swp_soft_dirty(oldpte))
240 newpte = pte_swp_mksoft_dirty(newpte);
241 if (pte_swp_uffd_wp(oldpte))
242 newpte = pte_swp_mkuffd_wp(newpte);
243 } else if (pte_marker_entry_uffd_wp(entry)) {
245 * If this is uffd-wp pte marker and we'd like
246 * to unprotect it, drop it; the next page
247 * fault will trigger without uffd trapping.
249 if (uffd_wp_resolve) {
250 pte_clear(vma->vm_mm, addr, pte);
259 newpte = pte_swp_mkuffd_wp(newpte);
260 else if (uffd_wp_resolve)
261 newpte = pte_swp_clear_uffd_wp(newpte);
263 if (!pte_same(oldpte, newpte)) {
264 set_pte_at(vma->vm_mm, addr, pte, newpte);
268 /* It must be an none page, or what else?.. */
269 WARN_ON_ONCE(!pte_none(oldpte));
270 if (unlikely(uffd_wp && !vma_is_anonymous(vma))) {
272 * For file-backed mem, we need to be able to
273 * wr-protect a none pte, because even if the
274 * pte is none, the page/swap cache could
275 * exist. Doing that by install a marker.
277 set_pte_at(vma->vm_mm, addr, pte,
278 make_pte_marker(PTE_MARKER_UFFD_WP));
282 } while (pte++, addr += PAGE_SIZE, addr != end);
283 arch_leave_lazy_mmu_mode();
284 pte_unmap_unlock(pte - 1, ptl);
290 * Used when setting automatic NUMA hinting protection where it is
291 * critical that a numa hinting PMD is not confused with a bad PMD.
293 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
295 pmd_t pmdval = pmd_read_atomic(pmd);
297 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
302 if (pmd_none(pmdval))
304 if (pmd_trans_huge(pmdval))
306 if (unlikely(pmd_bad(pmdval))) {
314 /* Return true if we're uffd wr-protecting file-backed memory, or false */
316 uffd_wp_protect_file(struct vm_area_struct *vma, unsigned long cp_flags)
318 return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
322 * If wr-protecting the range for file-backed, populate pgtable for the case
323 * when pgtable is empty but page cache exists. When {pte|pmd|...}_alloc()
324 * failed it means no memory, we don't have a better option but stop.
326 #define change_pmd_prepare(vma, pmd, cp_flags) \
328 if (unlikely(uffd_wp_protect_file(vma, cp_flags))) { \
329 if (WARN_ON_ONCE(pte_alloc(vma->vm_mm, pmd))) \
334 * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
335 * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
336 * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
338 #define change_prepare(vma, high, low, addr, cp_flags) \
340 if (unlikely(uffd_wp_protect_file(vma, cp_flags))) { \
341 low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
342 if (WARN_ON_ONCE(p == NULL)) \
347 static inline unsigned long change_pmd_range(struct mmu_gather *tlb,
348 struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
349 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
353 unsigned long pages = 0;
354 unsigned long nr_huge_updates = 0;
355 struct mmu_notifier_range range;
359 pmd = pmd_offset(pud, addr);
361 unsigned long this_pages;
363 next = pmd_addr_end(addr, end);
365 change_pmd_prepare(vma, pmd, cp_flags);
367 * Automatic NUMA balancing walks the tables with mmap_lock
368 * held for read. It's possible a parallel update to occur
369 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
370 * check leading to a false positive and clearing.
371 * Hence, it's necessary to atomically read the PMD value
372 * for all the checks.
374 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
375 pmd_none_or_clear_bad_unless_trans_huge(pmd))
378 /* invoke the mmu notifier if the pmd is populated */
380 mmu_notifier_range_init(&range,
381 MMU_NOTIFY_PROTECTION_VMA, 0,
382 vma, vma->vm_mm, addr, end);
383 mmu_notifier_invalidate_range_start(&range);
386 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
387 if ((next - addr != HPAGE_PMD_SIZE) ||
388 uffd_wp_protect_file(vma, cp_flags)) {
389 __split_huge_pmd(vma, pmd, addr, false, NULL);
391 * For file-backed, the pmd could have been
392 * cleared; make sure pmd populated if
393 * necessary, then fall-through to pte level.
395 change_pmd_prepare(vma, pmd, cp_flags);
398 * change_huge_pmd() does not defer TLB flushes,
399 * so no need to propagate the tlb argument.
