2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
136 #include <linux/filter.h>
138 #include <trace/events/sock.h>
144 #include <net/busy_poll.h>
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
159 bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
165 EXPORT_SYMBOL(sk_ns_capable);
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
176 bool sk_capable(const struct sock *sk, int cap)
178 return sk_ns_capable(sk, &init_user_ns, cap);
180 EXPORT_SYMBOL(sk_capable);
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
191 bool sk_net_capable(const struct sock *sk, int cap)
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 EXPORT_SYMBOL(sk_net_capable);
198 #ifdef CONFIG_MEMCG_KMEM
199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
204 mutex_lock(&proto_list_mutex);
205 list_for_each_entry(proto, &proto_list, node) {
206 if (proto->init_cgroup) {
207 ret = proto->init_cgroup(memcg, ss);
213 mutex_unlock(&proto_list_mutex);
216 list_for_each_entry_continue_reverse(proto, &proto_list, node)
217 if (proto->destroy_cgroup)
218 proto->destroy_cgroup(memcg);
219 mutex_unlock(&proto_list_mutex);
223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
227 mutex_lock(&proto_list_mutex);
228 list_for_each_entry_reverse(proto, &proto_list, node)
229 if (proto->destroy_cgroup)
230 proto->destroy_cgroup(memcg);
231 mutex_unlock(&proto_list_mutex);
236 * Each address family might have different locking rules, so we have
237 * one slock key per address family:
239 static struct lock_class_key af_family_keys[AF_MAX];
240 static struct lock_class_key af_family_slock_keys[AF_MAX];
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled);
248 * Make lock validator output more readable. (we pre-construct these
249 * strings build-time, so that runtime initialization of socket
252 static const char *const af_family_key_strings[AF_MAX+1] = {
253 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
254 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
255 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
256 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
257 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
258 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
259 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
260 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
261 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
262 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
263 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
264 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
265 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
266 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
268 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
269 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
270 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
271 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
272 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
273 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
274 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
275 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
276 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
277 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
278 "slock-27" , "slock-28" , "slock-AF_CAN" ,
279 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
280 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
281 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
282 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
284 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
285 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
286 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
287 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
288 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
289 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
290 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
291 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
292 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
293 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
294 "clock-27" , "clock-28" , "clock-AF_CAN" ,
295 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
296 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
297 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
298 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
302 * sk_callback_lock locking rules are per-address-family,
303 * so split the lock classes by using a per-AF key:
305 static struct lock_class_key af_callback_keys[AF_MAX];
307 /* Take into consideration the size of the struct sk_buff overhead in the
308 * determination of these values, since that is non-constant across
309 * platforms. This makes socket queueing behavior and performance
310 * not depend upon such differences.
312 #define _SK_MEM_PACKETS 256
313 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
319 EXPORT_SYMBOL(sysctl_wmem_max);
320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
321 EXPORT_SYMBOL(sysctl_rmem_max);
322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
327 EXPORT_SYMBOL(sysctl_optmem_max);
329 int sysctl_tstamp_allow_data __read_mostly = 1;
331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
332 EXPORT_SYMBOL_GPL(memalloc_socks);
335 * sk_set_memalloc - sets %SOCK_MEMALLOC
336 * @sk: socket to set it on
338 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339 * It's the responsibility of the admin to adjust min_free_kbytes
340 * to meet the requirements
342 void sk_set_memalloc(struct sock *sk)
344 sock_set_flag(sk, SOCK_MEMALLOC);
345 sk->sk_allocation |= __GFP_MEMALLOC;
346 static_key_slow_inc(&memalloc_socks);
348 EXPORT_SYMBOL_GPL(sk_set_memalloc);
350 void sk_clear_memalloc(struct sock *sk)
352 sock_reset_flag(sk, SOCK_MEMALLOC);
353 sk->sk_allocation &= ~__GFP_MEMALLOC;
354 static_key_slow_dec(&memalloc_socks);
357 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 * it has rmem allocations due to the last swapfile being deactivated
360 * but there is a risk that the socket is unusable due to exceeding
361 * the rmem limits. Reclaim the reserves and obey rmem limits again.
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 unsigned long pflags = current->flags;
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
375 current->flags |= PF_MEMALLOC;
376 ret = sk->sk_backlog_rcv(sk, skb);
377 tsk_restore_flags(current, pflags, PF_MEMALLOC);
381 EXPORT_SYMBOL(__sk_backlog_rcv);
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
387 if (optlen < sizeof(tv))
389 if (copy_from_user(&tv, optval, sizeof(tv)))
391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 static int warned __read_mostly;
398 if (warned < 10 && net_ratelimit()) {
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__, current->comm, task_pid_nr(current));
405 *timeo_p = MAX_SCHEDULE_TIMEOUT;
406 if (tv.tv_sec == 0 && tv.tv_usec == 0)
408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
413 static void sock_warn_obsolete_bsdism(const char *name)
416 static char warncomm[TASK_COMM_LEN];
417 if (strcmp(warncomm, current->comm) && warned < 5) {
418 strcpy(warncomm, current->comm);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432 net_disable_timestamp();
437 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
441 struct sk_buff_head *list = &sk->sk_receive_queue;
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
449 err = sk_filter(sk, skb);
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
459 skb_set_owner_r(skb, sk);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
475 EXPORT_SYMBOL(sock_queue_rcv_skb);
477 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
479 int rc = NET_RX_SUCCESS;
481 if (sk_filter(sk, skb))
482 goto discard_and_relse;
486 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
487 atomic_inc(&sk->sk_drops);
488 goto discard_and_relse;
491 bh_lock_sock_nested(sk);
494 if (!sock_owned_by_user(sk)) {
496 * trylock + unlock semantics:
498 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
500 rc = sk_backlog_rcv(sk, skb);
502 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
503 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
505 atomic_inc(&sk->sk_drops);
506 goto discard_and_relse;
517 EXPORT_SYMBOL(sk_receive_skb);
519 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
521 struct dst_entry *dst = __sk_dst_get(sk);
523 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
524 sk_tx_queue_clear(sk);
525 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
532 EXPORT_SYMBOL(__sk_dst_check);
534 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
536 struct dst_entry *dst = sk_dst_get(sk);
538 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
546 EXPORT_SYMBOL(sk_dst_check);
548 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 int ret = -ENOPROTOOPT;
552 #ifdef CONFIG_NETDEVICES
553 struct net *net = sock_net(sk);
554 char devname[IFNAMSIZ];
559 if (!ns_capable(net->user_ns, CAP_NET_RAW))
566 /* Bind this socket to a particular device like "eth0",
567 * as specified in the passed interface name. If the
568 * name is "" or the option length is zero the socket
571 if (optlen > IFNAMSIZ - 1)
572 optlen = IFNAMSIZ - 1;
573 memset(devname, 0, sizeof(devname));
576 if (copy_from_user(devname, optval, optlen))
580 if (devname[0] != '\0') {
581 struct net_device *dev;
584 dev = dev_get_by_name_rcu(net, devname);
586 index = dev->ifindex;
594 sk->sk_bound_dev_if = index;
606 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
607 int __user *optlen, int len)
609 int ret = -ENOPROTOOPT;
610 #ifdef CONFIG_NETDEVICES
611 struct net *net = sock_net(sk);
612 char devname[IFNAMSIZ];
614 if (sk->sk_bound_dev_if == 0) {
623 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
627 len = strlen(devname) + 1;
630 if (copy_to_user(optval, devname, len))
635 if (put_user(len, optlen))
646 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 sock_set_flag(sk, bit);
651 sock_reset_flag(sk, bit);
654 bool sk_mc_loop(struct sock *sk)
656 if (dev_recursion_level())
660 switch (sk->sk_family) {
662 return inet_sk(sk)->mc_loop;
663 #if IS_ENABLED(CONFIG_IPV6)
665 return inet6_sk(sk)->mc_loop;
671 EXPORT_SYMBOL(sk_mc_loop);
674 * This is meant for all protocols to use and covers goings on
675 * at the socket level. Everything here is generic.
