1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_ATOMIC|__GFP_NOLOCKDEP)
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
50 unlikely(__ret_warn_once); \
53 void page_writeback_init(void);
55 static inline void *folio_raw_mapping(struct folio *folio)
57 unsigned long mapping = (unsigned long)folio->mapping;
59 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
62 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
64 static inline void acct_reclaim_writeback(struct folio *folio)
66 pg_data_t *pgdat = folio_pgdat(folio);
67 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
70 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
73 static inline void wake_throttle_isolated(pg_data_t *pgdat)
75 wait_queue_head_t *wqh;
77 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
78 if (waitqueue_active(wqh))
82 vm_fault_t do_swap_page(struct vm_fault *vmf);
83 void folio_rotate_reclaimable(struct folio *folio);
84 bool __folio_end_writeback(struct folio *folio);
85 void deactivate_file_folio(struct folio *folio);
86 void folio_activate(struct folio *folio);
88 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
89 struct vm_area_struct *start_vma, unsigned long floor,
90 unsigned long ceiling);
91 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
94 void unmap_page_range(struct mmu_gather *tlb,
95 struct vm_area_struct *vma,
96 unsigned long addr, unsigned long end,
97 struct zap_details *details);
99 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
101 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
102 static inline void force_page_cache_readahead(struct address_space *mapping,
103 struct file *file, pgoff_t index, unsigned long nr_to_read)
105 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
106 force_page_cache_ra(&ractl, nr_to_read);
109 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
110 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
111 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
112 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
113 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
114 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
115 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
117 long invalidate_inode_page(struct page *page);
118 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
119 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
122 * folio_evictable - Test whether a folio is evictable.
123 * @folio: The folio to test.
125 * Test whether @folio is evictable -- i.e., should be placed on
126 * active/inactive lists vs unevictable list.
128 * Reasons folio might not be evictable:
129 * 1. folio's mapping marked unevictable
130 * 2. One of the pages in the folio is part of an mlocked VMA
132 static inline bool folio_evictable(struct folio *folio)
136 /* Prevent address_space of inode and swap cache from being freed */
138 ret = !mapping_unevictable(folio_mapping(folio)) &&
139 !folio_test_mlocked(folio);
144 static inline bool page_evictable(struct page *page)
148 /* Prevent address_space of inode and swap cache from being freed */
150 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
156 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
159 static inline void set_page_refcounted(struct page *page)
161 VM_BUG_ON_PAGE(PageTail(page), page);
162 VM_BUG_ON_PAGE(page_ref_count(page), page);
163 set_page_count(page, 1);
166 extern unsigned long highest_memmap_pfn;
169 * Maximum number of reclaim retries without progress before the OOM
170 * killer is consider the only way forward.
172 #define MAX_RECLAIM_RETRIES 16
175 * in mm/early_ioremap.c
177 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
178 unsigned long size, pgprot_t prot);
183 int isolate_lru_page(struct page *page);
184 int folio_isolate_lru(struct folio *folio);
185 void putback_lru_page(struct page *page);
186 void folio_putback_lru(struct folio *folio);
187 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
192 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
199 * Structure for holding the mostly immutable allocation parameters passed
200 * between functions involved in allocations, including the alloc_pages*
201 * family of functions.
203 * nodemask, migratetype and highest_zoneidx are initialized only once in
204 * __alloc_pages() and then never change.
206 * zonelist, preferred_zone and highest_zoneidx are set first in
207 * __alloc_pages() for the fast path, and might be later changed
208 * in __alloc_pages_slowpath(). All other functions pass the whole structure
209 * by a const pointer.
211 struct alloc_context {
212 struct zonelist *zonelist;
213 nodemask_t *nodemask;
214 struct zoneref *preferred_zoneref;
218 * highest_zoneidx represents highest usable zone index of
219 * the allocation request. Due to the nature of the zone,
220 * memory on lower zone than the highest_zoneidx will be
221 * protected by lowmem_reserve[highest_zoneidx].
223 * highest_zoneidx is also used by reclaim/compaction to limit
224 * the target zone since higher zone than this index cannot be
225 * usable for this allocation request.
