4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
27 #include "writeback.h"
29 static void sort_key_next(struct btree_iter *iter,
30 struct btree_iter_set *i)
32 i->k = bkey_next(i->k);
35 *i = iter->data[--iter->used];
38 static bool bch_key_sort_cmp(struct btree_iter_set l,
39 struct btree_iter_set r)
41 int64_t c = bkey_cmp(l.k, r.k);
43 return c ? c > 0 : l.k < r.k;
46 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
50 for (i = 0; i < KEY_PTRS(k); i++)
51 if (ptr_available(c, k, i)) {
52 struct cache *ca = PTR_CACHE(c, k, i);
53 size_t bucket = PTR_BUCKET_NR(c, k, i);
54 size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
56 if (KEY_SIZE(k) + r > c->sb.bucket_size ||
57 bucket < ca->sb.first_bucket ||
58 bucket >= ca->sb.nbuckets)
65 /* Common among btree and extent ptrs */
67 static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
71 for (i = 0; i < KEY_PTRS(k); i++)
72 if (ptr_available(c, k, i)) {
73 struct cache *ca = PTR_CACHE(c, k, i);
74 size_t bucket = PTR_BUCKET_NR(c, k, i);
75 size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
77 if (KEY_SIZE(k) + r > c->sb.bucket_size)
78 return "bad, length too big";
79 if (bucket < ca->sb.first_bucket)
80 return "bad, short offset";
81 if (bucket >= ca->sb.nbuckets)
82 return "bad, offset past end of device";
83 if (ptr_stale(c, k, i))
87 if (!bkey_cmp(k, &ZERO_KEY))
88 return "bad, null key";
90 return "bad, no pointers";
96 void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
99 char *out = buf, *end = buf + size;
101 #define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
103 p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
105 for (i = 0; i < KEY_PTRS(k); i++) {
109 if (PTR_DEV(k, i) == PTR_CHECK_DEV)
112 p("%llu:%llu gen %llu", PTR_DEV(k, i),
113 PTR_OFFSET(k, i), PTR_GEN(k, i));
121 p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
125 static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
127 struct btree *b = container_of(keys, struct btree, keys);
131 bch_extent_to_text(buf, sizeof(buf), k);
134 for (j = 0; j < KEY_PTRS(k); j++) {
135 size_t n = PTR_BUCKET_NR(b->c, k, j);
136 printk(" bucket %zu", n);
138 if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
140 PTR_BUCKET(b->c, k, j)->prio);
143 printk(" %s\n", bch_ptr_status(b->c, k));
148 bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
152 if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
155 if (__ptr_invalid(c, k))
160 bch_extent_to_text(buf, sizeof(buf), k);
161 cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
165 static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
167 struct btree *b = container_of(bk, struct btree, keys);
168 return __bch_btree_ptr_invalid(b->c, k);
171 static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
177 if (mutex_trylock(&b->c->bucket_lock)) {
178 for (i = 0; i < KEY_PTRS(k); i++)
179 if (ptr_available(b->c, k, i)) {
180 g = PTR_BUCKET(b->c, k, i);
183 g->prio != BTREE_PRIO ||
184 (b->c->gc_mark_valid &&
185 GC_MARK(g) != GC_MARK_METADATA))
189 mutex_unlock(&b->c->bucket_lock);
194 mutex_unlock(&b->c->bucket_lock);
195 bch_extent_to_text(buf, sizeof(buf), k);
197 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
198 buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
199 g->prio, g->gen, g->last_gc, GC_MARK(g));
203 static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
205 struct btree *b = container_of(bk, struct btree, keys);
208 if (!bkey_cmp(k, &ZERO_KEY) ||
210 bch_ptr_invalid(bk, k))
213 for (i = 0; i < KEY_PTRS(k); i++)
214 if (!ptr_available(b->c, k, i) ||
215 ptr_stale(b->c, k, i))
218 if (expensive_debug_checks(b->c) &&
219 btree_ptr_bad_expensive(b, k))
225 static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
227 struct btree_iter *iter,
228 struct bkey *replace_key)
230 struct btree *b = container_of(bk, struct btree, keys);
232 if (!KEY_OFFSET(insert))
233 btree_current_write(b)->prio_blocked++;
238 const struct btree_keys_ops bch_btree_keys_ops = {
239 .sort_cmp = bch_key_sort_cmp,
240 .insert_fixup = bch_btree_ptr_insert_fixup,
241 .key_invalid = bch_btree_ptr_invalid,
242 .key_bad = bch_btree_ptr_bad,
243 .key_to_text = bch_extent_to_text,
244 .key_dump = bch_bkey_dump,
250 * Returns true if l > r - unless l == r, in which case returns true if l is
253 * Necessary for btree_sort_fixup() - if there are multiple keys that compare
254 * equal in different sets, we have to process them newest to oldest.
