]> Git Repo - linux.git/blob - drivers/pci/controller/vmd.c
Merge tag 'arc-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-ecam.h>
15 #include <linux/srcu.h>
16 #include <linux/rculist.h>
17 #include <linux/rcupdate.h>
18
19 #include <asm/irqdomain.h>
20 #include <asm/device.h>
21 #include <asm/msi.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
50
51         /*
52          * Device contains physical location shadow registers in
53          * vendor-specific capability space
54          */
55         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
56
57         /*
58          * Device may use MSI-X vector 0 for software triggering and will not
59          * be used for MSI remapping
60          */
61         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
62 };
63
64 /*
65  * Lock for manipulating VMD IRQ lists.
66  */
67 static DEFINE_RAW_SPINLOCK(list_lock);
68
69 /**
70  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
71  * @node:       list item for parent traversal.
72  * @irq:        back pointer to parent.
73  * @enabled:    true if driver enabled IRQ
74  * @virq:       the virtual IRQ value provided to the requesting driver.
75  *
76  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
77  * a VMD IRQ using this structure.
78  */
79 struct vmd_irq {
80         struct list_head        node;
81         struct vmd_irq_list     *irq;
82         bool                    enabled;
83         unsigned int            virq;
84 };
85
86 /**
87  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
88  * @irq_list:   the list of irq's the VMD one demuxes to.
89  * @srcu:       SRCU struct for local synchronization.
90  * @count:      number of child IRQs assigned to this vector; used to track
91  *              sharing.
92  */
93 struct vmd_irq_list {
94         struct list_head        irq_list;
95         struct srcu_struct      srcu;
96         unsigned int            count;
97 };
98
99 struct vmd_dev {
100         struct pci_dev          *dev;
101
102         spinlock_t              cfg_lock;
103         void __iomem            *cfgbar;
104
105         int msix_count;
106         struct vmd_irq_list     *irqs;
107
108         struct pci_sysdata      sysdata;
109         struct resource         resources[3];
110         struct irq_domain       *irq_domain;
111         struct pci_bus          *bus;
112         u8                      busn_start;
113         u8                      first_vec;
114 };
115
116 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
117 {
118         return container_of(bus->sysdata, struct vmd_dev, sysdata);
119 }
120
121 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
122                                            struct vmd_irq_list *irqs)
123 {
124         return irqs - vmd->irqs;
125 }
126
127 /*
128  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
129  * but the MSI entry for the hardware it's driving will be programmed with a
130  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
131  * domain into one of its own, and the VMD driver de-muxes these for the
132  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
133  * and irq_chip to set this up.
134  */
135 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
136 {
137         struct vmd_irq *vmdirq = data->chip_data;
138         struct vmd_irq_list *irq = vmdirq->irq;
139         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
140
141         memset(msg, 0, sizeof(*msg));
142         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
143         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
144         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
145 }
146
147 /*
148  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
149  */
150 static void vmd_irq_enable(struct irq_data *data)
151 {
152         struct vmd_irq *vmdirq = data->chip_data;
153         unsigned long flags;
154
155         raw_spin_lock_irqsave(&list_lock, flags);
156         WARN_ON(vmdirq->enabled);
157         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
158         vmdirq->enabled = true;
159         raw_spin_unlock_irqrestore(&list_lock, flags);
160
161         data->chip->irq_unmask(data);
162 }
163
164 static void vmd_irq_disable(struct irq_data *data)
165 {
166         struct vmd_irq *vmdirq = data->chip_data;
167         unsigned long flags;
168
169         data->chip->irq_mask(data);
170
171         raw_spin_lock_irqsave(&list_lock, flags);
172         if (vmdirq->enabled) {
173                 list_del_rcu(&vmdirq->node);
174                 vmdirq->enabled = false;
175         }
176         raw_spin_unlock_irqrestore(&list_lock, flags);
177 }
178
179 /*
180  * XXX: Stubbed until we develop acceptable way to not create conflicts with
181  * other devices sharing the same vector.
182  */
183 static int vmd_irq_set_affinity(struct irq_data *data,
184                                 const struct cpumask *dest, bool force)
185 {
186         return -EINVAL;
187 }
188
189 static struct irq_chip vmd_msi_controller = {
190         .name                   = "VMD-MSI",
191         .irq_enable             = vmd_irq_enable,
192         .irq_disable            = vmd_irq_disable,
193         .irq_compose_msi_msg    = vmd_compose_msi_msg,
194         .irq_set_affinity       = vmd_irq_set_affinity,
195 };
196
197 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
198                                      msi_alloc_info_t *arg)
199 {
200         return 0;
201 }
202
203 /*
204  * XXX: We can be even smarter selecting the best IRQ once we solve the
205  * affinity problem.