401 int nr_ptes = change_huge_pmd(tlb, vma, pmd,
402 addr, newprot, cp_flags);
405 if (nr_ptes == HPAGE_PMD_NR) {
406 pages += HPAGE_PMD_NR;
410 /* huge pmd was handled */
414 /* fall through, the trans huge pmd just split */
416 this_pages = change_pte_range(tlb, vma, pmd, addr, next,
421 } while (pmd++, addr = next, addr != end);
424 mmu_notifier_invalidate_range_end(&range);
427 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
431 static inline unsigned long change_pud_range(struct mmu_gather *tlb,
432 struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
433 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
437 unsigned long pages = 0;
439 pud = pud_offset(p4d, addr);
441 next = pud_addr_end(addr, end);
442 change_prepare(vma, pud, pmd, addr, cp_flags);
443 if (pud_none_or_clear_bad(pud))
445 pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
447 } while (pud++, addr = next, addr != end);
452 static inline unsigned long change_p4d_range(struct mmu_gather *tlb,
453 struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
454 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
458 unsigned long pages = 0;
460 p4d = p4d_offset(pgd, addr);
462 next = p4d_addr_end(addr, end);
463 change_prepare(vma, p4d, pud, addr, cp_flags);
464 if (p4d_none_or_clear_bad(p4d))
466 pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
468 } while (p4d++, addr = next, addr != end);
473 static unsigned long change_protection_range(struct mmu_gather *tlb,
474 struct vm_area_struct *vma, unsigned long addr,
475 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
477 struct mm_struct *mm = vma->vm_mm;
480 unsigned long pages = 0;
483 pgd = pgd_offset(mm, addr);
484 tlb_start_vma(tlb, vma);
486 next = pgd_addr_end(addr, end);
487 change_prepare(vma, pgd, p4d, addr, cp_flags);
488 if (pgd_none_or_clear_bad(pgd))
490 pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
492 } while (pgd++, addr = next, addr != end);
494 tlb_end_vma(tlb, vma);
499 unsigned long change_protection(struct mmu_gather *tlb,
500 struct vm_area_struct *vma, unsigned long start,
501 unsigned long end, pgprot_t newprot,
502 unsigned long cp_flags)
506 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
508 if (is_vm_hugetlb_page(vma))
509 pages = hugetlb_change_protection(vma, start, end, newprot,
512 pages = change_protection_range(tlb, vma, start, end, newprot,
518 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
519 unsigned long next, struct mm_walk *walk)
521 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
525 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long next,
527 struct mm_walk *walk)
529 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
533 static int prot_none_test(unsigned long addr, unsigned long next,
534 struct mm_walk *walk)
539 static const struct mm_walk_ops prot_none_walk_ops = {
540 .pte_entry = prot_none_pte_entry,
541 .hugetlb_entry = prot_none_hugetlb_entry,
542 .test_walk = prot_none_test,
546 mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
547 struct vm_area_struct **pprev, unsigned long start,
548 unsigned long end, unsigned long newflags)
550 struct mm_struct *mm = vma->vm_mm;
551 unsigned long oldflags = vma->vm_flags;
552 long nrpages = (end - start) >> PAGE_SHIFT;
553 unsigned long charged = 0;
554 bool try_change_writable;
558 if (newflags == oldflags) {
564 * Do PROT_NONE PFN permission checks here when we can still
565 * bail out without undoing a lot of state. This is a rather
566 * uncommon case, so doesn't need to be very optimized.
568 if (arch_has_pfn_modify_check() &&
569 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
570 (newflags & VM_ACCESS_FLAGS) == 0) {
571 pgprot_t new_pgprot = vm_get_page_prot(newflags);
573 error = walk_page_range(current->mm, start, end,
574 &prot_none_walk_ops, &new_pgprot);
580 * If we make a private mapping writable we increase our commit;
581 * but (without finer accounting) cannot reduce our commit if we
582 * make it unwritable again. hugetlb mapping were accounted for
583 * even if read-only so there is no need to account for them here
585 if (newflags & VM_WRITE) {
586 /* Check space limits when area turns into data. */
587 if (!may_expand_vm(mm, newflags, nrpages) &&
588 may_expand_vm(mm, oldflags, nrpages))
590 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
591 VM_SHARED|VM_NORESERVE))) {
593 if (security_vm_enough_memory_mm(mm, charged))
595 newflags |= VM_ACCOUNT;
600 * First try to merge with previous and/or next vma.
602 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
603 *pprev = vma_merge(mm, *pprev, start, end, newflags,
604 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
605 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
608 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
614 if (start != vma->vm_start) {
615 error = split_vma(mm, vma, start, 1);
620 if (end != vma->vm_end) {
621 error = split_vma(mm, vma, end, 0);
628 * vm_flags and vm_page_prot are protected by the mmap_lock
629 * held in write mode.