227 enum zone_type highest_zoneidx;
228 bool spread_dirty_pages;
232 * This function returns the order of a free page in the buddy system. In
233 * general, page_zone(page)->lock must be held by the caller to prevent the
234 * page from being allocated in parallel and returning garbage as the order.
235 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
236 * page cannot be allocated or merged in parallel. Alternatively, it must
237 * handle invalid values gracefully, and use buddy_order_unsafe() below.
239 static inline unsigned int buddy_order(struct page *page)
241 /* PageBuddy() must be checked by the caller */
242 return page_private(page);
246 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
247 * PageBuddy() should be checked first by the caller to minimize race window,
248 * and invalid values must be handled gracefully.
250 * READ_ONCE is used so that if the caller assigns the result into a local
251 * variable and e.g. tests it for valid range before using, the compiler cannot
252 * decide to remove the variable and inline the page_private(page) multiple
253 * times, potentially observing different values in the tests and the actual
256 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
259 * This function checks whether a page is free && is the buddy
260 * we can coalesce a page and its buddy if
261 * (a) the buddy is not in a hole (check before calling!) &&
262 * (b) the buddy is in the buddy system &&
263 * (c) a page and its buddy have the same order &&
264 * (d) a page and its buddy are in the same zone.
266 * For recording whether a page is in the buddy system, we set PageBuddy.
267 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
269 * For recording page's order, we use page_private(page).
271 static inline bool page_is_buddy(struct page *page, struct page *buddy,
274 if (!page_is_guard(buddy) && !PageBuddy(buddy))
277 if (buddy_order(buddy) != order)
281 * zone check is done late to avoid uselessly calculating
282 * zone/node ids for pages that could never merge.
284 if (page_zone_id(page) != page_zone_id(buddy))
287 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
293 * Locate the struct page for both the matching buddy in our
294 * pair (buddy1) and the combined O(n+1) page they form (page).
296 * 1) Any buddy B1 will have an order O twin B2 which satisfies
297 * the following equation:
299 * For example, if the starting buddy (buddy2) is #8 its order
301 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
303 * 2) Any buddy B will have an order O+1 parent P which
304 * satisfies the following equation:
307 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
309 static inline unsigned long
310 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
312 return page_pfn ^ (1 << order);
316 * Find the buddy of @page and validate it.
317 * @page: The input page
318 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
319 * function is used in the performance-critical __free_one_page().
320 * @order: The order of the page
321 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
324 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
325 * not the same as @page. The validation is necessary before use it.
327 * Return: the found buddy page or NULL if not found.
329 static inline struct page *find_buddy_page_pfn(struct page *page,
330 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
332 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
335 buddy = page + (__buddy_pfn - pfn);
337 *buddy_pfn = __buddy_pfn;
339 if (page_is_buddy(page, buddy, order))
344 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
345 unsigned long end_pfn, struct zone *zone);
347 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
348 unsigned long end_pfn, struct zone *zone)
350 if (zone->contiguous)
351 return pfn_to_page(start_pfn);
353 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
356 extern int __isolate_free_page(struct page *page, unsigned int order);
357 extern void __putback_isolated_page(struct page *page, unsigned int order,
359 extern void memblock_free_pages(struct page *page, unsigned long pfn,
361 extern void __free_pages_core(struct page *page, unsigned int order);
362 extern void prep_compound_page(struct page *page, unsigned int order);
363 extern void post_alloc_hook(struct page *page, unsigned int order,
365 extern int user_min_free_kbytes;
367 extern void free_unref_page(struct page *page, unsigned int order);
368 extern void free_unref_page_list(struct list_head *list);
370 extern void zone_pcp_update(struct zone *zone, int cpu_online);
371 extern void zone_pcp_reset(struct zone *zone);
372 extern void zone_pcp_disable(struct zone *zone);
373 extern void zone_pcp_enable(struct zone *zone);
375 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
376 phys_addr_t min_addr,
377 int nid, bool exact_nid);
379 int split_free_page(struct page *free_page,
380 unsigned int order, unsigned long split_pfn_offset);
382 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
388 * compact_control is used to track pages being migrated and the free pages
389 * they are being migrated to during memory compaction. The free_pfn starts
390 * at the end of a zone and migrate_pfn begins at the start. Movable pages
391 * are moved to the end of a zone during a compaction run and the run
392 * completes when free_pfn <= migrate_pfn
394 struct compact_control {
395 struct list_head freepages; /* List of free pages to migrate to */
396 struct list_head migratepages; /* List of pages being migrated */
397 unsigned int nr_freepages; /* Number of isolated free pages */
398 unsigned int nr_migratepages; /* Number of pages to migrate */
399 unsigned long free_pfn; /* isolate_freepages search base */
401 * Acts as an in/out parameter to page isolation for migration.
