1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
80 #include <trace/events/kmem.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
87 #include <asm/tlbflush.h>
89 #include "pgalloc-track.h"
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
105 static vm_fault_t do_fault(struct vm_fault *vmf);
108 * A number of key systems in x86 including ioremap() rely on the assumption
109 * that high_memory defines the upper bound on direct map memory, then end
110 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
111 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
115 EXPORT_SYMBOL(high_memory);
118 * Randomize the address space (stacks, mmaps, brk, etc.).
120 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
121 * as ancient (libc5 based) binaries can segfault. )
123 int randomize_va_space __read_mostly =
124 #ifdef CONFIG_COMPAT_BRK
130 #ifndef arch_wants_old_prefaulted_pte
131 static inline bool arch_wants_old_prefaulted_pte(void)
134 * Transitioning a PTE from 'old' to 'young' can be expensive on
135 * some architectures, even if it's performed in hardware. By
136 * default, "false" means prefaulted entries will be 'young'.
142 static int __init disable_randmaps(char *s)
144 randomize_va_space = 0;
147 __setup("norandmaps", disable_randmaps);
149 unsigned long zero_pfn __read_mostly;
150 EXPORT_SYMBOL(zero_pfn);
152 unsigned long highest_memmap_pfn __read_mostly;
155 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 static int __init init_zero_pfn(void)
159 zero_pfn = page_to_pfn(ZERO_PAGE(0));
162 early_initcall(init_zero_pfn);
164 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 trace_rss_stat(mm, member, count);
169 #if defined(SPLIT_RSS_COUNTING)
171 void sync_mm_rss(struct mm_struct *mm)
175 for (i = 0; i < NR_MM_COUNTERS; i++) {
176 if (current->rss_stat.count[i]) {
177 add_mm_counter(mm, i, current->rss_stat.count[i]);
178 current->rss_stat.count[i] = 0;
181 current->rss_stat.events = 0;
184 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 struct task_struct *task = current;
188 if (likely(task->mm == mm))
189 task->rss_stat.count[member] += val;
191 add_mm_counter(mm, member, val);
193 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
194 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196 /* sync counter once per 64 page faults */
197 #define TASK_RSS_EVENTS_THRESH (64)
198 static void check_sync_rss_stat(struct task_struct *task)
200 if (unlikely(task != current))
202 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
203 sync_mm_rss(task->mm);
205 #else /* SPLIT_RSS_COUNTING */
207 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
208 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210 static void check_sync_rss_stat(struct task_struct *task)
214 #endif /* SPLIT_RSS_COUNTING */
217 * Note: this doesn't free the actual pages themselves. That
218 * has been handled earlier when unmapping all the memory regions.
220 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
223 pgtable_t token = pmd_pgtable(*pmd);
225 pte_free_tlb(tlb, token, addr);
226 mm_dec_nr_ptes(tlb->mm);
229 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
230 unsigned long addr, unsigned long end,
231 unsigned long floor, unsigned long ceiling)
238 pmd = pmd_offset(pud, addr);
240 next = pmd_addr_end(addr, end);
241 if (pmd_none_or_clear_bad(pmd))
243 free_pte_range(tlb, pmd, addr);
244 } while (pmd++, addr = next, addr != end);
254 if (end - 1 > ceiling - 1)
257 pmd = pmd_offset(pud, start);
259 pmd_free_tlb(tlb, pmd, start);
260 mm_dec_nr_pmds(tlb->mm);
263 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
264 unsigned long addr, unsigned long end,
265 unsigned long floor, unsigned long ceiling)
272 pud = pud_offset(p4d, addr);
274 next = pud_addr_end(addr, end);
275 if (pud_none_or_clear_bad(pud))
277 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
278 } while (pud++, addr = next, addr != end);
288 if (end - 1 > ceiling - 1)
291 pud = pud_offset(p4d, start);
293 pud_free_tlb(tlb, pud, start);
294 mm_dec_nr_puds(tlb->mm);
297 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
298 unsigned long addr, unsigned long end,
299 unsigned long floor, unsigned long ceiling)
306 p4d = p4d_offset(pgd, addr);
308 next = p4d_addr_end(addr, end);
309 if (p4d_none_or_clear_bad(p4d))
311 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
312 } while (p4d++, addr = next, addr != end);
318 ceiling &= PGDIR_MASK;
322 if (end - 1 > ceiling - 1)
325 p4d = p4d_offset(pgd, start);
327 p4d_free_tlb(tlb, p4d, start);
331 * This function frees user-level page tables of a process.
333 void free_pgd_range(struct mmu_gather *tlb,
334 unsigned long addr, unsigned long end,
335 unsigned long floor, unsigned long ceiling)
341 * The next few lines have given us lots of grief...
343 * Why are we testing PMD* at this top level? Because often
344 * there will be no work to do at all, and we'd prefer not to
345 * go all the way down to the bottom just to discover that.
347 * Why all these "- 1"s? Because 0 represents both the bottom
348 * of the address space and the top of it (using -1 for the
349 * top wouldn't help much: the masks would do the wrong thing).
350 * The rule is that addr 0 and floor 0 refer to the bottom of
351 * the address space, but end 0 and ceiling 0 refer to the top
352 * Comparisons need to use "end - 1" and "ceiling - 1" (though
353 * that end 0 case should be mythical).
355 * Wherever addr is brought up or ceiling brought down, we must
356 * be careful to reject "the opposite 0" before it confuses the
357 * subsequent tests. But what about where end is brought down
358 * by PMD_SIZE below? no, end can't go down to 0 there.
360 * Whereas we round start (addr) and ceiling down, by different
361 * masks at different levels, in order to test whether a table
362 * now has no other vmas using it, so can be freed, we don't
363 * bother to round floor or end up - the tests don't need that.
377 if (end - 1 > ceiling - 1)
382 * We add page table cache pages with PAGE_SIZE,
383 * (see pte_free_tlb()), flush the tlb if we need
385 tlb_change_page_size(tlb, PAGE_SIZE);
386 pgd = pgd_offset(tlb->mm, addr);
388 next = pgd_addr_end(addr, end);
389 if (pgd_none_or_clear_bad(pgd))
391 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
392 } while (pgd++, addr = next, addr != end);
395 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
396 struct vm_area_struct *vma, unsigned long floor,
397 unsigned long ceiling)
399 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
402 unsigned long addr = vma->vm_start;
403 struct vm_area_struct *next;
406 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
407 * be 0. This will underflow and is okay.
409 next = mas_find(&mas, ceiling - 1);
412 * Hide vma from rmap and truncate_pagecache before freeing
415 unlink_anon_vmas(vma);
416 unlink_file_vma(vma);
418 if (is_vm_hugetlb_page(vma)) {
419 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
420 floor, next ? next->vm_start : ceiling);
423 * Optimization: gather nearby vmas into one call down
425 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
426 && !is_vm_hugetlb_page(next)) {
428 next = mas_find(&mas, ceiling - 1);
429 unlink_anon_vmas(vma);
430 unlink_file_vma(vma);
432 free_pgd_range(tlb, addr, vma->vm_end,
433 floor, next ? next->vm_start : ceiling);
439 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 spinlock_t *ptl = pmd_lock(mm, pmd);
443 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
446 * Ensure all pte setup (eg. pte page lock and page clearing) are
447 * visible before the pte is made visible to other CPUs by being
448 * put into page tables.
450 * The other side of the story is the pointer chasing in the page
451 * table walking code (when walking the page table without locking;
452 * ie. most of the time). Fortunately, these data accesses consist
453 * of a chain of data-dependent loads, meaning most CPUs (alpha
454 * being the notable exception) will already guarantee loads are
455 * seen in-order. See the alpha page table accessors for the
456 * smp_rmb() barriers in page table walking code.
458 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
459 pmd_populate(mm, pmd, *pte);
465 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 pgtable_t new = pte_alloc_one(mm);
471 pmd_install(mm, pmd, &new);
477 int __pte_alloc_kernel(pmd_t *pmd)
479 pte_t *new = pte_alloc_one_kernel(&init_mm);
483 spin_lock(&init_mm.page_table_lock);
484 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
485 smp_wmb(); /* See comment in pmd_install() */
486 pmd_populate_kernel(&init_mm, pmd, new);
489 spin_unlock(&init_mm.page_table_lock);
491 pte_free_kernel(&init_mm, new);
495 static inline void init_rss_vec(int *rss)
497 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
500 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
504 if (current->mm == mm)
506 for (i = 0; i < NR_MM_COUNTERS; i++)
508 add_mm_counter(mm, i, rss[i]);
512 * This function is called to print an error when a bad pte
513 * is found. For example, we might have a PFN-mapped pte in
514 * a region that doesn't allow it.
516 * The calling function must still handle the error.
518 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
519 pte_t pte, struct page *page)
521 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
522 p4d_t *p4d = p4d_offset(pgd, addr);
523 pud_t *pud = pud_offset(p4d, addr);
524 pmd_t *pmd = pmd_offset(pud, addr);
525 struct address_space *mapping;
527 static unsigned long resume;
528 static unsigned long nr_shown;
529 static unsigned long nr_unshown;
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
541 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
548 resume = jiffies + 60 * HZ;
550 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
551 index = linear_page_index(vma, addr);
553 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 dump_page(page, "bad pte");
558 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
559 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
560 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 vma->vm_ops ? vma->vm_ops->fault : NULL,
563 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
564 mapping ? mapping->a_ops->read_folio : NULL);
566 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
570 * vm_normal_page -- This function gets the "struct page" associated with a pte.
572 * "Special" mappings do not wish to be associated with a "struct page" (either
573 * it doesn't exist, or it exists but they don't want to touch it). In this
574 * case, NULL is returned here. "Normal" mappings do have a struct page.
576 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
577 * pte bit, in which case this function is trivial. Secondly, an architecture
578 * may not have a spare pte bit, which requires a more complicated scheme,
581 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
582 * special mapping (even if there are underlying and valid "struct pages").
583 * COWed pages of a VM_PFNMAP are always normal.
585 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
586 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
587 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
588 * mapping will always honor the rule
590 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 * And for normal mappings this is false.
594 * This restricts such mappings to be a linear translation from virtual address
595 * to pfn. To get around this restriction, we allow arbitrary mappings so long
596 * as the vma is not a COW mapping; in that case, we know that all ptes are
597 * special (because none can have been COWed).
600 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
603 * page" backing, however the difference is that _all_ pages with a struct
604 * page (that is, those where pfn_valid is true) are refcounted and considered
605 * normal pages by the VM. The disadvantage is that pages are refcounted
606 * (which can be slower and simply not an option for some PFNMAP users). The
607 * advantage is that we don't have to follow the strict linearity rule of
608 * PFNMAP mappings in order to support COWable mappings.
611 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
614 unsigned long pfn = pte_pfn(pte);
616 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
617 if (likely(!pte_special(pte)))
619 if (vma->vm_ops && vma->vm_ops->find_special_page)
620 return vma->vm_ops->find_special_page(vma, addr);
621 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 if (is_zero_pfn(pfn))
627 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
628 * and will have refcounts incremented on their struct pages
629 * when they are inserted into PTEs, thus they are safe to
630 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
631 * do not have refcounts. Example of legacy ZONE_DEVICE is
632 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
636 print_bad_pte(vma, addr, pte, NULL);
640 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
643 if (vma->vm_flags & VM_MIXEDMAP) {
649 off = (addr - vma->vm_start) >> PAGE_SHIFT;
650 if (pfn == vma->vm_pgoff + off)
652 if (!is_cow_mapping(vma->vm_flags))
657 if (is_zero_pfn(pfn))
661 if (unlikely(pfn > highest_memmap_pfn)) {
662 print_bad_pte(vma, addr, pte, NULL);
667 * NOTE! We still have PageReserved() pages in the page tables.
668 * eg. VDSO mappings can cause them to exist.
671 return pfn_to_page(pfn);
674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
675 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
678 unsigned long pfn = pmd_pfn(pmd);
681 * There is no pmd_special() but there may be special pmds, e.g.
682 * in a direct-access (dax) mapping, so let's just replicate the
683 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
686 if (vma->vm_flags & VM_MIXEDMAP) {
692 off = (addr - vma->vm_start) >> PAGE_SHIFT;
693 if (pfn == vma->vm_pgoff + off)
695 if (!is_cow_mapping(vma->vm_flags))
702 if (is_huge_zero_pmd(pmd))
704 if (unlikely(pfn > highest_memmap_pfn))
708 * NOTE! We still have PageReserved() pages in the page tables.
709 * eg. VDSO mappings can cause them to exist.
712 return pfn_to_page(pfn);
716 static void restore_exclusive_pte(struct vm_area_struct *vma,
717 struct page *page, unsigned long address,
723 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
724 if (pte_swp_soft_dirty(*ptep))
725 pte = pte_mksoft_dirty(pte);
727 entry = pte_to_swp_entry(*ptep);
728 if (pte_swp_uffd_wp(*ptep))
729 pte = pte_mkuffd_wp(pte);
730 else if (is_writable_device_exclusive_entry(entry))
731 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
736 * No need to take a page reference as one was already
737 * created when the swap entry was made.
740 page_add_anon_rmap(page, vma, address, RMAP_NONE);
743 * Currently device exclusive access only supports anonymous
744 * memory so the entry shouldn't point to a filebacked page.
748 set_pte_at(vma->vm_mm, address, ptep, pte);
751 * No need to invalidate - it was non-present before. However
752 * secondary CPUs may have mappings that need invalidating.
754 update_mmu_cache(vma, address, ptep);
758 * Tries to restore an exclusive pte if the page lock can be acquired without
762 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
765 swp_entry_t entry = pte_to_swp_entry(*src_pte);
766 struct page *page = pfn_swap_entry_to_page(entry);
768 if (trylock_page(page)) {
769 restore_exclusive_pte(vma, page, addr, src_pte);
778 * copy one vm_area from one task to the other. Assumes the page tables
779 * already present in the new task to be cleared in the whole range
780 * covered by this vma.
784 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
786 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 unsigned long vm_flags = dst_vma->vm_flags;
789 pte_t pte = *src_pte;
791 swp_entry_t entry = pte_to_swp_entry(pte);
793 if (likely(!non_swap_entry(entry))) {
794 if (swap_duplicate(entry) < 0)
797 /* make sure dst_mm is on swapoff's mmlist. */
798 if (unlikely(list_empty(&dst_mm->mmlist))) {
799 spin_lock(&mmlist_lock);
800 if (list_empty(&dst_mm->mmlist))
801 list_add(&dst_mm->mmlist,
803 spin_unlock(&mmlist_lock);
805 /* Mark the swap entry as shared. */
806 if (pte_swp_exclusive(*src_pte)) {
807 pte = pte_swp_clear_exclusive(*src_pte);
808 set_pte_at(src_mm, addr, src_pte, pte);
811 } else if (is_migration_entry(entry)) {
812 page = pfn_swap_entry_to_page(entry);
814 rss[mm_counter(page)]++;
816 if (!is_readable_migration_entry(entry) &&
817 is_cow_mapping(vm_flags)) {
819 * COW mappings require pages in both parent and child
820 * to be set to read. A previously exclusive entry is
823 entry = make_readable_migration_entry(
825 pte = swp_entry_to_pte(entry);
826 if (pte_swp_soft_dirty(*src_pte))
827 pte = pte_swp_mksoft_dirty(pte);
828 if (pte_swp_uffd_wp(*src_pte))
829 pte = pte_swp_mkuffd_wp(pte);
830 set_pte_at(src_mm, addr, src_pte, pte);
832 } else if (is_device_private_entry(entry)) {
833 page = pfn_swap_entry_to_page(entry);
836 * Update rss count even for unaddressable pages, as
837 * they should treated just like normal pages in this
840 * We will likely want to have some new rss counters
841 * for unaddressable pages, at some point. But for now
842 * keep things as they are.
845 rss[mm_counter(page)]++;
846 /* Cannot fail as these pages cannot get pinned. */
847 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
850 * We do not preserve soft-dirty information, because so
851 * far, checkpoint/restore is the only feature that
852 * requires that. And checkpoint/restore does not work
853 * when a device driver is involved (you cannot easily
854 * save and restore device driver state).
