1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
184 static void e1000_shutdown(struct pci_dev *pdev);
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
202 static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
208 static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
249 static int __init e1000_init_module(void)
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
254 pr_info("%s\n", e1000_copyright);
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
259 pr_info("copybreak disabled\n");
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
267 module_init(e1000_init_module);
270 * e1000_exit_module - Driver Exit Cleanup Routine
272 * e1000_exit_module is called just before the driver is removed
275 static void __exit e1000_exit_module(void)
277 pci_unregister_driver(&e1000_driver);
280 module_exit(e1000_exit_module);
282 static int e1000_request_irq(struct e1000_adapter *adapter)
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
298 static void e1000_free_irq(struct e1000_adapter *adapter)
300 struct net_device *netdev = adapter->netdev;
302 free_irq(adapter->pdev->irq, netdev);
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
315 synchronize_irq(adapter->pdev->irq);
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
324 struct e1000_hw *hw = &adapter->hw;
326 ew32(IMS, IMS_ENABLE_MASK);
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
337 if (!e1000_vlan_used(adapter))
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
354 adapter->mng_vlan_id = vid;
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
360 struct e1000_hw *hw = &adapter->hw;
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
374 struct e1000_hw *hw = &adapter->hw;
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
390 static void e1000_configure(struct e1000_adapter *adapter)
392 struct net_device *netdev = adapter->netdev;
395 e1000_set_rx_mode(netdev);
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
414 int e1000_up(struct e1000_adapter *adapter)
416 struct e1000_hw *hw = &adapter->hw;
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
421 clear_bit(__E1000_DOWN, &adapter->flags);
423 napi_enable(&adapter->napi);
425 e1000_irq_enable(adapter);
427 netif_wake_queue(adapter->netdev);
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
444 struct e1000_hw *hw = &adapter->hw;
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
460 struct e1000_hw *hw = &adapter->hw;
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
466 * (c) SoL/IDER session is active
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
472 switch (hw->mac_type) {
475 case e1000_82545_rev_3:
478 case e1000_82546_rev_3:
480 case e1000_82541_rev_2:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
500 set_bit(__E1000_DOWN, &adapter->flags);
502 cancel_delayed_work_sync(&adapter->watchdog_task);
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
518 void e1000_down(struct e1000_adapter *adapter)
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
524 netif_carrier_off(netdev);
526 /* disable receives in the hardware */
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
531 netif_tx_disable(netdev);
533 /* disable transmits in the hardware */
535 tctl &= ~E1000_TCTL_EN;
537 /* flush both disables and wait for them to finish */
541 napi_disable(&adapter->napi);
543 e1000_irq_disable(adapter);
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
549 e1000_down_and_stop(adapter);
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
566 clear_bit(__E1000_RESETTING, &adapter->flags);
569 void e1000_reset(struct e1000_adapter *adapter)
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
592 case e1000_82545_rev_3:
595 case e1000_82546_rev_3:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
603 case e1000_undefined:
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
641 min_tx_space = ALIGN(min_tx_space, 1024);
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
668 if (pba < min_rx_space)
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc = hw->original_fc;
693 /* Allow time for pending master requests to run */
695 if (hw->mac_type >= e1000_82544)
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
711 ctrl &= ~E1000_CTRL_SWDPIN3;
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
721 e1000_release_manageability(adapter);
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
732 u16 csum_old, csum_new = 0;
734 eeprom.len = ops->get_eeprom_len(netdev);
737 data = kmalloc(eeprom.len, GFP_KERNEL);
741 ops->get_eeprom(netdev, &eeprom, data);
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
776 * Return true if an adapter needs ioport resources
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
822 static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
840 e1000_reset(adapter);
845 static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
879 struct pci_dev *pdev = adapter->pdev;
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
900 switch (hw->mac_type) {
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
934 * Returns 0 on success, negative on failure
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
973 goto err_alloc_etherdev;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
978 goto err_alloc_etherdev;
980 SET_NETDEV_DEV(netdev, &pdev->dev);
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1025 pr_err("No usable DMA config, aborting\n");
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1037 adapter->bd_number = cards_found;
1039 /* setup the private structure */
1041 err = e1000_sw_init(adapter);
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1079 netdev->vlan_features |= (NETIF_F_TSO |
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1119 /* don't block initialization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1132 e1000_check_options(adapter);
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1203 if (tmp != 0 && tmp != 0xFF)
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1219 e1000_vlan_filter_on_off(adapter, false);
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1241 e1000_phy_hw_reset(hw);
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1253 free_netdev(netdev);
1255 pci_release_selected_regions(pdev, bars);
1257 pci_disable_device(pdev);
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1270 static void e1000_remove(struct pci_dev *pdev)
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1279 unregister_netdev(netdev);
1281 e1000_phy_hw_reset(hw);
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1293 free_netdev(netdev);
1295 pci_disable_device(pdev);
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1320 spin_lock_init(&adapter->stats_lock);
1322 set_bit(__E1000_DOWN, &adapter->flags);
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1334 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 if (!adapter->tx_ring)
1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1348 return E1000_SUCCESS;
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1355 * Returns 0 on success, negative value on failure
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1363 int e1000_open(struct net_device *netdev)
1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1366 struct e1000_hw *hw = &adapter->hw;
1369 /* disallow open during test */
1370 if (test_bit(__E1000_TESTING, &adapter->flags))
1373 netif_carrier_off(netdev);
1375 /* allocate transmit descriptors */
1376 err = e1000_setup_all_tx_resources(adapter);
1380 /* allocate receive descriptors */
1381 err = e1000_setup_all_rx_resources(adapter);
1385 e1000_power_up_phy(adapter);
1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 if ((hw->mng_cookie.status &
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
1396 * clean_rx handler before we do so.
1398 e1000_configure(adapter);
1400 err = e1000_request_irq(adapter);
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1407 napi_enable(&adapter->napi);
1409 e1000_irq_enable(adapter);
1411 netif_start_queue(netdev);
1413 /* fire a link status change interrupt to start the watchdog */
1414 ew32(ICS, E1000_ICS_LSC);
1416 return E1000_SUCCESS;
1419 e1000_power_down_phy(adapter);
1420 e1000_free_all_rx_resources(adapter);
1422 e1000_free_all_tx_resources(adapter);
1424 e1000_reset(adapter);
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1433 * Returns 0, this is not allowed to fail
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1440 int e1000_close(struct net_device *netdev)
1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444 int count = E1000_CHECK_RESET_COUNT;
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 e1000_down(adapter);
1451 e1000_power_down_phy(adapter);
1452 e1000_free_irq(adapter);
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1460 if ((hw->mng_cookie.status &
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long begin = (unsigned long)start;
1481 unsigned long end = begin + len;
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1486 if (hw->mac_type == e1000_82545 ||
1487 hw->mac_type == e1000_ce4100 ||
1488 hw->mac_type == e1000_82546) {
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1500 * Return 0 on success, negative on failure
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1505 struct pci_dev *pdev = adapter->pdev;
1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 txdr->buffer_info = vzalloc(size);
1510 if (!txdr->buffer_info)
1513 /* round up to nearest 4K */
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 txdr->size = ALIGN(txdr->size, 4096);
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1522 vfree(txdr->buffer_info);
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 txdr->size, txdr->desc);
1532 /* Try again, without freeing the previous */
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
1535 /* Failed allocation, critical failure */
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 goto setup_tx_desc_die;
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1548 e_err(probe, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr->buffer_info);
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558 memset(txdr->desc, 0, txdr->size);
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1571 * Return 0 on success, negative on failure
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1577 for (i = 0; i < adapter->num_tx_queues; i++) {
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1595 * Configure the Tx unit of the MAC after a reset.
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1600 struct e1000_hw *hw = &adapter->hw;
1601 u32 tdlen, tctl, tipg;
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1606 switch (adapter->num_tx_queues) {
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw->media_type == e1000_media_type_fiber ||
1626 hw->media_type == e1000_media_type_internal_serdes))
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1631 switch (hw->mac_type) {
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1647 /* Set the Tx Interrupt Delay register */
1649 ew32(TIDV, adapter->tx_int_delay);
1650 if (hw->mac_type >= e1000_82540)
1651 ew32(TADV, adapter->tx_abs_int_delay);
1653 /* Program the Transmit Control Register */
1656 tctl &= ~E1000_TCTL_CT;
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1660 e1000_config_collision_dist(hw);
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1669 if (hw->mac_type < e1000_82543)
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
1679 adapter->pcix_82544 = true;
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1690 * Returns 0 on success, negative on failure
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1695 struct pci_dev *pdev = adapter->pdev;
1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 rxdr->buffer_info = vzalloc(size);
1700 if (!rxdr->buffer_info)
1703 desc_len = sizeof(struct e1000_rx_desc);
1705 /* Round up to nearest 4K */
1707 rxdr->size = rxdr->count * desc_len;
1708 rxdr->size = ALIGN(rxdr->size, 4096);
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1714 vfree(rxdr->buffer_info);
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr->size, rxdr->desc);
1724 /* Try again, without freeing the previous */
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
1727 /* Failed allocation, critical failure */
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 goto setup_rx_desc_die;
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die;
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1749 memset(rxdr->desc, 0, rxdr->size);
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
1753 rxdr->rx_skb_top = NULL;
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1763 * Return 0 on success, negative on failure
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1769 for (i = 0; i < adapter->num_rx_queues; i++) {
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1789 struct e1000_hw *hw = &adapter->hw;
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1800 if (hw->tbi_compatibility_on == 1)
1801 rctl |= E1000_RCTL_SBP;
1803 rctl &= ~E1000_RCTL_SBP;
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1808 rctl |= E1000_RCTL_LPE;
1810 /* Setup buffer sizes */
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
1814 case E1000_RXBUFFER_2048:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1854 * Configure the Rx unit of the MAC after a reset.