631 vma->vm_flags = newflags;
633 * We want to check manually if we can change individual PTEs writable
634 * if we can't do that automatically for all PTEs in a mapping. For
635 * private mappings, that's always the case when we have write
636 * permissions as we properly have to handle COW.
638 if (vma->vm_flags & VM_SHARED)
639 try_change_writable = vma_wants_writenotify(vma, vma->vm_page_prot);
641 try_change_writable = !!(vma->vm_flags & VM_WRITE);
642 vma_set_page_prot(vma);
644 change_protection(tlb, vma, start, end, vma->vm_page_prot,
645 try_change_writable ? MM_CP_TRY_CHANGE_WRITABLE : 0);
648 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
651 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
652 (newflags & VM_WRITE)) {
653 populate_vma_page_range(vma, start, end, NULL);
656 vm_stat_account(mm, oldflags, -nrpages);
657 vm_stat_account(mm, newflags, nrpages);
658 perf_event_mmap(vma);
662 vm_unacct_memory(charged);
667 * pkey==-1 when doing a legacy mprotect()
669 static int do_mprotect_pkey(unsigned long start, size_t len,
670 unsigned long prot, int pkey)
672 unsigned long nstart, end, tmp, reqprot;
673 struct vm_area_struct *vma, *prev;
675 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
676 const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
678 struct mmu_gather tlb;
679 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
681 start = untagged_addr(start);
683 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
684 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
687 if (start & ~PAGE_MASK)
691 len = PAGE_ALIGN(len);
695 if (!arch_validate_prot(prot, start))
700 if (mmap_write_lock_killable(current->mm))
704 * If userspace did not allocate the pkey, do not let
708 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
711 mas_set(&mas, start);
712 vma = mas_find(&mas, ULONG_MAX);
717 if (unlikely(grows & PROT_GROWSDOWN)) {
718 if (vma->vm_start >= end)
720 start = vma->vm_start;
722 if (!(vma->vm_flags & VM_GROWSDOWN))
725 if (vma->vm_start > start)
727 if (unlikely(grows & PROT_GROWSUP)) {
730 if (!(vma->vm_flags & VM_GROWSUP))
735 if (start > vma->vm_start)
738 prev = mas_prev(&mas, 0);
740 tlb_gather_mmu(&tlb, current->mm);
741 for (nstart = start ; ; ) {
742 unsigned long mask_off_old_flags;
743 unsigned long newflags;
746 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
748 /* Does the application expect PROT_READ to imply PROT_EXEC */
749 if (rier && (vma->vm_flags & VM_MAYEXEC))
753 * Each mprotect() call explicitly passes r/w/x permissions.
754 * If a permission is not passed to mprotect(), it must be
755 * cleared from the VMA.
757 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
760 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
761 newflags = calc_vm_prot_bits(prot, new_vma_pkey);
762 newflags |= (vma->vm_flags & ~mask_off_old_flags);
764 /* newflags >> 4 shift VM_MAY% in place of VM_% */
765 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
770 /* Allow architectures to sanity-check the new flags */
771 if (!arch_validate_flags(newflags)) {
776 error = security_file_mprotect(vma, reqprot, prot);
784 if (vma->vm_ops && vma->vm_ops->mprotect) {
785 error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
790 error = mprotect_fixup(&tlb, vma, &prev, nstart, tmp, newflags);
796 if (nstart < prev->vm_end)
797 nstart = prev->vm_end;
801 vma = find_vma(current->mm, prev->vm_end);
802 if (!vma || vma->vm_start != nstart) {
808 tlb_finish_mmu(&tlb);
810 mmap_write_unlock(current->mm);
814 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
817 return do_mprotect_pkey(start, len, prot, -1);
820 #ifdef CONFIG_ARCH_HAS_PKEYS
822 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
823 unsigned long, prot, int, pkey)
825 return do_mprotect_pkey(start, len, prot, pkey);
828 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
833 /* No flags supported yet. */
836 /* check for unsupported init values */
837 if (init_val & ~PKEY_ACCESS_MASK)
840 mmap_write_lock(current->mm);
841 pkey = mm_pkey_alloc(current->mm);
847 ret = arch_set_user_pkey_access(current, pkey, init_val);
849 mm_pkey_free(current->mm, pkey);
854 mmap_write_unlock(current->mm);
858 SYSCALL_DEFINE1(pkey_free, int, pkey)
862 mmap_write_lock(current->mm);
863 ret = mm_pkey_free(current->mm, pkey);
864 mmap_write_unlock(current->mm);
867 * We could provide warnings or errors if any VMA still
868 * has the pkey set here.
873 #endif /* CONFIG_ARCH_HAS_PKEYS */