856 if (is_writable_device_private_entry(entry) &&
857 is_cow_mapping(vm_flags)) {
858 entry = make_readable_device_private_entry(
860 pte = swp_entry_to_pte(entry);
861 if (pte_swp_uffd_wp(*src_pte))
862 pte = pte_swp_mkuffd_wp(pte);
863 set_pte_at(src_mm, addr, src_pte, pte);
865 } else if (is_device_exclusive_entry(entry)) {
867 * Make device exclusive entries present by restoring the
868 * original entry then copying as for a present pte. Device
869 * exclusive entries currently only support private writable
870 * (ie. COW) mappings.
872 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
873 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
876 } else if (is_pte_marker_entry(entry)) {
878 * We're copying the pgtable should only because dst_vma has
879 * uffd-wp enabled, do sanity check.
881 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
882 set_pte_at(dst_mm, addr, dst_pte, pte);
885 if (!userfaultfd_wp(dst_vma))
886 pte = pte_swp_clear_uffd_wp(pte);
887 set_pte_at(dst_mm, addr, dst_pte, pte);
892 * Copy a present and normal page.
894 * NOTE! The usual case is that this isn't required;
895 * instead, the caller can just increase the page refcount
896 * and re-use the pte the traditional way.
898 * And if we need a pre-allocated page but don't yet have
899 * one, return a negative error to let the preallocation
900 * code know so that it can do so outside the page table
904 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
905 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
906 struct page **prealloc, struct page *page)
908 struct page *new_page;
911 new_page = *prealloc;
916 * We have a prealloc page, all good! Take it
917 * over and copy the page & arm it.
920 copy_user_highpage(new_page, page, addr, src_vma);
921 __SetPageUptodate(new_page);
922 page_add_new_anon_rmap(new_page, dst_vma, addr);
923 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
924 rss[mm_counter(new_page)]++;
926 /* All done, just insert the new page copy in the child */
927 pte = mk_pte(new_page, dst_vma->vm_page_prot);
928 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
929 if (userfaultfd_pte_wp(dst_vma, *src_pte))
930 /* Uffd-wp needs to be delivered to dest pte as well */
931 pte = pte_wrprotect(pte_mkuffd_wp(pte));
932 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
937 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
938 * is required to copy this pte.
941 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
942 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
943 struct page **prealloc)
945 struct mm_struct *src_mm = src_vma->vm_mm;
946 unsigned long vm_flags = src_vma->vm_flags;
947 pte_t pte = *src_pte;
950 page = vm_normal_page(src_vma, addr, pte);
951 if (page && PageAnon(page)) {
953 * If this page may have been pinned by the parent process,
954 * copy the page immediately for the child so that we'll always
955 * guarantee the pinned page won't be randomly replaced in the
959 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
960 /* Page maybe pinned, we have to copy. */
962 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
963 addr, rss, prealloc, page);
965 rss[mm_counter(page)]++;
968 page_dup_file_rmap(page, false);
969 rss[mm_counter(page)]++;
973 * If it's a COW mapping, write protect it both
974 * in the parent and the child
976 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
977 ptep_set_wrprotect(src_mm, addr, src_pte);
978 pte = pte_wrprotect(pte);
980 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
983 * If it's a shared mapping, mark it clean in
986 if (vm_flags & VM_SHARED)
987 pte = pte_mkclean(pte);
988 pte = pte_mkold(pte);
990 if (!userfaultfd_wp(dst_vma))
991 pte = pte_clear_uffd_wp(pte);
993 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
997 static inline struct page *
998 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1001 struct page *new_page;
1003 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1007 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1011 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1017 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1018 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1021 struct mm_struct *dst_mm = dst_vma->vm_mm;
1022 struct mm_struct *src_mm = src_vma->vm_mm;
1023 pte_t *orig_src_pte, *orig_dst_pte;
1024 pte_t *src_pte, *dst_pte;
1025 spinlock_t *src_ptl, *dst_ptl;
1026 int progress, ret = 0;
1027 int rss[NR_MM_COUNTERS];
1028 swp_entry_t entry = (swp_entry_t){0};
1029 struct page *prealloc = NULL;
1035 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1040 src_pte = pte_offset_map(src_pmd, addr);
1041 src_ptl = pte_lockptr(src_mm, src_pmd);
1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043 orig_src_pte = src_pte;
1044 orig_dst_pte = dst_pte;
1045 arch_enter_lazy_mmu_mode();
1049 * We are holding two locks at this point - either of them
1050 * could generate latencies in another task on another CPU.
1052 if (progress >= 32) {
1054 if (need_resched() ||
1055 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1058 if (pte_none(*src_pte)) {
1062 if (unlikely(!pte_present(*src_pte))) {
1063 ret = copy_nonpresent_pte(dst_mm, src_mm,
1068 entry = pte_to_swp_entry(*src_pte);
1070 } else if (ret == -EBUSY) {
1078 * Device exclusive entry restored, continue by copying
1079 * the now present pte.
1081 WARN_ON_ONCE(ret != -ENOENT);
1083 /* copy_present_pte() will clear `*prealloc' if consumed */
1084 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1085 addr, rss, &prealloc);
1087 * If we need a pre-allocated page for this pte, drop the
1088 * locks, allocate, and try again.
1090 if (unlikely(ret == -EAGAIN))
1092 if (unlikely(prealloc)) {
1094 * pre-alloc page cannot be reused by next time so as
1095 * to strictly follow mempolicy (e.g., alloc_page_vma()
1096 * will allocate page according to address). This
1097 * could only happen if one pinned pte changed.
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 arch_leave_lazy_mmu_mode();
1106 spin_unlock(src_ptl);
1107 pte_unmap(orig_src_pte);
1108 add_mm_rss_vec(dst_mm, rss);
1109 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113 VM_WARN_ON_ONCE(!entry.val);
1114 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1119 } else if (ret == -EBUSY) {
1121 } else if (ret == -EAGAIN) {
1122 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1129 /* We've captured and resolved the error. Reset, try again. */
1135 if (unlikely(prealloc))
1141 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1142 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1145 struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 struct mm_struct *src_mm = src_vma->vm_mm;
1147 pmd_t *src_pmd, *dst_pmd;
1150 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1153 src_pmd = pmd_offset(src_pud, addr);
1155 next = pmd_addr_end(addr, end);
1156 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1157 || pmd_devmap(*src_pmd)) {
1159 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1160 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1161 addr, dst_vma, src_vma);
1168 if (pmd_none_or_clear_bad(src_pmd))
1170 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1173 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1178 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1179 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1182 struct mm_struct *dst_mm = dst_vma->vm_mm;
1183 struct mm_struct *src_mm = src_vma->vm_mm;
1184 pud_t *src_pud, *dst_pud;
1187 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1190 src_pud = pud_offset(src_p4d, addr);
1192 next = pud_addr_end(addr, end);
1193 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1196 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1197 err = copy_huge_pud(dst_mm, src_mm,
1198 dst_pud, src_pud, addr, src_vma);
1205 if (pud_none_or_clear_bad(src_pud))
1207 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1210 } while (dst_pud++, src_pud++, addr = next, addr != end);
1215 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1216 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1219 struct mm_struct *dst_mm = dst_vma->vm_mm;
1220 p4d_t *src_p4d, *dst_p4d;
1223 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1226 src_p4d = p4d_offset(src_pgd, addr);
1228 next = p4d_addr_end(addr, end);
1229 if (p4d_none_or_clear_bad(src_p4d))
1231 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1234 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1239 * Return true if the vma needs to copy the pgtable during this fork(). Return
1240 * false when we can speed up fork() by allowing lazy page faults later until
1241 * when the child accesses the memory range.
1244 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1247 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1248 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1249 * contains uffd-wp protection information, that's something we can't
1250 * retrieve from page cache, and skip copying will lose those info.
1252 if (userfaultfd_wp(dst_vma))
1255 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1258 if (src_vma->anon_vma)
1262 * Don't copy ptes where a page fault will fill them correctly. Fork
1263 * becomes much lighter when there are big shared or private readonly
1264 * mappings. The tradeoff is that copy_page_range is more efficient
1271 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 pgd_t *src_pgd, *dst_pgd;
1275 unsigned long addr = src_vma->vm_start;
1276 unsigned long end = src_vma->vm_end;
1277 struct mm_struct *dst_mm = dst_vma->vm_mm;
1278 struct mm_struct *src_mm = src_vma->vm_mm;
1279 struct mmu_notifier_range range;
1283 if (!vma_needs_copy(dst_vma, src_vma))
1286 if (is_vm_hugetlb_page(src_vma))
1287 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 * We do not free on error cases below as remove_vma
1292 * gets called on error from higher level routine
1294 ret = track_pfn_copy(src_vma);
1300 * We need to invalidate the secondary MMU mappings only when
1301 * there could be a permission downgrade on the ptes of the
1302 * parent mm. And a permission downgrade will only happen if
1303 * is_cow_mapping() returns true.
1305 is_cow = is_cow_mapping(src_vma->vm_flags);
1308 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1309 0, src_vma, src_mm, addr, end);
1310 mmu_notifier_invalidate_range_start(&range);
1312 * Disabling preemption is not needed for the write side, as
1313 * the read side doesn't spin, but goes to the mmap_lock.
1315 * Use the raw variant of the seqcount_t write API to avoid
1316 * lockdep complaining about preemptibility.
1318 mmap_assert_write_locked(src_mm);
1319 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1323 dst_pgd = pgd_offset(dst_mm, addr);
1324 src_pgd = pgd_offset(src_mm, addr);
1326 next = pgd_addr_end(addr, end);
1327 if (pgd_none_or_clear_bad(src_pgd))
1329 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1334 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1337 raw_write_seqcount_end(&src_mm->write_protect_seq);
1338 mmu_notifier_invalidate_range_end(&range);
1344 * Parameter block passed down to zap_pte_range in exceptional cases.
1346 struct zap_details {
1347 struct folio *single_folio; /* Locked folio to be unmapped */
1348 bool even_cows; /* Zap COWed private pages too? */
1349 zap_flags_t zap_flags; /* Extra flags for zapping */
1352 /* Whether we should zap all COWed (private) pages too */
1353 static inline bool should_zap_cows(struct zap_details *details)
1355 /* By default, zap all pages */
1359 /* Or, we zap COWed pages only if the caller wants to */
1360 return details->even_cows;
1363 /* Decides whether we should zap this page with the page pointer specified */
1364 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 /* If we can make a decision without *page.. */
1367 if (should_zap_cows(details))
1370 /* E.g. the caller passes NULL for the case of a zero page */
1374 /* Otherwise we should only zap non-anon pages */
1375 return !PageAnon(page);
1378 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1383 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1387 * This function makes sure that we'll replace the none pte with an uffd-wp
1388 * swap special pte marker when necessary. Must be with the pgtable lock held.
1391 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1392 unsigned long addr, pte_t *pte,
1393 struct zap_details *details, pte_t pteval)
1395 if (zap_drop_file_uffd_wp(details))
1398 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1401 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1402 struct vm_area_struct *vma, pmd_t *pmd,
1403 unsigned long addr, unsigned long end,
1404 struct zap_details *details)
1406 struct mm_struct *mm = tlb->mm;
1407 int force_flush = 0;
1408 int rss[NR_MM_COUNTERS];
1414 tlb_change_page_size(tlb, PAGE_SIZE);
1417 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 flush_tlb_batched_pending(mm);
1420 arch_enter_lazy_mmu_mode();
1425 if (pte_none(ptent))
1431 if (pte_present(ptent)) {
1432 page = vm_normal_page(vma, addr, ptent);
1433 if (unlikely(!should_zap_page(details, page)))
1435 ptent = ptep_get_and_clear_full(mm, addr, pte,
1437 tlb_remove_tlb_entry(tlb, pte, addr);
1438 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1440 if (unlikely(!page))
1443 if (!PageAnon(page)) {
1444 if (pte_dirty(ptent)) {
1446 set_page_dirty(page);
1448 if (pte_young(ptent) &&
1449 likely(!(vma->vm_flags & VM_SEQ_READ)))
1450 mark_page_accessed(page);
1452 rss[mm_counter(page)]--;
1453 page_remove_rmap(page, vma, false);
1454 if (unlikely(page_mapcount(page) < 0))
1455 print_bad_pte(vma, addr, ptent, page);
1456 if (unlikely(__tlb_remove_page(tlb, page))) {
1464 entry = pte_to_swp_entry(ptent);
1465 if (is_device_private_entry(entry) ||
1466 is_device_exclusive_entry(entry)) {
1467 page = pfn_swap_entry_to_page(entry);
1468 if (unlikely(!should_zap_page(details, page)))
1471 * Both device private/exclusive mappings should only
1472 * work with anonymous page so far, so we don't need to
1473 * consider uffd-wp bit when zap. For more information,
1474 * see zap_install_uffd_wp_if_needed().
1476 WARN_ON_ONCE(!vma_is_anonymous(vma));
1477 rss[mm_counter(page)]--;
1478 if (is_device_private_entry(entry))
1479 page_remove_rmap(page, vma, false);
1481 } else if (!non_swap_entry(entry)) {
1482 /* Genuine swap entry, hence a private anon page */
1483 if (!should_zap_cows(details))
1486 if (unlikely(!free_swap_and_cache(entry)))
1487 print_bad_pte(vma, addr, ptent, NULL);
1488 } else if (is_migration_entry(entry)) {
1489 page = pfn_swap_entry_to_page(entry);
1490 if (!should_zap_page(details, page))
1492 rss[mm_counter(page)]--;
1493 } else if (pte_marker_entry_uffd_wp(entry)) {
1494 /* Only drop the uffd-wp marker if explicitly requested */
1495 if (!zap_drop_file_uffd_wp(details))
1497 } else if (is_hwpoison_entry(entry) ||
1498 is_swapin_error_entry(entry)) {
1499 if (!should_zap_cows(details))
1502 /* We should have covered all the swap entry types */
1505 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1506 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1507 } while (pte++, addr += PAGE_SIZE, addr != end);
1509 add_mm_rss_vec(mm, rss);
1510 arch_leave_lazy_mmu_mode();
1512 /* Do the actual TLB flush before dropping ptl */
1514 tlb_flush_mmu_tlbonly(tlb);
1515 pte_unmap_unlock(start_pte, ptl);
1518 * If we forced a TLB flush (either due to running out of
1519 * batch buffers or because we needed to flush dirty TLB
1520 * entries before releasing the ptl), free the batched
1521 * memory too. Restart if we didn't do everything.
1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 struct vm_area_struct *vma, pud_t *pud,
1538 unsigned long addr, unsigned long end,
1539 struct zap_details *details)
1544 pmd = pmd_offset(pud, addr);
1546 next = pmd_addr_end(addr, end);
1547 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 if (next - addr != HPAGE_PMD_SIZE)
1549 __split_huge_pmd(vma, pmd, addr, false, NULL);
1550 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1553 } else if (details && details->single_folio &&
1554 folio_test_pmd_mappable(details->single_folio) &&
1555 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1556 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558 * Take and drop THP pmd lock so that we cannot return
1559 * prematurely, while zap_huge_pmd() has cleared *pmd,
1560 * but not yet decremented compound_mapcount().
1566 * Here there can be other concurrent MADV_DONTNEED or
1567 * trans huge page faults running, and if the pmd is
1568 * none or trans huge it can change under us. This is
1569 * because MADV_DONTNEED holds the mmap_lock in read
1572 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1574 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1577 } while (pmd++, addr = next, addr != end);
1582 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1583 struct vm_area_struct *vma, p4d_t *p4d,
1584 unsigned long addr, unsigned long end,
1585 struct zap_details *details)
1590 pud = pud_offset(p4d, addr);
1592 next = pud_addr_end(addr, end);
1593 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1594 if (next - addr != HPAGE_PUD_SIZE) {
1595 mmap_assert_locked(tlb->mm);
1596 split_huge_pud(vma, pud, addr);
1597 } else if (zap_huge_pud(tlb, vma, pud, addr))
1601 if (pud_none_or_clear_bad(pud))
1603 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1606 } while (pud++, addr = next, addr != end);
1611 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1612 struct vm_area_struct *vma, pgd_t *pgd,
1613 unsigned long addr, unsigned long end,
1614 struct zap_details *details)
1619 p4d = p4d_offset(pgd, addr);
1621 next = p4d_addr_end(addr, end);
1622 if (p4d_none_or_clear_bad(p4d))
1624 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1625 } while (p4d++, addr = next, addr != end);
1630 void unmap_page_range(struct mmu_gather *tlb,
1631 struct vm_area_struct *vma,
1632 unsigned long addr, unsigned long end,
1633 struct zap_details *details)
1638 BUG_ON(addr >= end);
1639 tlb_start_vma(tlb, vma);
1640 pgd = pgd_offset(vma->vm_mm, addr);
1642 next = pgd_addr_end(addr, end);
1643 if (pgd_none_or_clear_bad(pgd))
1645 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1646 } while (pgd++, addr = next, addr != end);
1647 tlb_end_vma(tlb, vma);
1651 static void unmap_single_vma(struct mmu_gather *tlb,
1652 struct vm_area_struct *vma, unsigned long start_addr,
1653 unsigned long end_addr,
1654 struct zap_details *details)
1656 unsigned long start = max(vma->vm_start, start_addr);
1659 if (start >= vma->vm_end)
1661 end = min(vma->vm_end, end_addr);
1662 if (end <= vma->vm_start)
1666 uprobe_munmap(vma, start, end);
1668 if (unlikely(vma->vm_flags & VM_PFNMAP))
1669 untrack_pfn(vma, 0, 0);
1672 if (unlikely(is_vm_hugetlb_page(vma))) {
1674 * It is undesirable to test vma->vm_file as it
1675 * should be non-null for valid hugetlb area.
