1 // SPDX-License-Identifier: GPL-2.0
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-ecam.h>
15 #include <linux/srcu.h>
16 #include <linux/rculist.h>
17 #include <linux/rcupdate.h>
19 #include <asm/irqdomain.h>
20 #include <asm/device.h>
22 #include <asm/msidef.h>
28 #define PCI_REG_VMCAP 0x40
29 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
30 #define PCI_REG_VMCONFIG 0x44
31 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
32 #define PCI_REG_VMLOCK 0x70
33 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
35 #define MB2_SHADOW_OFFSET 0x2000
36 #define MB2_SHADOW_SIZE 16
40 * Device may contain registers which hint the physical location of the
41 * membars, in order to allow proper address translation during
42 * resource assignment to enable guest virtualization
44 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
47 * Device may provide root port configuration information which limits
50 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
53 * Device contains physical location shadow registers in
54 * vendor-specific capability space
56 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
59 * Device may use MSI-X vector 0 for software triggering and will not
60 * be used for MSI remapping
62 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
66 * Lock for manipulating VMD IRQ lists.
68 static DEFINE_RAW_SPINLOCK(list_lock);
71 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
72 * @node: list item for parent traversal.
73 * @irq: back pointer to parent.
74 * @enabled: true if driver enabled IRQ
75 * @virq: the virtual IRQ value provided to the requesting driver.
77 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
78 * a VMD IRQ using this structure.
81 struct list_head node;
82 struct vmd_irq_list *irq;
88 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
89 * @irq_list: the list of irq's the VMD one demuxes to.
90 * @srcu: SRCU struct for local synchronization.
91 * @count: number of child IRQs assigned to this vector; used to track
95 struct list_head irq_list;
96 struct srcu_struct srcu;
104 void __iomem *cfgbar;
107 struct vmd_irq_list *irqs;
109 struct pci_sysdata sysdata;
110 struct resource resources[3];
111 struct irq_domain *irq_domain;
117 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
119 return container_of(bus->sysdata, struct vmd_dev, sysdata);
122 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
123 struct vmd_irq_list *irqs)
125 return irqs - vmd->irqs;
129 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
130 * but the MSI entry for the hardware it's driving will be programmed with a
131 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
132 * domain into one of its own, and the VMD driver de-muxes these for the
133 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
134 * and irq_chip to set this up.
136 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
138 struct vmd_irq *vmdirq = data->chip_data;
139 struct vmd_irq_list *irq = vmdirq->irq;
140 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
142 msg->address_hi = MSI_ADDR_BASE_HI;
143 msg->address_lo = MSI_ADDR_BASE_LO |
144 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
149 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
151 static void vmd_irq_enable(struct irq_data *data)
153 struct vmd_irq *vmdirq = data->chip_data;
156 raw_spin_lock_irqsave(&list_lock, flags);
157 WARN_ON(vmdirq->enabled);
158 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
159 vmdirq->enabled = true;
160 raw_spin_unlock_irqrestore(&list_lock, flags);
162 data->chip->irq_unmask(data);
165 static void vmd_irq_disable(struct irq_data *data)
167 struct vmd_irq *vmdirq = data->chip_data;
170 data->chip->irq_mask(data);
172 raw_spin_lock_irqsave(&list_lock, flags);
173 if (vmdirq->enabled) {
174 list_del_rcu(&vmdirq->node);
175 vmdirq->enabled = false;
177 raw_spin_unlock_irqrestore(&list_lock, flags);
181 * XXX: Stubbed until we develop acceptable way to not create conflicts with
182 * other devices sharing the same vector.
184 static int vmd_irq_set_affinity(struct irq_data *data,
185 const struct cpumask *dest, bool force)
190 static struct irq_chip vmd_msi_controller = {
192 .irq_enable = vmd_irq_enable,
193 .irq_disable = vmd_irq_disable,
194 .irq_compose_msi_msg = vmd_compose_msi_msg,
195 .irq_set_affinity = vmd_irq_set_affinity,
198 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
199 msi_alloc_info_t *arg)
205 * XXX: We can be even smarter selecting the best IRQ once we solve the
208 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
213 if (vmd->msix_count == 1 + vmd->first_vec)
214 return &vmd->irqs[vmd->first_vec];
217 * White list for fast-interrupt handlers. All others will share the
218 * "slow" interrupt vector.