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1859 struct e1000_hw *hw = &adapter->hw;
1860 u32 rdlen, rctl, rxcsum;
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(struct e1000_rx_desc);
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1874 /* disable receives while setting up the descriptors */
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR, adapter->rx_int_delay);
1881 if (hw->mac_type >= e1000_82540) {
1882 ew32(RADV, adapter->rx_abs_int_delay);
1883 if (adapter->itr_setting != 0)
1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1890 switch (adapter->num_rx_queues) {
1893 rdba = adapter->rx_ring[0].dma;
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw->mac_type >= e1000_82543) {
1908 rxcsum = er32(RXCSUM);
1909 if (adapter->rx_csum)
1910 rxcsum |= E1000_RXCSUM_TUOFL;
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 ew32(RXCSUM, rxcsum);
1917 /* Enable Receives */
1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1926 * Free all transmit software resources
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1931 struct pci_dev *pdev = adapter->pdev;
1933 e1000_clean_tx_ring(adapter, tx_ring);
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1941 tx_ring->desc = NULL;
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1948 * Free all transmit software resources
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1954 for (i = 0; i < adapter->num_tx_queues; i++)
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 buffer_info->length,
1970 buffer_info->dma = 0;
1972 if (buffer_info->skb) {
1973 dev_kfree_skb_any(buffer_info->skb);
1974 buffer_info->skb = NULL;
1976 buffer_info->time_stamp = 0;
1977 /* buffer_info must be completely set up in the transmit path */
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1988 struct e1000_hw *hw = &adapter->hw;
1989 struct e1000_tx_buffer *buffer_info;
1993 /* Free all the Tx ring sk_buffs */
1995 for (i = 0; i < tx_ring->count; i++) {
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2000 netdev_reset_queue(adapter->netdev);
2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 memset(tx_ring->buffer_info, 0, size);
2004 /* Zero out the descriptor ring */
2006 memset(tx_ring->desc, 0, tx_ring->size);
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
2010 tx_ring->last_tx_tso = false;
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2024 for (i = 0; i < adapter->num_tx_queues; i++)
2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2033 * Free all receive software resources
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
2038 struct pci_dev *pdev = adapter->pdev;
2040 e1000_clean_rx_ring(adapter, rx_ring);
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2048 rx_ring->desc = NULL;
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2055 * Free all receive software resources
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2078 data += E1000_HEADROOM;
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
2090 struct e1000_hw *hw = &adapter->hw;
2091 struct e1000_rx_buffer *buffer_info;
2092 struct pci_dev *pdev = adapter->pdev;
2096 /* Free all the Rx netfrags */
2097 for (i = 0; i < rx_ring->count; i++) {
2098 buffer_info = &rx_ring->buffer_info[i];
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2104 if (buffer_info->rxbuf.data) {
2105 skb_free_frag(buffer_info->rxbuf.data);
2106 buffer_info->rxbuf.data = NULL;
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2119 buffer_info->dma = 0;
2122 /* there also may be some cached data from a chained receive */
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 memset(rx_ring->buffer_info, 0, size);
2129 /* Zero out the descriptor ring */
2130 memset(rx_ring->desc, 0, rx_ring->size);
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2147 for (i = 0; i < adapter->num_rx_queues; i++)
2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2156 struct e1000_hw *hw = &adapter->hw;
2157 struct net_device *netdev = adapter->netdev;
2160 e1000_pci_clear_mwi(hw);
2163 rctl |= E1000_RCTL_RST;
2165 E1000_WRITE_FLUSH();
2168 if (netif_running(netdev))
2169 e1000_clean_all_rx_rings(adapter);
2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2174 struct e1000_hw *hw = &adapter->hw;
2175 struct net_device *netdev = adapter->netdev;
2179 rctl &= ~E1000_RCTL_RST;
2181 E1000_WRITE_FLUSH();
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
2187 if (netif_running(netdev)) {
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 e1000_configure_rx(adapter);
2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2200 * Returns 0 on success, negative on failure
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2204 struct e1000_adapter *adapter = netdev_priv(netdev);
2205 struct e1000_hw *hw = &adapter->hw;
2206 struct sockaddr *addr = p;
2208 if (!is_valid_ether_addr(addr->sa_data))
2209 return -EADDRNOTAVAIL;
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2213 if (hw->mac_type == e1000_82542_rev2_0)
2214 e1000_enter_82542_rst(adapter);
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2219 e1000_rar_set(hw, hw->mac_addr, 0);
2221 if (hw->mac_type == e1000_82542_rev2_0)
2222 e1000_leave_82542_rst(adapter);
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2236 static void e1000_set_rx_mode(struct net_device *netdev)
2238 struct e1000_adapter *adapter = netdev_priv(netdev);
2239 struct e1000_hw *hw = &adapter->hw;
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
2244 int i, rar_entries = E1000_RAR_ENTRIES;
2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2251 /* Check for Promiscuous and All Multicast modes */
2255 if (netdev->flags & IFF_PROMISC) {
2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 rctl &= ~E1000_RCTL_VFE;
2259 if (netdev->flags & IFF_ALLMULTI)
2260 rctl |= E1000_RCTL_MPE;
2262 rctl &= ~E1000_RCTL_MPE;
2263 /* Enable VLAN filter if there is a VLAN */
2264 if (e1000_vlan_used(adapter))
2265 rctl |= E1000_RCTL_VFE;
2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2279 if (hw->mac_type == e1000_82542_rev2_0)
2280 e1000_enter_82542_rst(adapter);
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2286 * RAR 0 is used for the station MAC address
2287 * if there are not 14 addresses, go ahead and clear the filters
2291 netdev_for_each_uc_addr(ha, netdev) {
2292 if (i == rar_entries)
2294 e1000_rar_set(hw, ha->addr, i++);
2297 netdev_for_each_mc_addr(ha, netdev) {
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
2307 e1000_rar_set(hw, ha->addr, i++);
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
2318 /* write the hash table completely, write from bottom to avoid
2319 * both stupid write combining chipsets, and flushing each write
2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 /* If we are on an 82544 has an errata where writing odd
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2329 E1000_WRITE_FLUSH();
2331 if (hw->mac_type == e1000_82542_rev2_0)
2332 e1000_leave_82542_rst(adapter);
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2341 * Need to wait a few seconds after link up to get diagnostic information from
2344 static void e1000_update_phy_info_task(struct work_struct *work)
2346 struct e1000_adapter *adapter = container_of(work,
2347 struct e1000_adapter,
2348 phy_info_task.work);
2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2359 struct e1000_adapter *adapter = container_of(work,
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
2362 struct e1000_hw *hw = &adapter->hw;
2363 struct net_device *netdev = adapter->netdev;
2366 if (atomic_read(&adapter->tx_fifo_stall)) {
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2377 E1000_WRITE_FLUSH();
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2388 bool e1000_has_link(struct e1000_adapter *adapter)
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
2403 if (hw->get_link_status) {
2404 e1000_check_for_link(hw);
2405 link_active = !hw->get_link_status;
2410 case e1000_media_type_fiber:
2411 e1000_check_for_link(hw);
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2414 case e1000_media_type_internal_serdes:
2415 e1000_check_for_link(hw);
2416 link_active = hw->serdes_has_link;
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2429 static void e1000_watchdog(struct work_struct *work)
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
2434 struct e1000_hw *hw = &adapter->hw;
2435 struct net_device *netdev = adapter->netdev;
2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2444 if (!netif_carrier_ok(netdev)) {
2447 /* update snapshot of PHY registers on LSC */
2448 e1000_get_speed_and_duplex(hw,
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
2464 /* adjust timeout factor according to speed/duplex */
2465 adapter->tx_timeout_factor = 1;
2466 switch (adapter->link_speed) {
2469 adapter->tx_timeout_factor = 16;
2473 /* maybe add some timeout factor ? */
2477 /* enable transmits in the hardware */
2479 tctl |= E1000_TCTL_EN;
2482 netif_carrier_on(netdev);
2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 schedule_delayed_work(&adapter->phy_info_task,
2486 adapter->smartspeed = 0;
2489 if (netif_carrier_ok(netdev)) {
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
2492 pr_info("%s NIC Link is Down\n",
2494 netif_carrier_off(netdev);
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
2497 schedule_delayed_work(&adapter->phy_info_task,
2501 e1000_smartspeed(adapter);
2505 e1000_update_stats(adapter);
2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508 adapter->tpt_old = adapter->stats.tpt;
2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510 adapter->colc_old = adapter->stats.colc;
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2517 e1000_update_adaptive(hw);
2519 if (!netif_carrier_ok(netdev)) {
2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
2524 * (Do the reset outside of interrupt context).
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
2528 /* exit immediately since reset is imminent */
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2545 ew32(ITR, 1000000000 / (itr * 256));
2548 /* Cause software interrupt to ensure rx ring is cleaned */
2549 ew32(ICS, E1000_ICS_RXDMT0);
2551 /* Force detection of hung controller every watchdog period */
2552 adapter->detect_tx_hung = true;
2554 /* Reschedule the task */
2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2559 enum latency_range {
2563 latency_invalid = 255
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 u16 itr_setting, int packets, int bytes)
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2593 goto update_itr_done;
2595 switch (itr_setting) {
2596 case lowest_latency:
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
2601 retval = low_latency;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
2615 retval = lowest_latency;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2620 retval = low_latency;
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2633 struct e1000_hw *hw = &adapter->hw;
2635 u32 new_itr = adapter->itr;
2637 if (unlikely(hw->mac_type < e1000_82540))
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
2684 new_itr = new_itr > adapter->itr ?