402 * isolate_migratepages uses it as a search base.
403 * isolate_migratepages_block will update the value to the next pfn
404 * after the last isolated one.
406 unsigned long migrate_pfn;
407 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
409 unsigned long total_migrate_scanned;
410 unsigned long total_free_scanned;
411 unsigned short fast_search_fail;/* failures to use free list searches */
412 short search_order; /* order to start a fast search at */
413 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
414 int order; /* order a direct compactor needs */
415 int migratetype; /* migratetype of direct compactor */
416 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
417 const int highest_zoneidx; /* zone index of a direct compactor */
418 enum migrate_mode mode; /* Async or sync migration mode */
419 bool ignore_skip_hint; /* Scan blocks even if marked skip */
420 bool no_set_skip_hint; /* Don't mark blocks for skipping */
421 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
422 bool direct_compaction; /* False from kcompactd or /proc/... */
423 bool proactive_compaction; /* kcompactd proactive compaction */
424 bool whole_zone; /* Whole zone should/has been scanned */
425 bool contended; /* Signal lock contention */
426 bool rescan; /* Rescanning the same pageblock */
427 bool alloc_contig; /* alloc_contig_range allocation */
431 * Used in direct compaction when a page should be taken from the freelists
432 * immediately when one is created during the free path.
434 struct capture_control {
435 struct compact_control *cc;
440 isolate_freepages_range(struct compact_control *cc,
441 unsigned long start_pfn, unsigned long end_pfn);
443 isolate_migratepages_range(struct compact_control *cc,
444 unsigned long low_pfn, unsigned long end_pfn);
446 int __alloc_contig_migrate_range(struct compact_control *cc,
447 unsigned long start, unsigned long end);
449 int find_suitable_fallback(struct free_area *area, unsigned int order,
450 int migratetype, bool only_stealable, bool *can_steal);
453 * These three helpers classifies VMAs for virtual memory accounting.
457 * Executable code area - executable, not writable, not stack
459 static inline bool is_exec_mapping(vm_flags_t flags)
461 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
465 * Stack area - automatically grows in one direction
467 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
468 * do_mmap() forbids all other combinations.
470 static inline bool is_stack_mapping(vm_flags_t flags)
472 return (flags & VM_STACK) == VM_STACK;
476 * Data area - private, writable, not stack
478 static inline bool is_data_mapping(vm_flags_t flags)
480 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
484 struct anon_vma *folio_anon_vma(struct folio *folio);
487 void unmap_mapping_folio(struct folio *folio);
488 extern long populate_vma_page_range(struct vm_area_struct *vma,
489 unsigned long start, unsigned long end, int *locked);
490 extern long faultin_vma_page_range(struct vm_area_struct *vma,
491 unsigned long start, unsigned long end,
492 bool write, int *locked);
493 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
496 * mlock_vma_page() and munlock_vma_page():
497 * should be called with vma's mmap_lock held for read or write,
498 * under page table lock for the pte/pmd being added or removed.
500 * mlock is usually called at the end of page_add_*_rmap(),
501 * munlock at the end of page_remove_rmap(); but new anon
502 * pages are managed by lru_cache_add_inactive_or_unevictable()
503 * calling mlock_new_page().
505 * @compound is used to include pmd mappings of THPs, but filter out
506 * pte mappings of THPs, which cannot be consistently counted: a pte
507 * mapping of the THP head cannot be distinguished by the page alone.
509 void mlock_folio(struct folio *folio);
510 static inline void mlock_vma_folio(struct folio *folio,
511 struct vm_area_struct *vma, bool compound)
514 * The VM_SPECIAL check here serves two purposes.