220 switch (msi_desc_to_pci_dev(desc)->class) {
221 case PCI_CLASS_STORAGE_EXPRESS:
224 return &vmd->irqs[vmd->first_vec];
227 raw_spin_lock_irqsave(&list_lock, flags);
228 best = vmd->first_vec + 1;
229 for (i = best; i < vmd->msix_count; i++)
230 if (vmd->irqs[i].count < vmd->irqs[best].count)
232 vmd->irqs[best].count++;
233 raw_spin_unlock_irqrestore(&list_lock, flags);
235 return &vmd->irqs[best];
238 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
239 unsigned int virq, irq_hw_number_t hwirq,
240 msi_alloc_info_t *arg)
242 struct msi_desc *desc = arg->desc;
243 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
244 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
245 unsigned int index, vector;
250 INIT_LIST_HEAD(&vmdirq->node);
251 vmdirq->irq = vmd_next_irq(vmd, desc);
253 index = index_from_irqs(vmd, vmdirq->irq);
254 vector = pci_irq_vector(vmd->dev, index);
256 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
257 handle_untracked_irq, vmd, NULL);
261 static void vmd_msi_free(struct irq_domain *domain,
262 struct msi_domain_info *info, unsigned int virq)
264 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
267 synchronize_srcu(&vmdirq->irq->srcu);
269 /* XXX: Potential optimization to rebalance */
270 raw_spin_lock_irqsave(&list_lock, flags);
271 vmdirq->irq->count--;
272 raw_spin_unlock_irqrestore(&list_lock, flags);
277 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
278 int nvec, msi_alloc_info_t *arg)
280 struct pci_dev *pdev = to_pci_dev(dev);
281 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
283 if (nvec > vmd->msix_count)
284 return vmd->msix_count;
286 memset(arg, 0, sizeof(*arg));
290 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
295 static struct msi_domain_ops vmd_msi_domain_ops = {
296 .get_hwirq = vmd_get_hwirq,
297 .msi_init = vmd_msi_init,
298 .msi_free = vmd_msi_free,
299 .msi_prepare = vmd_msi_prepare,
300 .set_desc = vmd_set_desc,
303 static struct msi_domain_info vmd_msi_domain_info = {
304 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
306 .ops = &vmd_msi_domain_ops,
307 .chip = &vmd_msi_controller,
310 static int vmd_create_irq_domain(struct vmd_dev *vmd)
312 struct fwnode_handle *fn;
314 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
318 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
319 if (!vmd->irq_domain) {
320 irq_domain_free_fwnode(fn);
327 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
329 if (vmd->irq_domain) {
330 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
332 irq_domain_remove(vmd->irq_domain);
333 irq_domain_free_fwnode(fn);
337 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
338 unsigned int devfn, int reg, int len)
340 unsigned int busnr_ecam = bus->number - vmd->busn_start;
341 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
343 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
346 return vmd->cfgbar + offset;
350 * CPU may deadlock if config space is not serialized on some versions of this
351 * hardware, so all config space access is done under a spinlock.
353 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
356 struct vmd_dev *vmd = vmd_from_bus(bus);
357 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
364 spin_lock_irqsave(&vmd->cfg_lock, flags);
367 *value = readb(addr);
370 *value = readw(addr);
373 *value = readl(addr);
379 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
384 * VMD h/w converts non-posted config writes to posted memory writes. The
385 * read-back in this function forces the completion so it returns only after
386 * the config space was written, as expected.
388 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
391 struct vmd_dev *vmd = vmd_from_bus(bus);
392 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
399 spin_lock_irqsave(&vmd->cfg_lock, flags);
417 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
421 static struct pci_ops vmd_ops = {
422 .read = vmd_pci_read,
423 .write = vmd_pci_write,
426 static void vmd_attach_resources(struct vmd_dev *vmd)
428 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
429 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
432 static void vmd_detach_resources(struct vmd_dev *vmd)
434 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
435 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
439 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
440 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
441 * 16 bits are the PCI Segment Group (domain) number. Other bits are
442 * currently reserved.