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2687 adapter->itr = new_itr;
2688 ew32(ITR, 1000000000 / (new_itr * 256));
2692 #define E1000_TX_FLAGS_CSUM 0x00000001
2693 #define E1000_TX_FLAGS_VLAN 0x00000002
2694 #define E1000_TX_FLAGS_TSO 0x00000004
2695 #define E1000_TX_FLAGS_IPV4 0x00000008
2696 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2697 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2704 struct e1000_context_desc *context_desc;
2705 struct e1000_tx_buffer *buffer_info;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2711 if (skb_is_gso(skb)) {
2714 err = skb_cow_head(skb, 0);
2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 mss = skb_shinfo(skb)->gso_size;
2720 if (protocol == htons(ETH_P_IP)) {
2721 struct iphdr *iph = ip_hdr(skb);
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2728 cmd_length = E1000_TXD_CMD_IP;
2729 ipcse = skb_transport_offset(skb) - 1;
2730 } else if (skb_is_gso_v6(skb)) {
2731 ipv6_hdr(skb)->payload_len = 0;
2732 tcp_hdr(skb)->check =
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2738 ipcss = skb_network_offset(skb);
2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 tucss = skb_transport_offset(skb);
2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 buffer_info = &tx_ring->buffer_info[i];
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2761 buffer_info->time_stamp = jiffies;
2762 buffer_info->next_to_watch = i;
2764 if (++i == tx_ring->count)
2767 tx_ring->next_to_use = i;
2774 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2778 struct e1000_context_desc *context_desc;
2779 struct e1000_tx_buffer *buffer_info;
2782 u32 cmd_len = E1000_TXD_CMD_DEXT;
2784 if (skb->ip_summed != CHECKSUM_PARTIAL)
2788 case cpu_to_be16(ETH_P_IP):
2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 cmd_len |= E1000_TXD_CMD_TCP;
2792 case cpu_to_be16(ETH_P_IPV6):
2793 /* XXX not handling all IPV6 headers */
2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 cmd_len |= E1000_TXD_CMD_TCP;
2798 if (unlikely(net_ratelimit()))
2799 e_warn(drv, "checksum_partial proto=%x!\n",
2804 css = skb_checksum_start_offset(skb);
2806 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2810 context_desc->lower_setup.ip_config = 0;
2811 context_desc->upper_setup.tcp_fields.tucss = css;
2812 context_desc->upper_setup.tcp_fields.tucso =
2813 css + skb->csum_offset;
2814 context_desc->upper_setup.tcp_fields.tucse = 0;
2815 context_desc->tcp_seg_setup.data = 0;
2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2818 buffer_info->time_stamp = jiffies;
2819 buffer_info->next_to_watch = i;
2821 if (unlikely(++i == tx_ring->count))
2824 tx_ring->next_to_use = i;
2829 #define E1000_MAX_TXD_PWR 12
2830 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2832 static int e1000_tx_map(struct e1000_adapter *adapter,
2833 struct e1000_tx_ring *tx_ring,
2834 struct sk_buff *skb, unsigned int first,
2835 unsigned int max_per_txd, unsigned int nr_frags,
2838 struct e1000_hw *hw = &adapter->hw;
2839 struct pci_dev *pdev = adapter->pdev;
2840 struct e1000_tx_buffer *buffer_info;
2841 unsigned int len = skb_headlen(skb);
2842 unsigned int offset = 0, size, count = 0, i;
2843 unsigned int f, bytecount, segs;
2845 i = tx_ring->next_to_use;
2848 buffer_info = &tx_ring->buffer_info[i];
2849 size = min(len, max_per_txd);
2850 /* Workaround for Controller erratum --
2851 * descriptor for non-tso packet in a linear SKB that follows a
2852 * tso gets written back prematurely before the data is fully
2853 * DMA'd to the controller
2855 if (!skb->data_len && tx_ring->last_tx_tso &&
2857 tx_ring->last_tx_tso = false;
2861 /* Workaround for premature desc write-backs
2862 * in TSO mode. Append 4-byte sentinel desc
2864 if (unlikely(mss && !nr_frags && size == len && size > 8))
2866 /* work-around for errata 10 and it applies
2867 * to all controllers in PCI-X mode
2868 * The fix is to make sure that the first descriptor of a
2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872 (size > 2015) && count == 0))
2875 /* Workaround for potential 82544 hang in PCI-X. Avoid
2876 * terminating buffers within evenly-aligned dwords.
2878 if (unlikely(adapter->pcix_82544 &&
2879 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2883 buffer_info->length = size;
2884 /* set time_stamp *before* dma to help avoid a possible race */
2885 buffer_info->time_stamp = jiffies;
2886 buffer_info->mapped_as_page = false;
2887 buffer_info->dma = dma_map_single(&pdev->dev,
2889 size, DMA_TO_DEVICE);
2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2892 buffer_info->next_to_watch = i;
2899 if (unlikely(i == tx_ring->count))
2904 for (f = 0; f < nr_frags; f++) {
2905 const struct skb_frag_struct *frag;
2907 frag = &skb_shinfo(skb)->frags[f];
2908 len = skb_frag_size(frag);
2912 unsigned long bufend;
2914 if (unlikely(i == tx_ring->count))
2917 buffer_info = &tx_ring->buffer_info[i];
2918 size = min(len, max_per_txd);
2919 /* Workaround for premature desc write-backs
2920 * in TSO mode. Append 4-byte sentinel desc
2922 if (unlikely(mss && f == (nr_frags-1) &&
2923 size == len && size > 8))
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
2929 bufend = (unsigned long)
2930 page_to_phys(skb_frag_page(frag));
2931 bufend += offset + size - 1;
2932 if (unlikely(adapter->pcix_82544 &&
2937 buffer_info->length = size;
2938 buffer_info->time_stamp = jiffies;
2939 buffer_info->mapped_as_page = true;
2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 offset, size, DMA_TO_DEVICE);
2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2944 buffer_info->next_to_watch = i;
2952 segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 /* multiply data chunks by size of headers */
2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2956 tx_ring->buffer_info[i].skb = skb;
2957 tx_ring->buffer_info[i].segs = segs;
2958 tx_ring->buffer_info[i].bytecount = bytecount;
2959 tx_ring->buffer_info[first].next_to_watch = i;
2964 dev_err(&pdev->dev, "TX DMA map failed\n");
2965 buffer_info->dma = 0;
2971 i += tx_ring->count;
2973 buffer_info = &tx_ring->buffer_info[i];
2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2980 static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 struct e1000_tx_ring *tx_ring, int tx_flags,
2984 struct e1000_tx_desc *tx_desc = NULL;
2985 struct e1000_tx_buffer *buffer_info;
2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004 txd_lower |= E1000_TXD_CMD_VLE;
3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3011 i = tx_ring->next_to_use;
3014 buffer_info = &tx_ring->buffer_info[i];
3015 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 tx_desc->lower.data =
3018 cpu_to_le32(txd_lower | buffer_info->length);
3019 tx_desc->upper.data = cpu_to_le32(txd_upper);
3020 if (unlikely(++i == tx_ring->count))
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
3037 tx_ring->next_to_use = i;
3040 /* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3048 #define E1000_FIFO_HDR 0x10
3049 #define E1000_82547_PAD_LEN 0x3E0
3051 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3059 if (adapter->link_duplex != HALF_DUPLEX)
3060 goto no_fifo_stall_required;
3062 if (atomic_read(&adapter->tx_fifo_stall))
3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3070 no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3077 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
3085 * but since that doesn't exist yet, just open code it.
3089 /* We need to check again in a case another CPU has just
3090 * made room available.