256 static bool bch_extent_sort_cmp(struct btree_iter_set l,
257 struct btree_iter_set r)
259 int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
261 return c ? c > 0 : l.k < r.k;
264 static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
267 while (iter->used > 1) {
268 struct btree_iter_set *top = iter->data, *i = top + 1;
270 if (iter->used > 2 &&
271 bch_extent_sort_cmp(i[0], i[1]))
274 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
277 if (!KEY_SIZE(i->k)) {
278 sort_key_next(iter, i);
279 heap_sift(iter, i - top, bch_extent_sort_cmp);
284 if (bkey_cmp(top->k, i->k) >= 0)
285 sort_key_next(iter, i);
287 bch_cut_front(top->k, i->k);
289 heap_sift(iter, i - top, bch_extent_sort_cmp);
291 /* can't happen because of comparison func */
292 BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
294 if (bkey_cmp(i->k, top->k) < 0) {
295 bkey_copy(tmp, top->k);
297 bch_cut_back(&START_KEY(i->k), tmp);
298 bch_cut_front(i->k, top->k);
299 heap_sift(iter, 0, bch_extent_sort_cmp);
303 bch_cut_back(&START_KEY(i->k), top->k);
311 static void bch_subtract_dirty(struct bkey *k,
317 bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
321 static bool bch_extent_insert_fixup(struct btree_keys *b,
323 struct btree_iter *iter,
324 struct bkey *replace_key)
326 struct cache_set *c = container_of(b, struct btree, keys)->c;
329 unsigned old_size, sectors_found = 0;
331 BUG_ON(!KEY_OFFSET(insert));
332 BUG_ON(!KEY_SIZE(insert));
335 struct bkey *k = bch_btree_iter_next(iter);
339 if (bkey_cmp(&START_KEY(k), insert) >= 0) {
346 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
349 old_offset = KEY_START(k);
350 old_size = KEY_SIZE(k);
353 * We might overlap with 0 size extents; we can't skip these
354 * because if they're in the set we're inserting to we have to
355 * adjust them so they don't overlap with the key we're
356 * inserting. But we don't want to check them for replace
360 if (replace_key && KEY_SIZE(k)) {
362 * k might have been split since we inserted/found the
363 * key we're replacing
366 uint64_t offset = KEY_START(k) -
367 KEY_START(replace_key);
369 /* But it must be a subset of the replace key */
370 if (KEY_START(k) < KEY_START(replace_key) ||
371 KEY_OFFSET(k) > KEY_OFFSET(replace_key))
374 /* We didn't find a key that we were supposed to */
375 if (KEY_START(k) > KEY_START(insert) + sectors_found)
378 if (!bch_bkey_equal_header(k, replace_key))
384 BUG_ON(!KEY_PTRS(replace_key));
386 for (i = 0; i < KEY_PTRS(replace_key); i++)
387 if (k->ptr[i] != replace_key->ptr[i] + offset)
390 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
393 if (bkey_cmp(insert, k) < 0 &&
394 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
396 * We overlapped in the middle of an existing key: that
397 * means we have to split the old key. But we have to do
398 * slightly different things depending on whether the
399 * old key has been written out yet.
404 bch_subtract_dirty(k, c, KEY_START(insert),
407 if (bkey_written(b, k)) {
409 * We insert a new key to cover the top of the
410 * old key, and the old key is modified in place
411 * to represent the bottom split.