678 int sock_setsockopt(struct socket *sock, int level, int optname,
679 char __user *optval, unsigned int optlen)
681 struct sock *sk = sock->sk;
688 * Options without arguments
691 if (optname == SO_BINDTODEVICE)
692 return sock_setbindtodevice(sk, optval, optlen);
694 if (optlen < sizeof(int))
697 if (get_user(val, (int __user *)optval))
700 valbool = val ? 1 : 0;
706 if (val && !capable(CAP_NET_ADMIN))
709 sock_valbool_flag(sk, SOCK_DBG, valbool);
712 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
715 sk->sk_reuseport = valbool;
724 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
727 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
730 /* Don't error on this BSD doesn't and if you think
731 * about it this is right. Otherwise apps have to
732 * play 'guess the biggest size' games. RCVBUF/SNDBUF
733 * are treated in BSD as hints
735 val = min_t(u32, val, sysctl_wmem_max);
737 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
738 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
739 /* Wake up sending tasks if we upped the value. */
740 sk->sk_write_space(sk);
744 if (!capable(CAP_NET_ADMIN)) {
751 /* Don't error on this BSD doesn't and if you think
752 * about it this is right. Otherwise apps have to
753 * play 'guess the biggest size' games. RCVBUF/SNDBUF
754 * are treated in BSD as hints
756 val = min_t(u32, val, sysctl_rmem_max);
758 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
760 * We double it on the way in to account for
761 * "struct sk_buff" etc. overhead. Applications
762 * assume that the SO_RCVBUF setting they make will
763 * allow that much actual data to be received on that
766 * Applications are unaware that "struct sk_buff" and
767 * other overheads allocate from the receive buffer
768 * during socket buffer allocation.
770 * And after considering the possible alternatives,
771 * returning the value we actually used in getsockopt
772 * is the most desirable behavior.
774 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
778 if (!capable(CAP_NET_ADMIN)) {
786 if (sk->sk_protocol == IPPROTO_TCP &&
787 sk->sk_type == SOCK_STREAM)
788 tcp_set_keepalive(sk, valbool);
790 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
794 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
798 sk->sk_no_check_tx = valbool;
802 if ((val >= 0 && val <= 6) ||
803 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
804 sk->sk_priority = val;
810 if (optlen < sizeof(ling)) {
811 ret = -EINVAL; /* 1003.1g */
814 if (copy_from_user(&ling, optval, sizeof(ling))) {
819 sock_reset_flag(sk, SOCK_LINGER);
821 #if (BITS_PER_LONG == 32)
822 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
823 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
826 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
827 sock_set_flag(sk, SOCK_LINGER);
832 sock_warn_obsolete_bsdism("setsockopt");
837 set_bit(SOCK_PASSCRED, &sock->flags);
839 clear_bit(SOCK_PASSCRED, &sock->flags);
845 if (optname == SO_TIMESTAMP)
846 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
848 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
849 sock_set_flag(sk, SOCK_RCVTSTAMP);
850 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
852 sock_reset_flag(sk, SOCK_RCVTSTAMP);
853 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
857 case SO_TIMESTAMPING:
858 if (val & ~SOF_TIMESTAMPING_MASK) {
863 if (val & SOF_TIMESTAMPING_OPT_ID &&
864 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
865 if (sk->sk_protocol == IPPROTO_TCP) {
866 if (sk->sk_state != TCP_ESTABLISHED) {
870 sk->sk_tskey = tcp_sk(sk)->snd_una;
875 sk->sk_tsflags = val;
876 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
877 sock_enable_timestamp(sk,
878 SOCK_TIMESTAMPING_RX_SOFTWARE);
880 sock_disable_timestamp(sk,
881 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
887 sk->sk_rcvlowat = val ? : 1;
891 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
895 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
898 case SO_ATTACH_FILTER:
900 if (optlen == sizeof(struct sock_fprog)) {
901 struct sock_fprog fprog;
904 if (copy_from_user(&fprog, optval, sizeof(fprog)))
907 ret = sk_attach_filter(&fprog, sk);
913 if (optlen == sizeof(u32)) {
917 if (copy_from_user(&ufd, optval, sizeof(ufd)))
920 ret = sk_attach_bpf(ufd, sk);
924 case SO_DETACH_FILTER:
925 ret = sk_detach_filter(sk);
929 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
932 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
937 set_bit(SOCK_PASSSEC, &sock->flags);
939 clear_bit(SOCK_PASSSEC, &sock->flags);
942 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
949 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
953 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
957 if (sock->ops->set_peek_off)
958 ret = sock->ops->set_peek_off(sk, val);
964 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
967 case SO_SELECT_ERR_QUEUE:
968 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
971 #ifdef CONFIG_NET_RX_BUSY_POLL
973 /* allow unprivileged users to decrease the value */
974 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
980 sk->sk_ll_usec = val;
985 case SO_MAX_PACING_RATE:
986 sk->sk_max_pacing_rate = val;
987 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
988 sk->sk_max_pacing_rate);
998 EXPORT_SYMBOL(sock_setsockopt);
1001 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1002 struct ucred *ucred)
1004 ucred->pid = pid_vnr(pid);
1005 ucred->uid = ucred->gid = -1;
1007 struct user_namespace *current_ns = current_user_ns();
1009 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1010 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1014 int sock_getsockopt(struct socket *sock, int level, int optname,
1015 char __user *optval, int __user *optlen)
1017 struct sock *sk = sock->sk;
1025 int lv = sizeof(int);
1028 if (get_user(len, optlen))
1033 memset(&v, 0, sizeof(v));
1037 v.val = sock_flag(sk, SOCK_DBG);
1041 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1045 v.val = sock_flag(sk, SOCK_BROADCAST);
1049 v.val = sk->sk_sndbuf;
1053 v.val = sk->sk_rcvbuf;
1057 v.val = sk->sk_reuse;
1061 v.val = sk->sk_reuseport;
1065 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1069 v.val = sk->sk_type;
1073 v.val = sk->sk_protocol;
1077 v.val = sk->sk_family;
1081 v.val = -sock_error(sk);
1083 v.val = xchg(&sk->sk_err_soft, 0);
1087 v.val = sock_flag(sk, SOCK_URGINLINE);
1091 v.val = sk->sk_no_check_tx;
1095 v.val = sk->sk_priority;
1099 lv = sizeof(v.ling);
1100 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1101 v.ling.l_linger = sk->sk_lingertime / HZ;
1105 sock_warn_obsolete_bsdism("getsockopt");