1676 * However, vm_file will be NULL in the error
1677 * cleanup path of mmap_region. When
1678 * hugetlbfs ->mmap method fails,
1679 * mmap_region() nullifies vma->vm_file
1680 * before calling this function to clean up.
1681 * Since no pte has actually been setup, it is
1682 * safe to do nothing in this case.
1685 zap_flags_t zap_flags = details ?
1686 details->zap_flags : 0;
1687 i_mmap_lock_write(vma->vm_file->f_mapping);
1688 __unmap_hugepage_range_final(tlb, vma, start, end,
1690 i_mmap_unlock_write(vma->vm_file->f_mapping);
1693 unmap_page_range(tlb, vma, start, end, details);
1698 * unmap_vmas - unmap a range of memory covered by a list of vma's
1699 * @tlb: address of the caller's struct mmu_gather
1700 * @mt: the maple tree
1701 * @vma: the starting vma
1702 * @start_addr: virtual address at which to start unmapping
1703 * @end_addr: virtual address at which to end unmapping
1705 * Unmap all pages in the vma list.
1707 * Only addresses between `start' and `end' will be unmapped.
1709 * The VMA list must be sorted in ascending virtual address order.
1711 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712 * range after unmap_vmas() returns. So the only responsibility here is to
1713 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714 * drops the lock and schedules.
1716 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1717 struct vm_area_struct *vma, unsigned long start_addr,
1718 unsigned long end_addr)
1720 struct mmu_notifier_range range;
1721 struct zap_details details = {
1722 .zap_flags = ZAP_FLAG_DROP_MARKER,
1723 /* Careful - we need to zap private pages too! */
1726 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1728 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1729 start_addr, end_addr);
1730 mmu_notifier_invalidate_range_start(&range);
1732 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1733 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1734 mmu_notifier_invalidate_range_end(&range);
1738 * zap_page_range - remove user pages in a given range
1739 * @vma: vm_area_struct holding the applicable pages
1740 * @start: starting address of pages to zap
1741 * @size: number of bytes to zap
1743 * Caller must protect the VMA list
1745 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1748 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1749 unsigned long end = start + size;
1750 struct mmu_notifier_range range;
1751 struct mmu_gather tlb;
1752 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1755 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1756 start, start + size);
1757 tlb_gather_mmu(&tlb, vma->vm_mm);
1758 update_hiwater_rss(vma->vm_mm);
1759 mmu_notifier_invalidate_range_start(&range);
1761 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1762 } while ((vma = mas_find(&mas, end - 1)) != NULL);
1763 mmu_notifier_invalidate_range_end(&range);
1764 tlb_finish_mmu(&tlb);
1768 * zap_page_range_single - remove user pages in a given range
1769 * @vma: vm_area_struct holding the applicable pages
1770 * @address: starting address of pages to zap
1771 * @size: number of bytes to zap
1772 * @details: details of shared cache invalidation
1774 * The range must fit into one VMA.
1776 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1777 unsigned long size, struct zap_details *details)
1779 struct mmu_notifier_range range;
1780 struct mmu_gather tlb;
1783 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1784 address, address + size);
1785 tlb_gather_mmu(&tlb, vma->vm_mm);
1786 update_hiwater_rss(vma->vm_mm);
1787 mmu_notifier_invalidate_range_start(&range);
1788 unmap_single_vma(&tlb, vma, address, range.end, details);
1789 mmu_notifier_invalidate_range_end(&range);
1790 tlb_finish_mmu(&tlb);
1794 * zap_vma_ptes - remove ptes mapping the vma
1795 * @vma: vm_area_struct holding ptes to be zapped
1796 * @address: starting address of pages to zap
1797 * @size: number of bytes to zap
1799 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1801 * The entire address range must be fully contained within the vma.
1804 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1807 if (!range_in_vma(vma, address, address + size) ||
1808 !(vma->vm_flags & VM_PFNMAP))
1811 zap_page_range_single(vma, address, size, NULL);
1813 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1815 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1822 pgd = pgd_offset(mm, addr);
1823 p4d = p4d_alloc(mm, pgd, addr);
1826 pud = pud_alloc(mm, p4d, addr);
1829 pmd = pmd_alloc(mm, pud, addr);
1833 VM_BUG_ON(pmd_trans_huge(*pmd));
1837 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1840 pmd_t *pmd = walk_to_pmd(mm, addr);
1844 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1847 static int validate_page_before_insert(struct page *page)
1849 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1851 flush_dcache_page(page);
1855 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1856 unsigned long addr, struct page *page, pgprot_t prot)
1858 if (!pte_none(*pte))
1860 /* Ok, finally just insert the thing.. */
1862 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1863 page_add_file_rmap(page, vma, false);
1864 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1869 * This is the old fallback for page remapping.
1871 * For historical reasons, it only allows reserved pages. Only
1872 * old drivers should use this, and they needed to mark their
1873 * pages reserved for the old functions anyway.
1875 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1876 struct page *page, pgprot_t prot)
1882 retval = validate_page_before_insert(page);
1886 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1889 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1890 pte_unmap_unlock(pte, ptl);
1896 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1897 unsigned long addr, struct page *page, pgprot_t prot)
1901 if (!page_count(page))
1903 err = validate_page_before_insert(page);
1906 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1909 /* insert_pages() amortizes the cost of spinlock operations
1910 * when inserting pages in a loop. Arch *must* define pte_index.
1912 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1913 struct page **pages, unsigned long *num, pgprot_t prot)
1916 pte_t *start_pte, *pte;
1917 spinlock_t *pte_lock;
1918 struct mm_struct *const mm = vma->vm_mm;
1919 unsigned long curr_page_idx = 0;
1920 unsigned long remaining_pages_total = *num;
1921 unsigned long pages_to_write_in_pmd;
1925 pmd = walk_to_pmd(mm, addr);
1929 pages_to_write_in_pmd = min_t(unsigned long,
1930 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1932 /* Allocate the PTE if necessary; takes PMD lock once only. */
1934 if (pte_alloc(mm, pmd))
1937 while (pages_to_write_in_pmd) {
1939 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1941 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1942 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1943 int err = insert_page_in_batch_locked(vma, pte,
1944 addr, pages[curr_page_idx], prot);
1945 if (unlikely(err)) {
1946 pte_unmap_unlock(start_pte, pte_lock);
1948 remaining_pages_total -= pte_idx;
1954 pte_unmap_unlock(start_pte, pte_lock);
1955 pages_to_write_in_pmd -= batch_size;
1956 remaining_pages_total -= batch_size;
1958 if (remaining_pages_total)
1962 *num = remaining_pages_total;
1965 #endif /* ifdef pte_index */
1968 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1969 * @vma: user vma to map to
1970 * @addr: target start user address of these pages
1971 * @pages: source kernel pages
1972 * @num: in: number of pages to map. out: number of pages that were *not*
1973 * mapped. (0 means all pages were successfully mapped).
1975 * Preferred over vm_insert_page() when inserting multiple pages.
1977 * In case of error, we may have mapped a subset of the provided
1978 * pages. It is the caller's responsibility to account for this case.
1980 * The same restrictions apply as in vm_insert_page().
1982 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1983 struct page **pages, unsigned long *num)
1986 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1988 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1990 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1991 BUG_ON(mmap_read_trylock(vma->vm_mm));
1992 BUG_ON(vma->vm_flags & VM_PFNMAP);
1993 vma->vm_flags |= VM_MIXEDMAP;
1995 /* Defer page refcount checking till we're about to map that page. */
1996 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1998 unsigned long idx = 0, pgcount = *num;
2001 for (; idx < pgcount; ++idx) {
2002 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2006 *num = pgcount - idx;
2008 #endif /* ifdef pte_index */
2010 EXPORT_SYMBOL(vm_insert_pages);
2013 * vm_insert_page - insert single page into user vma
2014 * @vma: user vma to map to
2015 * @addr: target user address of this page
2016 * @page: source kernel page
2018 * This allows drivers to insert individual pages they've allocated
2021 * The page has to be a nice clean _individual_ kernel allocation.
2022 * If you allocate a compound page, you need to have marked it as
2023 * such (__GFP_COMP), or manually just split the page up yourself
2024 * (see split_page()).
2026 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2027 * took an arbitrary page protection parameter. This doesn't allow
2028 * that. Your vma protection will have to be set up correctly, which
2029 * means that if you want a shared writable mapping, you'd better
2030 * ask for a shared writable mapping!
2032 * The page does not need to be reserved.
2034 * Usually this function is called from f_op->mmap() handler
2035 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2036 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2037 * function from other places, for example from page-fault handler.
2039 * Return: %0 on success, negative error code otherwise.
2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2044 if (addr < vma->vm_start || addr >= vma->vm_end)
2046 if (!page_count(page))
2048 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2049 BUG_ON(mmap_read_trylock(vma->vm_mm));
2050 BUG_ON(vma->vm_flags & VM_PFNMAP);
2051 vma->vm_flags |= VM_MIXEDMAP;
2053 return insert_page(vma, addr, page, vma->vm_page_prot);
2055 EXPORT_SYMBOL(vm_insert_page);
2058 * __vm_map_pages - maps range of kernel pages into user vma
2059 * @vma: user vma to map to
2060 * @pages: pointer to array of source kernel pages
2061 * @num: number of pages in page array
2062 * @offset: user's requested vm_pgoff
2064 * This allows drivers to map range of kernel pages into a user vma.
2066 * Return: 0 on success and error code otherwise.
2068 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069 unsigned long num, unsigned long offset)
2071 unsigned long count = vma_pages(vma);
2072 unsigned long uaddr = vma->vm_start;
2075 /* Fail if the user requested offset is beyond the end of the object */
2079 /* Fail if the user requested size exceeds available object size */
2080 if (count > num - offset)
2083 for (i = 0; i < count; i++) {
2084 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2094 * vm_map_pages - maps range of kernel pages starts with non zero offset
2095 * @vma: user vma to map to
2096 * @pages: pointer to array of source kernel pages
2097 * @num: number of pages in page array
2099 * Maps an object consisting of @num pages, catering for the user's
2100 * requested vm_pgoff
2102 * If we fail to insert any page into the vma, the function will return
2103 * immediately leaving any previously inserted pages present. Callers
2104 * from the mmap handler may immediately return the error as their caller
2105 * will destroy the vma, removing any successfully inserted pages. Other
2106 * callers should make their own arrangements for calling unmap_region().
2108 * Context: Process context. Called by mmap handlers.
2109 * Return: 0 on success and error code otherwise.
2111 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2114 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2116 EXPORT_SYMBOL(vm_map_pages);
2119 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2120 * @vma: user vma to map to
2121 * @pages: pointer to array of source kernel pages
2122 * @num: number of pages in page array
2124 * Similar to vm_map_pages(), except that it explicitly sets the offset
2125 * to 0. This function is intended for the drivers that did not consider
2128 * Context: Process context. Called by mmap handlers.
2129 * Return: 0 on success and error code otherwise.
2131 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2134 return __vm_map_pages(vma, pages, num, 0);
2136 EXPORT_SYMBOL(vm_map_pages_zero);
2138 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 pfn_t pfn, pgprot_t prot, bool mkwrite)
2141 struct mm_struct *mm = vma->vm_mm;
2145 pte = get_locked_pte(mm, addr, &ptl);
2147 return VM_FAULT_OOM;
2148 if (!pte_none(*pte)) {
2151 * For read faults on private mappings the PFN passed
2152 * in may not match the PFN we have mapped if the
2153 * mapped PFN is a writeable COW page. In the mkwrite
2154 * case we are creating a writable PTE for a shared
2155 * mapping and we expect the PFNs to match. If they
2156 * don't match, we are likely racing with block
2157 * allocation and mapping invalidation so just skip the
2160 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2161 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2164 entry = pte_mkyoung(*pte);
2165 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2166 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2167 update_mmu_cache(vma, addr, pte);
2172 /* Ok, finally just insert the thing.. */
2173 if (pfn_t_devmap(pfn))
2174 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2176 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2179 entry = pte_mkyoung(entry);
2180 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2183 set_pte_at(mm, addr, pte, entry);
2184 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2187 pte_unmap_unlock(pte, ptl);
2188 return VM_FAULT_NOPAGE;
2192 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2193 * @vma: user vma to map to
2194 * @addr: target user address of this page
2195 * @pfn: source kernel pfn
2196 * @pgprot: pgprot flags for the inserted page
2198 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2199 * to override pgprot on a per-page basis.
2201 * This only makes sense for IO mappings, and it makes no sense for
2202 * COW mappings. In general, using multiple vmas is preferable;
2203 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2206 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2207 * a value of @pgprot different from that of @vma->vm_page_prot.
2209 * Context: Process context. May allocate using %GFP_KERNEL.
2210 * Return: vm_fault_t value.
2212 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2213 unsigned long pfn, pgprot_t pgprot)
2216 * Technically, architectures with pte_special can avoid all these
2217 * restrictions (same for remap_pfn_range). However we would like
2218 * consistency in testing and feature parity among all, so we should
2219 * try to keep these invariants in place for everybody.
2221 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2222 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2223 (VM_PFNMAP|VM_MIXEDMAP));
2224 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2225 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2227 if (addr < vma->vm_start || addr >= vma->vm_end)
2228 return VM_FAULT_SIGBUS;
2230 if (!pfn_modify_allowed(pfn, pgprot))
2231 return VM_FAULT_SIGBUS;
2233 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2235 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2238 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2241 * vmf_insert_pfn - insert single pfn into user vma
2242 * @vma: user vma to map to
2243 * @addr: target user address of this page
2244 * @pfn: source kernel pfn
2246 * Similar to vm_insert_page, this allows drivers to insert individual pages
2247 * they've allocated into a user vma. Same comments apply.
2249 * This function should only be called from a vm_ops->fault handler, and
2250 * in that case the handler should return the result of this function.
2252 * vma cannot be a COW mapping.
2254 * As this is called only for pages that do not currently exist, we
2255 * do not need to flush old virtual caches or the TLB.
2257 * Context: Process context. May allocate using %GFP_KERNEL.
2258 * Return: vm_fault_t value.
2260 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2263 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2265 EXPORT_SYMBOL(vmf_insert_pfn);
2267 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2269 /* these checks mirror the abort conditions in vm_normal_page */
2270 if (vma->vm_flags & VM_MIXEDMAP)
2272 if (pfn_t_devmap(pfn))
2274 if (pfn_t_special(pfn))
2276 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2281 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2282 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2287 BUG_ON(!vm_mixed_ok(vma, pfn));
2289 if (addr < vma->vm_start || addr >= vma->vm_end)
2290 return VM_FAULT_SIGBUS;
2292 track_pfn_insert(vma, &pgprot, pfn);
2294 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2295 return VM_FAULT_SIGBUS;
2298 * If we don't have pte special, then we have to use the pfn_valid()
2299 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2300 * refcount the page if pfn_valid is true (hence insert_page rather
2301 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2302 * without pte special, it would there be refcounted as a normal page.
2304 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2305 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2309 * At this point we are committed to insert_page()
2310 * regardless of whether the caller specified flags that
2311 * result in pfn_t_has_page() == false.