413 * It's completely arbitrary whether the new key
414 * is the top or the bottom, but it has to match
415 * up with what btree_sort_fixup() does - it
416 * doesn't check for this kind of overlap, it
417 * depends on us inserting a new key for the top
420 top = bch_bset_search(b, bset_tree_last(b),
422 bch_bset_insert(b, top, k);
424 BKEY_PADDED(key) temp;
425 bkey_copy(&temp.key, k);
426 bch_bset_insert(b, k, &temp.key);
430 bch_cut_front(insert, top);
431 bch_cut_back(&START_KEY(insert), k);
432 bch_bset_fix_invalidated_key(b, k);
436 if (bkey_cmp(insert, k) < 0) {
437 bch_cut_front(insert, k);
439 if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
440 old_offset = KEY_START(insert);
442 if (bkey_written(b, k) &&
443 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
445 * Completely overwrote, so we don't have to
446 * invalidate the binary search tree
450 __bch_cut_back(&START_KEY(insert), k);
451 bch_bset_fix_invalidated_key(b, k);
455 bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
460 if (!sectors_found) {
462 } else if (sectors_found < KEY_SIZE(insert)) {
463 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
464 (KEY_SIZE(insert) - sectors_found));
465 SET_KEY_SIZE(insert, sectors_found);
469 if (KEY_DIRTY(insert))
470 bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
477 bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
484 if (KEY_SIZE(k) > KEY_OFFSET(k))
487 if (__ptr_invalid(c, k))
492 bch_extent_to_text(buf, sizeof(buf), k);
493 cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
497 static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
499 struct btree *b = container_of(bk, struct btree, keys);
500 return __bch_extent_invalid(b->c, k);
503 static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
506 struct bucket *g = PTR_BUCKET(b->c, k, ptr);
509 if (mutex_trylock(&b->c->bucket_lock)) {
510 if (b->c->gc_mark_valid &&
512 GC_MARK(g) == GC_MARK_METADATA ||
513 (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
516 if (g->prio == BTREE_PRIO)
519 mutex_unlock(&b->c->bucket_lock);
524 mutex_unlock(&b->c->bucket_lock);
525 bch_extent_to_text(buf, sizeof(buf), k);
527 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
528 buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
529 g->prio, g->gen, g->last_gc, GC_MARK(g));
533 static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
535 struct btree *b = container_of(bk, struct btree, keys);
540 bch_extent_invalid(bk, k))
543 for (i = 0; i < KEY_PTRS(k); i++)
544 if (!ptr_available(b->c, k, i))
547 if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
550 for (i = 0; i < KEY_PTRS(k); i++) {
551 g = PTR_BUCKET(b->c, k, i);
552 stale = ptr_stale(b->c, k, i);
554 btree_bug_on(stale > 96, b,
555 "key too stale: %i, need_gc %u",
556 stale, b->c->need_gc);
558 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
559 b, "stale dirty pointer");
564 if (expensive_debug_checks(b->c) &&
565 bch_extent_bad_expensive(b, k, i))
572 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
574 return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
575 ~((uint64_t)1 << 63);
578 static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
580 struct btree *b = container_of(bk, struct btree, keys);
583 if (key_merging_disabled(b->c))
586 for (i = 0; i < KEY_PTRS(l); i++)
587 if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
588 PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
591 /* Keys with no pointers aren't restricted to one bucket and could
594 if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
595 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
596 SET_KEY_SIZE(l, USHRT_MAX);
604 l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
609 SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
610 SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
615 const struct btree_keys_ops bch_extent_keys_ops = {
616 .sort_cmp = bch_extent_sort_cmp,
617 .sort_fixup = bch_extent_sort_fixup,
618 .insert_fixup = bch_extent_insert_fixup,
619 .key_invalid = bch_extent_invalid,
620 .key_bad = bch_extent_bad,
621 .key_merge = bch_extent_merge,
622 .key_to_text = bch_extent_to_text,
623 .key_dump = bch_bkey_dump,