1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
158 #include "net-sysfs.h"
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
192 static DEFINE_MUTEX(ifalias_mutex);
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 static DECLARE_RWSEM(devnet_rename_sem);
202 static inline void dev_base_seq_inc(struct net *net)
204 while (++net->dev_base_seq == 0)
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
257 struct netdev_name_node *name_node;
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
271 struct netdev_name_node *name_node;
273 name_node = netdev_name_node_alloc(dev, dev->name);
276 INIT_LIST_HEAD(&name_node->list);
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 hlist_del_rcu(&name_node->hlist);
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
321 bool netdev_name_in_use(struct net *net, const char *name)
323 return netdev_name_node_lookup(net, name);
325 EXPORT_SYMBOL(netdev_name_in_use);
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
332 name_node = netdev_name_node_lookup(net, name);
335 name_node = netdev_name_node_alloc(dev, name);
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
357 name_node = netdev_name_node_lookup(net, name);
360 /* lookup might have found our primary name or a name belonging
363 if (name_node == dev->name_node || name_node->dev != dev)
366 netdev_name_node_del(name_node);
368 __netdev_name_node_alt_destroy(name_node);
373 static void netdev_name_node_alt_flush(struct net_device *dev)
375 struct netdev_name_node *name_node, *tmp;
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
402 dev_base_seq_inc(net);
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
408 static void unlist_netdevice(struct net_device *dev, bool lock)
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
415 xa_erase(&net->dev_by_index, dev->ifindex);
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
420 /* Unlink dev from the device chain */
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
427 write_unlock(&dev_base_lock);
429 dev_base_seq_inc(dev_net(dev));
436 static RAW_NOTIFIER_HEAD(netdev_chain);
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
446 #ifdef CONFIG_LOCKDEP
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 /*******************************************************************************
531 * Protocol management and registration routines
533 *******************************************************************************/
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
574 void dev_add_pack(struct packet_type *pt)
576 struct list_head *head = ptype_head(pt);
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
582 EXPORT_SYMBOL(dev_add_pack);
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
597 void __dev_remove_pack(struct packet_type *pt)
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
602 spin_lock(&ptype_lock);
604 list_for_each_entry(pt1, head, list) {
606 list_del_rcu(&pt->list);
611 pr_warn("dev_remove_pack: %p not found\n", pt);
613 spin_unlock(&ptype_lock);
615 EXPORT_SYMBOL(__dev_remove_pack);
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
626 * This call sleeps to guarantee that no CPU is looking at the packet
629 void dev_remove_pack(struct packet_type *pt)
631 __dev_remove_pack(pt);
635 EXPORT_SYMBOL(dev_remove_pack);
638 /*******************************************************************************
640 * Device Interface Subroutines
642 *******************************************************************************/
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
652 int dev_get_iflink(const struct net_device *dev)
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
659 EXPORT_SYMBOL(dev_get_iflink);
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
672 struct ip_tunnel_info *info;
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
677 info = skb_tunnel_info_unclone(skb);
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
689 int k = stack->num_paths++;
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
694 return &stack->path[k];
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
704 struct net_device_path *path;
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
711 path = dev_fwd_path(stack);
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
727 path = dev_fwd_path(stack);
730 path->type = DEV_PATH_ETHERNET;
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
751 struct netdev_name_node *node_name;
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
756 EXPORT_SYMBOL(__dev_get_by_name);
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
772 struct netdev_name_node *node_name;
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
782 struct net_device *dev;
785 dev = dev_get_by_name_rcu(net, name);
790 EXPORT_SYMBOL(dev_get_by_name);
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
808 struct net_device *dev;
810 dev = dev_get_by_name(net, name);
812 netdev_tracker_alloc(dev, tracker, gfp);
815 EXPORT_SYMBOL(netdev_get_by_name);
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
840 EXPORT_SYMBOL(__dev_get_by_index);
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
869 struct net_device *dev;
872 dev = dev_get_by_index_rcu(net, ifindex);
877 EXPORT_SYMBOL(dev_get_by_index);
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
894 struct net_device *dev;
896 dev = dev_get_by_index(net, ifindex);
898 netdev_tracker_alloc(dev, tracker, gfp);
901 EXPORT_SYMBOL(netdev_get_by_index);
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
915 struct napi_struct *napi;
917 WARN_ON_ONCE(!rcu_read_lock_held());
919 if (napi_id < MIN_NAPI_ID)
922 napi = napi_by_id(napi_id);
924 return napi ? napi->dev : NULL;
926 EXPORT_SYMBOL(dev_get_by_napi_id);
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
934 int netdev_get_name(struct net *net, char *name, int ifindex)
936 struct net_device *dev;
939 down_read(&devnet_rename_sem);
942 dev = dev_get_by_index_rcu(net, ifindex);
948 strcpy(name, dev->name);
953 up_read(&devnet_rename_sem);
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
974 struct net_device *dev;
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
987 struct net_device *dev, *ret = NULL;
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1015 struct net_device *dev, *ret;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1038 bool dev_valid_name(const char *name)
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1048 if (*name == '/' || *name == ':' || isspace(*name))
1054 EXPORT_SYMBOL(dev_valid_name);
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @res: result name string
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1080 /* Verify the string as this thing may have come from the user.