2313 page = pfn_to_page(pfn_t_to_pfn(pfn));
2314 err = insert_page(vma, addr, page, pgprot);
2316 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2320 return VM_FAULT_OOM;
2321 if (err < 0 && err != -EBUSY)
2322 return VM_FAULT_SIGBUS;
2324 return VM_FAULT_NOPAGE;
2328 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2329 * @vma: user vma to map to
2330 * @addr: target user address of this page
2331 * @pfn: source kernel pfn
2332 * @pgprot: pgprot flags for the inserted page
2334 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2335 * to override pgprot on a per-page basis.
2337 * Typically this function should be used by drivers to set caching- and
2338 * encryption bits different than those of @vma->vm_page_prot, because
2339 * the caching- or encryption mode may not be known at mmap() time.
2340 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2341 * to set caching and encryption bits for those vmas (except for COW pages).
2342 * This is ensured by core vm only modifying these page table entries using
2343 * functions that don't touch caching- or encryption bits, using pte_modify()
2344 * if needed. (See for example mprotect()).
2345 * Also when new page-table entries are created, this is only done using the
2346 * fault() callback, and never using the value of vma->vm_page_prot,
2347 * except for page-table entries that point to anonymous pages as the result
2350 * Context: Process context. May allocate using %GFP_KERNEL.
2351 * Return: vm_fault_t value.
2353 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2354 pfn_t pfn, pgprot_t pgprot)
2356 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2358 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2360 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2363 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2365 EXPORT_SYMBOL(vmf_insert_mixed);
2368 * If the insertion of PTE failed because someone else already added a
2369 * different entry in the mean time, we treat that as success as we assume
2370 * the same entry was actually inserted.
2372 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2373 unsigned long addr, pfn_t pfn)
2375 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2377 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2380 * maps a range of physical memory into the requested pages. the old
2381 * mappings are removed. any references to nonexistent pages results
2382 * in null mappings (currently treated as "copy-on-access")
2384 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2385 unsigned long addr, unsigned long end,
2386 unsigned long pfn, pgprot_t prot)
2388 pte_t *pte, *mapped_pte;
2392 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2395 arch_enter_lazy_mmu_mode();
2397 BUG_ON(!pte_none(*pte));
2398 if (!pfn_modify_allowed(pfn, prot)) {
2402 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2404 } while (pte++, addr += PAGE_SIZE, addr != end);
2405 arch_leave_lazy_mmu_mode();
2406 pte_unmap_unlock(mapped_pte, ptl);
2410 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2411 unsigned long addr, unsigned long end,
2412 unsigned long pfn, pgprot_t prot)
2418 pfn -= addr >> PAGE_SHIFT;
2419 pmd = pmd_alloc(mm, pud, addr);
2422 VM_BUG_ON(pmd_trans_huge(*pmd));
2424 next = pmd_addr_end(addr, end);
2425 err = remap_pte_range(mm, pmd, addr, next,
2426 pfn + (addr >> PAGE_SHIFT), prot);
2429 } while (pmd++, addr = next, addr != end);
2433 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2434 unsigned long addr, unsigned long end,
2435 unsigned long pfn, pgprot_t prot)
2441 pfn -= addr >> PAGE_SHIFT;
2442 pud = pud_alloc(mm, p4d, addr);
2446 next = pud_addr_end(addr, end);
2447 err = remap_pmd_range(mm, pud, addr, next,
2448 pfn + (addr >> PAGE_SHIFT), prot);
2451 } while (pud++, addr = next, addr != end);
2455 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2456 unsigned long addr, unsigned long end,
2457 unsigned long pfn, pgprot_t prot)
2463 pfn -= addr >> PAGE_SHIFT;
2464 p4d = p4d_alloc(mm, pgd, addr);
2468 next = p4d_addr_end(addr, end);
2469 err = remap_pud_range(mm, p4d, addr, next,
2470 pfn + (addr >> PAGE_SHIFT), prot);
2473 } while (p4d++, addr = next, addr != end);
2478 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2479 * must have pre-validated the caching bits of the pgprot_t.
2481 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2482 unsigned long pfn, unsigned long size, pgprot_t prot)
2486 unsigned long end = addr + PAGE_ALIGN(size);
2487 struct mm_struct *mm = vma->vm_mm;
2490 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2494 * Physically remapped pages are special. Tell the
2495 * rest of the world about it:
2496 * VM_IO tells people not to look at these pages
2497 * (accesses can have side effects).
2498 * VM_PFNMAP tells the core MM that the base pages are just
2499 * raw PFN mappings, and do not have a "struct page" associated
2502 * Disable vma merging and expanding with mremap().
2504 * Omit vma from core dump, even when VM_IO turned off.
2506 * There's a horrible special case to handle copy-on-write
2507 * behaviour that some programs depend on. We mark the "original"
2508 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2509 * See vm_normal_page() for details.
2511 if (is_cow_mapping(vma->vm_flags)) {
2512 if (addr != vma->vm_start || end != vma->vm_end)
2514 vma->vm_pgoff = pfn;
2517 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2519 BUG_ON(addr >= end);
2520 pfn -= addr >> PAGE_SHIFT;
2521 pgd = pgd_offset(mm, addr);
2522 flush_cache_range(vma, addr, end);
2524 next = pgd_addr_end(addr, end);
2525 err = remap_p4d_range(mm, pgd, addr, next,
2526 pfn + (addr >> PAGE_SHIFT), prot);
2529 } while (pgd++, addr = next, addr != end);
2535 * remap_pfn_range - remap kernel memory to userspace
2536 * @vma: user vma to map to
2537 * @addr: target page aligned user address to start at
2538 * @pfn: page frame number of kernel physical memory address
2539 * @size: size of mapping area
2540 * @prot: page protection flags for this mapping
2542 * Note: this is only safe if the mm semaphore is held when called.
2544 * Return: %0 on success, negative error code otherwise.
2546 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2547 unsigned long pfn, unsigned long size, pgprot_t prot)
2551 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2555 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2557 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2560 EXPORT_SYMBOL(remap_pfn_range);
2563 * vm_iomap_memory - remap memory to userspace
2564 * @vma: user vma to map to
2565 * @start: start of the physical memory to be mapped
2566 * @len: size of area
2568 * This is a simplified io_remap_pfn_range() for common driver use. The
2569 * driver just needs to give us the physical memory range to be mapped,
2570 * we'll figure out the rest from the vma information.
2572 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2573 * whatever write-combining details or similar.
2575 * Return: %0 on success, negative error code otherwise.
2577 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2579 unsigned long vm_len, pfn, pages;
2581 /* Check that the physical memory area passed in looks valid */
2582 if (start + len < start)
2585 * You *really* shouldn't map things that aren't page-aligned,
2586 * but we've historically allowed it because IO memory might
2587 * just have smaller alignment.
2589 len += start & ~PAGE_MASK;
2590 pfn = start >> PAGE_SHIFT;
2591 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2592 if (pfn + pages < pfn)
2595 /* We start the mapping 'vm_pgoff' pages into the area */
2596 if (vma->vm_pgoff > pages)
2598 pfn += vma->vm_pgoff;
2599 pages -= vma->vm_pgoff;
2601 /* Can we fit all of the mapping? */
2602 vm_len = vma->vm_end - vma->vm_start;
2603 if (vm_len >> PAGE_SHIFT > pages)
2606 /* Ok, let it rip */
2607 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2609 EXPORT_SYMBOL(vm_iomap_memory);
2611 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2612 unsigned long addr, unsigned long end,
2613 pte_fn_t fn, void *data, bool create,
2614 pgtbl_mod_mask *mask)
2616 pte_t *pte, *mapped_pte;
2621 mapped_pte = pte = (mm == &init_mm) ?
2622 pte_alloc_kernel_track(pmd, addr, mask) :
2623 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2627 mapped_pte = pte = (mm == &init_mm) ?
2628 pte_offset_kernel(pmd, addr) :
2629 pte_offset_map_lock(mm, pmd, addr, &ptl);
2632 BUG_ON(pmd_huge(*pmd));
2634 arch_enter_lazy_mmu_mode();
2638 if (create || !pte_none(*pte)) {
2639 err = fn(pte++, addr, data);
2643 } while (addr += PAGE_SIZE, addr != end);
2645 *mask |= PGTBL_PTE_MODIFIED;
2647 arch_leave_lazy_mmu_mode();
2650 pte_unmap_unlock(mapped_pte, ptl);
2654 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2655 unsigned long addr, unsigned long end,
2656 pte_fn_t fn, void *data, bool create,
2657 pgtbl_mod_mask *mask)
2663 BUG_ON(pud_huge(*pud));
2666 pmd = pmd_alloc_track(mm, pud, addr, mask);
2670 pmd = pmd_offset(pud, addr);
2673 next = pmd_addr_end(addr, end);
2674 if (pmd_none(*pmd) && !create)
2676 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2678 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2683 err = apply_to_pte_range(mm, pmd, addr, next,
2684 fn, data, create, mask);
2687 } while (pmd++, addr = next, addr != end);
2692 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2693 unsigned long addr, unsigned long end,
2694 pte_fn_t fn, void *data, bool create,
2695 pgtbl_mod_mask *mask)
2702 pud = pud_alloc_track(mm, p4d, addr, mask);
2706 pud = pud_offset(p4d, addr);
2709 next = pud_addr_end(addr, end);
2710 if (pud_none(*pud) && !create)
2712 if (WARN_ON_ONCE(pud_leaf(*pud)))
2714 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2719 err = apply_to_pmd_range(mm, pud, addr, next,
2720 fn, data, create, mask);
2723 } while (pud++, addr = next, addr != end);
2728 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2729 unsigned long addr, unsigned long end,
2730 pte_fn_t fn, void *data, bool create,
2731 pgtbl_mod_mask *mask)
2738 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2742 p4d = p4d_offset(pgd, addr);
2745 next = p4d_addr_end(addr, end);
2746 if (p4d_none(*p4d) && !create)
2748 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2750 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2755 err = apply_to_pud_range(mm, p4d, addr, next,
2756 fn, data, create, mask);
2759 } while (p4d++, addr = next, addr != end);
2764 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 unsigned long size, pte_fn_t fn,
2766 void *data, bool create)
2769 unsigned long start = addr, next;
2770 unsigned long end = addr + size;
2771 pgtbl_mod_mask mask = 0;
2774 if (WARN_ON(addr >= end))
2777 pgd = pgd_offset(mm, addr);
2779 next = pgd_addr_end(addr, end);
2780 if (pgd_none(*pgd) && !create)
2782 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2784 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2789 err = apply_to_p4d_range(mm, pgd, addr, next,
2790 fn, data, create, &mask);
2793 } while (pgd++, addr = next, addr != end);
2795 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2796 arch_sync_kernel_mappings(start, start + size);
2802 * Scan a region of virtual memory, filling in page tables as necessary
2803 * and calling a provided function on each leaf page table.
2805 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2806 unsigned long size, pte_fn_t fn, void *data)
2808 return __apply_to_page_range(mm, addr, size, fn, data, true);
2810 EXPORT_SYMBOL_GPL(apply_to_page_range);
2813 * Scan a region of virtual memory, calling a provided function on
2814 * each leaf page table where it exists.
2816 * Unlike apply_to_page_range, this does _not_ fill in page tables
2817 * where they are absent.
2819 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2820 unsigned long size, pte_fn_t fn, void *data)
2822 return __apply_to_page_range(mm, addr, size, fn, data, false);
2824 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2827 * handle_pte_fault chooses page fault handler according to an entry which was
2828 * read non-atomically. Before making any commitment, on those architectures
2829 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2830 * parts, do_swap_page must check under lock before unmapping the pte and
2831 * proceeding (but do_wp_page is only called after already making such a check;
2832 * and do_anonymous_page can safely check later on).
2834 static inline int pte_unmap_same(struct vm_fault *vmf)
2837 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2838 if (sizeof(pte_t) > sizeof(unsigned long)) {
2839 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2841 same = pte_same(*vmf->pte, vmf->orig_pte);
2845 pte_unmap(vmf->pte);
2850 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2851 struct vm_fault *vmf)
2856 bool locked = false;
2857 struct vm_area_struct *vma = vmf->vma;
2858 struct mm_struct *mm = vma->vm_mm;
2859 unsigned long addr = vmf->address;
2862 copy_user_highpage(dst, src, addr, vma);
2867 * If the source page was a PFN mapping, we don't have
2868 * a "struct page" for it. We do a best-effort copy by
2869 * just copying from the original user address. If that
2870 * fails, we just zero-fill it. Live with it.
2872 kaddr = kmap_atomic(dst);
2873 uaddr = (void __user *)(addr & PAGE_MASK);
2876 * On architectures with software "accessed" bits, we would
2877 * take a double page fault, so mark it accessed here.
2879 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2882 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2884 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2886 * Other thread has already handled the fault
2887 * and update local tlb only
2889 update_mmu_tlb(vma, addr, vmf->pte);
2894 entry = pte_mkyoung(vmf->orig_pte);
2895 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2896 update_mmu_cache(vma, addr, vmf->pte);
2900 * This really shouldn't fail, because the page is there
2901 * in the page tables. But it might just be unreadable,
2902 * in which case we just give up and fill the result with
2905 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2909 /* Re-validate under PTL if the page is still mapped */
2910 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2912 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2913 /* The PTE changed under us, update local tlb */
2914 update_mmu_tlb(vma, addr, vmf->pte);
2920 * The same page can be mapped back since last copy attempt.
2921 * Try to copy again under PTL.
2923 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2925 * Give a warn in case there can be some obscure
2938 pte_unmap_unlock(vmf->pte, vmf->ptl);
2939 kunmap_atomic(kaddr);
2940 flush_dcache_page(dst);
2945 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2947 struct file *vm_file = vma->vm_file;
2950 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2953 * Special mappings (e.g. VDSO) do not have any file so fake
2954 * a default GFP_KERNEL for them.
2960 * Notify the address space that the page is about to become writable so that
2961 * it can prohibit this or wait for the page to get into an appropriate state.
2963 * We do this without the lock held, so that it can sleep if it needs to.
2965 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2968 struct page *page = vmf->page;
2969 unsigned int old_flags = vmf->flags;
2971 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2973 if (vmf->vma->vm_file &&
2974 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2975 return VM_FAULT_SIGBUS;
2977 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2978 /* Restore original flags so that caller is not surprised */
2979 vmf->flags = old_flags;
2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2982 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2984 if (!page->mapping) {
2986 return 0; /* retry */
2988 ret |= VM_FAULT_LOCKED;
2990 VM_BUG_ON_PAGE(!PageLocked(page), page);
2995 * Handle dirtying of a page in shared file mapping on a write fault.
2997 * The function expects the page to be locked and unlocks it.
2999 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3001 struct vm_area_struct *vma = vmf->vma;
3002 struct address_space *mapping;
3003 struct page *page = vmf->page;
3005 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3007 dirtied = set_page_dirty(page);
3008 VM_BUG_ON_PAGE(PageAnon(page), page);
3010 * Take a local copy of the address_space - page.mapping may be zeroed
3011 * by truncate after unlock_page(). The address_space itself remains
3012 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3013 * release semantics to prevent the compiler from undoing this copying.
3015 mapping = page_rmapping(page);
3019 file_update_time(vma->vm_file);
3022 * Throttle page dirtying rate down to writeback speed.
3024 * mapping may be NULL here because some device drivers do not
3025 * set page.mapping but still dirty their pages
3027 * Drop the mmap_lock before waiting on IO, if we can. The file
3028 * is pinning the mapping, as per above.
3030 if ((dirtied || page_mkwrite) && mapping) {
3033 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3034 balance_dirty_pages_ratelimited(mapping);
3037 return VM_FAULT_COMPLETED;
3045 * Handle write page faults for pages that can be reused in the current vma
3047 * This can happen either due to the mapping being with the VM_SHARED flag,
3048 * or due to us being the last reference standing to the page. In either
3049 * case, all we need to do here is to mark the page as writable and update
3050 * any related book-keeping.
3052 static inline void wp_page_reuse(struct vm_fault *vmf)
3053 __releases(vmf->ptl)
3055 struct vm_area_struct *vma = vmf->vma;
3056 struct page *page = vmf->page;
3059 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3060 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3063 * Clear the pages cpupid information as the existing
3064 * information potentially belongs to a now completely
3065 * unrelated process.