206  */
207 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
208 {
209         unsigned long flags;
210         int i, best;
211
212         if (vmd->msix_count == 1 + vmd->first_vec)
213                 return &vmd->irqs[vmd->first_vec];
214
215         /*
216          * White list for fast-interrupt handlers. All others will share the
217          * "slow" interrupt vector.
218          */
219         switch (msi_desc_to_pci_dev(desc)->class) {
220         case PCI_CLASS_STORAGE_EXPRESS:
221                 break;
222         default:
223                 return &vmd->irqs[vmd->first_vec];
224         }
225
226         raw_spin_lock_irqsave(&list_lock, flags);
227         best = vmd->first_vec + 1;
228         for (i = best; i < vmd->msix_count; i++)
229                 if (vmd->irqs[i].count < vmd->irqs[best].count)
230                         best = i;
231         vmd->irqs[best].count++;
232         raw_spin_unlock_irqrestore(&list_lock, flags);
233
234         return &vmd->irqs[best];
235 }
236
237 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
238                         unsigned int virq, irq_hw_number_t hwirq,
239                         msi_alloc_info_t *arg)
240 {
241         struct msi_desc *desc = arg->desc;
242         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
243         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
244         unsigned int index, vector;
245
246         if (!vmdirq)
247                 return -ENOMEM;
248
249         INIT_LIST_HEAD(&vmdirq->node);
250         vmdirq->irq = vmd_next_irq(vmd, desc);
251         vmdirq->virq = virq;
252         index = index_from_irqs(vmd, vmdirq->irq);
253         vector = pci_irq_vector(vmd->dev, index);
254
255         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
256                             handle_untracked_irq, vmd, NULL);
257         return 0;
258 }
259
260 static void vmd_msi_free(struct irq_domain *domain,
261                         struct msi_domain_info *info, unsigned int virq)
262 {
263         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
264         unsigned long flags;
265
266         synchronize_srcu(&vmdirq->irq->srcu);
267
268         /* XXX: Potential optimization to rebalance */
269         raw_spin_lock_irqsave(&list_lock, flags);
270         vmdirq->irq->count--;
271         raw_spin_unlock_irqrestore(&list_lock, flags);
272
273         kfree(vmdirq);
274 }
275
276 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
277                            int nvec, msi_alloc_info_t *arg)
278 {
279         struct pci_dev *pdev = to_pci_dev(dev);
280         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
281
282         if (nvec > vmd->msix_count)
283                 return vmd->msix_count;
284
285         memset(arg, 0, sizeof(*arg));
286         return 0;
287 }
288
289 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
290 {
291         arg->desc = desc;
292 }
293
294 static struct msi_domain_ops vmd_msi_domain_ops = {
295         .get_hwirq      = vmd_get_hwirq,
296         .msi_init       = vmd_msi_init,
297         .msi_free       = vmd_msi_free,
298         .msi_prepare    = vmd_msi_prepare,
299         .set_desc       = vmd_set_desc,
300 };
301
302 static struct msi_domain_info vmd_msi_domain_info = {
303         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
304                           MSI_FLAG_PCI_MSIX,
305         .ops            = &vmd_msi_domain_ops,
306         .chip           = &vmd_msi_controller,
307 };
308
309 static int vmd_create_irq_domain(struct vmd_dev *vmd)
310 {
311         struct fwnode_handle *fn;
312
313         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
314         if (!fn)
315                 return -ENODEV;
316
317         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
318         if (!vmd->irq_domain) {
319                 irq_domain_free_fwnode(fn);
320                 return -ENODEV;
321         }
322
323         return 0;
324 }
325
326 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
327 {
328         if (vmd->irq_domain) {
329                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
330
331                 irq_domain_remove(vmd->irq_domain);
332                 irq_domain_free_fwnode(fn);
333         }
334 }
335
336 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
337                                   unsigned int devfn, int reg, int len)
338 {
339         unsigned int busnr_ecam = bus->number - vmd->busn_start;
340         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
341
342         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
343                 return NULL;
344
345         return vmd->cfgbar + offset;
346 }
347
348 /*
349  * CPU may deadlock if config space is not serialized on some versions of this
350  * hardware, so all config space access is done under a spinlock.