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3096 netif_start_queue(netdev);
3097 ++adapter->restart_queue;
3101 static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 struct e1000_tx_ring *tx_ring, int size)
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3106 return __e1000_maybe_stop_tx(netdev, size);
3109 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
3113 struct e1000_adapter *adapter = netdev_priv(netdev);
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct e1000_tx_ring *tx_ring;
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
3119 unsigned int len = skb_headlen(skb);
3120 unsigned int nr_frags;
3125 __be16 protocol = vlan_get_protocol(skb);
3127 /* This goes back to the question of how to logically map a Tx queue
3128 * to a flow. Right now, performance is impacted slightly negatively
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3132 tx_ring = adapter->tx_ring;
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
3141 mss = skb_shinfo(skb)->gso_size;
3142 /* The controller does a simple calculation to
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 if (skb->data_len && hdr_len == len) {
3156 switch (hw->mac_type) {
3157 unsigned int pull_size;
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
3164 * into the next dword
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
3172 e_err(drv, "__pskb_pull_tail "
3174 dev_kfree_skb_any(skb);
3175 return NETDEV_TX_OK;
3177 len = skb_headlen(skb);
3186 /* reserve a descriptor for the offload context */
3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3191 /* Controller Erratum workaround */
3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3197 if (adapter->pcix_82544)
3200 /* work-around for errata 10 and it applies to all controllers
3201 * in PCI-X mode, so add one more descriptor to the count
3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3207 nr_frags = skb_shinfo(skb)->nr_frags;
3208 for (f = 0; f < nr_frags; f++)
3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3211 if (adapter->pcix_82544)
3214 /* need: count + 2 desc gap to keep tail from touching
3215 * head, otherwise try next time
3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 return NETDEV_TX_BUSY;
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
3228 if (skb_vlan_tag_present(skb)) {
3229 tx_flags |= E1000_TX_FLAGS_VLAN;
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
3234 first = tx_ring->next_to_use;
3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3243 if (likely(hw->mac_type != e1000_82544))
3244 tx_ring->last_tx_tso = true;
3245 tx_flags |= E1000_TX_FLAGS_TSO;
3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3249 if (protocol == htons(ETH_P_IP))
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3259 /* The descriptors needed is higher than other Intel drivers
3260 * due to a number of workarounds. The breakdown is below:
3261 * Data descriptors: MAX_SKB_FRAGS + 1
3262 * Context Descriptor: 1
3263 * Keep head from touching tail: 2
3266 int desc_needed = MAX_SKB_FRAGS + 7;
3268 netdev_sent_queue(netdev, skb->len);
3269 skb_tx_timestamp(skb);
3271 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3273 /* 82544 potentially requires twice as many data descriptors
3274 * in order to guarantee buffers don't end on evenly-aligned
3277 if (adapter->pcix_82544)
3278 desc_needed += MAX_SKB_FRAGS + 1;
3280 /* Make sure there is space in the ring for the next send. */
3281 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3283 if (!skb->xmit_more ||
3284 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286 /* we need this if more than one processor can write to
3287 * our tail at a time, it synchronizes IO on IA64/Altix
3293 dev_kfree_skb_any(skb);
3294 tx_ring->buffer_info[first].time_stamp = 0;
3295 tx_ring->next_to_use = first;
3298 return NETDEV_TX_OK;
3301 #define NUM_REGS 38 /* 1 based count */
3302 static void e1000_regdump(struct e1000_adapter *adapter)
3304 struct e1000_hw *hw = &adapter->hw;
3306 u32 *regs_buff = regs;
3309 static const char * const reg_name[] = {
3311 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313 "TIDV", "TXDCTL", "TADV", "TARC0",
3314 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3316 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3321 regs_buff[0] = er32(CTRL);
3322 regs_buff[1] = er32(STATUS);
3324 regs_buff[2] = er32(RCTL);
3325 regs_buff[3] = er32(RDLEN);
3326 regs_buff[4] = er32(RDH);
3327 regs_buff[5] = er32(RDT);
3328 regs_buff[6] = er32(RDTR);
3330 regs_buff[7] = er32(TCTL);
3331 regs_buff[8] = er32(TDBAL);
3332 regs_buff[9] = er32(TDBAH);
3333 regs_buff[10] = er32(TDLEN);
3334 regs_buff[11] = er32(TDH);
3335 regs_buff[12] = er32(TDT);
3336 regs_buff[13] = er32(TIDV);
3337 regs_buff[14] = er32(TXDCTL);
3338 regs_buff[15] = er32(TADV);
3339 regs_buff[16] = er32(TARC0);
3341 regs_buff[17] = er32(TDBAL1);
3342 regs_buff[18] = er32(TDBAH1);
3343 regs_buff[19] = er32(TDLEN1);
3344 regs_buff[20] = er32(TDH1);
3345 regs_buff[21] = er32(TDT1);
3346 regs_buff[22] = er32(TXDCTL1);
3347 regs_buff[23] = er32(TARC1);
3348 regs_buff[24] = er32(CTRL_EXT);
3349 regs_buff[25] = er32(ERT);
3350 regs_buff[26] = er32(RDBAL0);
3351 regs_buff[27] = er32(RDBAH0);
3352 regs_buff[28] = er32(TDFH);
3353 regs_buff[29] = er32(TDFT);
3354 regs_buff[30] = er32(TDFHS);
3355 regs_buff[31] = er32(TDFTS);
3356 regs_buff[32] = er32(TDFPC);
3357 regs_buff[33] = er32(RDFH);
3358 regs_buff[34] = er32(RDFT);
3359 regs_buff[35] = er32(RDFHS);
3360 regs_buff[36] = er32(RDFTS);
3361 regs_buff[37] = er32(RDFPC);
3363 pr_info("Register dump\n");
3364 for (i = 0; i < NUM_REGS; i++)
3365 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3369 * e1000_dump: Print registers, tx ring and rx ring
3371 static void e1000_dump(struct e1000_adapter *adapter)
3373 /* this code doesn't handle multiple rings */
3374 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3378 if (!netif_msg_hw(adapter))
3381 /* Print Registers */
3382 e1000_regdump(adapter);
3385 pr_info("TX Desc ring0 dump\n");
3387 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3389 * Legacy Transmit Descriptor
3390 * +--------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3392 * +--------------------------------------------------------------+
3393 * 8 | Special | CSS | Status | CMD | CSO | Length |
3394 * +--------------------------------------------------------------+
3395 * 63 48 47 36 35 32 31 24 23 16 15 0
3397 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398 * 63 48 47 40 39 32 31 16 15 8 7 0
3399 * +----------------------------------------------------------------+
3400 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3401 * +----------------------------------------------------------------+
3402 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3403 * +----------------------------------------------------------------+
3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3406 * Extended Data Descriptor (DTYP=0x1)
3407 * +----------------------------------------------------------------+
3408 * 0 | Buffer Address [63:0] |
3409 * +----------------------------------------------------------------+
3410 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3411 * +----------------------------------------------------------------+
3412 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3414 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3415 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3417 if (!netif_msg_tx_done(adapter))
3418 goto rx_ring_summary;
3420 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423 struct my_u { __le64 a; __le64 b; };
3424 struct my_u *u = (struct my_u *)tx_desc;
3427 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3429 else if (i == tx_ring->next_to_use)
3431 else if (i == tx_ring->next_to_clean)
3436 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3437 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438 le64_to_cpu(u->a), le64_to_cpu(u->b),
3439 (u64)buffer_info->dma, buffer_info->length,
3440 buffer_info->next_to_watch,
3441 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3446 pr_info("\nRX Desc ring dump\n");
3448 /* Legacy Receive Descriptor Format
3450 * +-----------------------------------------------------+
3451 * | Buffer Address [63:0] |
3452 * +-----------------------------------------------------+
3453 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454 * +-----------------------------------------------------+
3455 * 63 48 47 40 39 32 31 16 15 0
3457 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3459 if (!netif_msg_rx_status(adapter))
3462 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465 struct my_u { __le64 a; __le64 b; };
3466 struct my_u *u = (struct my_u *)rx_desc;
3469 if (i == rx_ring->next_to_use)
3471 else if (i == rx_ring->next_to_clean)
3476 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3477 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3481 /* dump the descriptor caches */
3483 pr_info("Rx descriptor cache in 64bit format\n");
3484 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3487 readl(adapter->hw.hw_addr + i+4),
3488 readl(adapter->hw.hw_addr + i),
3489 readl(adapter->hw.hw_addr + i+12),
3490 readl(adapter->hw.hw_addr + i+8));
3493 pr_info("Tx descriptor cache in 64bit format\n");
3494 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3497 readl(adapter->hw.hw_addr + i+4),
3498 readl(adapter->hw.hw_addr + i),
3499 readl(adapter->hw.hw_addr + i+12),
3500 readl(adapter->hw.hw_addr + i+8));
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
3510 static void e1000_tx_timeout(struct net_device *netdev)
3512 struct e1000_adapter *adapter = netdev_priv(netdev);
3514 /* Do the reset outside of interrupt context */
3515 adapter->tx_timeout_count++;
3516 schedule_work(&adapter->reset_task);
3519 static void e1000_reset_task(struct work_struct *work)
3521 struct e1000_adapter *adapter =
3522 container_of(work, struct e1000_adapter, reset_task);
3524 e_err(drv, "Reset adapter\n");
3525 e1000_reinit_locked(adapter);
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the watchdog.
3535 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3537 /* only return the current stats */
3538 return &netdev->stats;
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3546 * Returns 0 on success, negative on failure
3548 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3550 struct e1000_adapter *adapter = netdev_priv(netdev);
3551 struct e1000_hw *hw = &adapter->hw;
3552 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3554 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556 e_err(probe, "Invalid MTU setting\n");
3560 /* Adapter-specific max frame size limits. */
3561 switch (hw->mac_type) {
3562 case e1000_undefined ... e1000_82542_rev2_1:
3563 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564 e_err(probe, "Jumbo Frames not supported.\n");
3569 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3575 /* e1000_down has a dependency on max_frame_size */
3576 hw->max_frame_size = max_frame;
3577 if (netif_running(netdev)) {
3578 /* prevent buffers from being reallocated */
3579 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580 e1000_down(adapter);
3583 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584 * means we reserve 2 more, this pushes us to allocate from the next
3586 * i.e. RXBUFFER_2048 --> size-4096 slab
3587 * however with the new *_jumbo_rx* routines, jumbo receives will use
3591 if (max_frame <= E1000_RXBUFFER_2048)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3594 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597 adapter->rx_buffer_len = PAGE_SIZE;
3600 /* adjust allocation if LPE protects us, and we aren't using SBP */
3601 if (!hw->tbi_compatibility_on &&
3602 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3606 pr_info("%s changing MTU from %d to %d\n",
3607 netdev->name, netdev->mtu, new_mtu);
3608 netdev->mtu = new_mtu;
3610 if (netif_running(netdev))
3613 e1000_reset(adapter);
3615 clear_bit(__E1000_RESETTING, &adapter->flags);
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3624 void e1000_update_stats(struct e1000_adapter *adapter)
3626 struct net_device *netdev = adapter->netdev;
3627 struct e1000_hw *hw = &adapter->hw;
3628 struct pci_dev *pdev = adapter->pdev;
3629 unsigned long flags;
3632 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3634 /* Prevent stats update while adapter is being reset, or if the pci
3635 * connection is down.