1109 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1110 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1113 case SO_TIMESTAMPNS:
1114 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1117 case SO_TIMESTAMPING:
1118 v.val = sk->sk_tsflags;
1122 lv = sizeof(struct timeval);
1123 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1127 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1128 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1133 lv = sizeof(struct timeval);
1134 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1138 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1139 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1144 v.val = sk->sk_rcvlowat;
1152 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1157 struct ucred peercred;
1158 if (len > sizeof(peercred))
1159 len = sizeof(peercred);
1160 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1161 if (copy_to_user(optval, &peercred, len))
1170 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1174 if (copy_to_user(optval, address, len))
1179 /* Dubious BSD thing... Probably nobody even uses it, but
1180 * the UNIX standard wants it for whatever reason... -DaveM
1183 v.val = sk->sk_state == TCP_LISTEN;
1187 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1191 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1194 v.val = sk->sk_mark;
1198 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1201 case SO_WIFI_STATUS:
1202 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1206 if (!sock->ops->set_peek_off)
1209 v.val = sk->sk_peek_off;
1212 v.val = sock_flag(sk, SOCK_NOFCS);
1215 case SO_BINDTODEVICE:
1216 return sock_getbindtodevice(sk, optval, optlen, len);
1219 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1225 case SO_LOCK_FILTER:
1226 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1229 case SO_BPF_EXTENSIONS:
1230 v.val = bpf_tell_extensions();
1233 case SO_SELECT_ERR_QUEUE:
1234 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1237 #ifdef CONFIG_NET_RX_BUSY_POLL
1239 v.val = sk->sk_ll_usec;
1243 case SO_MAX_PACING_RATE:
1244 v.val = sk->sk_max_pacing_rate;
1247 case SO_INCOMING_CPU:
1248 v.val = sk->sk_incoming_cpu;
1252 /* We implement the SO_SNDLOWAT etc to not be settable
1255 return -ENOPROTOOPT;
1260 if (copy_to_user(optval, &v, len))
1263 if (put_user(len, optlen))
1269 * Initialize an sk_lock.
1271 * (We also register the sk_lock with the lock validator.)
1273 static inline void sock_lock_init(struct sock *sk)
1275 sock_lock_init_class_and_name(sk,
1276 af_family_slock_key_strings[sk->sk_family],
1277 af_family_slock_keys + sk->sk_family,
1278 af_family_key_strings[sk->sk_family],
1279 af_family_keys + sk->sk_family);
1283 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1284 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1285 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1287 static void sock_copy(struct sock *nsk, const struct sock *osk)
1289 #ifdef CONFIG_SECURITY_NETWORK
1290 void *sptr = nsk->sk_security;
1292 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1294 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1295 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1297 #ifdef CONFIG_SECURITY_NETWORK
1298 nsk->sk_security = sptr;
1299 security_sk_clone(osk, nsk);
1303 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1305 unsigned long nulls1, nulls2;
1307 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1308 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1309 if (nulls1 > nulls2)
1310 swap(nulls1, nulls2);
1313 memset((char *)sk, 0, nulls1);
1314 memset((char *)sk + nulls1 + sizeof(void *), 0,
1315 nulls2 - nulls1 - sizeof(void *));
1316 memset((char *)sk + nulls2 + sizeof(void *), 0,
1317 size - nulls2 - sizeof(void *));
1319 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1321 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1325 struct kmem_cache *slab;
1329 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1332 if (priority & __GFP_ZERO) {
1334 prot->clear_sk(sk, prot->obj_size);
1336 sk_prot_clear_nulls(sk, prot->obj_size);
1339 sk = kmalloc(prot->obj_size, priority);
1342 kmemcheck_annotate_bitfield(sk, flags);
1344 if (security_sk_alloc(sk, family, priority))
1347 if (!try_module_get(prot->owner))
1349 sk_tx_queue_clear(sk);
1355 security_sk_free(sk);
1358 kmem_cache_free(slab, sk);
1364 static void sk_prot_free(struct proto *prot, struct sock *sk)
1366 struct kmem_cache *slab;
1367 struct module *owner;
1369 owner = prot->owner;
1372 security_sk_free(sk);
1374 kmem_cache_free(slab, sk);
1380 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1381 void sock_update_netprioidx(struct sock *sk)
1386 sk->sk_cgrp_prioidx = task_netprioidx(current);
1388 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1392 * sk_alloc - All socket objects are allocated here
1393 * @net: the applicable net namespace
1394 * @family: protocol family
1395 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1396 * @prot: struct proto associated with this new sock instance
1397 * @kern: is this to be a kernel socket?
1399 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1400 struct proto *prot, int kern)
1404 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1406 sk->sk_family = family;
1408 * See comment in struct sock definition to understand
1409 * why we need sk_prot_creator -acme
1411 sk->sk_prot = sk->sk_prot_creator = prot;
1413 sk->sk_net_refcnt = kern ? 0 : 1;
1414 if (likely(sk->sk_net_refcnt))
1416 sock_net_set(sk, net);
1417 atomic_set(&sk->sk_wmem_alloc, 1);
1419 sock_update_classid(sk);
1420 sock_update_netprioidx(sk);
1425 EXPORT_SYMBOL(sk_alloc);
1427 void sk_destruct(struct sock *sk)
1429 struct sk_filter *filter;
1431 if (sk->sk_destruct)
1432 sk->sk_destruct(sk);
1434 filter = rcu_dereference_check(sk->sk_filter,
1435 atomic_read(&sk->sk_wmem_alloc) == 0);
1437 sk_filter_uncharge(sk, filter);
1438 RCU_INIT_POINTER(sk->sk_filter, NULL);
1441 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1443 if (atomic_read(&sk->sk_omem_alloc))
1444 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1445 __func__, atomic_read(&sk->sk_omem_alloc));
1447 if (sk->sk_peer_cred)
1448 put_cred(sk->sk_peer_cred);
1449 put_pid(sk->sk_peer_pid);
1450 if (likely(sk->sk_net_refcnt))
1451 put_net(sock_net(sk));
1452 sk_prot_free(sk->sk_prot_creator, sk);
1455 static void __sk_free(struct sock *sk)
1457 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1458 sock_diag_broadcast_destroy(sk);
1463 void sk_free(struct sock *sk)
1466 * We subtract one from sk_wmem_alloc and can know if
1467 * some packets are still in some tx queue.