351  */
352 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
353                         int len, u32 *value)
354 {
355         struct vmd_dev *vmd = vmd_from_bus(bus);
356         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
357         unsigned long flags;
358         int ret = 0;
359
360         if (!addr)
361                 return -EFAULT;
362
363         spin_lock_irqsave(&vmd->cfg_lock, flags);
364         switch (len) {
365         case 1:
366                 *value = readb(addr);
367                 break;
368         case 2:
369                 *value = readw(addr);
370                 break;
371         case 4:
372                 *value = readl(addr);
373                 break;
374         default:
375                 ret = -EINVAL;
376                 break;
377         }
378         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
379         return ret;
380 }
381
382 /*
383  * VMD h/w converts non-posted config writes to posted memory writes. The
384  * read-back in this function forces the completion so it returns only after
385  * the config space was written, as expected.
386  */
387 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
388                          int len, u32 value)
389 {
390         struct vmd_dev *vmd = vmd_from_bus(bus);
391         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
392         unsigned long flags;
393         int ret = 0;
394
395         if (!addr)
396                 return -EFAULT;
397
398         spin_lock_irqsave(&vmd->cfg_lock, flags);
399         switch (len) {
400         case 1:
401                 writeb(value, addr);
402                 readb(addr);
403                 break;
404         case 2:
405                 writew(value, addr);
406                 readw(addr);
407                 break;
408         case 4:
409                 writel(value, addr);
410                 readl(addr);
411                 break;
412         default:
413                 ret = -EINVAL;
414                 break;
415         }
416         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
417         return ret;
418 }
419
420 static struct pci_ops vmd_ops = {
421         .read           = vmd_pci_read,
422         .write          = vmd_pci_write,
423 };
424
425 static void vmd_attach_resources(struct vmd_dev *vmd)
426 {
427         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
428         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
429 }
430
431 static void vmd_detach_resources(struct vmd_dev *vmd)
432 {
433         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
434         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
435 }
436
437 /*
438  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
439  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
440  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
441  * currently reserved.
442  */
443 static int vmd_find_free_domain(void)
444 {
445         int domain = 0xffff;
446         struct pci_bus *bus = NULL;
447
448         while ((bus = pci_find_next_bus(bus)) != NULL)
449                 domain = max_t(int, domain, pci_domain_nr(bus));
450         return domain + 1;
451 }
452
453 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
454                                 resource_size_t *offset1,
455                                 resource_size_t *offset2)
456 {
457         struct pci_dev *dev = vmd->dev;
458         u64 phys1, phys2;
459
460         if (native_hint) {
461                 u32 vmlock;
462                 int ret;
463
464                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
465                 if (ret || vmlock == ~0)
466                         return -ENODEV;
467
468                 if (MB2_SHADOW_EN(vmlock)) {
469                         void __iomem *membar2;
470
471                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
472                         if (!membar2)
473                                 return -ENOMEM;
474                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
475                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
476                         pci_iounmap(dev, membar2);
477                 } else
478                         return 0;
479         } else {
480                 /* Hypervisor-Emulated Vendor-Specific Capability */
481                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
482                 u32 reg, regu;
483
484                 pci_read_config_dword(dev, pos + 4, &reg);
485
486                 /* "SHDW" */
487                 if (pos && reg == 0x53484457) {
488                         pci_read_config_dword(dev, pos + 8, &reg);
489                         pci_read_config_dword(dev, pos + 12, &regu);
490                         phys1 = (u64) regu << 32 | reg;
491
492                         pci_read_config_dword(dev, pos + 16, &reg);
493                         pci_read_config_dword(dev, pos + 20, &regu);
494                         phys2 = (u64) regu << 32 | reg;
495                 } else
496                         return 0;
497         }
498
499         *offset1 = dev->resource[VMD_MEMBAR1].start -
500                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
501         *offset2 = dev->resource[VMD_MEMBAR2].start -
502                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
503
504         return 0;
505 }
506
507 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
508 {
509         struct pci_dev *dev = vmd->dev;
510         u16 reg;
511
512         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
513         if (BUS_RESTRICT_CAP(reg)) {
514                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
515
516                 switch (BUS_RESTRICT_CFG(reg)) {
517                 case 0:
518                         vmd->busn_start = 0;
519                         break;
520                 case 1:
521                         vmd->busn_start = 128;
522                         break;
523                 case 2:
524                         vmd->busn_start = 224;
525                         break;
526                 default:
527                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
528                                 BUS_RESTRICT_CFG(reg));