515 * 1) VM_IO check prevents migration from double-counting during mlock.
516 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
517 * is never left set on a VM_SPECIAL vma, there is an interval while
518 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
519 * still be set while VM_SPECIAL bits are added: so ignore it then.
521 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
522 (compound || !folio_test_large(folio)))
526 static inline void mlock_vma_page(struct page *page,
527 struct vm_area_struct *vma, bool compound)
529 mlock_vma_folio(page_folio(page), vma, compound);
532 void munlock_page(struct page *page);
533 static inline void munlock_vma_page(struct page *page,
534 struct vm_area_struct *vma, bool compound)
536 if (unlikely(vma->vm_flags & VM_LOCKED) &&
537 (compound || !PageTransCompound(page)))
540 void mlock_new_page(struct page *page);
541 bool need_mlock_page_drain(int cpu);
542 void mlock_page_drain_local(void);
543 void mlock_page_drain_remote(int cpu);
545 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
548 * Return the start of user virtual address at the specific offset within
551 static inline unsigned long
552 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
553 struct vm_area_struct *vma)
555 unsigned long address;
557 if (pgoff >= vma->vm_pgoff) {
558 address = vma->vm_start +
559 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
560 /* Check for address beyond vma (or wrapped through 0?) */
561 if (address < vma->vm_start || address >= vma->vm_end)
563 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
564 /* Test above avoids possibility of wrap to 0 on 32-bit */
565 address = vma->vm_start;
573 * Return the start of user virtual address of a page within a vma.
574 * Returns -EFAULT if all of the page is outside the range of vma.
575 * If page is a compound head, the entire compound page is considered.
577 static inline unsigned long
578 vma_address(struct page *page, struct vm_area_struct *vma)
580 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
581 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
585 * Then at what user virtual address will none of the range be found in vma?
586 * Assumes that vma_address() already returned a good starting address.
588 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
590 struct vm_area_struct *vma = pvmw->vma;
592 unsigned long address;
594 /* Common case, plus ->pgoff is invalid for KSM */
595 if (pvmw->nr_pages == 1)
596 return pvmw->address + PAGE_SIZE;
598 pgoff = pvmw->pgoff + pvmw->nr_pages;
599 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
600 /* Check for address beyond vma (or wrapped through 0?) */
601 if (address < vma->vm_start || address > vma->vm_end)
602 address = vma->vm_end;
606 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
609 int flags = vmf->flags;
615 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
616 * anything, so we only pin the file and drop the mmap_lock if only
617 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
619 if (fault_flag_allow_retry_first(flags) &&
620 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
621 fpin = get_file(vmf->vma->vm_file);
622 mmap_read_unlock(vmf->vma->vm_mm);
626 #else /* !CONFIG_MMU */
627 static inline void unmap_mapping_folio(struct folio *folio) { }
628 static inline void mlock_vma_page(struct page *page,
629 struct vm_area_struct *vma, bool compound) { }
630 static inline void munlock_vma_page(struct page *page,
631 struct vm_area_struct *vma, bool compound) { }
632 static inline void mlock_new_page(struct page *page) { }
633 static inline bool need_mlock_page_drain(int cpu) { return false; }
634 static inline void mlock_page_drain_local(void) { }
635 static inline void mlock_page_drain_remote(int cpu) { }
636 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
639 #endif /* !CONFIG_MMU */
642 * Return the mem_map entry representing the 'offset' subpage within
643 * the maximally aligned gigantic page 'base'. Handle any discontiguity
644 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
646 static inline struct page *mem_map_offset(struct page *base, int offset)
648 if (unlikely(offset >= MAX_ORDER_NR_PAGES))
649 return nth_page(base, offset);
650 return base + offset;
654 * Iterator over all subpages within the maximally aligned gigantic
655 * page 'base'. Handle any discontiguity in the mem_map.