3068 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3070 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3071 entry = pte_mkyoung(vmf->orig_pte);
3072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3073 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3074 update_mmu_cache(vma, vmf->address, vmf->pte);
3075 pte_unmap_unlock(vmf->pte, vmf->ptl);
3076 count_vm_event(PGREUSE);
3080 * Handle the case of a page which we actually need to copy to a new page,
3081 * either due to COW or unsharing.
3083 * Called with mmap_lock locked and the old page referenced, but
3084 * without the ptl held.
3086 * High level logic flow:
3088 * - Allocate a page, copy the content of the old page to the new one.
3089 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3090 * - Take the PTL. If the pte changed, bail out and release the allocated page
3091 * - If the pte is still the way we remember it, update the page table and all
3092 * relevant references. This includes dropping the reference the page-table
3093 * held to the old page, as well as updating the rmap.
3094 * - In any case, unlock the PTL and drop the reference we took to the old page.
3096 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3098 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3099 struct vm_area_struct *vma = vmf->vma;
3100 struct mm_struct *mm = vma->vm_mm;
3101 struct page *old_page = vmf->page;
3102 struct page *new_page = NULL;
3104 int page_copied = 0;
3105 struct mmu_notifier_range range;
3107 delayacct_wpcopy_start();
3109 if (unlikely(anon_vma_prepare(vma)))
3112 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3113 new_page = alloc_zeroed_user_highpage_movable(vma,
3118 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3123 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3125 * COW failed, if the fault was solved by other,
3126 * it's fine. If not, userspace would re-fault on
3127 * the same address and we will handle the fault
3128 * from the second attempt.
3134 delayacct_wpcopy_end();
3139 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3141 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3143 __SetPageUptodate(new_page);
3145 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3146 vmf->address & PAGE_MASK,
3147 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3148 mmu_notifier_invalidate_range_start(&range);
3151 * Re-check the pte - we dropped the lock
3153 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3154 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3156 if (!PageAnon(old_page)) {
3157 dec_mm_counter_fast(mm,
3158 mm_counter_file(old_page));
3159 inc_mm_counter_fast(mm, MM_ANONPAGES);
3162 inc_mm_counter_fast(mm, MM_ANONPAGES);
3164 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3165 entry = mk_pte(new_page, vma->vm_page_prot);
3166 entry = pte_sw_mkyoung(entry);
3167 if (unlikely(unshare)) {
3168 if (pte_soft_dirty(vmf->orig_pte))
3169 entry = pte_mksoft_dirty(entry);
3170 if (pte_uffd_wp(vmf->orig_pte))
3171 entry = pte_mkuffd_wp(entry);
3173 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3177 * Clear the pte entry and flush it first, before updating the
3178 * pte with the new entry, to keep TLBs on different CPUs in
3179 * sync. This code used to set the new PTE then flush TLBs, but
3180 * that left a window where the new PTE could be loaded into
3181 * some TLBs while the old PTE remains in others.
3183 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3184 page_add_new_anon_rmap(new_page, vma, vmf->address);
3185 lru_cache_add_inactive_or_unevictable(new_page, vma);
3187 * We call the notify macro here because, when using secondary
3188 * mmu page tables (such as kvm shadow page tables), we want the
3189 * new page to be mapped directly into the secondary page table.
3191 BUG_ON(unshare && pte_write(entry));
3192 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3193 update_mmu_cache(vma, vmf->address, vmf->pte);
3196 * Only after switching the pte to the new page may
3197 * we remove the mapcount here. Otherwise another
3198 * process may come and find the rmap count decremented
3199 * before the pte is switched to the new page, and
3200 * "reuse" the old page writing into it while our pte
3201 * here still points into it and can be read by other
3204 * The critical issue is to order this
3205 * page_remove_rmap with the ptp_clear_flush above.
3206 * Those stores are ordered by (if nothing else,)
3207 * the barrier present in the atomic_add_negative
3208 * in page_remove_rmap.
3210 * Then the TLB flush in ptep_clear_flush ensures that
3211 * no process can access the old page before the
3212 * decremented mapcount is visible. And the old page
3213 * cannot be reused until after the decremented
3214 * mapcount is visible. So transitively, TLBs to
3215 * old page will be flushed before it can be reused.
3217 page_remove_rmap(old_page, vma, false);
3220 /* Free the old page.. */
3221 new_page = old_page;
3224 update_mmu_tlb(vma, vmf->address, vmf->pte);
3230 pte_unmap_unlock(vmf->pte, vmf->ptl);
3232 * No need to double call mmu_notifier->invalidate_range() callback as
3233 * the above ptep_clear_flush_notify() did already call it.
3235 mmu_notifier_invalidate_range_only_end(&range);
3238 free_swap_cache(old_page);
3242 delayacct_wpcopy_end();
3243 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3250 delayacct_wpcopy_end();
3251 return VM_FAULT_OOM;
3255 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3256 * writeable once the page is prepared
3258 * @vmf: structure describing the fault
3260 * This function handles all that is needed to finish a write page fault in a
3261 * shared mapping due to PTE being read-only once the mapped page is prepared.
3262 * It handles locking of PTE and modifying it.
3264 * The function expects the page to be locked or other protection against
3265 * concurrent faults / writeback (such as DAX radix tree locks).
3267 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3268 * we acquired PTE lock.
3270 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3272 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3273 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3276 * We might have raced with another page fault while we released the
3277 * pte_offset_map_lock.
3279 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3280 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3281 pte_unmap_unlock(vmf->pte, vmf->ptl);
3282 return VM_FAULT_NOPAGE;
3289 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3292 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3294 struct vm_area_struct *vma = vmf->vma;
3296 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
3300 vmf->flags |= FAULT_FLAG_MKWRITE;
3301 ret = vma->vm_ops->pfn_mkwrite(vmf);
3302 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3304 return finish_mkwrite_fault(vmf);
3307 return VM_FAULT_WRITE;
3310 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3311 __releases(vmf->ptl)
3313 struct vm_area_struct *vma = vmf->vma;
3314 vm_fault_t ret = VM_FAULT_WRITE;
3316 get_page(vmf->page);
3318 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3321 pte_unmap_unlock(vmf->pte, vmf->ptl);
3322 tmp = do_page_mkwrite(vmf);
3323 if (unlikely(!tmp || (tmp &
3324 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3325 put_page(vmf->page);
3328 tmp = finish_mkwrite_fault(vmf);
3329 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3330 unlock_page(vmf->page);
3331 put_page(vmf->page);
3336 lock_page(vmf->page);
3338 ret |= fault_dirty_shared_page(vmf);
3339 put_page(vmf->page);
3345 * This routine handles present pages, when
3346 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3347 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3348 * (FAULT_FLAG_UNSHARE)
3350 * It is done by copying the page to a new address and decrementing the
3351 * shared-page counter for the old page.
3353 * Note that this routine assumes that the protection checks have been
3354 * done by the caller (the low-level page fault routine in most cases).
3355 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3356 * done any necessary COW.
3358 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3359 * though the page will change only once the write actually happens. This
3360 * avoids a few races, and potentially makes it more efficient.
3362 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3363 * but allow concurrent faults), with pte both mapped and locked.
3364 * We return with mmap_lock still held, but pte unmapped and unlocked.
3366 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3367 __releases(vmf->ptl)
3369 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3370 struct vm_area_struct *vma = vmf->vma;
3371 struct folio *folio;
3373 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3374 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3376 if (likely(!unshare)) {
3377 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3378 pte_unmap_unlock(vmf->pte, vmf->ptl);
3379 return handle_userfault(vmf, VM_UFFD_WP);
3383 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3384 * is flushed in this case before copying.
3386 if (unlikely(userfaultfd_wp(vmf->vma) &&
3387 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3388 flush_tlb_page(vmf->vma, vmf->address);
3391 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3393 if (unlikely(unshare)) {
3394 /* No anonymous page -> nothing to do. */
3395 pte_unmap_unlock(vmf->pte, vmf->ptl);
3400 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3403 * We should not cow pages in a shared writeable mapping.
3404 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3406 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3407 (VM_WRITE|VM_SHARED))
3408 return wp_pfn_shared(vmf);
3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
3411 return wp_page_copy(vmf);
3415 * Take out anonymous pages first, anonymous shared vmas are
3416 * not dirty accountable.
3418 folio = page_folio(vmf->page);
3419 if (folio_test_anon(folio)) {
3421 * If the page is exclusive to this process we must reuse the
3422 * page without further checks.
3424 if (PageAnonExclusive(vmf->page))
3428 * We have to verify under folio lock: these early checks are
3429 * just an optimization to avoid locking the folio and freeing
3430 * the swapcache if there is little hope that we can reuse.
3432 * KSM doesn't necessarily raise the folio refcount.
3434 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3436 if (!folio_test_lru(folio))
3438 * Note: We cannot easily detect+handle references from
3439 * remote LRU pagevecs or references to LRU folios.
3442 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3444 if (!folio_trylock(folio))
3446 if (folio_test_swapcache(folio))
3447 folio_free_swap(folio);
3448 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3449 folio_unlock(folio);
3453 * Ok, we've got the only folio reference from our mapping
3454 * and the folio is locked, it's dark out, and we're wearing
3455 * sunglasses. Hit it.
3457 page_move_anon_rmap(vmf->page, vma);
3458 folio_unlock(folio);
3460 if (unlikely(unshare)) {
3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
3465 return VM_FAULT_WRITE;
3466 } else if (unshare) {
3467 /* No anonymous page -> nothing to do. */
3468 pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3471 (VM_WRITE|VM_SHARED))) {
3472 return wp_page_shared(vmf);
3476 * Ok, we need to copy. Oh, well..
3478 get_page(vmf->page);
3480 pte_unmap_unlock(vmf->pte, vmf->ptl);
3482 if (PageKsm(vmf->page))
3483 count_vm_event(COW_KSM);
3485 return wp_page_copy(vmf);
3488 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3489 unsigned long start_addr, unsigned long end_addr,
3490 struct zap_details *details)
3492 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3495 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3496 pgoff_t first_index,
3498 struct zap_details *details)
3500 struct vm_area_struct *vma;
3501 pgoff_t vba, vea, zba, zea;
3503 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3504 vba = vma->vm_pgoff;
3505 vea = vba + vma_pages(vma) - 1;
3506 zba = max(first_index, vba);
3507 zea = min(last_index, vea);
3509 unmap_mapping_range_vma(vma,
3510 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3511 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3517 * unmap_mapping_folio() - Unmap single folio from processes.
3518 * @folio: The locked folio to be unmapped.
3520 * Unmap this folio from any userspace process which still has it mmaped.
3521 * Typically, for efficiency, the range of nearby pages has already been
3522 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3523 * truncation or invalidation holds the lock on a folio, it may find that
3524 * the page has been remapped again: and then uses unmap_mapping_folio()
3525 * to unmap it finally.
3527 void unmap_mapping_folio(struct folio *folio)
3529 struct address_space *mapping = folio->mapping;
3530 struct zap_details details = { };
3531 pgoff_t first_index;
3534 VM_BUG_ON(!folio_test_locked(folio));
3536 first_index = folio->index;
3537 last_index = folio->index + folio_nr_pages(folio) - 1;
3539 details.even_cows = false;
3540 details.single_folio = folio;
3541 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3543 i_mmap_lock_read(mapping);
3544 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3545 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3546 last_index, &details);
3547 i_mmap_unlock_read(mapping);
3551 * unmap_mapping_pages() - Unmap pages from processes.
3552 * @mapping: The address space containing pages to be unmapped.
3553 * @start: Index of first page to be unmapped.
3554 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3555 * @even_cows: Whether to unmap even private COWed pages.
3557 * Unmap the pages in this address space from any userspace process which
3558 * has them mmaped. Generally, you want to remove COWed pages as well when
3559 * a file is being truncated, but not when invalidating pages from the page
3562 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3563 pgoff_t nr, bool even_cows)
3565 struct zap_details details = { };
3566 pgoff_t first_index = start;
3567 pgoff_t last_index = start + nr - 1;
3569 details.even_cows = even_cows;
3570 if (last_index < first_index)
3571 last_index = ULONG_MAX;
3573 i_mmap_lock_read(mapping);
3574 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3575 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3576 last_index, &details);
3577 i_mmap_unlock_read(mapping);
3579 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3582 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3583 * address_space corresponding to the specified byte range in the underlying
3586 * @mapping: the address space containing mmaps to be unmapped.
3587 * @holebegin: byte in first page to unmap, relative to the start of
3588 * the underlying file. This will be rounded down to a PAGE_SIZE
3589 * boundary. Note that this is different from truncate_pagecache(), which
3590 * must keep the partial page. In contrast, we must get rid of
3592 * @holelen: size of prospective hole in bytes. This will be rounded
3593 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3595 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3596 * but 0 when invalidating pagecache, don't throw away private data.
3598 void unmap_mapping_range(struct address_space *mapping,
3599 loff_t const holebegin, loff_t const holelen, int even_cows)
3601 pgoff_t hba = holebegin >> PAGE_SHIFT;
3602 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3604 /* Check for overflow. */
3605 if (sizeof(holelen) > sizeof(hlen)) {
3607 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3608 if (holeend & ~(long long)ULONG_MAX)
3609 hlen = ULONG_MAX - hba + 1;
3612 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3614 EXPORT_SYMBOL(unmap_mapping_range);
3617 * Restore a potential device exclusive pte to a working pte entry
3619 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3621 struct folio *folio = page_folio(vmf->page);
3622 struct vm_area_struct *vma = vmf->vma;
3623 struct mmu_notifier_range range;
3625 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3626 return VM_FAULT_RETRY;
3627 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3628 vma->vm_mm, vmf->address & PAGE_MASK,
3629 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3630 mmu_notifier_invalidate_range_start(&range);
3632 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3634 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3635 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3637 pte_unmap_unlock(vmf->pte, vmf->ptl);
3638 folio_unlock(folio);
3640 mmu_notifier_invalidate_range_end(&range);
3644 static inline bool should_try_to_free_swap(struct folio *folio,
3645 struct vm_area_struct *vma,
3646 unsigned int fault_flags)
3648 if (!folio_test_swapcache(folio))
3650 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3651 folio_test_mlocked(folio))
3654 * If we want to map a page that's in the swapcache writable, we
3655 * have to detect via the refcount if we're really the exclusive
3656 * user. Try freeing the swapcache to get rid of the swapcache
3657 * reference only in case it's likely that we'll be the exlusive user.
3659 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3660 folio_ref_count(folio) == 2;
3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3665 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3666 vmf->address, &vmf->ptl);
3668 * Be careful so that we will only recover a special uffd-wp pte into a
3669 * none pte. Otherwise it means the pte could have changed, so retry.
3671 if (is_pte_marker(*vmf->pte))
3672 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3673 pte_unmap_unlock(vmf->pte, vmf->ptl);
3678 * This is actually a page-missing access, but with uffd-wp special pte
3679 * installed. It means this pte was wr-protected before being unmapped.
3681 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3684 * Just in case there're leftover special ptes even after the region
3685 * got unregistered - we can simply clear them. We can also do that
3686 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3687 * ranges, but it should be more efficient to be done lazily here.
3689 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3690 return pte_marker_clear(vmf);
3692 /* do_fault() can handle pte markers too like none pte */
3693 return do_fault(vmf);
3696 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3698 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3699 unsigned long marker = pte_marker_get(entry);
3702 * PTE markers should always be with file-backed memories, and the
3703 * marker should never be empty. If anything weird happened, the best
3704 * thing to do is to kill the process along with its mm.
3706 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3707 return VM_FAULT_SIGBUS;
3709 if (pte_marker_entry_uffd_wp(entry))
3710 return pte_marker_handle_uffd_wp(vmf);
3712 /* This is an unknown pte marker */
3713 return VM_FAULT_SIGBUS;
3717 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3718 * but allow concurrent faults), and pte mapped but not yet locked.
3719 * We return with pte unmapped and unlocked.
3721 * We return with the mmap_lock locked or unlocked in the same cases
3722 * as does filemap_fault().