444 static int vmd_find_free_domain(void)
447 struct pci_bus *bus = NULL;
449 while ((bus = pci_find_next_bus(bus)) != NULL)
450 domain = max_t(int, domain, pci_domain_nr(bus));
454 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
455 resource_size_t *offset1,
456 resource_size_t *offset2)
458 struct pci_dev *dev = vmd->dev;
465 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
466 if (ret || vmlock == ~0)
469 if (MB2_SHADOW_EN(vmlock)) {
470 void __iomem *membar2;
472 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
475 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
476 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
477 pci_iounmap(dev, membar2);
481 /* Hypervisor-Emulated Vendor-Specific Capability */
482 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
485 pci_read_config_dword(dev, pos + 4, ®);
488 if (pos && reg == 0x53484457) {
489 pci_read_config_dword(dev, pos + 8, ®);
490 pci_read_config_dword(dev, pos + 12, ®u);
491 phys1 = (u64) regu << 32 | reg;
493 pci_read_config_dword(dev, pos + 16, ®);
494 pci_read_config_dword(dev, pos + 20, ®u);
495 phys2 = (u64) regu << 32 | reg;
500 *offset1 = dev->resource[VMD_MEMBAR1].start -
501 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
502 *offset2 = dev->resource[VMD_MEMBAR2].start -
503 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
508 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
510 struct pci_dev *dev = vmd->dev;
513 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
514 if (BUS_RESTRICT_CAP(reg)) {
515 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
517 switch (BUS_RESTRICT_CFG(reg)) {
522 vmd->busn_start = 128;
525 vmd->busn_start = 224;
528 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
529 BUS_RESTRICT_CFG(reg));
537 static irqreturn_t vmd_irq(int irq, void *data)
539 struct vmd_irq_list *irqs = data;
540 struct vmd_irq *vmdirq;
543 idx = srcu_read_lock(&irqs->srcu);
544 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
545 generic_handle_irq(vmdirq->virq);
546 srcu_read_unlock(&irqs->srcu, idx);
551 static int vmd_alloc_irqs(struct vmd_dev *vmd)
553 struct pci_dev *dev = vmd->dev;
556 vmd->msix_count = pci_msix_vec_count(dev);
557 if (vmd->msix_count < 0)
560 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
561 vmd->msix_count, PCI_IRQ_MSIX);
562 if (vmd->msix_count < 0)
563 return vmd->msix_count;
565 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
570 for (i = 0; i < vmd->msix_count; i++) {
571 err = init_srcu_struct(&vmd->irqs[i].srcu);
575 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
576 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
577 vmd_irq, IRQF_NO_THREAD,
578 "vmd", &vmd->irqs[i]);
586 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
588 struct pci_sysdata *sd = &vmd->sysdata;
589 struct resource *res;
592 LIST_HEAD(resources);
593 resource_size_t offset[2] = {0};
594 resource_size_t membar2_offset = 0x2000;
595 struct pci_bus *child;
599 * Shadow registers may exist in certain VMD device ids which allow
600 * guests to correctly assign host physical addresses to the root ports
601 * and child devices. These registers will either return the host value
602 * or 0, depending on an enable bit in the VMD device.
604 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
605 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
606 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
609 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
610 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
616 * Certain VMD devices may have a root port configuration option which
617 * limits the bus range to between 0-127, 128-255, or 224-255
619 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
620 ret = vmd_get_bus_number_start(vmd);
625 res = &vmd->dev->resource[VMD_CFGBAR];
626 vmd->resources[0] = (struct resource) {
627 .name = "VMD CFGBAR",
628 .start = vmd->busn_start,
629 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
630 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
634 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
635 * put 32-bit resources in the window.
637 * There's no hardware reason why a 64-bit window *couldn't*
638 * contain a 32-bit resource, but pbus_size_mem() computes the
639 * bridge window size assuming a 64-bit window will contain no
640 * 32-bit resources. __pci_assign_resource() enforces that
641 * artificial restriction to make sure everything will fit.
643 * The only way we could use a 64-bit non-prefetchable MEMBAR is
644 * if its address is <4GB so that we can convert it to a 32-bit
645 * resource. To be visible to the host OS, all VMD endpoints must
646 * be initially configured by platform BIOS, which includes setting
647 * up these resources. We can assume the device is configured
648 * according to the platform needs.