1081 * There must be one "%d" and no other "%" characters.
1083 p = strchr(name, '%');
1084 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1087 /* Use one page as a bit array of possible slots */
1088 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1092 for_each_netdev(net, d) {
1093 struct netdev_name_node *name_node;
1095 netdev_for_each_altname(d, name_node) {
1096 if (!sscanf(name_node->name, name, &i))
1098 if (i < 0 || i >= max_netdevices)
1101 /* avoid cases where sscanf is not exact inverse of printf */
1102 snprintf(buf, IFNAMSIZ, name, i);
1103 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104 __set_bit(i, inuse);
1106 if (!sscanf(d->name, name, &i))
1108 if (i < 0 || i >= max_netdevices)
1111 /* avoid cases where sscanf is not exact inverse of printf */
1112 snprintf(buf, IFNAMSIZ, name, i);
1113 if (!strncmp(buf, d->name, IFNAMSIZ))
1114 __set_bit(i, inuse);
1117 i = find_first_zero_bit(inuse, max_netdevices);
1119 if (i == max_netdevices)
1122 snprintf(res, IFNAMSIZ, name, i);
1126 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1127 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1128 const char *want_name, char *out_name,
1131 if (!dev_valid_name(want_name))
1134 if (strchr(want_name, '%'))
1135 return __dev_alloc_name(net, want_name, out_name);
1137 if (netdev_name_in_use(net, want_name))
1139 if (out_name != want_name)
1140 strscpy(out_name, want_name, IFNAMSIZ);
1145 * dev_alloc_name - allocate a name for a device
1147 * @name: name format string
1149 * Passed a format string - eg "lt%d" it will try and find a suitable
1150 * id. It scans list of devices to build up a free map, then chooses
1151 * the first empty slot. The caller must hold the dev_base or rtnl lock
1152 * while allocating the name and adding the device in order to avoid
1154 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155 * Returns the number of the unit assigned or a negative errno code.
1158 int dev_alloc_name(struct net_device *dev, const char *name)
1160 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162 EXPORT_SYMBOL(dev_alloc_name);
1164 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1169 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1170 return ret < 0 ? ret : 0;
1174 * dev_change_name - change name of a device
1176 * @newname: name (or format string) must be at least IFNAMSIZ
1178 * Change name of a device, can pass format strings "eth%d".