3724 vm_fault_t do_swap_page(struct vm_fault *vmf)
3726 struct vm_area_struct *vma = vmf->vma;
3727 struct folio *swapcache, *folio = NULL;
3729 struct swap_info_struct *si = NULL;
3730 rmap_t rmap_flags = RMAP_NONE;
3731 bool exclusive = false;
3736 void *shadow = NULL;
3738 if (!pte_unmap_same(vmf))
3741 entry = pte_to_swp_entry(vmf->orig_pte);
3742 if (unlikely(non_swap_entry(entry))) {
3743 if (is_migration_entry(entry)) {
3744 migration_entry_wait(vma->vm_mm, vmf->pmd,
3746 } else if (is_device_exclusive_entry(entry)) {
3747 vmf->page = pfn_swap_entry_to_page(entry);
3748 ret = remove_device_exclusive_entry(vmf);
3749 } else if (is_device_private_entry(entry)) {
3750 vmf->page = pfn_swap_entry_to_page(entry);
3751 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3752 } else if (is_hwpoison_entry(entry)) {
3753 ret = VM_FAULT_HWPOISON;
3754 } else if (is_swapin_error_entry(entry)) {
3755 ret = VM_FAULT_SIGBUS;
3756 } else if (is_pte_marker_entry(entry)) {
3757 ret = handle_pte_marker(vmf);
3759 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3760 ret = VM_FAULT_SIGBUS;
3765 /* Prevent swapoff from happening to us. */
3766 si = get_swap_device(entry);
3770 folio = swap_cache_get_folio(entry, vma, vmf->address);
3772 page = folio_file_page(folio, swp_offset(entry));
3776 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3777 __swap_count(entry) == 1) {
3778 /* skip swapcache */
3779 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3780 vma, vmf->address, false);
3781 page = &folio->page;
3783 __folio_set_locked(folio);
3784 __folio_set_swapbacked(folio);
3786 if (mem_cgroup_swapin_charge_folio(folio,
3787 vma->vm_mm, GFP_KERNEL,
3792 mem_cgroup_swapin_uncharge_swap(entry);
3794 shadow = get_shadow_from_swap_cache(entry);
3796 workingset_refault(folio, shadow);
3798 folio_add_lru(folio);
3800 /* To provide entry to swap_readpage() */
3801 folio_set_swap_entry(folio, entry);
3802 swap_readpage(page, true, NULL);
3803 folio->private = NULL;
3806 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3809 folio = page_folio(page);
3815 * Back out if somebody else faulted in this pte
3816 * while we released the pte lock.
3818 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3819 vmf->address, &vmf->ptl);
3820 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3825 /* Had to read the page from swap area: Major fault */
3826 ret = VM_FAULT_MAJOR;
3827 count_vm_event(PGMAJFAULT);
3828 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3829 } else if (PageHWPoison(page)) {
3831 * hwpoisoned dirty swapcache pages are kept for killing
3832 * owner processes (which may be unknown at hwpoison time)
3834 ret = VM_FAULT_HWPOISON;
3838 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3841 ret |= VM_FAULT_RETRY;
3847 * Make sure folio_free_swap() or swapoff did not release the
3848 * swapcache from under us. The page pin, and pte_same test
3849 * below, are not enough to exclude that. Even if it is still
3850 * swapcache, we need to check that the page's swap has not
3853 if (unlikely(!folio_test_swapcache(folio) ||
3854 page_private(page) != entry.val))
3858 * KSM sometimes has to copy on read faults, for example, if
3859 * page->index of !PageKSM() pages would be nonlinear inside the
3860 * anon VMA -- PageKSM() is lost on actual swapout.
3862 page = ksm_might_need_to_copy(page, vma, vmf->address);
3863 if (unlikely(!page)) {
3867 folio = page_folio(page);
3870 * If we want to map a page that's in the swapcache writable, we
3871 * have to detect via the refcount if we're really the exclusive
3872 * owner. Try removing the extra reference from the local LRU
3873 * pagevecs if required.
3875 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3876 !folio_test_ksm(folio) && !folio_test_lru(folio))
3880 cgroup_throttle_swaprate(page, GFP_KERNEL);
3883 * Back out if somebody else already faulted in this pte.
3885 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3887 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3890 if (unlikely(!folio_test_uptodate(folio))) {
3891 ret = VM_FAULT_SIGBUS;
3896 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3897 * must never point at an anonymous page in the swapcache that is
3898 * PG_anon_exclusive. Sanity check that this holds and especially, that
3899 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3900 * check after taking the PT lock and making sure that nobody
3901 * concurrently faulted in this page and set PG_anon_exclusive.
3903 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3904 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3907 * Check under PT lock (to protect against concurrent fork() sharing
3908 * the swap entry concurrently) for certainly exclusive pages.
3910 if (!folio_test_ksm(folio)) {
3912 * Note that pte_swp_exclusive() == false for architectures
3913 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3915 exclusive = pte_swp_exclusive(vmf->orig_pte);
3916 if (folio != swapcache) {
3918 * We have a fresh page that is not exposed to the
3919 * swapcache -> certainly exclusive.
3922 } else if (exclusive && folio_test_writeback(folio) &&
3923 data_race(si->flags & SWP_STABLE_WRITES)) {
3925 * This is tricky: not all swap backends support
3926 * concurrent page modifications while under writeback.
3928 * So if we stumble over such a page in the swapcache
3929 * we must not set the page exclusive, otherwise we can
3930 * map it writable without further checks and modify it
3931 * while still under writeback.
3933 * For these problematic swap backends, simply drop the
3934 * exclusive marker: this is perfectly fine as we start
3935 * writeback only if we fully unmapped the page and
3936 * there are no unexpected references on the page after
3937 * unmapping succeeded. After fully unmapped, no
3938 * further GUP references (FOLL_GET and FOLL_PIN) can
3939 * appear, so dropping the exclusive marker and mapping
3940 * it only R/O is fine.
3947 * Remove the swap entry and conditionally try to free up the swapcache.
3948 * We're already holding a reference on the page but haven't mapped it
3952 if (should_try_to_free_swap(folio, vma, vmf->flags))
3953 folio_free_swap(folio);
3955 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3956 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3957 pte = mk_pte(page, vma->vm_page_prot);
3960 * Same logic as in do_wp_page(); however, optimize for pages that are
3961 * certainly not shared either because we just allocated them without
3962 * exposing them to the swapcache or because the swap entry indicates
3965 if (!folio_test_ksm(folio) &&
3966 (exclusive || folio_ref_count(folio) == 1)) {
3967 if (vmf->flags & FAULT_FLAG_WRITE) {
3968 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3969 vmf->flags &= ~FAULT_FLAG_WRITE;
3970 ret |= VM_FAULT_WRITE;
3972 rmap_flags |= RMAP_EXCLUSIVE;
3974 flush_icache_page(vma, page);
3975 if (pte_swp_soft_dirty(vmf->orig_pte))
3976 pte = pte_mksoft_dirty(pte);
3977 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3978 pte = pte_mkuffd_wp(pte);
3979 pte = pte_wrprotect(pte);
3981 vmf->orig_pte = pte;
3983 /* ksm created a completely new copy */
3984 if (unlikely(folio != swapcache && swapcache)) {
3985 page_add_new_anon_rmap(page, vma, vmf->address);
3986 folio_add_lru_vma(folio, vma);
3988 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3991 VM_BUG_ON(!folio_test_anon(folio) ||
3992 (pte_write(pte) && !PageAnonExclusive(page)));
3993 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3994 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3996 folio_unlock(folio);
3997 if (folio != swapcache && swapcache) {
3999 * Hold the lock to avoid the swap entry to be reused
4000 * until we take the PT lock for the pte_same() check
4001 * (to avoid false positives from pte_same). For
4002 * further safety release the lock after the swap_free
4003 * so that the swap count won't change under a
4004 * parallel locked swapcache.
4006 folio_unlock(swapcache);
4007 folio_put(swapcache);
4010 if (vmf->flags & FAULT_FLAG_WRITE) {
4011 ret |= do_wp_page(vmf);
4012 if (ret & VM_FAULT_ERROR)
4013 ret &= VM_FAULT_ERROR;
4017 /* No need to invalidate - it was non-present before */
4018 update_mmu_cache(vma, vmf->address, vmf->pte);
4020 pte_unmap_unlock(vmf->pte, vmf->ptl);
4023 put_swap_device(si);
4026 pte_unmap_unlock(vmf->pte, vmf->ptl);
4028 folio_unlock(folio);
4031 if (folio != swapcache && swapcache) {
4032 folio_unlock(swapcache);
4033 folio_put(swapcache);
4036 put_swap_device(si);
4041 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4042 * but allow concurrent faults), and pte mapped but not yet locked.
4043 * We return with mmap_lock still held, but pte unmapped and unlocked.
4045 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4047 struct vm_area_struct *vma = vmf->vma;
4052 /* File mapping without ->vm_ops ? */
4053 if (vma->vm_flags & VM_SHARED)
4054 return VM_FAULT_SIGBUS;
4057 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4058 * pte_offset_map() on pmds where a huge pmd might be created
4059 * from a different thread.
4061 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4062 * parallel threads are excluded by other means.
4064 * Here we only have mmap_read_lock(mm).
4066 if (pte_alloc(vma->vm_mm, vmf->pmd))
4067 return VM_FAULT_OOM;
4069 /* See comment in handle_pte_fault() */
4070 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4073 /* Use the zero-page for reads */
4074 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4075 !mm_forbids_zeropage(vma->vm_mm)) {
4076 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4077 vma->vm_page_prot));
4078 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4079 vmf->address, &vmf->ptl);
4080 if (!pte_none(*vmf->pte)) {
4081 update_mmu_tlb(vma, vmf->address, vmf->pte);
4084 ret = check_stable_address_space(vma->vm_mm);
4087 /* Deliver the page fault to userland, check inside PT lock */
4088 if (userfaultfd_missing(vma)) {
4089 pte_unmap_unlock(vmf->pte, vmf->ptl);
4090 return handle_userfault(vmf, VM_UFFD_MISSING);
4095 /* Allocate our own private page. */
4096 if (unlikely(anon_vma_prepare(vma)))
4098 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4102 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4104 cgroup_throttle_swaprate(page, GFP_KERNEL);
4107 * The memory barrier inside __SetPageUptodate makes sure that
4108 * preceding stores to the page contents become visible before
4109 * the set_pte_at() write.
4111 __SetPageUptodate(page);
4113 entry = mk_pte(page, vma->vm_page_prot);
4114 entry = pte_sw_mkyoung(entry);
4115 if (vma->vm_flags & VM_WRITE)
4116 entry = pte_mkwrite(pte_mkdirty(entry));
4118 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4120 if (!pte_none(*vmf->pte)) {
4121 update_mmu_cache(vma, vmf->address, vmf->pte);
4125 ret = check_stable_address_space(vma->vm_mm);
4129 /* Deliver the page fault to userland, check inside PT lock */
4130 if (userfaultfd_missing(vma)) {
4131 pte_unmap_unlock(vmf->pte, vmf->ptl);
4133 return handle_userfault(vmf, VM_UFFD_MISSING);
4136 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4137 page_add_new_anon_rmap(page, vma, vmf->address);
4138 lru_cache_add_inactive_or_unevictable(page, vma);
4140 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4142 /* No need to invalidate - it was non-present before */
4143 update_mmu_cache(vma, vmf->address, vmf->pte);
4145 pte_unmap_unlock(vmf->pte, vmf->ptl);
4153 return VM_FAULT_OOM;
4157 * The mmap_lock must have been held on entry, and may have been
4158 * released depending on flags and vma->vm_ops->fault() return value.
4159 * See filemap_fault() and __lock_page_retry().
4161 static vm_fault_t __do_fault(struct vm_fault *vmf)
4163 struct vm_area_struct *vma = vmf->vma;
4167 * Preallocate pte before we take page_lock because this might lead to
4168 * deadlocks for memcg reclaim which waits for pages under writeback:
4170 * SetPageWriteback(A)
4176 * wait_on_page_writeback(A)
4177 * SetPageWriteback(B)
4179 * # flush A, B to clear the writeback
4181 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4182 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4183 if (!vmf->prealloc_pte)
4184 return VM_FAULT_OOM;
4187 ret = vma->vm_ops->fault(vmf);
4188 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4189 VM_FAULT_DONE_COW)))
4192 if (unlikely(PageHWPoison(vmf->page))) {
4193 struct page *page = vmf->page;
4194 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4195 if (ret & VM_FAULT_LOCKED) {
4196 if (page_mapped(page))
4197 unmap_mapping_pages(page_mapping(page),
4198 page->index, 1, false);
4199 /* Retry if a clean page was removed from the cache. */
4200 if (invalidate_inode_page(page))
4201 poisonret = VM_FAULT_NOPAGE;
4209 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4210 lock_page(vmf->page);
4212 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4218 static void deposit_prealloc_pte(struct vm_fault *vmf)
4220 struct vm_area_struct *vma = vmf->vma;
4222 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4224 * We are going to consume the prealloc table,
4225 * count that as nr_ptes.
4227 mm_inc_nr_ptes(vma->vm_mm);
4228 vmf->prealloc_pte = NULL;
4231 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4233 struct vm_area_struct *vma = vmf->vma;
4234 bool write = vmf->flags & FAULT_FLAG_WRITE;
4235 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4238 vm_fault_t ret = VM_FAULT_FALLBACK;
4240 if (!transhuge_vma_suitable(vma, haddr))
4243 page = compound_head(page);
4244 if (compound_order(page) != HPAGE_PMD_ORDER)
4248 * Just backoff if any subpage of a THP is corrupted otherwise
4249 * the corrupted page may mapped by PMD silently to escape the
4250 * check. This kind of THP just can be PTE mapped. Access to
4251 * the corrupted subpage should trigger SIGBUS as expected.
4253 if (unlikely(PageHasHWPoisoned(page)))
4257 * Archs like ppc64 need additional space to store information
4258 * related to pte entry. Use the preallocated table for that.
4260 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4261 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4262 if (!vmf->prealloc_pte)
4263 return VM_FAULT_OOM;
4266 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4267 if (unlikely(!pmd_none(*vmf->pmd)))
4270 for (i = 0; i < HPAGE_PMD_NR; i++)
4271 flush_icache_page(vma, page + i);
4273 entry = mk_huge_pmd(page, vma->vm_page_prot);
4275 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4277 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4278 page_add_file_rmap(page, vma, true);
4281 * deposit and withdraw with pmd lock held
4283 if (arch_needs_pgtable_deposit())
4284 deposit_prealloc_pte(vmf);
4286 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4288 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4290 /* fault is handled */
4292 count_vm_event(THP_FILE_MAPPED);
4294 spin_unlock(vmf->ptl);
4298 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4300 return VM_FAULT_FALLBACK;
4304 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4306 struct vm_area_struct *vma = vmf->vma;
4307 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4308 bool write = vmf->flags & FAULT_FLAG_WRITE;
4309 bool prefault = vmf->address != addr;
4312 flush_icache_page(vma, page);
4313 entry = mk_pte(page, vma->vm_page_prot);
4315 if (prefault && arch_wants_old_prefaulted_pte())
4316 entry = pte_mkold(entry);
4318 entry = pte_sw_mkyoung(entry);
4321 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4322 if (unlikely(uffd_wp))
4323 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4324 /* copy-on-write page */
4325 if (write && !(vma->vm_flags & VM_SHARED)) {
4326 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4327 page_add_new_anon_rmap(page, vma, addr);
4328 lru_cache_add_inactive_or_unevictable(page, vma);
4330 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4331 page_add_file_rmap(page, vma, false);
4333 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4336 static bool vmf_pte_changed(struct vm_fault *vmf)
4338 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4339 return !pte_same(*vmf->pte, vmf->orig_pte);
4341 return !pte_none(*vmf->pte);
4345 * finish_fault - finish page fault once we have prepared the page to fault
4347 * @vmf: structure describing the fault
4349 * This function handles all that is needed to finish a page fault once the
4350 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4351 * given page, adds reverse page mapping, handles memcg charges and LRU
4354 * The function expects the page to be locked and on success it consumes a
4355 * reference of a page being mapped (for the PTE which maps it).
4357 * Return: %0 on success, %VM_FAULT_ code in case of error.