3637 if (adapter->link_speed == 0)
3639 if (pci_channel_offline(pdev))
3642 spin_lock_irqsave(&adapter->stats_lock, flags);
3644 /* these counters are modified from e1000_tbi_adjust_stats,
3645 * called from the interrupt context, so they must only
3646 * be written while holding adapter->stats_lock
3649 adapter->stats.crcerrs += er32(CRCERRS);
3650 adapter->stats.gprc += er32(GPRC);
3651 adapter->stats.gorcl += er32(GORCL);
3652 adapter->stats.gorch += er32(GORCH);
3653 adapter->stats.bprc += er32(BPRC);
3654 adapter->stats.mprc += er32(MPRC);
3655 adapter->stats.roc += er32(ROC);
3657 adapter->stats.prc64 += er32(PRC64);
3658 adapter->stats.prc127 += er32(PRC127);
3659 adapter->stats.prc255 += er32(PRC255);
3660 adapter->stats.prc511 += er32(PRC511);
3661 adapter->stats.prc1023 += er32(PRC1023);
3662 adapter->stats.prc1522 += er32(PRC1522);
3664 adapter->stats.symerrs += er32(SYMERRS);
3665 adapter->stats.mpc += er32(MPC);
3666 adapter->stats.scc += er32(SCC);
3667 adapter->stats.ecol += er32(ECOL);
3668 adapter->stats.mcc += er32(MCC);
3669 adapter->stats.latecol += er32(LATECOL);
3670 adapter->stats.dc += er32(DC);
3671 adapter->stats.sec += er32(SEC);
3672 adapter->stats.rlec += er32(RLEC);
3673 adapter->stats.xonrxc += er32(XONRXC);
3674 adapter->stats.xontxc += er32(XONTXC);
3675 adapter->stats.xoffrxc += er32(XOFFRXC);
3676 adapter->stats.xofftxc += er32(XOFFTXC);
3677 adapter->stats.fcruc += er32(FCRUC);
3678 adapter->stats.gptc += er32(GPTC);
3679 adapter->stats.gotcl += er32(GOTCL);
3680 adapter->stats.gotch += er32(GOTCH);
3681 adapter->stats.rnbc += er32(RNBC);
3682 adapter->stats.ruc += er32(RUC);
3683 adapter->stats.rfc += er32(RFC);
3684 adapter->stats.rjc += er32(RJC);
3685 adapter->stats.torl += er32(TORL);
3686 adapter->stats.torh += er32(TORH);
3687 adapter->stats.totl += er32(TOTL);
3688 adapter->stats.toth += er32(TOTH);
3689 adapter->stats.tpr += er32(TPR);
3691 adapter->stats.ptc64 += er32(PTC64);
3692 adapter->stats.ptc127 += er32(PTC127);
3693 adapter->stats.ptc255 += er32(PTC255);
3694 adapter->stats.ptc511 += er32(PTC511);
3695 adapter->stats.ptc1023 += er32(PTC1023);
3696 adapter->stats.ptc1522 += er32(PTC1522);
3698 adapter->stats.mptc += er32(MPTC);
3699 adapter->stats.bptc += er32(BPTC);
3701 /* used for adaptive IFS */
3703 hw->tx_packet_delta = er32(TPT);
3704 adapter->stats.tpt += hw->tx_packet_delta;
3705 hw->collision_delta = er32(COLC);
3706 adapter->stats.colc += hw->collision_delta;
3708 if (hw->mac_type >= e1000_82543) {
3709 adapter->stats.algnerrc += er32(ALGNERRC);
3710 adapter->stats.rxerrc += er32(RXERRC);
3711 adapter->stats.tncrs += er32(TNCRS);
3712 adapter->stats.cexterr += er32(CEXTERR);
3713 adapter->stats.tsctc += er32(TSCTC);
3714 adapter->stats.tsctfc += er32(TSCTFC);
3717 /* Fill out the OS statistics structure */
3718 netdev->stats.multicast = adapter->stats.mprc;
3719 netdev->stats.collisions = adapter->stats.colc;
3723 /* RLEC on some newer hardware can be incorrect so build
3724 * our own version based on RUC and ROC
3726 netdev->stats.rx_errors = adapter->stats.rxerrc +
3727 adapter->stats.crcerrs + adapter->stats.algnerrc +
3728 adapter->stats.ruc + adapter->stats.roc +
3729 adapter->stats.cexterr;
3730 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3737 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738 netdev->stats.tx_errors = adapter->stats.txerrc;
3739 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740 netdev->stats.tx_window_errors = adapter->stats.latecol;
3741 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742 if (hw->bad_tx_carr_stats_fd &&
3743 adapter->link_duplex == FULL_DUPLEX) {
3744 netdev->stats.tx_carrier_errors = 0;
3745 adapter->stats.tncrs = 0;
3748 /* Tx Dropped needs to be maintained elsewhere */
3751 if (hw->media_type == e1000_media_type_copper) {
3752 if ((adapter->link_speed == SPEED_1000) &&
3753 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755 adapter->phy_stats.idle_errors += phy_tmp;
3758 if ((hw->mac_type <= e1000_82546) &&
3759 (hw->phy_type == e1000_phy_m88) &&
3760 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761 adapter->phy_stats.receive_errors += phy_tmp;
3764 /* Management Stats */
3765 if (hw->has_smbus) {
3766 adapter->stats.mgptc += er32(MGTPTC);
3767 adapter->stats.mgprc += er32(MGTPRC);
3768 adapter->stats.mgpdc += er32(MGTPDC);
3771 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
3779 static irqreturn_t e1000_intr(int irq, void *data)
3781 struct net_device *netdev = data;
3782 struct e1000_adapter *adapter = netdev_priv(netdev);
3783 struct e1000_hw *hw = &adapter->hw;
3784 u32 icr = er32(ICR);
3786 if (unlikely((!icr)))
3787 return IRQ_NONE; /* Not our interrupt */
3789 /* we might have caused the interrupt, but the above
3790 * read cleared it, and just in case the driver is
3791 * down there is nothing to do so return handled
3793 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3796 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797 hw->get_link_status = 1;
3798 /* guard against interrupt when we're going down */
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 schedule_delayed_work(&adapter->watchdog_task, 1);
3803 /* disable interrupts, without the synchronize_irq bit */
3805 E1000_WRITE_FLUSH();
3807 if (likely(napi_schedule_prep(&adapter->napi))) {
3808 adapter->total_tx_bytes = 0;
3809 adapter->total_tx_packets = 0;
3810 adapter->total_rx_bytes = 0;
3811 adapter->total_rx_packets = 0;
3812 __napi_schedule(&adapter->napi);
3814 /* this really should not happen! if it does it is basically a
3815 * bug, but not a hard error, so enable ints and continue
3817 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 e1000_irq_enable(adapter);
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
3828 static int e1000_clean(struct napi_struct *napi, int budget)
3830 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3832 int tx_clean_complete = 0, work_done = 0;
3834 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3836 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3838 if (!tx_clean_complete)
3841 /* If budget not fully consumed, exit the polling mode */
3842 if (work_done < budget) {
3843 if (likely(adapter->itr_setting & 3))
3844 e1000_set_itr(adapter);
3845 napi_complete_done(napi, work_done);
3846 if (!test_bit(__E1000_DOWN, &adapter->flags))
3847 e1000_irq_enable(adapter);
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
3857 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858 struct e1000_tx_ring *tx_ring)
3860 struct e1000_hw *hw = &adapter->hw;
3861 struct net_device *netdev = adapter->netdev;
3862 struct e1000_tx_desc *tx_desc, *eop_desc;
3863 struct e1000_tx_buffer *buffer_info;
3864 unsigned int i, eop;
3865 unsigned int count = 0;
3866 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867 unsigned int bytes_compl = 0, pkts_compl = 0;
3869 i = tx_ring->next_to_clean;
3870 eop = tx_ring->buffer_info[i].next_to_watch;
3871 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3873 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874 (count < tx_ring->count)) {
3875 bool cleaned = false;
3876 dma_rmb(); /* read buffer_info after eop_desc */
3877 for ( ; !cleaned; count++) {
3878 tx_desc = E1000_TX_DESC(*tx_ring, i);
3879 buffer_info = &tx_ring->buffer_info[i];
3880 cleaned = (i == eop);
3883 total_tx_packets += buffer_info->segs;
3884 total_tx_bytes += buffer_info->bytecount;
3885 if (buffer_info->skb) {
3886 bytes_compl += buffer_info->skb->len;
3891 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892 tx_desc->upper.data = 0;
3894 if (unlikely(++i == tx_ring->count))
3898 eop = tx_ring->buffer_info[i].next_to_watch;
3899 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3902 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903 * which will reuse the cleaned buffers.
3905 smp_store_release(&tx_ring->next_to_clean, i);
3907 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3909 #define TX_WAKE_THRESHOLD 32
3910 if (unlikely(count && netif_carrier_ok(netdev) &&
3911 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912 /* Make sure that anybody stopping the queue after this
3913 * sees the new next_to_clean.