1468 * If not null, sock_wfree() will call __sk_free(sk) later
1470 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1473 EXPORT_SYMBOL(sk_free);
1475 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1477 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1478 sock_update_memcg(newsk);
1482 * sk_clone_lock - clone a socket, and lock its clone
1483 * @sk: the socket to clone
1484 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1486 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1488 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1491 bool is_charged = true;
1493 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1494 if (newsk != NULL) {
1495 struct sk_filter *filter;
1497 sock_copy(newsk, sk);
1500 if (likely(newsk->sk_net_refcnt))
1501 get_net(sock_net(newsk));
1502 sk_node_init(&newsk->sk_node);
1503 sock_lock_init(newsk);
1504 bh_lock_sock(newsk);
1505 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1506 newsk->sk_backlog.len = 0;
1508 atomic_set(&newsk->sk_rmem_alloc, 0);
1510 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1512 atomic_set(&newsk->sk_wmem_alloc, 1);
1513 atomic_set(&newsk->sk_omem_alloc, 0);
1514 skb_queue_head_init(&newsk->sk_receive_queue);
1515 skb_queue_head_init(&newsk->sk_write_queue);
1517 spin_lock_init(&newsk->sk_dst_lock);
1518 rwlock_init(&newsk->sk_callback_lock);
1519 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1520 af_callback_keys + newsk->sk_family,
1521 af_family_clock_key_strings[newsk->sk_family]);
1523 newsk->sk_dst_cache = NULL;
1524 newsk->sk_wmem_queued = 0;
1525 newsk->sk_forward_alloc = 0;
1526 newsk->sk_send_head = NULL;
1527 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1529 sock_reset_flag(newsk, SOCK_DONE);
1530 skb_queue_head_init(&newsk->sk_error_queue);
1532 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1534 /* though it's an empty new sock, the charging may fail
1535 * if sysctl_optmem_max was changed between creation of
1536 * original socket and cloning
1538 is_charged = sk_filter_charge(newsk, filter);
1540 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1541 /* It is still raw copy of parent, so invalidate
1542 * destructor and make plain sk_free() */
1543 newsk->sk_destruct = NULL;
1544 bh_unlock_sock(newsk);
1551 newsk->sk_priority = 0;
1552 newsk->sk_incoming_cpu = raw_smp_processor_id();
1553 atomic64_set(&newsk->sk_cookie, 0);
1555 * Before updating sk_refcnt, we must commit prior changes to memory
1556 * (Documentation/RCU/rculist_nulls.txt for details)
1559 atomic_set(&newsk->sk_refcnt, 2);
1562 * Increment the counter in the same struct proto as the master
1563 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1564 * is the same as sk->sk_prot->socks, as this field was copied
1567 * This _changes_ the previous behaviour, where
1568 * tcp_create_openreq_child always was incrementing the
1569 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1570 * to be taken into account in all callers. -acme
1572 sk_refcnt_debug_inc(newsk);
1573 sk_set_socket(newsk, NULL);
1574 newsk->sk_wq = NULL;
1576 sk_update_clone(sk, newsk);
1578 if (newsk->sk_prot->sockets_allocated)
1579 sk_sockets_allocated_inc(newsk);
1581 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1582 net_enable_timestamp();
1587 EXPORT_SYMBOL_GPL(sk_clone_lock);
1589 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1593 __sk_dst_set(sk, dst);
1594 sk->sk_route_caps = dst->dev->features;
1595 if (sk->sk_route_caps & NETIF_F_GSO)
1596 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1597 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1598 if (sk_can_gso(sk)) {
1599 if (dst->header_len) {
1600 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1602 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1603 sk->sk_gso_max_size = dst->dev->gso_max_size;
1604 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1607 sk->sk_gso_max_segs = max_segs;
1609 EXPORT_SYMBOL_GPL(sk_setup_caps);
1612 * Simple resource managers for sockets.
1617 * Write buffer destructor automatically called from kfree_skb.
1619 void sock_wfree(struct sk_buff *skb)
1621 struct sock *sk = skb->sk;
1622 unsigned int len = skb->truesize;
1624 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1626 * Keep a reference on sk_wmem_alloc, this will be released
1627 * after sk_write_space() call
1629 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1630 sk->sk_write_space(sk);
1634 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1635 * could not do because of in-flight packets
1637 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1640 EXPORT_SYMBOL(sock_wfree);
1642 void skb_orphan_partial(struct sk_buff *skb)
1644 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1645 * so we do not completely orphan skb, but transfert all
1646 * accounted bytes but one, to avoid unexpected reorders.
1648 if (skb->destructor == sock_wfree
1650 || skb->destructor == tcp_wfree
1653 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1659 EXPORT_SYMBOL(skb_orphan_partial);
1662 * Read buffer destructor automatically called from kfree_skb.
1664 void sock_rfree(struct sk_buff *skb)
1666 struct sock *sk = skb->sk;
1667 unsigned int len = skb->truesize;
1669 atomic_sub(len, &sk->sk_rmem_alloc);
1670 sk_mem_uncharge(sk, len);
1672 EXPORT_SYMBOL(sock_rfree);
1675 * Buffer destructor for skbs that are not used directly in read or write
1676 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1678 void sock_efree(struct sk_buff *skb)
1682 EXPORT_SYMBOL(sock_efree);
1684 kuid_t sock_i_uid(struct sock *sk)
1688 read_lock_bh(&sk->sk_callback_lock);
1689 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1690 read_unlock_bh(&sk->sk_callback_lock);
1693 EXPORT_SYMBOL(sock_i_uid);
1695 unsigned long sock_i_ino(struct sock *sk)
1699 read_lock_bh(&sk->sk_callback_lock);
1700 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1701 read_unlock_bh(&sk->sk_callback_lock);
1704 EXPORT_SYMBOL(sock_i_ino);
1707 * Allocate a skb from the socket's send buffer.
1709 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1712 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1713 struct sk_buff *skb = alloc_skb(size, priority);
1715 skb_set_owner_w(skb, sk);
1721 EXPORT_SYMBOL(sock_wmalloc);
1724 * Allocate a memory block from the socket's option memory buffer.
1726 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1728 if ((unsigned int)size <= sysctl_optmem_max &&
1729 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1731 /* First do the add, to avoid the race if kmalloc
1734 atomic_add(size, &sk->sk_omem_alloc);
1735 mem = kmalloc(size, priority);
1738 atomic_sub(size, &sk->sk_omem_alloc);
1742 EXPORT_SYMBOL(sock_kmalloc);
1744 /* Free an option memory block. Note, we actually want the inline
1745 * here as this allows gcc to detect the nullify and fold away the
1746 * condition entirely.