529                         return -ENODEV;
530                 }
531         }
532
533         return 0;
534 }
535
536 static irqreturn_t vmd_irq(int irq, void *data)
537 {
538         struct vmd_irq_list *irqs = data;
539         struct vmd_irq *vmdirq;
540         int idx;
541
542         idx = srcu_read_lock(&irqs->srcu);
543         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
544                 generic_handle_irq(vmdirq->virq);
545         srcu_read_unlock(&irqs->srcu, idx);
546
547         return IRQ_HANDLED;
548 }
549
550 static int vmd_alloc_irqs(struct vmd_dev *vmd)
551 {
552         struct pci_dev *dev = vmd->dev;
553         int i, err;
554
555         vmd->msix_count = pci_msix_vec_count(dev);
556         if (vmd->msix_count < 0)
557                 return -ENODEV;
558
559         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
560                                                 vmd->msix_count, PCI_IRQ_MSIX);
561         if (vmd->msix_count < 0)
562                 return vmd->msix_count;
563
564         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
565                                  GFP_KERNEL);
566         if (!vmd->irqs)
567                 return -ENOMEM;
568
569         for (i = 0; i < vmd->msix_count; i++) {
570                 err = init_srcu_struct(&vmd->irqs[i].srcu);
571                 if (err)
572                         return err;
573
574                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
575                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
576                                        vmd_irq, IRQF_NO_THREAD,
577                                        "vmd", &vmd->irqs[i]);
578                 if (err)
579                         return err;
580         }
581
582         return 0;
583 }
584
585 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
586 {
587         struct pci_sysdata *sd = &vmd->sysdata;
588         struct resource *res;
589         u32 upper_bits;
590         unsigned long flags;
591         LIST_HEAD(resources);
592         resource_size_t offset[2] = {0};
593         resource_size_t membar2_offset = 0x2000;
594         struct pci_bus *child;
595         int ret;
596
597         /*
598          * Shadow registers may exist in certain VMD device ids which allow
599          * guests to correctly assign host physical addresses to the root ports
600          * and child devices. These registers will either return the host value
601          * or 0, depending on an enable bit in the VMD device.
602          */
603         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
604                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
605                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
606                 if (ret)
607                         return ret;
608         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
609                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
610                 if (ret)
611                         return ret;
612         }
613
614         /*
615          * Certain VMD devices may have a root port configuration option which
616          * limits the bus range to between 0-127, 128-255, or 224-255
617          */
618         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
619                 ret = vmd_get_bus_number_start(vmd);
620                 if (ret)
621                         return ret;
622         }
623
624         res = &vmd->dev->resource[VMD_CFGBAR];
625         vmd->resources[0] = (struct resource) {
626                 .name  = "VMD CFGBAR",
627                 .start = vmd->busn_start,
628                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
629                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
630         };
631
632         /*
633          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
634          * put 32-bit resources in the window.
635          *
636          * There's no hardware reason why a 64-bit window *couldn't*
637          * contain a 32-bit resource, but pbus_size_mem() computes the
638          * bridge window size assuming a 64-bit window will contain no
639          * 32-bit resources.  __pci_assign_resource() enforces that
640          * artificial restriction to make sure everything will fit.
641          *
642          * The only way we could use a 64-bit non-prefetchable MEMBAR is
643          * if its address is <4GB so that we can convert it to a 32-bit
644          * resource.  To be visible to the host OS, all VMD endpoints must
645          * be initially configured by platform BIOS, which includes setting
646          * up these resources.  We can assume the device is configured
647          * according to the platform needs.
648          */
649         res = &vmd->dev->resource[VMD_MEMBAR1];
650         upper_bits = upper_32_bits(res->end);
651         flags = res->flags & ~IORESOURCE_SIZEALIGN;
652         if (!upper_bits)
653                 flags &= ~IORESOURCE_MEM_64;
654         vmd->resources[1] = (struct resource) {
655                 .name  = "VMD MEMBAR1",
656                 .start = res->start,
657                 .end   = res->end,
658                 .flags = flags,
659                 .parent = res,
660         };
661
662         res = &vmd->dev->resource[VMD_MEMBAR2];
663         upper_bits = upper_32_bits(res->end);
664         flags = res->flags & ~IORESOURCE_SIZEALIGN;
665         if (!upper_bits)
666                 flags &= ~IORESOURCE_MEM_64;
667         vmd->resources[2] = (struct resource) {
668                 .name  = "VMD MEMBAR2",
669                 .start = res->start + membar2_offset,
670                 .end   = res->end,
671                 .flags = flags,
672                 .parent = res,
673         };
674
675         sd->vmd_dev = vmd->dev;
676         sd->domain = vmd_find_free_domain();
677         if (sd->domain < 0)
678                 return sd->domain;
679
680         sd->node = pcibus_to_node(vmd->dev->bus);
681
682         ret = vmd_create_irq_domain(vmd);
683         if (ret)
684                 return ret;
685
686         /*
687          * Override the irq domain bus token so the domain can be distinguished
688          * from a regular PCI/MSI domain.