3917 if (netif_queue_stopped(netdev) &&
3918 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919 netif_wake_queue(netdev);
3920 ++adapter->restart_queue;
3924 if (adapter->detect_tx_hung) {
3925 /* Detect a transmit hang in hardware, this serializes the
3926 * check with the clearing of time_stamp and movement of i
3928 adapter->detect_tx_hung = false;
3929 if (tx_ring->buffer_info[eop].time_stamp &&
3930 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931 (adapter->tx_timeout_factor * HZ)) &&
3932 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3934 /* detected Tx unit hang */
3935 e_err(drv, "Detected Tx Unit Hang\n"
3939 " next_to_use <%x>\n"
3940 " next_to_clean <%x>\n"
3941 "buffer_info[next_to_clean]\n"
3942 " time_stamp <%lx>\n"
3943 " next_to_watch <%x>\n"
3945 " next_to_watch.status <%x>\n",
3946 (unsigned long)(tx_ring - adapter->tx_ring),
3947 readl(hw->hw_addr + tx_ring->tdh),
3948 readl(hw->hw_addr + tx_ring->tdt),
3949 tx_ring->next_to_use,
3950 tx_ring->next_to_clean,
3951 tx_ring->buffer_info[eop].time_stamp,
3954 eop_desc->upper.fields.status);
3955 e1000_dump(adapter);
3956 netif_stop_queue(netdev);
3959 adapter->total_tx_bytes += total_tx_bytes;
3960 adapter->total_tx_packets += total_tx_packets;
3961 netdev->stats.tx_bytes += total_tx_bytes;
3962 netdev->stats.tx_packets += total_tx_packets;
3963 return count < tx_ring->count;
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
3968 * @adapter: board private structure
3969 * @status_err: receive descriptor status and error fields
3970 * @csum: receive descriptor csum field
3971 * @sk_buff: socket buffer with received data
3973 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974 u32 csum, struct sk_buff *skb)
3976 struct e1000_hw *hw = &adapter->hw;
3977 u16 status = (u16)status_err;
3978 u8 errors = (u8)(status_err >> 24);
3980 skb_checksum_none_assert(skb);
3982 /* 82543 or newer only */
3983 if (unlikely(hw->mac_type < e1000_82543))
3985 /* Ignore Checksum bit is set */
3986 if (unlikely(status & E1000_RXD_STAT_IXSM))
3988 /* TCP/UDP checksum error bit is set */
3989 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990 /* let the stack verify checksum errors */
3991 adapter->hw_csum_err++;
3994 /* TCP/UDP Checksum has not been calculated */
3995 if (!(status & E1000_RXD_STAT_TCPCS))
3998 /* It must be a TCP or UDP packet with a valid checksum */
3999 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000 /* TCP checksum is good */
4001 skb->ip_summed = CHECKSUM_UNNECESSARY;
4003 adapter->hw_csum_good++;
4007 * e1000_consume_page - helper function for jumbo Rx path
4009 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4012 bi->rxbuf.page = NULL;
4014 skb->data_len += length;
4015 skb->truesize += PAGE_SIZE;
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4025 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026 __le16 vlan, struct sk_buff *skb)
4028 skb->protocol = eth_type_trans(skb, adapter->netdev);
4030 if (status & E1000_RXD_STAT_VP) {
4031 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4035 napi_gro_receive(&adapter->napi, skb);
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4046 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047 struct e1000_hw_stats *stats,
4048 u32 frame_len, const u8 *mac_addr)
4052 /* First adjust the frame length. */
4054 /* We need to adjust the statistics counters, since the hardware
4055 * counters overcount this packet as a CRC error and undercount
4056 * the packet as a good packet
4058 /* This packet should not be counted as a CRC error. */
4060 /* This packet does count as a Good Packet Received. */
4063 /* Adjust the Good Octets received counters */
4064 carry_bit = 0x80000000 & stats->gorcl;
4065 stats->gorcl += frame_len;
4066 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067 * Received Count) was one before the addition,
4068 * AND it is zero after, then we lost the carry out,
4069 * need to add one to Gorch (Good Octets Received Count High).
4070 * This could be simplified if all environments supported
4073 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4075 /* Is this a broadcast or multicast? Check broadcast first,
4076 * since the test for a multicast frame will test positive on
4077 * a broadcast frame.
4079 if (is_broadcast_ether_addr(mac_addr))
4081 else if (is_multicast_ether_addr(mac_addr))
4084 if (frame_len == hw->max_frame_size) {
4085 /* In this case, the hardware has overcounted the number of
4092 /* Adjust the bin counters when the extra byte put the frame in the
4093 * wrong bin. Remember that the frame_len was adjusted above.
4095 if (frame_len == 64) {
4098 } else if (frame_len == 127) {
4101 } else if (frame_len == 255) {
4104 } else if (frame_len == 511) {
4107 } else if (frame_len == 1023) {
4110 } else if (frame_len == 1522) {
4115 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116 u8 status, u8 errors,
4117 u32 length, const u8 *data)
4119 struct e1000_hw *hw = &adapter->hw;
4120 u8 last_byte = *(data + length - 1);
4122 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123 unsigned long irq_flags;
4125 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4135 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4138 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4141 adapter->alloc_rx_buff_failed++;
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4155 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156 struct e1000_rx_ring *rx_ring,
4157 int *work_done, int work_to_do)
4159 struct net_device *netdev = adapter->netdev;
4160 struct pci_dev *pdev = adapter->pdev;
4161 struct e1000_rx_desc *rx_desc, *next_rxd;
4162 struct e1000_rx_buffer *buffer_info, *next_buffer;
4165 int cleaned_count = 0;
4166 bool cleaned = false;
4167 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4169 i = rx_ring->next_to_clean;
4170 rx_desc = E1000_RX_DESC(*rx_ring, i);
4171 buffer_info = &rx_ring->buffer_info[i];
4173 while (rx_desc->status & E1000_RXD_STAT_DD) {
4174 struct sk_buff *skb;
4177 if (*work_done >= work_to_do)
4180 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4182 status = rx_desc->status;
4184 if (++i == rx_ring->count)
4187 next_rxd = E1000_RX_DESC(*rx_ring, i);
4190 next_buffer = &rx_ring->buffer_info[i];
4194 dma_unmap_page(&pdev->dev, buffer_info->dma,
4195 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196 buffer_info->dma = 0;
4198 length = le16_to_cpu(rx_desc->length);
4200 /* errors is only valid for DD + EOP descriptors */
4201 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203 u8 *mapped = page_address(buffer_info->rxbuf.page);
4205 if (e1000_tbi_should_accept(adapter, status,
4209 } else if (netdev->features & NETIF_F_RXALL) {
4212 /* an error means any chain goes out the window
4215 if (rx_ring->rx_skb_top)
4216 dev_kfree_skb(rx_ring->rx_skb_top);
4217 rx_ring->rx_skb_top = NULL;
4222 #define rxtop rx_ring->rx_skb_top
4224 if (!(status & E1000_RXD_STAT_EOP)) {
4225 /* this descriptor is only the beginning (or middle) */
4227 /* this is the beginning of a chain */
4228 rxtop = napi_get_frags(&adapter->napi);
4232 skb_fill_page_desc(rxtop, 0,
4233 buffer_info->rxbuf.page,
4236 /* this is the middle of a chain */
4237 skb_fill_page_desc(rxtop,
4238 skb_shinfo(rxtop)->nr_frags,
4239 buffer_info->rxbuf.page, 0, length);
4241 e1000_consume_page(buffer_info, rxtop, length);
4245 /* end of the chain */
4246 skb_fill_page_desc(rxtop,
4247 skb_shinfo(rxtop)->nr_frags,
4248 buffer_info->rxbuf.page, 0, length);
4251 e1000_consume_page(buffer_info, skb, length);
4254 /* no chain, got EOP, this buf is the packet
4255 * copybreak to save the put_page/alloc_page
4257 p = buffer_info->rxbuf.page;
4258 if (length <= copybreak) {
4261 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4263 skb = e1000_alloc_rx_skb(adapter,
4268 vaddr = kmap_atomic(p);
4269 memcpy(skb_tail_pointer(skb), vaddr,
4271 kunmap_atomic(vaddr);
4272 /* re-use the page, so don't erase
4273 * buffer_info->rxbuf.page
4275 skb_put(skb, length);
4276 e1000_rx_checksum(adapter,
4277 status | rx_desc->errors << 24,
4278 le16_to_cpu(rx_desc->csum), skb);
4280 total_rx_bytes += skb->len;
4283 e1000_receive_skb(adapter, status,
4284 rx_desc->special, skb);
4287 skb = napi_get_frags(&adapter->napi);
4289 adapter->alloc_rx_buff_failed++;
4292 skb_fill_page_desc(skb, 0, p, 0,
4294 e1000_consume_page(buffer_info, skb,
4300 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301 e1000_rx_checksum(adapter,
4303 ((u32)(rx_desc->errors) << 24),
4304 le16_to_cpu(rx_desc->csum), skb);
4306 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308 pskb_trim(skb, skb->len - 4);
4311 if (status & E1000_RXD_STAT_VP) {
4312 __le16 vlan = rx_desc->special;
4313 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4315 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4318 napi_gro_frags(&adapter->napi);
4321 rx_desc->status = 0;
4323 /* return some buffers to hardware, one at a time is too slow */
4324 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4329 /* use prefetched values */
4331 buffer_info = next_buffer;
4333 rx_ring->next_to_clean = i;
4335 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4337 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4339 adapter->total_rx_packets += total_rx_packets;
4340 adapter->total_rx_bytes += total_rx_bytes;
4341 netdev->stats.rx_bytes += total_rx_bytes;
4342 netdev->stats.rx_packets += total_rx_packets;
4346 /* this should improve performance for small packets with large amounts
4347 * of reassembly being done in the stack
4349 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350 struct e1000_rx_buffer *buffer_info,
4351 u32 length, const void *data)
4353 struct sk_buff *skb;
4355 if (length > copybreak)
4358 skb = e1000_alloc_rx_skb(adapter, length);
4362 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363 length, DMA_FROM_DEVICE);
4365 memcpy(skb_put(skb, length), data, length);
4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372 * @adapter: board private structure