1748 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1751 if (WARN_ON_ONCE(!mem))
1757 atomic_sub(size, &sk->sk_omem_alloc);
1760 void sock_kfree_s(struct sock *sk, void *mem, int size)
1762 __sock_kfree_s(sk, mem, size, false);
1764 EXPORT_SYMBOL(sock_kfree_s);
1766 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1768 __sock_kfree_s(sk, mem, size, true);
1770 EXPORT_SYMBOL(sock_kzfree_s);
1772 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1773 I think, these locks should be removed for datagram sockets.
1775 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1779 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1783 if (signal_pending(current))
1785 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1786 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1787 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1789 if (sk->sk_shutdown & SEND_SHUTDOWN)
1793 timeo = schedule_timeout(timeo);
1795 finish_wait(sk_sleep(sk), &wait);
1801 * Generic send/receive buffer handlers
1804 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1805 unsigned long data_len, int noblock,
1806 int *errcode, int max_page_order)
1808 struct sk_buff *skb;
1812 timeo = sock_sndtimeo(sk, noblock);
1814 err = sock_error(sk);
1819 if (sk->sk_shutdown & SEND_SHUTDOWN)
1822 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1825 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1826 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1830 if (signal_pending(current))
1832 timeo = sock_wait_for_wmem(sk, timeo);
1834 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1835 errcode, sk->sk_allocation);
1837 skb_set_owner_w(skb, sk);
1841 err = sock_intr_errno(timeo);
1846 EXPORT_SYMBOL(sock_alloc_send_pskb);
1848 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1849 int noblock, int *errcode)
1851 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1853 EXPORT_SYMBOL(sock_alloc_send_skb);
1855 /* On 32bit arches, an skb frag is limited to 2^15 */
1856 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1859 * skb_page_frag_refill - check that a page_frag contains enough room
1860 * @sz: minimum size of the fragment we want to get
1861 * @pfrag: pointer to page_frag
1862 * @gfp: priority for memory allocation
1864 * Note: While this allocator tries to use high order pages, there is
1865 * no guarantee that allocations succeed. Therefore, @sz MUST be
1866 * less or equal than PAGE_SIZE.
1868 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1871 if (atomic_read(&pfrag->page->_count) == 1) {
1875 if (pfrag->offset + sz <= pfrag->size)
1877 put_page(pfrag->page);
1881 if (SKB_FRAG_PAGE_ORDER) {
1882 pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP |
1883 __GFP_NOWARN | __GFP_NORETRY,
1884 SKB_FRAG_PAGE_ORDER);
1885 if (likely(pfrag->page)) {
1886 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1890 pfrag->page = alloc_page(gfp);
1891 if (likely(pfrag->page)) {
1892 pfrag->size = PAGE_SIZE;
1897 EXPORT_SYMBOL(skb_page_frag_refill);
1899 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1901 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1904 sk_enter_memory_pressure(sk);
1905 sk_stream_moderate_sndbuf(sk);
1908 EXPORT_SYMBOL(sk_page_frag_refill);
1910 static void __lock_sock(struct sock *sk)
1911 __releases(&sk->sk_lock.slock)
1912 __acquires(&sk->sk_lock.slock)
1917 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1918 TASK_UNINTERRUPTIBLE);
1919 spin_unlock_bh(&sk->sk_lock.slock);
1921 spin_lock_bh(&sk->sk_lock.slock);
1922 if (!sock_owned_by_user(sk))
1925 finish_wait(&sk->sk_lock.wq, &wait);
1928 static void __release_sock(struct sock *sk)
1929 __releases(&sk->sk_lock.slock)
1930 __acquires(&sk->sk_lock.slock)
1932 struct sk_buff *skb = sk->sk_backlog.head;
1935 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1939 struct sk_buff *next = skb->next;
1942 WARN_ON_ONCE(skb_dst_is_noref(skb));
1944 sk_backlog_rcv(sk, skb);
1947 * We are in process context here with softirqs
1948 * disabled, use cond_resched_softirq() to preempt.
1949 * This is safe to do because we've taken the backlog
1952 cond_resched_softirq();
1955 } while (skb != NULL);
1958 } while ((skb = sk->sk_backlog.head) != NULL);
1961 * Doing the zeroing here guarantee we can not loop forever
1962 * while a wild producer attempts to flood us.
1964 sk->sk_backlog.len = 0;
1968 * sk_wait_data - wait for data to arrive at sk_receive_queue
1969 * @sk: sock to wait on
1970 * @timeo: for how long
1971 * @skb: last skb seen on sk_receive_queue
1973 * Now socket state including sk->sk_err is changed only under lock,
1974 * hence we may omit checks after joining wait queue.
1975 * We check receive queue before schedule() only as optimization;
1976 * it is very likely that release_sock() added new data.
1978 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
1983 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1984 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1985 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
1986 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1987 finish_wait(sk_sleep(sk), &wait);
1990 EXPORT_SYMBOL(sk_wait_data);
1993 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1995 * @size: memory size to allocate
1996 * @kind: allocation type
1998 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1999 * rmem allocation. This function assumes that protocols which have
2000 * memory_pressure use sk_wmem_queued as write buffer accounting.
2002 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2004 struct proto *prot = sk->sk_prot;
2005 int amt = sk_mem_pages(size);
2007 int parent_status = UNDER_LIMIT;
2009 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2011 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2014 if (parent_status == UNDER_LIMIT &&
2015 allocated <= sk_prot_mem_limits(sk, 0)) {
2016 sk_leave_memory_pressure(sk);
2020 /* Under pressure. (we or our parents) */
2021 if ((parent_status > SOFT_LIMIT) ||
2022 allocated > sk_prot_mem_limits(sk, 1))
2023 sk_enter_memory_pressure(sk);
2025 /* Over hard limit (we or our parents) */
2026 if ((parent_status == OVER_LIMIT) ||
2027 (allocated > sk_prot_mem_limits(sk, 2)))
2028 goto suppress_allocation;
2030 /* guarantee minimum buffer size under pressure */
2031 if (kind == SK_MEM_RECV) {
2032 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2035 } else { /* SK_MEM_SEND */
2036 if (sk->sk_type == SOCK_STREAM) {
2037 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2039 } else if (atomic_read(&sk->sk_wmem_alloc) <
2040 prot->sysctl_wmem[0])
2044 if (sk_has_memory_pressure(sk)) {
2047 if (!sk_under_memory_pressure(sk))
2049 alloc = sk_sockets_allocated_read_positive(sk);
2050 if (sk_prot_mem_limits(sk, 2) > alloc *
2051 sk_mem_pages(sk->sk_wmem_queued +
2052 atomic_read(&sk->sk_rmem_alloc) +
2053 sk->sk_forward_alloc))
2057 suppress_allocation:
2059 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2060 sk_stream_moderate_sndbuf(sk);
2062 /* Fail only if socket is _under_ its sndbuf.