657 static inline struct page *mem_map_next(struct page *iter,
658 struct page *base, int offset)
660 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
661 unsigned long pfn = page_to_pfn(base) + offset;
664 return pfn_to_page(pfn);
669 /* Memory initialisation debug and verification */
676 #ifdef CONFIG_DEBUG_MEMORY_INIT
678 extern int mminit_loglevel;
680 #define mminit_dprintk(level, prefix, fmt, arg...) \
682 if (level < mminit_loglevel) { \
683 if (level <= MMINIT_WARNING) \
684 pr_warn("mminit::" prefix " " fmt, ##arg); \
686 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
690 extern void mminit_verify_pageflags_layout(void);
691 extern void mminit_verify_zonelist(void);
694 static inline void mminit_dprintk(enum mminit_level level,
695 const char *prefix, const char *fmt, ...)
699 static inline void mminit_verify_pageflags_layout(void)
703 static inline void mminit_verify_zonelist(void)
706 #endif /* CONFIG_DEBUG_MEMORY_INIT */
708 #define NODE_RECLAIM_NOSCAN -2
709 #define NODE_RECLAIM_FULL -1
710 #define NODE_RECLAIM_SOME 0
711 #define NODE_RECLAIM_SUCCESS 1
714 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
715 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
717 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
720 return NODE_RECLAIM_NOSCAN;
722 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
729 * mm/memory-failure.c
731 extern int hwpoison_filter(struct page *p);
733 extern u32 hwpoison_filter_dev_major;
734 extern u32 hwpoison_filter_dev_minor;
735 extern u64 hwpoison_filter_flags_mask;
736 extern u64 hwpoison_filter_flags_value;
737 extern u64 hwpoison_filter_memcg;
738 extern u32 hwpoison_filter_enable;
740 #ifdef CONFIG_MEMORY_FAILURE
741 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages);
743 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
748 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
749 unsigned long, unsigned long,
750 unsigned long, unsigned long);
752 extern void set_pageblock_order(void);
753 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
754 struct list_head *page_list);
755 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
756 #define ALLOC_WMARK_MIN WMARK_MIN
757 #define ALLOC_WMARK_LOW WMARK_LOW
758 #define ALLOC_WMARK_HIGH WMARK_HIGH
759 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
761 /* Mask to get the watermark bits */
762 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
765 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
766 * cannot assume a reduced access to memory reserves is sufficient for
770 #define ALLOC_OOM 0x08
772 #define ALLOC_OOM ALLOC_NO_WATERMARKS
775 #define ALLOC_HARDER 0x10 /* try to alloc harder */
776 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
777 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
778 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
779 #ifdef CONFIG_ZONE_DMA32
780 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
782 #define ALLOC_NOFRAGMENT 0x0
784 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
787 struct tlbflush_unmap_batch;
791 * only for MM internal work items which do not depend on
792 * any allocations or locks which might depend on allocations
794 extern struct workqueue_struct *mm_percpu_wq;
796 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
797 void try_to_unmap_flush(void);
798 void try_to_unmap_flush_dirty(void);
799 void flush_tlb_batched_pending(struct mm_struct *mm);
801 static inline void try_to_unmap_flush(void)
804 static inline void try_to_unmap_flush_dirty(void)
807 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
810 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
812 extern const struct trace_print_flags pageflag_names[];
813 extern const struct trace_print_flags vmaflag_names[];
814 extern const struct trace_print_flags gfpflag_names[];
816 static inline bool is_migrate_highatomic(enum migratetype migratetype)
818 return migratetype == MIGRATE_HIGHATOMIC;
821 static inline bool is_migrate_highatomic_page(struct page *page)
823 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
826 void setup_zone_pageset(struct zone *zone);
828 struct migration_target_control {
829 int nid; /* preferred node id */
838 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
839 pgprot_t prot, struct page **pages, unsigned int page_shift);
842 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
843 pgprot_t prot, struct page **pages, unsigned int page_shift)
849 void vunmap_range_noflush(unsigned long start, unsigned long end);
851 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
852 unsigned long addr, int page_nid, int *flags);
854 void free_zone_device_page(struct page *page);
855 int migrate_device_coherent_page(struct page *page);
860 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
862 DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
864 extern bool mirrored_kernelcore;
866 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
869 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
870 * enablements, because when without soft-dirty being compiled in,
871 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
872 * will be constantly true.
874 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
878 * Soft-dirty is kind of special: its tracking is enabled when the
881 return !(vma->vm_flags & VM_SOFTDIRTY);
884 #endif /* __MM_INTERNAL_H */