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4377 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378 struct e1000_rx_ring *rx_ring,
4379 int *work_done, int work_to_do)
4381 struct net_device *netdev = adapter->netdev;
4382 struct pci_dev *pdev = adapter->pdev;
4383 struct e1000_rx_desc *rx_desc, *next_rxd;
4384 struct e1000_rx_buffer *buffer_info, *next_buffer;
4387 int cleaned_count = 0;
4388 bool cleaned = false;
4389 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4391 i = rx_ring->next_to_clean;
4392 rx_desc = E1000_RX_DESC(*rx_ring, i);
4393 buffer_info = &rx_ring->buffer_info[i];
4395 while (rx_desc->status & E1000_RXD_STAT_DD) {
4396 struct sk_buff *skb;
4400 if (*work_done >= work_to_do)
4403 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4405 status = rx_desc->status;
4406 length = le16_to_cpu(rx_desc->length);
4408 data = buffer_info->rxbuf.data;
4410 skb = e1000_copybreak(adapter, buffer_info, length, data);
4412 unsigned int frag_len = e1000_frag_len(adapter);
4414 skb = build_skb(data - E1000_HEADROOM, frag_len);
4416 adapter->alloc_rx_buff_failed++;
4420 skb_reserve(skb, E1000_HEADROOM);
4421 dma_unmap_single(&pdev->dev, buffer_info->dma,
4422 adapter->rx_buffer_len,
4424 buffer_info->dma = 0;
4425 buffer_info->rxbuf.data = NULL;
4428 if (++i == rx_ring->count)
4431 next_rxd = E1000_RX_DESC(*rx_ring, i);
4434 next_buffer = &rx_ring->buffer_info[i];
4439 /* !EOP means multiple descriptors were used to store a single
4440 * packet, if thats the case we need to toss it. In fact, we
4441 * to toss every packet with the EOP bit clear and the next
4442 * frame that _does_ have the EOP bit set, as it is by
4443 * definition only a frame fragment
4445 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446 adapter->discarding = true;
4448 if (adapter->discarding) {
4449 /* All receives must fit into a single buffer */
4450 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4452 if (status & E1000_RXD_STAT_EOP)
4453 adapter->discarding = false;
4457 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458 if (e1000_tbi_should_accept(adapter, status,
4462 } else if (netdev->features & NETIF_F_RXALL) {
4471 total_rx_bytes += (length - 4); /* don't count FCS */
4474 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475 /* adjust length to remove Ethernet CRC, this must be
4476 * done after the TBI_ACCEPT workaround above
4480 if (buffer_info->rxbuf.data == NULL)
4481 skb_put(skb, length);
4482 else /* copybreak skb */
4483 skb_trim(skb, length);
4485 /* Receive Checksum Offload */
4486 e1000_rx_checksum(adapter,
4488 ((u32)(rx_desc->errors) << 24),
4489 le16_to_cpu(rx_desc->csum), skb);
4491 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4494 rx_desc->status = 0;
4496 /* return some buffers to hardware, one at a time is too slow */
4497 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4502 /* use prefetched values */
4504 buffer_info = next_buffer;
4506 rx_ring->next_to_clean = i;
4508 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4510 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4512 adapter->total_rx_packets += total_rx_packets;
4513 adapter->total_rx_bytes += total_rx_bytes;
4514 netdev->stats.rx_bytes += total_rx_bytes;
4515 netdev->stats.rx_packets += total_rx_packets;
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4526 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527 struct e1000_rx_ring *rx_ring, int cleaned_count)
4529 struct pci_dev *pdev = adapter->pdev;
4530 struct e1000_rx_desc *rx_desc;
4531 struct e1000_rx_buffer *buffer_info;
4534 i = rx_ring->next_to_use;
4535 buffer_info = &rx_ring->buffer_info[i];
4537 while (cleaned_count--) {
4538 /* allocate a new page if necessary */
4539 if (!buffer_info->rxbuf.page) {
4540 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541 if (unlikely(!buffer_info->rxbuf.page)) {
4542 adapter->alloc_rx_buff_failed++;
4547 if (!buffer_info->dma) {
4548 buffer_info->dma = dma_map_page(&pdev->dev,
4549 buffer_info->rxbuf.page, 0,
4550 adapter->rx_buffer_len,
4552 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553 put_page(buffer_info->rxbuf.page);
4554 buffer_info->rxbuf.page = NULL;
4555 buffer_info->dma = 0;
4556 adapter->alloc_rx_buff_failed++;
4561 rx_desc = E1000_RX_DESC(*rx_ring, i);
4562 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4564 if (unlikely(++i == rx_ring->count))
4566 buffer_info = &rx_ring->buffer_info[i];
4569 if (likely(rx_ring->next_to_use != i)) {
4570 rx_ring->next_to_use = i;
4571 if (unlikely(i-- == 0))
4572 i = (rx_ring->count - 1);
4574 /* Force memory writes to complete before letting h/w
4575 * know there are new descriptors to fetch. (Only
4576 * applicable for weak-ordered memory model archs,
4580 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586 * @adapter: address of board private structure
4588 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589 struct e1000_rx_ring *rx_ring,
4592 struct e1000_hw *hw = &adapter->hw;
4593 struct pci_dev *pdev = adapter->pdev;
4594 struct e1000_rx_desc *rx_desc;
4595 struct e1000_rx_buffer *buffer_info;
4597 unsigned int bufsz = adapter->rx_buffer_len;
4599 i = rx_ring->next_to_use;
4600 buffer_info = &rx_ring->buffer_info[i];
4602 while (cleaned_count--) {
4605 if (buffer_info->rxbuf.data)
4608 data = e1000_alloc_frag(adapter);
4610 /* Better luck next round */
4611 adapter->alloc_rx_buff_failed++;
4615 /* Fix for errata 23, can't cross 64kB boundary */
4616 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617 void *olddata = data;
4618 e_err(rx_err, "skb align check failed: %u bytes at "
4619 "%p\n", bufsz, data);
4620 /* Try again, without freeing the previous */
4621 data = e1000_alloc_frag(adapter);
4622 /* Failed allocation, critical failure */
4624 skb_free_frag(olddata);
4625 adapter->alloc_rx_buff_failed++;
4629 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4631 skb_free_frag(data);
4632 skb_free_frag(olddata);
4633 adapter->alloc_rx_buff_failed++;
4637 /* Use new allocation */
4638 skb_free_frag(olddata);
4640 buffer_info->dma = dma_map_single(&pdev->dev,
4642 adapter->rx_buffer_len,
4644 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645 skb_free_frag(data);
4646 buffer_info->dma = 0;
4647 adapter->alloc_rx_buff_failed++;
4651 /* XXX if it was allocated cleanly it will never map to a
4655 /* Fix for errata 23, can't cross 64kB boundary */
4656 if (!e1000_check_64k_bound(adapter,
4657 (void *)(unsigned long)buffer_info->dma,
4658 adapter->rx_buffer_len)) {
4659 e_err(rx_err, "dma align check failed: %u bytes at "
4660 "%p\n", adapter->rx_buffer_len,
4661 (void *)(unsigned long)buffer_info->dma);
4663 dma_unmap_single(&pdev->dev, buffer_info->dma,
4664 adapter->rx_buffer_len,
4667 skb_free_frag(data);
4668 buffer_info->rxbuf.data = NULL;
4669 buffer_info->dma = 0;
4671 adapter->alloc_rx_buff_failed++;
4674 buffer_info->rxbuf.data = data;
4676 rx_desc = E1000_RX_DESC(*rx_ring, i);
4677 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4679 if (unlikely(++i == rx_ring->count))
4681 buffer_info = &rx_ring->buffer_info[i];
4684 if (likely(rx_ring->next_to_use != i)) {
4685 rx_ring->next_to_use = i;
4686 if (unlikely(i-- == 0))
4687 i = (rx_ring->count - 1);
4689 /* Force memory writes to complete before letting h/w
4690 * know there are new descriptors to fetch. (Only
4691 * applicable for weak-ordered memory model archs,
4695 writel(i, hw->hw_addr + rx_ring->rdt);
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4703 static void e1000_smartspeed(struct e1000_adapter *adapter)
4705 struct e1000_hw *hw = &adapter->hw;
4709 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4713 if (adapter->smartspeed == 0) {
4714 /* If Master/Slave config fault is asserted twice,
4715 * we assume back-to-back
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4723 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4728 adapter->smartspeed++;
4729 if (!e1000_phy_setup_autoneg(hw) &&
4730 !e1000_read_phy_reg(hw, PHY_CTRL,
4732 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733 MII_CR_RESTART_AUTO_NEG);
4734 e1000_write_phy_reg(hw, PHY_CTRL,
4739 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740 /* If still no link, perhaps using 2/3 pair cable */
4741 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742 phy_ctrl |= CR_1000T_MS_ENABLE;
4743 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744 if (!e1000_phy_setup_autoneg(hw) &&
4745 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747 MII_CR_RESTART_AUTO_NEG);
4748 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4751 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4752 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753 adapter->smartspeed = 0;
4762 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4768 return e1000_mii_ioctl(netdev, ifr, cmd);
4780 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4783 struct e1000_adapter *adapter = netdev_priv(netdev);
4784 struct e1000_hw *hw = &adapter->hw;
4785 struct mii_ioctl_data *data = if_mii(ifr);
4788 unsigned long flags;
4790 if (hw->media_type != e1000_media_type_copper)
4795 data->phy_id = hw->phy_addr;
4798 spin_lock_irqsave(&adapter->stats_lock, flags);
4799 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4804 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4807 if (data->reg_num & ~(0x1F))
4809 mii_reg = data->val_in;
4810 spin_lock_irqsave(&adapter->stats_lock, flags);
4811 if (e1000_write_phy_reg(hw, data->reg_num,
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4816 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817 if (hw->media_type == e1000_media_type_copper) {
4818 switch (data->reg_num) {
4820 if (mii_reg & MII_CR_POWER_DOWN)
4822 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4824 hw->autoneg_advertised = 0x2F;
4829 else if (mii_reg & 0x2000)
4833 retval = e1000_set_spd_dplx(
4841 if (netif_running(adapter->netdev))
4842 e1000_reinit_locked(adapter);
4844 e1000_reset(adapter);