2063 * In this case we cannot block, so that we have to fail.
2065 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2069 trace_sock_exceed_buf_limit(sk, prot, allocated);
2071 /* Alas. Undo changes. */
2072 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2074 sk_memory_allocated_sub(sk, amt);
2078 EXPORT_SYMBOL(__sk_mem_schedule);
2081 * __sk_mem_reclaim - reclaim memory_allocated
2083 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2085 void __sk_mem_reclaim(struct sock *sk, int amount)
2087 amount >>= SK_MEM_QUANTUM_SHIFT;
2088 sk_memory_allocated_sub(sk, amount);
2089 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2091 if (sk_under_memory_pressure(sk) &&
2092 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2093 sk_leave_memory_pressure(sk);
2095 EXPORT_SYMBOL(__sk_mem_reclaim);
2099 * Set of default routines for initialising struct proto_ops when
2100 * the protocol does not support a particular function. In certain
2101 * cases where it makes no sense for a protocol to have a "do nothing"
2102 * function, some default processing is provided.
2105 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2109 EXPORT_SYMBOL(sock_no_bind);
2111 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2116 EXPORT_SYMBOL(sock_no_connect);
2118 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2122 EXPORT_SYMBOL(sock_no_socketpair);
2124 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2128 EXPORT_SYMBOL(sock_no_accept);
2130 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2135 EXPORT_SYMBOL(sock_no_getname);
2137 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2141 EXPORT_SYMBOL(sock_no_poll);
2143 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2147 EXPORT_SYMBOL(sock_no_ioctl);
2149 int sock_no_listen(struct socket *sock, int backlog)
2153 EXPORT_SYMBOL(sock_no_listen);
2155 int sock_no_shutdown(struct socket *sock, int how)
2159 EXPORT_SYMBOL(sock_no_shutdown);
2161 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2162 char __user *optval, unsigned int optlen)
2166 EXPORT_SYMBOL(sock_no_setsockopt);
2168 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2169 char __user *optval, int __user *optlen)
2173 EXPORT_SYMBOL(sock_no_getsockopt);
2175 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2179 EXPORT_SYMBOL(sock_no_sendmsg);
2181 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2186 EXPORT_SYMBOL(sock_no_recvmsg);
2188 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2190 /* Mirror missing mmap method error code */
2193 EXPORT_SYMBOL(sock_no_mmap);
2195 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2198 struct msghdr msg = {.msg_flags = flags};
2200 char *kaddr = kmap(page);
2201 iov.iov_base = kaddr + offset;
2203 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2207 EXPORT_SYMBOL(sock_no_sendpage);
2210 * Default Socket Callbacks
2213 static void sock_def_wakeup(struct sock *sk)
2215 struct socket_wq *wq;
2218 wq = rcu_dereference(sk->sk_wq);
2219 if (wq_has_sleeper(wq))
2220 wake_up_interruptible_all(&wq->wait);
2224 static void sock_def_error_report(struct sock *sk)
2226 struct socket_wq *wq;
2229 wq = rcu_dereference(sk->sk_wq);
2230 if (wq_has_sleeper(wq))
2231 wake_up_interruptible_poll(&wq->wait, POLLERR);
2232 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2236 static void sock_def_readable(struct sock *sk)
2238 struct socket_wq *wq;
2241 wq = rcu_dereference(sk->sk_wq);
2242 if (wq_has_sleeper(wq))
2243 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2244 POLLRDNORM | POLLRDBAND);
2245 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2249 static void sock_def_write_space(struct sock *sk)
2251 struct socket_wq *wq;
2255 /* Do not wake up a writer until he can make "significant"
2258 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2259 wq = rcu_dereference(sk->sk_wq);
2260 if (wq_has_sleeper(wq))
2261 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2262 POLLWRNORM | POLLWRBAND);
2264 /* Should agree with poll, otherwise some programs break */
2265 if (sock_writeable(sk))
2266 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2272 static void sock_def_destruct(struct sock *sk)
2276 void sk_send_sigurg(struct sock *sk)
2278 if (sk->sk_socket && sk->sk_socket->file)
2279 if (send_sigurg(&sk->sk_socket->file->f_owner))
2280 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2282 EXPORT_SYMBOL(sk_send_sigurg);
2284 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2285 unsigned long expires)
2287 if (!mod_timer(timer, expires))
2290 EXPORT_SYMBOL(sk_reset_timer);
2292 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2294 if (del_timer(timer))
2297 EXPORT_SYMBOL(sk_stop_timer);
2299 void sock_init_data(struct socket *sock, struct sock *sk)
2301 skb_queue_head_init(&sk->sk_receive_queue);
2302 skb_queue_head_init(&sk->sk_write_queue);
2303 skb_queue_head_init(&sk->sk_error_queue);
2305 sk->sk_send_head = NULL;
2307 init_timer(&sk->sk_timer);
2309 sk->sk_allocation = GFP_KERNEL;
2310 sk->sk_rcvbuf = sysctl_rmem_default;
2311 sk->sk_sndbuf = sysctl_wmem_default;
2312 sk->sk_state = TCP_CLOSE;
2313 sk_set_socket(sk, sock);
2315 sock_set_flag(sk, SOCK_ZAPPED);
2318 sk->sk_type = sock->type;
2319 sk->sk_wq = sock->wq;
2324 spin_lock_init(&sk->sk_dst_lock);
2325 rwlock_init(&sk->sk_callback_lock);
2326 lockdep_set_class_and_name(&sk->sk_callback_lock,
2327 af_callback_keys + sk->sk_family,
2328 af_family_clock_key_strings[sk->sk_family]);
2330 sk->sk_state_change = sock_def_wakeup;
2331 sk->sk_data_ready = sock_def_readable;
2332 sk->sk_write_space = sock_def_write_space;
2333 sk->sk_error_report = sock_def_error_report;
2334 sk->sk_destruct = sock_def_destruct;
2336 sk->sk_frag.page = NULL;
2337 sk->sk_frag.offset = 0;
2338 sk->sk_peek_off = -1;
2340 sk->sk_peer_pid = NULL;
2341 sk->sk_peer_cred = NULL;
2342 sk->sk_write_pending = 0;
2343 sk->sk_rcvlowat = 1;
2344 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2345 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2347 sk->sk_stamp = ktime_set(-1L, 0);
2349 #ifdef CONFIG_NET_RX_BUSY_POLL
2351 sk->sk_ll_usec = sysctl_net_busy_read;
2354 sk->sk_max_pacing_rate = ~0U;
2355 sk->sk_pacing_rate = ~0U;
2357 * Before updating sk_refcnt, we must commit prior changes to memory
2358 * (Documentation/RCU/rculist_nulls.txt for details)
2361 atomic_set(&sk->sk_refcnt, 1);
2362 atomic_set(&sk->sk_drops, 0);
2364 EXPORT_SYMBOL(sock_init_data);
2366 void lock_sock_nested(struct sock *sk, int subclass)
2369 spin_lock_bh(&sk->sk_lock.slock);
2370 if (sk->sk_lock.owned)
2372 sk->sk_lock.owned = 1;
2373 spin_unlock(&sk->sk_lock.slock);
2375 * The sk_lock has mutex_lock() semantics here:
2377 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2380 EXPORT_SYMBOL(lock_sock_nested);
2382 void release_sock(struct sock *sk)
2385 * The sk_lock has mutex_unlock() semantics:
2387 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2389 spin_lock_bh(&sk->sk_lock.slock);
2390 if (sk->sk_backlog.tail)
2393 /* Warning : release_cb() might need to release sk ownership,
2394 * ie call sock_release_ownership(sk) before us.