4359 vm_fault_t finish_fault(struct vm_fault *vmf)
4361 struct vm_area_struct *vma = vmf->vma;
4365 /* Did we COW the page? */
4366 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4367 page = vmf->cow_page;
4372 * check even for read faults because we might have lost our CoWed
4375 if (!(vma->vm_flags & VM_SHARED)) {
4376 ret = check_stable_address_space(vma->vm_mm);
4381 if (pmd_none(*vmf->pmd)) {
4382 if (PageTransCompound(page)) {
4383 ret = do_set_pmd(vmf, page);
4384 if (ret != VM_FAULT_FALLBACK)
4388 if (vmf->prealloc_pte)
4389 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4390 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4391 return VM_FAULT_OOM;
4395 * See comment in handle_pte_fault() for how this scenario happens, we
4396 * need to return NOPAGE so that we drop this page.
4398 if (pmd_devmap_trans_unstable(vmf->pmd))
4399 return VM_FAULT_NOPAGE;
4401 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4402 vmf->address, &vmf->ptl);
4404 /* Re-check under ptl */
4405 if (likely(!vmf_pte_changed(vmf))) {
4406 do_set_pte(vmf, page, vmf->address);
4408 /* no need to invalidate: a not-present page won't be cached */
4409 update_mmu_cache(vma, vmf->address, vmf->pte);
4413 update_mmu_tlb(vma, vmf->address, vmf->pte);
4414 ret = VM_FAULT_NOPAGE;
4417 pte_unmap_unlock(vmf->pte, vmf->ptl);
4421 static unsigned long fault_around_bytes __read_mostly =
4422 rounddown_pow_of_two(65536);
4424 #ifdef CONFIG_DEBUG_FS
4425 static int fault_around_bytes_get(void *data, u64 *val)
4427 *val = fault_around_bytes;
4432 * fault_around_bytes must be rounded down to the nearest page order as it's
4433 * what do_fault_around() expects to see.
4435 static int fault_around_bytes_set(void *data, u64 val)
4437 if (val / PAGE_SIZE > PTRS_PER_PTE)
4439 if (val > PAGE_SIZE)
4440 fault_around_bytes = rounddown_pow_of_two(val);
4442 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4445 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4446 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4448 static int __init fault_around_debugfs(void)
4450 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4451 &fault_around_bytes_fops);
4454 late_initcall(fault_around_debugfs);
4458 * do_fault_around() tries to map few pages around the fault address. The hope
4459 * is that the pages will be needed soon and this will lower the number of
4462 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4463 * not ready to be mapped: not up-to-date, locked, etc.
4465 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4468 * fault_around_bytes defines how many bytes we'll try to map.
4469 * do_fault_around() expects it to be set to a power of two less than or equal
4472 * The virtual address of the area that we map is naturally aligned to
4473 * fault_around_bytes rounded down to the machine page size
4474 * (and therefore to page order). This way it's easier to guarantee
4475 * that we don't cross page table boundaries.
4477 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4479 unsigned long address = vmf->address, nr_pages, mask;
4480 pgoff_t start_pgoff = vmf->pgoff;
4484 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4485 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4487 address = max(address & mask, vmf->vma->vm_start);
4488 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4492 * end_pgoff is either the end of the page table, the end of
4493 * the vma or nr_pages from start_pgoff, depending what is nearest.
4495 end_pgoff = start_pgoff -
4496 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4498 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4499 start_pgoff + nr_pages - 1);
4501 if (pmd_none(*vmf->pmd)) {
4502 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4503 if (!vmf->prealloc_pte)
4504 return VM_FAULT_OOM;
4507 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4510 /* Return true if we should do read fault-around, false otherwise */
4511 static inline bool should_fault_around(struct vm_fault *vmf)
4513 /* No ->map_pages? No way to fault around... */
4514 if (!vmf->vma->vm_ops->map_pages)
4517 if (uffd_disable_fault_around(vmf->vma))
4520 return fault_around_bytes >> PAGE_SHIFT > 1;
4523 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4528 * Let's call ->map_pages() first and use ->fault() as fallback
4529 * if page by the offset is not ready to be mapped (cold cache or
4532 if (should_fault_around(vmf)) {
4533 ret = do_fault_around(vmf);
4538 ret = __do_fault(vmf);
4539 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4542 ret |= finish_fault(vmf);
4543 unlock_page(vmf->page);
4544 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4545 put_page(vmf->page);
4549 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4551 struct vm_area_struct *vma = vmf->vma;
4554 if (unlikely(anon_vma_prepare(vma)))
4555 return VM_FAULT_OOM;
4557 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4559 return VM_FAULT_OOM;
4561 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4563 put_page(vmf->cow_page);
4564 return VM_FAULT_OOM;
4566 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4568 ret = __do_fault(vmf);
4569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 if (ret & VM_FAULT_DONE_COW)
4574 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4575 __SetPageUptodate(vmf->cow_page);
4577 ret |= finish_fault(vmf);
4578 unlock_page(vmf->page);
4579 put_page(vmf->page);
4580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4584 put_page(vmf->cow_page);
4588 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4590 struct vm_area_struct *vma = vmf->vma;
4591 vm_fault_t ret, tmp;
4593 ret = __do_fault(vmf);
4594 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4598 * Check if the backing address space wants to know that the page is
4599 * about to become writable
4601 if (vma->vm_ops->page_mkwrite) {
4602 unlock_page(vmf->page);
4603 tmp = do_page_mkwrite(vmf);
4604 if (unlikely(!tmp ||
4605 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4606 put_page(vmf->page);
4611 ret |= finish_fault(vmf);
4612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4614 unlock_page(vmf->page);
4615 put_page(vmf->page);
4619 ret |= fault_dirty_shared_page(vmf);
4624 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4625 * but allow concurrent faults).
4626 * The mmap_lock may have been released depending on flags and our
4627 * return value. See filemap_fault() and __folio_lock_or_retry().
4628 * If mmap_lock is released, vma may become invalid (for example
4629 * by other thread calling munmap()).
4631 static vm_fault_t do_fault(struct vm_fault *vmf)
4633 struct vm_area_struct *vma = vmf->vma;
4634 struct mm_struct *vm_mm = vma->vm_mm;
4638 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4640 if (!vma->vm_ops->fault) {
4642 * If we find a migration pmd entry or a none pmd entry, which
4643 * should never happen, return SIGBUS
4645 if (unlikely(!pmd_present(*vmf->pmd)))
4646 ret = VM_FAULT_SIGBUS;
4648 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4653 * Make sure this is not a temporary clearing of pte
4654 * by holding ptl and checking again. A R/M/W update
4655 * of pte involves: take ptl, clearing the pte so that
4656 * we don't have concurrent modification by hardware
4657 * followed by an update.
4659 if (unlikely(pte_none(*vmf->pte)))
4660 ret = VM_FAULT_SIGBUS;
4662 ret = VM_FAULT_NOPAGE;
4664 pte_unmap_unlock(vmf->pte, vmf->ptl);
4666 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4667 ret = do_read_fault(vmf);
4668 else if (!(vma->vm_flags & VM_SHARED))
4669 ret = do_cow_fault(vmf);
4671 ret = do_shared_fault(vmf);
4673 /* preallocated pagetable is unused: free it */
4674 if (vmf->prealloc_pte) {
4675 pte_free(vm_mm, vmf->prealloc_pte);
4676 vmf->prealloc_pte = NULL;
4681 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4682 unsigned long addr, int page_nid, int *flags)
4686 count_vm_numa_event(NUMA_HINT_FAULTS);
4687 if (page_nid == numa_node_id()) {
4688 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4689 *flags |= TNF_FAULT_LOCAL;
4692 return mpol_misplaced(page, vma, addr);
4695 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4697 struct vm_area_struct *vma = vmf->vma;
4698 struct page *page = NULL;
4699 int page_nid = NUMA_NO_NODE;
4703 bool was_writable = pte_savedwrite(vmf->orig_pte);
4707 * The "pte" at this point cannot be used safely without
4708 * validation through pte_unmap_same(). It's of NUMA type but
4709 * the pfn may be screwed if the read is non atomic.
4711 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4712 spin_lock(vmf->ptl);
4713 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4714 pte_unmap_unlock(vmf->pte, vmf->ptl);
4718 /* Get the normal PTE */
4719 old_pte = ptep_get(vmf->pte);
4720 pte = pte_modify(old_pte, vma->vm_page_prot);
4722 page = vm_normal_page(vma, vmf->address, pte);
4723 if (!page || is_zone_device_page(page))
4726 /* TODO: handle PTE-mapped THP */
4727 if (PageCompound(page))
4731 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4732 * much anyway since they can be in shared cache state. This misses
4733 * the case where a mapping is writable but the process never writes
4734 * to it but pte_write gets cleared during protection updates and
4735 * pte_dirty has unpredictable behaviour between PTE scan updates,
4736 * background writeback, dirty balancing and application behaviour.
4739 flags |= TNF_NO_GROUP;
4742 * Flag if the page is shared between multiple address spaces. This
4743 * is later used when determining whether to group tasks together
4745 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4746 flags |= TNF_SHARED;
4748 page_nid = page_to_nid(page);
4750 * For memory tiering mode, cpupid of slow memory page is used
4751 * to record page access time. So use default value.
4753 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4754 !node_is_toptier(page_nid))
4755 last_cpupid = (-1 & LAST_CPUPID_MASK);
4757 last_cpupid = page_cpupid_last(page);
4758 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4760 if (target_nid == NUMA_NO_NODE) {
4764 pte_unmap_unlock(vmf->pte, vmf->ptl);
4766 /* Migrate to the requested node */
4767 if (migrate_misplaced_page(page, vma, target_nid)) {
4768 page_nid = target_nid;
4769 flags |= TNF_MIGRATED;
4771 flags |= TNF_MIGRATE_FAIL;
4772 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4773 spin_lock(vmf->ptl);
4774 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4775 pte_unmap_unlock(vmf->pte, vmf->ptl);
4782 if (page_nid != NUMA_NO_NODE)
4783 task_numa_fault(last_cpupid, page_nid, 1, flags);
4787 * Make it present again, depending on how arch implements
4788 * non-accessible ptes, some can allow access by kernel mode.
4790 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4791 pte = pte_modify(old_pte, vma->vm_page_prot);
4792 pte = pte_mkyoung(pte);
4794 pte = pte_mkwrite(pte);
4795 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4796 update_mmu_cache(vma, vmf->address, vmf->pte);
4797 pte_unmap_unlock(vmf->pte, vmf->ptl);
4801 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4803 if (vma_is_anonymous(vmf->vma))
4804 return do_huge_pmd_anonymous_page(vmf);
4805 if (vmf->vma->vm_ops->huge_fault)
4806 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4807 return VM_FAULT_FALLBACK;
4810 /* `inline' is required to avoid gcc 4.1.2 build error */
4811 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4813 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4815 if (vma_is_anonymous(vmf->vma)) {
4816 if (likely(!unshare) &&
4817 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4818 return handle_userfault(vmf, VM_UFFD_WP);
4819 return do_huge_pmd_wp_page(vmf);
4821 if (vmf->vma->vm_ops->huge_fault) {
4822 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4824 if (!(ret & VM_FAULT_FALLBACK))
4828 /* COW or write-notify handled on pte level: split pmd. */
4829 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4831 return VM_FAULT_FALLBACK;
4834 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4837 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4838 /* No support for anonymous transparent PUD pages yet */
4839 if (vma_is_anonymous(vmf->vma))
4840 return VM_FAULT_FALLBACK;
4841 if (vmf->vma->vm_ops->huge_fault)
4842 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4844 return VM_FAULT_FALLBACK;
4847 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4849 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4850 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4851 /* No support for anonymous transparent PUD pages yet */
4852 if (vma_is_anonymous(vmf->vma))
4854 if (vmf->vma->vm_ops->huge_fault) {
4855 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4857 if (!(ret & VM_FAULT_FALLBACK))
4861 /* COW or write-notify not handled on PUD level: split pud.*/
4862 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4864 return VM_FAULT_FALLBACK;
4868 * These routines also need to handle stuff like marking pages dirty
4869 * and/or accessed for architectures that don't do it in hardware (most
4870 * RISC architectures). The early dirtying is also good on the i386.
4872 * There is also a hook called "update_mmu_cache()" that architectures
4873 * with external mmu caches can use to update those (ie the Sparc or
4874 * PowerPC hashed page tables that act as extended TLBs).
4876 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4877 * concurrent faults).
4879 * The mmap_lock may have been released depending on flags and our return value.
4880 * See filemap_fault() and __folio_lock_or_retry().
4882 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4886 if (unlikely(pmd_none(*vmf->pmd))) {
4888 * Leave __pte_alloc() until later: because vm_ops->fault may
4889 * want to allocate huge page, and if we expose page table
4890 * for an instant, it will be difficult to retract from
4891 * concurrent faults and from rmap lookups.
4894 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4897 * If a huge pmd materialized under us just retry later. Use
4898 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4899 * of pmd_trans_huge() to ensure the pmd didn't become
4900 * pmd_trans_huge under us and then back to pmd_none, as a
4901 * result of MADV_DONTNEED running immediately after a huge pmd
4902 * fault in a different thread of this mm, in turn leading to a
4903 * misleading pmd_trans_huge() retval. All we have to ensure is
4904 * that it is a regular pmd that we can walk with
4905 * pte_offset_map() and we can do that through an atomic read
4906 * in C, which is what pmd_trans_unstable() provides.
4908 if (pmd_devmap_trans_unstable(vmf->pmd))
4911 * A regular pmd is established and it can't morph into a huge
4912 * pmd from under us anymore at this point because we hold the
4913 * mmap_lock read mode and khugepaged takes it in write mode.
4914 * So now it's safe to run pte_offset_map().
4916 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4917 vmf->orig_pte = *vmf->pte;
4918 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4921 * some architectures can have larger ptes than wordsize,
4922 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4923 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4924 * accesses. The code below just needs a consistent view
4925 * for the ifs and we later double check anyway with the
4926 * ptl lock held. So here a barrier will do.
4929 if (pte_none(vmf->orig_pte)) {
4930 pte_unmap(vmf->pte);
4936 if (vma_is_anonymous(vmf->vma))
4937 return do_anonymous_page(vmf);
4939 return do_fault(vmf);
4942 if (!pte_present(vmf->orig_pte))
4943 return do_swap_page(vmf);
4945 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4946 return do_numa_page(vmf);
4948 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4949 spin_lock(vmf->ptl);
4950 entry = vmf->orig_pte;
4951 if (unlikely(!pte_same(*vmf->pte, entry))) {
4952 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4955 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4956 if (!pte_write(entry))
4957 return do_wp_page(vmf);
4958 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4959 entry = pte_mkdirty(entry);
4961 entry = pte_mkyoung(entry);
4962 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4963 vmf->flags & FAULT_FLAG_WRITE)) {
4964 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4966 /* Skip spurious TLB flush for retried page fault */
4967 if (vmf->flags & FAULT_FLAG_TRIED)
4970 * This is needed only for protection faults but the arch code
4971 * is not yet telling us if this is a protection fault or not.
4972 * This still avoids useless tlb flushes for .text page faults
4975 if (vmf->flags & FAULT_FLAG_WRITE)
4976 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4979 pte_unmap_unlock(vmf->pte, vmf->ptl);
4984 * By the time we get here, we already hold the mm semaphore
4986 * The mmap_lock may have been released depending on flags and our
4987 * return value. See filemap_fault() and __folio_lock_or_retry().
4989 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4990 unsigned long address, unsigned int flags)
4992 struct vm_fault vmf = {
4994 .address = address & PAGE_MASK,
4995 .real_address = address,
4997 .pgoff = linear_page_index(vma, address),
4998 .gfp_mask = __get_fault_gfp_mask(vma),
5000 struct mm_struct *mm = vma->vm_mm;
5001 unsigned long vm_flags = vma->vm_flags;
5006 pgd = pgd_offset(mm, address);
5007 p4d = p4d_alloc(mm, pgd, address);
5009 return VM_FAULT_OOM;
5011 vmf.pud = pud_alloc(mm, p4d, address);
5013 return VM_FAULT_OOM;
5015 if (pud_none(*vmf.pud) &&
5016 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5017 ret = create_huge_pud(&vmf);
5018 if (!(ret & VM_FAULT_FALLBACK))
5021 pud_t orig_pud = *vmf.pud;
5024 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5027 * TODO once we support anonymous PUDs: NUMA case and
5028 * FAULT_FLAG_UNSHARE handling.