689          */
690         irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
691
692         pci_add_resource(&resources, &vmd->resources[0]);
693         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
694         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
695
696         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
697                                        &vmd_ops, sd, &resources);
698         if (!vmd->bus) {
699                 pci_free_resource_list(&resources);
700                 vmd_remove_irq_domain(vmd);
701                 return -ENODEV;
702         }
703
704         vmd_attach_resources(vmd);
705         if (vmd->irq_domain)
706                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
707
708         pci_scan_child_bus(vmd->bus);
709         pci_assign_unassigned_bus_resources(vmd->bus);
710
711         /*
712          * VMD root buses are virtual and don't return true on pci_is_pcie()
713          * and will fail pcie_bus_configure_settings() early. It can instead be
714          * run on each of the real root ports.
715          */
716         list_for_each_entry(child, &vmd->bus->children, node)
717                 pcie_bus_configure_settings(child);
718
719         pci_bus_add_devices(vmd->bus);
720
721         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
722                                "domain"), "Can't create symlink to domain\n");
723         return 0;
724 }
725
726 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
727 {
728         unsigned long features = (unsigned long) id->driver_data;
729         struct vmd_dev *vmd;
730         int err;
731
732         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
733                 return -ENOMEM;
734
735         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
736         if (!vmd)
737                 return -ENOMEM;
738
739         vmd->dev = dev;
740         err = pcim_enable_device(dev);
741         if (err < 0)
742                 return err;
743
744         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
745         if (!vmd->cfgbar)
746                 return -ENOMEM;
747
748         pci_set_master(dev);
749         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
750             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
751                 return -ENODEV;
752
753         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
754                 vmd->first_vec = 1;
755
756         err = vmd_alloc_irqs(vmd);
757         if (err)
758                 return err;
759
760         spin_lock_init(&vmd->cfg_lock);
761         pci_set_drvdata(dev, vmd);
762         err = vmd_enable_domain(vmd, features);
763         if (err)
764                 return err;
765
766         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
767                  vmd->sysdata.domain);
768         return 0;
769 }
770
771 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
772 {
773         int i;
774
775         for (i = 0; i < vmd->msix_count; i++)
776                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
777 }
778
779 static void vmd_remove(struct pci_dev *dev)
780 {
781         struct vmd_dev *vmd = pci_get_drvdata(dev);
782
783         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
784         pci_stop_root_bus(vmd->bus);
785         pci_remove_root_bus(vmd->bus);
786         vmd_cleanup_srcu(vmd);
787         vmd_detach_resources(vmd);
788         vmd_remove_irq_domain(vmd);
789 }
790
791 #ifdef CONFIG_PM_SLEEP
792 static int vmd_suspend(struct device *dev)
793 {
794         struct pci_dev *pdev = to_pci_dev(dev);
795         struct vmd_dev *vmd = pci_get_drvdata(pdev);
796         int i;
797
798         for (i = 0; i < vmd->msix_count; i++)
799                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
800
801         return 0;
802 }
803
804 static int vmd_resume(struct device *dev)
805 {
806         struct pci_dev *pdev = to_pci_dev(dev);
807         struct vmd_dev *vmd = pci_get_drvdata(pdev);
808         int err, i;
809
810         for (i = 0; i < vmd->msix_count; i++) {
811                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
812                                        vmd_irq, IRQF_NO_THREAD,
813                                        "vmd", &vmd->irqs[i]);
814                 if (err)
815                         return err;
816         }
817
818         return 0;
819 }
820 #endif
821 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
822
823 static const struct pci_device_id vmd_ids[] = {
824         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
825                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
826         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
827                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
828                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
829         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
830                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
831                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
832                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
833         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
834                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
835                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
836                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
837         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
838                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
839                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
840                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
841         {0,}
842 };
843 MODULE_DEVICE_TABLE(pci, vmd_ids);
844
845 static struct pci_driver vmd_drv = {
846         .name           = "vmd",
847         .id_table       = vmd_ids,
848         .probe          = vmd_probe,
849         .remove         = vmd_remove,
850         .driver         = {
851                 .pm     = &vmd_dev_pm_ops,
852         },
853 };
854 module_pci_driver(vmd_drv);
855
856 MODULE_AUTHOR("Intel Corporation");
857 MODULE_LICENSE("GPL v2");
858 MODULE_VERSION("0.6");
This page took 0.077854 seconds and 4 git commands to generate.