2396 if (sk->sk_prot->release_cb)
2397 sk->sk_prot->release_cb(sk);
2399 sock_release_ownership(sk);
2400 if (waitqueue_active(&sk->sk_lock.wq))
2401 wake_up(&sk->sk_lock.wq);
2402 spin_unlock_bh(&sk->sk_lock.slock);
2404 EXPORT_SYMBOL(release_sock);
2407 * lock_sock_fast - fast version of lock_sock
2410 * This version should be used for very small section, where process wont block
2411 * return false if fast path is taken
2412 * sk_lock.slock locked, owned = 0, BH disabled
2413 * return true if slow path is taken
2414 * sk_lock.slock unlocked, owned = 1, BH enabled
2416 bool lock_sock_fast(struct sock *sk)
2419 spin_lock_bh(&sk->sk_lock.slock);
2421 if (!sk->sk_lock.owned)
2423 * Note : We must disable BH
2428 sk->sk_lock.owned = 1;
2429 spin_unlock(&sk->sk_lock.slock);
2431 * The sk_lock has mutex_lock() semantics here:
2433 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2437 EXPORT_SYMBOL(lock_sock_fast);
2439 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2442 if (!sock_flag(sk, SOCK_TIMESTAMP))
2443 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2444 tv = ktime_to_timeval(sk->sk_stamp);
2445 if (tv.tv_sec == -1)
2447 if (tv.tv_sec == 0) {
2448 sk->sk_stamp = ktime_get_real();
2449 tv = ktime_to_timeval(sk->sk_stamp);
2451 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2453 EXPORT_SYMBOL(sock_get_timestamp);
2455 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2458 if (!sock_flag(sk, SOCK_TIMESTAMP))
2459 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460 ts = ktime_to_timespec(sk->sk_stamp);
2461 if (ts.tv_sec == -1)
2463 if (ts.tv_sec == 0) {
2464 sk->sk_stamp = ktime_get_real();
2465 ts = ktime_to_timespec(sk->sk_stamp);
2467 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2469 EXPORT_SYMBOL(sock_get_timestampns);
2471 void sock_enable_timestamp(struct sock *sk, int flag)
2473 if (!sock_flag(sk, flag)) {
2474 unsigned long previous_flags = sk->sk_flags;
2476 sock_set_flag(sk, flag);
2478 * we just set one of the two flags which require net
2479 * time stamping, but time stamping might have been on
2480 * already because of the other one
2482 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2483 net_enable_timestamp();
2487 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2488 int level, int type)
2490 struct sock_exterr_skb *serr;
2491 struct sk_buff *skb;
2495 skb = sock_dequeue_err_skb(sk);
2501 msg->msg_flags |= MSG_TRUNC;
2504 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2508 sock_recv_timestamp(msg, sk, skb);
2510 serr = SKB_EXT_ERR(skb);
2511 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2513 msg->msg_flags |= MSG_ERRQUEUE;
2521 EXPORT_SYMBOL(sock_recv_errqueue);
2524 * Get a socket option on an socket.
2526 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2527 * asynchronous errors should be reported by getsockopt. We assume
2528 * this means if you specify SO_ERROR (otherwise whats the point of it).
2530 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2531 char __user *optval, int __user *optlen)
2533 struct sock *sk = sock->sk;
2535 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2537 EXPORT_SYMBOL(sock_common_getsockopt);
2539 #ifdef CONFIG_COMPAT
2540 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2541 char __user *optval, int __user *optlen)
2543 struct sock *sk = sock->sk;
2545 if (sk->sk_prot->compat_getsockopt != NULL)
2546 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2548 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2550 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2553 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2556 struct sock *sk = sock->sk;
2560 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2561 flags & ~MSG_DONTWAIT, &addr_len);
2563 msg->msg_namelen = addr_len;
2566 EXPORT_SYMBOL(sock_common_recvmsg);
2569 * Set socket options on an inet socket.
2571 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2572 char __user *optval, unsigned int optlen)
2574 struct sock *sk = sock->sk;
2576 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2578 EXPORT_SYMBOL(sock_common_setsockopt);
2580 #ifdef CONFIG_COMPAT
2581 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2582 char __user *optval, unsigned int optlen)
2584 struct sock *sk = sock->sk;
2586 if (sk->sk_prot->compat_setsockopt != NULL)
2587 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2589 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2591 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2594 void sk_common_release(struct sock *sk)
2596 if (sk->sk_prot->destroy)
2597 sk->sk_prot->destroy(sk);
2600 * Observation: when sock_common_release is called, processes have
2601 * no access to socket. But net still has.
2602 * Step one, detach it from networking:
2604 * A. Remove from hash tables.
2607 sk->sk_prot->unhash(sk);
2610 * In this point socket cannot receive new packets, but it is possible
2611 * that some packets are in flight because some CPU runs receiver and
2612 * did hash table lookup before we unhashed socket. They will achieve
2613 * receive queue and will be purged by socket destructor.
2615 * Also we still have packets pending on receive queue and probably,
2616 * our own packets waiting in device queues. sock_destroy will drain
2617 * receive queue, but transmitted packets will delay socket destruction
2618 * until the last reference will be released.