5030 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5031 ret = wp_huge_pud(&vmf, orig_pud);
5032 if (!(ret & VM_FAULT_FALLBACK))
5035 huge_pud_set_accessed(&vmf, orig_pud);
5041 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5043 return VM_FAULT_OOM;
5045 /* Huge pud page fault raced with pmd_alloc? */
5046 if (pud_trans_unstable(vmf.pud))
5049 if (pmd_none(*vmf.pmd) &&
5050 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5051 ret = create_huge_pmd(&vmf);
5052 if (!(ret & VM_FAULT_FALLBACK))
5055 vmf.orig_pmd = *vmf.pmd;
5058 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5059 VM_BUG_ON(thp_migration_supported() &&
5060 !is_pmd_migration_entry(vmf.orig_pmd));
5061 if (is_pmd_migration_entry(vmf.orig_pmd))
5062 pmd_migration_entry_wait(mm, vmf.pmd);
5065 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5066 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5067 return do_huge_pmd_numa_page(&vmf);
5069 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5070 !pmd_write(vmf.orig_pmd)) {
5071 ret = wp_huge_pmd(&vmf);
5072 if (!(ret & VM_FAULT_FALLBACK))
5075 huge_pmd_set_accessed(&vmf);
5081 return handle_pte_fault(&vmf);
5085 * mm_account_fault - Do page fault accounting
5087 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5088 * of perf event counters, but we'll still do the per-task accounting to
5089 * the task who triggered this page fault.
5090 * @address: the faulted address.
5091 * @flags: the fault flags.
5092 * @ret: the fault retcode.
5094 * This will take care of most of the page fault accounting. Meanwhile, it
5095 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5096 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5097 * still be in per-arch page fault handlers at the entry of page fault.
5099 static inline void mm_account_fault(struct pt_regs *regs,
5100 unsigned long address, unsigned int flags,
5106 * We don't do accounting for some specific faults:
5108 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5109 * includes arch_vma_access_permitted() failing before reaching here.
5110 * So this is not a "this many hardware page faults" counter. We
5111 * should use the hw profiling for that.
5113 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5114 * once they're completed.
5116 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5120 * We define the fault as a major fault when the final successful fault
5121 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5122 * handle it immediately previously).
5124 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5132 * If the fault is done for GUP, regs will be NULL. We only do the
5133 * accounting for the per thread fault counters who triggered the
5134 * fault, and we skip the perf event updates.
5140 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5142 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5145 #ifdef CONFIG_LRU_GEN
5146 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5148 /* the LRU algorithm doesn't apply to sequential or random reads */
5149 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5152 static void lru_gen_exit_fault(void)
5154 current->in_lru_fault = false;
5157 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5161 static void lru_gen_exit_fault(void)
5164 #endif /* CONFIG_LRU_GEN */
5167 * By the time we get here, we already hold the mm semaphore
5169 * The mmap_lock may have been released depending on flags and our
5170 * return value. See filemap_fault() and __folio_lock_or_retry().
5172 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5173 unsigned int flags, struct pt_regs *regs)
5177 __set_current_state(TASK_RUNNING);
5179 count_vm_event(PGFAULT);
5180 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5182 /* do counter updates before entering really critical section. */
5183 check_sync_rss_stat(current);
5185 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5186 flags & FAULT_FLAG_INSTRUCTION,
5187 flags & FAULT_FLAG_REMOTE))
5188 return VM_FAULT_SIGSEGV;
5191 * Enable the memcg OOM handling for faults triggered in user
5192 * space. Kernel faults are handled more gracefully.
5194 if (flags & FAULT_FLAG_USER)
5195 mem_cgroup_enter_user_fault();
5197 lru_gen_enter_fault(vma);
5199 if (unlikely(is_vm_hugetlb_page(vma)))
5200 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5202 ret = __handle_mm_fault(vma, address, flags);
5204 lru_gen_exit_fault();
5206 if (flags & FAULT_FLAG_USER) {
5207 mem_cgroup_exit_user_fault();
5209 * The task may have entered a memcg OOM situation but
5210 * if the allocation error was handled gracefully (no
5211 * VM_FAULT_OOM), there is no need to kill anything.
5212 * Just clean up the OOM state peacefully.
5214 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5215 mem_cgroup_oom_synchronize(false);
5218 mm_account_fault(regs, address, flags, ret);
5222 EXPORT_SYMBOL_GPL(handle_mm_fault);
5224 #ifndef __PAGETABLE_P4D_FOLDED
5226 * Allocate p4d page table.
5227 * We've already handled the fast-path in-line.
5229 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5231 p4d_t *new = p4d_alloc_one(mm, address);
5235 spin_lock(&mm->page_table_lock);
5236 if (pgd_present(*pgd)) { /* Another has populated it */
5239 smp_wmb(); /* See comment in pmd_install() */
5240 pgd_populate(mm, pgd, new);
5242 spin_unlock(&mm->page_table_lock);
5245 #endif /* __PAGETABLE_P4D_FOLDED */
5247 #ifndef __PAGETABLE_PUD_FOLDED
5249 * Allocate page upper directory.
5250 * We've already handled the fast-path in-line.
5252 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5254 pud_t *new = pud_alloc_one(mm, address);
5258 spin_lock(&mm->page_table_lock);
5259 if (!p4d_present(*p4d)) {
5261 smp_wmb(); /* See comment in pmd_install() */
5262 p4d_populate(mm, p4d, new);
5263 } else /* Another has populated it */
5265 spin_unlock(&mm->page_table_lock);
5268 #endif /* __PAGETABLE_PUD_FOLDED */
5270 #ifndef __PAGETABLE_PMD_FOLDED
5272 * Allocate page middle directory.
5273 * We've already handled the fast-path in-line.
5275 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5278 pmd_t *new = pmd_alloc_one(mm, address);
5282 ptl = pud_lock(mm, pud);
5283 if (!pud_present(*pud)) {
5285 smp_wmb(); /* See comment in pmd_install() */
5286 pud_populate(mm, pud, new);
5287 } else { /* Another has populated it */
5293 #endif /* __PAGETABLE_PMD_FOLDED */
5296 * follow_pte - look up PTE at a user virtual address
5297 * @mm: the mm_struct of the target address space
5298 * @address: user virtual address
5299 * @ptepp: location to store found PTE
5300 * @ptlp: location to store the lock for the PTE
5302 * On a successful return, the pointer to the PTE is stored in @ptepp;
5303 * the corresponding lock is taken and its location is stored in @ptlp.
5304 * The contents of the PTE are only stable until @ptlp is released;
5305 * any further use, if any, must be protected against invalidation
5306 * with MMU notifiers.
5308 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5309 * should be taken for read.
5311 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5312 * it is not a good general-purpose API.
5314 * Return: zero on success, -ve otherwise.
5316 int follow_pte(struct mm_struct *mm, unsigned long address,
5317 pte_t **ptepp, spinlock_t **ptlp)
5325 pgd = pgd_offset(mm, address);
5326 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5329 p4d = p4d_offset(pgd, address);
5330 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5333 pud = pud_offset(p4d, address);
5334 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5337 pmd = pmd_offset(pud, address);
5338 VM_BUG_ON(pmd_trans_huge(*pmd));
5340 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5343 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5344 if (!pte_present(*ptep))
5349 pte_unmap_unlock(ptep, *ptlp);
5353 EXPORT_SYMBOL_GPL(follow_pte);
5356 * follow_pfn - look up PFN at a user virtual address
5357 * @vma: memory mapping
5358 * @address: user virtual address
5359 * @pfn: location to store found PFN
5361 * Only IO mappings and raw PFN mappings are allowed.
5363 * This function does not allow the caller to read the permissions
5364 * of the PTE. Do not use it.
5366 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5368 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5378 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5381 *pfn = pte_pfn(*ptep);
5382 pte_unmap_unlock(ptep, ptl);
5385 EXPORT_SYMBOL(follow_pfn);
5387 #ifdef CONFIG_HAVE_IOREMAP_PROT
5388 int follow_phys(struct vm_area_struct *vma,
5389 unsigned long address, unsigned int flags,
5390 unsigned long *prot, resource_size_t *phys)
5396 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5399 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5403 if ((flags & FOLL_WRITE) && !pte_write(pte))
5406 *prot = pgprot_val(pte_pgprot(pte));
5407 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5411 pte_unmap_unlock(ptep, ptl);
5417 * generic_access_phys - generic implementation for iomem mmap access
5418 * @vma: the vma to access
5419 * @addr: userspace address, not relative offset within @vma
5420 * @buf: buffer to read/write
5421 * @len: length of transfer
5422 * @write: set to FOLL_WRITE when writing, otherwise reading
5424 * This is a generic implementation for &vm_operations_struct.access for an
5425 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5428 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5429 void *buf, int len, int write)
5431 resource_size_t phys_addr;
5432 unsigned long prot = 0;
5433 void __iomem *maddr;
5436 int offset = offset_in_page(addr);
5439 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5443 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5446 pte_unmap_unlock(ptep, ptl);
5448 prot = pgprot_val(pte_pgprot(pte));
5449 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5451 if ((write & FOLL_WRITE) && !pte_write(pte))
5454 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5458 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5461 if (!pte_same(pte, *ptep)) {
5462 pte_unmap_unlock(ptep, ptl);
5469 memcpy_toio(maddr + offset, buf, len);
5471 memcpy_fromio(buf, maddr + offset, len);
5473 pte_unmap_unlock(ptep, ptl);
5479 EXPORT_SYMBOL_GPL(generic_access_phys);
5483 * Access another process' address space as given in mm.
5485 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5486 int len, unsigned int gup_flags)
5488 struct vm_area_struct *vma;
5489 void *old_buf = buf;
5490 int write = gup_flags & FOLL_WRITE;
5492 if (mmap_read_lock_killable(mm))
5495 /* ignore errors, just check how much was successfully transferred */
5497 int bytes, ret, offset;
5499 struct page *page = NULL;
5501 ret = get_user_pages_remote(mm, addr, 1,
5502 gup_flags, &page, &vma, NULL);
5504 #ifndef CONFIG_HAVE_IOREMAP_PROT
5508 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5509 * we can access using slightly different code.
5511 vma = vma_lookup(mm, addr);
5514 if (vma->vm_ops && vma->vm_ops->access)
5515 ret = vma->vm_ops->access(vma, addr, buf,
5523 offset = addr & (PAGE_SIZE-1);
5524 if (bytes > PAGE_SIZE-offset)
5525 bytes = PAGE_SIZE-offset;
5529 copy_to_user_page(vma, page, addr,
5530 maddr + offset, buf, bytes);
5531 set_page_dirty_lock(page);
5533 copy_from_user_page(vma, page, addr,
5534 buf, maddr + offset, bytes);
5543 mmap_read_unlock(mm);
5545 return buf - old_buf;
5549 * access_remote_vm - access another process' address space
5550 * @mm: the mm_struct of the target address space
5551 * @addr: start address to access
5552 * @buf: source or destination buffer
5553 * @len: number of bytes to transfer
5554 * @gup_flags: flags modifying lookup behaviour
5556 * The caller must hold a reference on @mm.
5558 * Return: number of bytes copied from source to destination.
5560 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5561 void *buf, int len, unsigned int gup_flags)
5563 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5567 * Access another process' address space.
5568 * Source/target buffer must be kernel space,
5569 * Do not walk the page table directly, use get_user_pages
5571 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5572 void *buf, int len, unsigned int gup_flags)
5574 struct mm_struct *mm;
5577 mm = get_task_mm(tsk);
5581 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5587 EXPORT_SYMBOL_GPL(access_process_vm);
5590 * Print the name of a VMA.
5592 void print_vma_addr(char *prefix, unsigned long ip)
5594 struct mm_struct *mm = current->mm;
5595 struct vm_area_struct *vma;
5598 * we might be running from an atomic context so we cannot sleep
5600 if (!mmap_read_trylock(mm))
5603 vma = find_vma(mm, ip);
5604 if (vma && vma->vm_file) {
5605 struct file *f = vma->vm_file;
5606 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5610 p = file_path(f, buf, PAGE_SIZE);
5613 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5615 vma->vm_end - vma->vm_start);
5616 free_page((unsigned long)buf);
5619 mmap_read_unlock(mm);
5622 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5623 void __might_fault(const char *file, int line)
5625 if (pagefault_disabled())
5627 __might_sleep(file, line);
5628 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5630 might_lock_read(¤t->mm->mmap_lock);
5633 EXPORT_SYMBOL(__might_fault);
5636 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5638 * Process all subpages of the specified huge page with the specified
5639 * operation. The target subpage will be processed last to keep its
5642 static inline void process_huge_page(
5643 unsigned long addr_hint, unsigned int pages_per_huge_page,
5644 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5648 unsigned long addr = addr_hint &
5649 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5651 /* Process target subpage last to keep its cache lines hot */
5653 n = (addr_hint - addr) / PAGE_SIZE;
5654 if (2 * n <= pages_per_huge_page) {
5655 /* If target subpage in first half of huge page */
5658 /* Process subpages at the end of huge page */
5659 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5661 process_subpage(addr + i * PAGE_SIZE, i, arg);
5664 /* If target subpage in second half of huge page */
5665 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5666 l = pages_per_huge_page - n;
5667 /* Process subpages at the begin of huge page */
5668 for (i = 0; i < base; i++) {
5670 process_subpage(addr + i * PAGE_SIZE, i, arg);
5674 * Process remaining subpages in left-right-left-right pattern
5675 * towards the target subpage
5677 for (i = 0; i < l; i++) {
5678 int left_idx = base + i;
5679 int right_idx = base + 2 * l - 1 - i;
5682 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5684 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5688 static void clear_gigantic_page(struct page *page,
5690 unsigned int pages_per_huge_page)
5693 struct page *p = page;
5696 for (i = 0; i < pages_per_huge_page;
5697 i++, p = mem_map_next(p, page, i)) {
5699 clear_user_highpage(p, addr + i * PAGE_SIZE);
5703 static void clear_subpage(unsigned long addr, int idx, void *arg)
5705 struct page *page = arg;
5707 clear_user_highpage(page + idx, addr);
5710 void clear_huge_page(struct page *page,
5711 unsigned long addr_hint, unsigned int pages_per_huge_page)
5713 unsigned long addr = addr_hint &
5714 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5716 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5717 clear_gigantic_page(page, addr, pages_per_huge_page);
5721 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5724 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5726 struct vm_area_struct *vma,
5727 unsigned int pages_per_huge_page)
5730 struct page *dst_base = dst;
5731 struct page *src_base = src;
5733 for (i = 0; i < pages_per_huge_page; ) {
5735 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5738 dst = mem_map_next(dst, dst_base, i);
5739 src = mem_map_next(src, src_base, i);
5743 struct copy_subpage_arg {
5746 struct vm_area_struct *vma;
5749 static void copy_subpage(unsigned long addr, int idx, void *arg)
5751 struct copy_subpage_arg *copy_arg = arg;
5753 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5754 addr, copy_arg->vma);
5757 void copy_user_huge_page(struct page *dst, struct page *src,
5758 unsigned long addr_hint, struct vm_area_struct *vma,
5759 unsigned int pages_per_huge_page)
5761 unsigned long addr = addr_hint &
5762 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5763 struct copy_subpage_arg arg = {
5769 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5770 copy_user_gigantic_page(dst, src, addr, vma,
5771 pages_per_huge_page);
5775 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5778 long copy_huge_page_from_user(struct page *dst_page,
5779 const void __user *usr_src,
5780 unsigned int pages_per_huge_page,
5781 bool allow_pagefault)
5784 unsigned long i, rc = 0;
5785 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5786 struct page *subpage = dst_page;
5788 for (i = 0; i < pages_per_huge_page;
5789 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5790 if (allow_pagefault)
5791 page_kaddr = kmap(subpage);
5793 page_kaddr = kmap_atomic(subpage);
5794 rc = copy_from_user(page_kaddr,
5795 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5796 if (allow_pagefault)
5799 kunmap_atomic(page_kaddr);
5801 ret_val -= (PAGE_SIZE - rc);
5805 flush_dcache_page(subpage);
5811 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5813 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5815 static struct kmem_cache *page_ptl_cachep;
5817 void __init ptlock_cache_init(void)
5819 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5823 bool ptlock_alloc(struct page *page)
5827 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5834 void ptlock_free(struct page *page)
5836 kmem_cache_free(page_ptl_cachep, page->ptl);