4846 case M88E1000_PHY_SPEC_CTRL:
4847 case M88E1000_EXT_PHY_SPEC_CTRL:
4848 if (e1000_phy_reset(hw))
4853 switch (data->reg_num) {
4855 if (mii_reg & MII_CR_POWER_DOWN)
4857 if (netif_running(adapter->netdev))
4858 e1000_reinit_locked(adapter);
4860 e1000_reset(adapter);
4868 return E1000_SUCCESS;
4871 void e1000_pci_set_mwi(struct e1000_hw *hw)
4873 struct e1000_adapter *adapter = hw->back;
4874 int ret_val = pci_set_mwi(adapter->pdev);
4877 e_err(probe, "Error in setting MWI\n");
4880 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4882 struct e1000_adapter *adapter = hw->back;
4884 pci_clear_mwi(adapter->pdev);
4887 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4889 struct e1000_adapter *adapter = hw->back;
4890 return pcix_get_mmrbc(adapter->pdev);
4893 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4895 struct e1000_adapter *adapter = hw->back;
4896 pcix_set_mmrbc(adapter->pdev, mmrbc);
4899 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4904 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4908 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4913 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914 netdev_features_t features)
4916 struct e1000_hw *hw = &adapter->hw;
4920 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921 /* enable VLAN tag insert/strip */
4922 ctrl |= E1000_CTRL_VME;
4924 /* disable VLAN tag insert/strip */
4925 ctrl &= ~E1000_CTRL_VME;
4929 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4932 struct e1000_hw *hw = &adapter->hw;
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4938 __e1000_vlan_mode(adapter, adapter->netdev->features);
4940 /* enable VLAN receive filtering */
4942 rctl &= ~E1000_RCTL_CFIEN;
4943 if (!(adapter->netdev->flags & IFF_PROMISC))
4944 rctl |= E1000_RCTL_VFE;
4946 e1000_update_mng_vlan(adapter);
4948 /* disable VLAN receive filtering */
4950 rctl &= ~E1000_RCTL_VFE;
4954 if (!test_bit(__E1000_DOWN, &adapter->flags))
4955 e1000_irq_enable(adapter);
4958 static void e1000_vlan_mode(struct net_device *netdev,
4959 netdev_features_t features)
4961 struct e1000_adapter *adapter = netdev_priv(netdev);
4963 if (!test_bit(__E1000_DOWN, &adapter->flags))
4964 e1000_irq_disable(adapter);
4966 __e1000_vlan_mode(adapter, features);
4968 if (!test_bit(__E1000_DOWN, &adapter->flags))
4969 e1000_irq_enable(adapter);
4972 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973 __be16 proto, u16 vid)
4975 struct e1000_adapter *adapter = netdev_priv(netdev);
4976 struct e1000_hw *hw = &adapter->hw;
4979 if ((hw->mng_cookie.status &
4980 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981 (vid == adapter->mng_vlan_id))
4984 if (!e1000_vlan_used(adapter))
4985 e1000_vlan_filter_on_off(adapter, true);
4987 /* add VID to filter table */
4988 index = (vid >> 5) & 0x7F;
4989 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990 vfta |= (1 << (vid & 0x1F));
4991 e1000_write_vfta(hw, index, vfta);
4993 set_bit(vid, adapter->active_vlans);
4998 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999 __be16 proto, u16 vid)
5001 struct e1000_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_disable(adapter);
5007 if (!test_bit(__E1000_DOWN, &adapter->flags))
5008 e1000_irq_enable(adapter);
5010 /* remove VID from filter table */
5011 index = (vid >> 5) & 0x7F;
5012 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013 vfta &= ~(1 << (vid & 0x1F));
5014 e1000_write_vfta(hw, index, vfta);
5016 clear_bit(vid, adapter->active_vlans);
5018 if (!e1000_vlan_used(adapter))
5019 e1000_vlan_filter_on_off(adapter, false);
5024 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5028 if (!e1000_vlan_used(adapter))
5031 e1000_vlan_filter_on_off(adapter, true);
5032 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5036 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5038 struct e1000_hw *hw = &adapter->hw;
5042 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5043 * for the switch() below to work
5045 if ((spd & 1) || (dplx & ~1))
5048 /* Fiber NICs only allow 1000 gbps Full duplex */
5049 if ((hw->media_type == e1000_media_type_fiber) &&
5050 spd != SPEED_1000 &&
5051 dplx != DUPLEX_FULL)
5054 switch (spd + dplx) {
5055 case SPEED_10 + DUPLEX_HALF:
5056 hw->forced_speed_duplex = e1000_10_half;
5058 case SPEED_10 + DUPLEX_FULL:
5059 hw->forced_speed_duplex = e1000_10_full;
5061 case SPEED_100 + DUPLEX_HALF:
5062 hw->forced_speed_duplex = e1000_100_half;
5064 case SPEED_100 + DUPLEX_FULL:
5065 hw->forced_speed_duplex = e1000_100_full;
5067 case SPEED_1000 + DUPLEX_FULL:
5069 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5071 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5076 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077 hw->mdix = AUTO_ALL_MODES;
5082 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5086 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5088 struct net_device *netdev = pci_get_drvdata(pdev);
5089 struct e1000_adapter *adapter = netdev_priv(netdev);
5090 struct e1000_hw *hw = &adapter->hw;
5091 u32 ctrl, ctrl_ext, rctl, status;
5092 u32 wufc = adapter->wol;
5097 netif_device_detach(netdev);
5099 if (netif_running(netdev)) {
5100 int count = E1000_CHECK_RESET_COUNT;
5102 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103 usleep_range(10000, 20000);
5105 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106 e1000_down(adapter);
5110 retval = pci_save_state(pdev);
5115 status = er32(STATUS);
5116 if (status & E1000_STATUS_LU)
5117 wufc &= ~E1000_WUFC_LNKC;
5120 e1000_setup_rctl(adapter);
5121 e1000_set_rx_mode(netdev);
5125 /* turn on all-multi mode if wake on multicast is enabled */
5126 if (wufc & E1000_WUFC_MC)
5127 rctl |= E1000_RCTL_MPE;
5129 /* enable receives in the hardware */
5130 ew32(RCTL, rctl | E1000_RCTL_EN);
5132 if (hw->mac_type >= e1000_82540) {
5134 /* advertise wake from D3Cold */
5135 #define E1000_CTRL_ADVD3WUC 0x00100000
5136 /* phy power management enable */
5137 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138 ctrl |= E1000_CTRL_ADVD3WUC |
5139 E1000_CTRL_EN_PHY_PWR_MGMT;
5143 if (hw->media_type == e1000_media_type_fiber ||
5144 hw->media_type == e1000_media_type_internal_serdes) {
5145 /* keep the laser running in D3 */
5146 ctrl_ext = er32(CTRL_EXT);
5147 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148 ew32(CTRL_EXT, ctrl_ext);
5151 ew32(WUC, E1000_WUC_PME_EN);
5158 e1000_release_manageability(adapter);
5160 *enable_wake = !!wufc;
5162 /* make sure adapter isn't asleep if manageability is enabled */
5163 if (adapter->en_mng_pt)
5164 *enable_wake = true;
5166 if (netif_running(netdev))
5167 e1000_free_irq(adapter);
5169 pci_disable_device(pdev);
5175 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5180 retval = __e1000_shutdown(pdev, &wake);
5185 pci_prepare_to_sleep(pdev);
5187 pci_wake_from_d3(pdev, false);
5188 pci_set_power_state(pdev, PCI_D3hot);
5194 static int e1000_resume(struct pci_dev *pdev)
5196 struct net_device *netdev = pci_get_drvdata(pdev);
5197 struct e1000_adapter *adapter = netdev_priv(netdev);
5198 struct e1000_hw *hw = &adapter->hw;
5201 pci_set_power_state(pdev, PCI_D0);
5202 pci_restore_state(pdev);
5203 pci_save_state(pdev);
5205 if (adapter->need_ioport)
5206 err = pci_enable_device(pdev);
5208 err = pci_enable_device_mem(pdev);
5210 pr_err("Cannot enable PCI device from suspend\n");
5213 pci_set_master(pdev);
5215 pci_enable_wake(pdev, PCI_D3hot, 0);
5216 pci_enable_wake(pdev, PCI_D3cold, 0);
5218 if (netif_running(netdev)) {
5219 err = e1000_request_irq(adapter);
5224 e1000_power_up_phy(adapter);
5225 e1000_reset(adapter);
5228 e1000_init_manageability(adapter);
5230 if (netif_running(netdev))
5233 netif_device_attach(netdev);
5239 static void e1000_shutdown(struct pci_dev *pdev)
5243 __e1000_shutdown(pdev, &wake);
5245 if (system_state == SYSTEM_POWER_OFF) {
5246 pci_wake_from_d3(pdev, wake);
5247 pci_set_power_state(pdev, PCI_D3hot);
5251 #ifdef CONFIG_NET_POLL_CONTROLLER
5252 /* Polling 'interrupt' - used by things like netconsole to send skbs
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5256 static void e1000_netpoll(struct net_device *netdev)
5258 struct e1000_adapter *adapter = netdev_priv(netdev);
5260 disable_irq(adapter->pdev->irq);
5261 e1000_intr(adapter->pdev->irq, netdev);
5262 enable_irq(adapter->pdev->irq);
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
5269 * @state: The current pci connection state
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5274 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275 pci_channel_state_t state)
5277 struct net_device *netdev = pci_get_drvdata(pdev);
5278 struct e1000_adapter *adapter = netdev_priv(netdev);
5280 netif_device_detach(netdev);
5282 if (state == pci_channel_io_perm_failure)
5283 return PCI_ERS_RESULT_DISCONNECT;
5285 if (netif_running(netdev))
5286 e1000_down(adapter);
5287 pci_disable_device(pdev);
5289 /* Request a slot slot reset. */
5290 return PCI_ERS_RESULT_NEED_RESET;
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5300 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5302 struct net_device *netdev = pci_get_drvdata(pdev);
5303 struct e1000_adapter *adapter = netdev_priv(netdev);
5304 struct e1000_hw *hw = &adapter->hw;
5307 if (adapter->need_ioport)
5308 err = pci_enable_device(pdev);
5310 err = pci_enable_device_mem(pdev);
5312 pr_err("Cannot re-enable PCI device after reset.\n");
5313 return PCI_ERS_RESULT_DISCONNECT;
5315 pci_set_master(pdev);
5317 pci_enable_wake(pdev, PCI_D3hot, 0);
5318 pci_enable_wake(pdev, PCI_D3cold, 0);
5320 e1000_reset(adapter);
5323 return PCI_ERS_RESULT_RECOVERED;
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5334 static void e1000_io_resume(struct pci_dev *pdev)
5336 struct net_device *netdev = pci_get_drvdata(pdev);
5337 struct e1000_adapter *adapter = netdev_priv(netdev);
5339 e1000_init_manageability(adapter);
5341 if (netif_running(netdev)) {
5342 if (e1000_up(adapter)) {
5343 pr_info("can't bring device back up after reset\n");
5348 netif_device_attach(netdev);