2623 xfrm_sk_free_policy(sk);
2625 sk_refcnt_debug_release(sk);
2627 if (sk->sk_frag.page) {
2628 put_page(sk->sk_frag.page);
2629 sk->sk_frag.page = NULL;
2634 EXPORT_SYMBOL(sk_common_release);
2636 #ifdef CONFIG_PROC_FS
2637 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2639 int val[PROTO_INUSE_NR];
2642 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2644 #ifdef CONFIG_NET_NS
2645 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2647 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2649 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2651 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2653 int cpu, idx = prot->inuse_idx;
2656 for_each_possible_cpu(cpu)
2657 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2659 return res >= 0 ? res : 0;
2661 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2663 static int __net_init sock_inuse_init_net(struct net *net)
2665 net->core.inuse = alloc_percpu(struct prot_inuse);
2666 return net->core.inuse ? 0 : -ENOMEM;
2669 static void __net_exit sock_inuse_exit_net(struct net *net)
2671 free_percpu(net->core.inuse);
2674 static struct pernet_operations net_inuse_ops = {
2675 .init = sock_inuse_init_net,
2676 .exit = sock_inuse_exit_net,
2679 static __init int net_inuse_init(void)
2681 if (register_pernet_subsys(&net_inuse_ops))
2682 panic("Cannot initialize net inuse counters");
2687 core_initcall(net_inuse_init);
2689 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2691 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2693 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2695 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2697 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2699 int cpu, idx = prot->inuse_idx;
2702 for_each_possible_cpu(cpu)
2703 res += per_cpu(prot_inuse, cpu).val[idx];
2705 return res >= 0 ? res : 0;
2707 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2710 static void assign_proto_idx(struct proto *prot)
2712 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2714 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2715 pr_err("PROTO_INUSE_NR exhausted\n");
2719 set_bit(prot->inuse_idx, proto_inuse_idx);
2722 static void release_proto_idx(struct proto *prot)
2724 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2725 clear_bit(prot->inuse_idx, proto_inuse_idx);
2728 static inline void assign_proto_idx(struct proto *prot)
2732 static inline void release_proto_idx(struct proto *prot)
2737 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2741 kfree(rsk_prot->slab_name);
2742 rsk_prot->slab_name = NULL;
2743 kmem_cache_destroy(rsk_prot->slab);
2744 rsk_prot->slab = NULL;
2747 static int req_prot_init(const struct proto *prot)
2749 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2754 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2756 if (!rsk_prot->slab_name)
2759 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2760 rsk_prot->obj_size, 0,
2763 if (!rsk_prot->slab) {
2764 pr_crit("%s: Can't create request sock SLAB cache!\n",
2771 int proto_register(struct proto *prot, int alloc_slab)
2774 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2775 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2778 if (prot->slab == NULL) {
2779 pr_crit("%s: Can't create sock SLAB cache!\n",
2784 if (req_prot_init(prot))
2785 goto out_free_request_sock_slab;
2787 if (prot->twsk_prot != NULL) {
2788 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2790 if (prot->twsk_prot->twsk_slab_name == NULL)
2791 goto out_free_request_sock_slab;
2793 prot->twsk_prot->twsk_slab =
2794 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2795 prot->twsk_prot->twsk_obj_size,
2799 if (prot->twsk_prot->twsk_slab == NULL)
2800 goto out_free_timewait_sock_slab_name;
2804 mutex_lock(&proto_list_mutex);
2805 list_add(&prot->node, &proto_list);
2806 assign_proto_idx(prot);
2807 mutex_unlock(&proto_list_mutex);
2810 out_free_timewait_sock_slab_name:
2811 kfree(prot->twsk_prot->twsk_slab_name);
2812 out_free_request_sock_slab:
2813 req_prot_cleanup(prot->rsk_prot);
2815 kmem_cache_destroy(prot->slab);
2820 EXPORT_SYMBOL(proto_register);
2822 void proto_unregister(struct proto *prot)
2824 mutex_lock(&proto_list_mutex);
2825 release_proto_idx(prot);
2826 list_del(&prot->node);
2827 mutex_unlock(&proto_list_mutex);
2829 kmem_cache_destroy(prot->slab);
2832 req_prot_cleanup(prot->rsk_prot);
2834 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2835 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2836 kfree(prot->twsk_prot->twsk_slab_name);
2837 prot->twsk_prot->twsk_slab = NULL;
2840 EXPORT_SYMBOL(proto_unregister);
2842 #ifdef CONFIG_PROC_FS
2843 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2844 __acquires(proto_list_mutex)
2846 mutex_lock(&proto_list_mutex);
2847 return seq_list_start_head(&proto_list, *pos);
2850 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2852 return seq_list_next(v, &proto_list, pos);
2855 static void proto_seq_stop(struct seq_file *seq, void *v)
2856 __releases(proto_list_mutex)
2858 mutex_unlock(&proto_list_mutex);
2861 static char proto_method_implemented(const void *method)
2863 return method == NULL ? 'n' : 'y';
2865 static long sock_prot_memory_allocated(struct proto *proto)
2867 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2870 static char *sock_prot_memory_pressure(struct proto *proto)
2872 return proto->memory_pressure != NULL ?
2873 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2876 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2879 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2880 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2883 sock_prot_inuse_get(seq_file_net(seq), proto),
2884 sock_prot_memory_allocated(proto),
2885 sock_prot_memory_pressure(proto),
2887 proto->slab == NULL ? "no" : "yes",
2888 module_name(proto->owner),
2889 proto_method_implemented(proto->close),
2890 proto_method_implemented(proto->connect),
2891 proto_method_implemented(proto->disconnect),
2892 proto_method_implemented(proto->accept),
2893 proto_method_implemented(proto->ioctl),
2894 proto_method_implemented(proto->init),
2895 proto_method_implemented(proto->destroy),
2896 proto_method_implemented(proto->shutdown),
2897 proto_method_implemented(proto->setsockopt),
2898 proto_method_implemented(proto->getsockopt),
2899 proto_method_implemented(proto->sendmsg),
2900 proto_method_implemented(proto->recvmsg),
2901 proto_method_implemented(proto->sendpage),
2902 proto_method_implemented(proto->bind),
2903 proto_method_implemented(proto->backlog_rcv),
2904 proto_method_implemented(proto->hash),
2905 proto_method_implemented(proto->unhash),
2906 proto_method_implemented(proto->get_port),
2907 proto_method_implemented(proto->enter_memory_pressure));
2910 static int proto_seq_show(struct seq_file *seq, void *v)
2912 if (v == &proto_list)
2913 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2922 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2924 proto_seq_printf(seq, list_entry(v, struct proto, node));
2928 static const struct seq_operations proto_seq_ops = {
2929 .start = proto_seq_start,
2930 .next = proto_seq_next,
2931 .stop = proto_seq_stop,
2932 .show = proto_seq_show,
2935 static int proto_seq_open(struct inode *inode, struct file *file)
2937 return seq_open_net(inode, file, &proto_seq_ops,
2938 sizeof(struct seq_net_private));
2941 static const struct file_operations proto_seq_fops = {
2942 .owner = THIS_MODULE,
2943 .open = proto_seq_open,
2945 .llseek = seq_lseek,
2946 .release = seq_release_net,
2949 static __net_init int proto_init_net(struct net *net)
2951 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2957 static __net_exit void proto_exit_net(struct net *net)
2959 remove_proc_entry("protocols", net->proc_net);
2963 static __net_initdata struct pernet_operations proto_net_ops = {
2964 .init = proto_init_net,
2965 .exit = proto_exit_net,
2968 static int __init proto_init(void)
2970 return register_pernet_subsys(&proto_net_ops);
2973 subsys_initcall(proto_init);
2975 #endif /* PROC_FS */