650 res = &vmd->dev->resource[VMD_MEMBAR1];
651 upper_bits = upper_32_bits(res->end);
652 flags = res->flags & ~IORESOURCE_SIZEALIGN;
654 flags &= ~IORESOURCE_MEM_64;
655 vmd->resources[1] = (struct resource) {
656 .name = "VMD MEMBAR1",
663 res = &vmd->dev->resource[VMD_MEMBAR2];
664 upper_bits = upper_32_bits(res->end);
665 flags = res->flags & ~IORESOURCE_SIZEALIGN;
667 flags &= ~IORESOURCE_MEM_64;
668 vmd->resources[2] = (struct resource) {
669 .name = "VMD MEMBAR2",
670 .start = res->start + membar2_offset,
676 sd->vmd_dev = vmd->dev;
677 sd->domain = vmd_find_free_domain();
681 sd->node = pcibus_to_node(vmd->dev->bus);
683 ret = vmd_create_irq_domain(vmd);
688 * Override the irq domain bus token so the domain can be distinguished
689 * from a regular PCI/MSI domain.
691 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
693 pci_add_resource(&resources, &vmd->resources[0]);
694 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
695 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
697 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
698 &vmd_ops, sd, &resources);
700 pci_free_resource_list(&resources);
701 vmd_remove_irq_domain(vmd);
705 vmd_attach_resources(vmd);
707 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
709 pci_scan_child_bus(vmd->bus);
710 pci_assign_unassigned_bus_resources(vmd->bus);
713 * VMD root buses are virtual and don't return true on pci_is_pcie()
714 * and will fail pcie_bus_configure_settings() early. It can instead be
715 * run on each of the real root ports.
717 list_for_each_entry(child, &vmd->bus->children, node)
718 pcie_bus_configure_settings(child);
720 pci_bus_add_devices(vmd->bus);
722 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
723 "domain"), "Can't create symlink to domain\n");
727 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
729 unsigned long features = (unsigned long) id->driver_data;
733 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
736 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
741 err = pcim_enable_device(dev);
745 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
750 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
751 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
754 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
757 err = vmd_alloc_irqs(vmd);
761 spin_lock_init(&vmd->cfg_lock);
762 pci_set_drvdata(dev, vmd);
763 err = vmd_enable_domain(vmd, features);
767 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
768 vmd->sysdata.domain);
772 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
776 for (i = 0; i < vmd->msix_count; i++)
777 cleanup_srcu_struct(&vmd->irqs[i].srcu);
780 static void vmd_remove(struct pci_dev *dev)
782 struct vmd_dev *vmd = pci_get_drvdata(dev);
784 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
785 pci_stop_root_bus(vmd->bus);
786 pci_remove_root_bus(vmd->bus);
787 vmd_cleanup_srcu(vmd);
788 vmd_detach_resources(vmd);
789 vmd_remove_irq_domain(vmd);
792 #ifdef CONFIG_PM_SLEEP
793 static int vmd_suspend(struct device *dev)
795 struct pci_dev *pdev = to_pci_dev(dev);
796 struct vmd_dev *vmd = pci_get_drvdata(pdev);
799 for (i = 0; i < vmd->msix_count; i++)
800 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
805 static int vmd_resume(struct device *dev)
807 struct pci_dev *pdev = to_pci_dev(dev);
808 struct vmd_dev *vmd = pci_get_drvdata(pdev);
811 for (i = 0; i < vmd->msix_count; i++) {
812 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
813 vmd_irq, IRQF_NO_THREAD,
814 "vmd", &vmd->irqs[i]);
822 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
824 static const struct pci_device_id vmd_ids[] = {
825 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
826 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
827 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
828 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
829 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
830 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
831 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
832 VMD_FEAT_HAS_BUS_RESTRICTIONS |
833 VMD_FEAT_OFFSET_FIRST_VECTOR,},
834 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
835 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
836 VMD_FEAT_HAS_BUS_RESTRICTIONS |
837 VMD_FEAT_OFFSET_FIRST_VECTOR,},
838 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
839 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
840 VMD_FEAT_HAS_BUS_RESTRICTIONS |
841 VMD_FEAT_OFFSET_FIRST_VECTOR,},
844 MODULE_DEVICE_TABLE(pci, vmd_ids);
846 static struct pci_driver vmd_drv = {
850 .remove = vmd_remove,
852 .pm = &vmd_dev_pm_ops,
855 module_pci_driver(vmd_drv);
857 MODULE_AUTHOR("Intel Corporation");
858 MODULE_LICENSE("GPL v2");
859 MODULE_VERSION("0.6");