1181 int dev_change_name(struct net_device *dev, const char *newname)
1183 unsigned char old_assign_type;
1184 char oldname[IFNAMSIZ];
1190 BUG_ON(!dev_net(dev));
1194 down_write(&devnet_rename_sem);
1196 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197 up_write(&devnet_rename_sem);
1201 memcpy(oldname, dev->name, IFNAMSIZ);
1203 err = dev_get_valid_name(net, dev, newname);
1205 up_write(&devnet_rename_sem);
1209 if (oldname[0] && !strchr(oldname, '%'))
1210 netdev_info(dev, "renamed from %s%s\n", oldname,
1211 dev->flags & IFF_UP ? " (while UP)" : "");
1213 old_assign_type = dev->name_assign_type;
1214 dev->name_assign_type = NET_NAME_RENAMED;
1217 ret = device_rename(&dev->dev, dev->name);
1219 memcpy(dev->name, oldname, IFNAMSIZ);
1220 dev->name_assign_type = old_assign_type;
1221 up_write(&devnet_rename_sem);
1225 up_write(&devnet_rename_sem);
1227 netdev_adjacent_rename_links(dev, oldname);
1229 write_lock(&dev_base_lock);
1230 netdev_name_node_del(dev->name_node);
1231 write_unlock(&dev_base_lock);
1235 write_lock(&dev_base_lock);
1236 netdev_name_node_add(net, dev->name_node);
1237 write_unlock(&dev_base_lock);
1239 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1240 ret = notifier_to_errno(ret);
1243 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246 down_write(&devnet_rename_sem);
1247 memcpy(dev->name, oldname, IFNAMSIZ);
1248 memcpy(oldname, newname, IFNAMSIZ);
1249 dev->name_assign_type = old_assign_type;
1250 old_assign_type = NET_NAME_RENAMED;
1253 netdev_err(dev, "name change rollback failed: %d\n",
1262 * dev_set_alias - change ifalias of a device
1264 * @alias: name up to IFALIASZ
1265 * @len: limit of bytes to copy from info
1267 * Set ifalias for a device,
1269 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271 struct dev_ifalias *new_alias = NULL;
1273 if (len >= IFALIASZ)
1277 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1281 memcpy(new_alias->ifalias, alias, len);
1282 new_alias->ifalias[len] = 0;
1285 mutex_lock(&ifalias_mutex);
1286 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1287 mutex_is_locked(&ifalias_mutex));
1288 mutex_unlock(&ifalias_mutex);
1291 kfree_rcu(new_alias, rcuhead);
1295 EXPORT_SYMBOL(dev_set_alias);
1298 * dev_get_alias - get ifalias of a device
1300 * @name: buffer to store name of ifalias
1301 * @len: size of buffer
1303 * get ifalias for a device. Caller must make sure dev cannot go
1304 * away, e.g. rcu read lock or own a reference count to device.
1306 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308 const struct dev_ifalias *alias;
1312 alias = rcu_dereference(dev->ifalias);
1314 ret = snprintf(name, len, "%s", alias->ifalias);
1321 * netdev_features_change - device changes features
1322 * @dev: device to cause notification
1324 * Called to indicate a device has changed features.
1326 void netdev_features_change(struct net_device *dev)
1328 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330 EXPORT_SYMBOL(netdev_features_change);
1333 * netdev_state_change - device changes state
1334 * @dev: device to cause notification
1336 * Called to indicate a device has changed state. This function calls
1337 * the notifier chains for netdev_chain and sends a NEWLINK message
1338 * to the routing socket.
1340 void netdev_state_change(struct net_device *dev)
1342 if (dev->flags & IFF_UP) {
1343 struct netdev_notifier_change_info change_info = {
1347 call_netdevice_notifiers_info(NETDEV_CHANGE,
1349 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1352 EXPORT_SYMBOL(netdev_state_change);
1355 * __netdev_notify_peers - notify network peers about existence of @dev,
1356 * to be called when rtnl lock is already held.
1357 * @dev: network device
1359 * Generate traffic such that interested network peers are aware of
1360 * @dev, such as by generating a gratuitous ARP. This may be used when
1361 * a device wants to inform the rest of the network about some sort of
1362 * reconfiguration such as a failover event or virtual machine
1365 void __netdev_notify_peers(struct net_device *dev)
1368 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1369 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 EXPORT_SYMBOL(__netdev_notify_peers);
1374 * netdev_notify_peers - notify network peers about existence of @dev
1375 * @dev: network device
1377 * Generate traffic such that interested network peers are aware of
1378 * @dev, such as by generating a gratuitous ARP. This may be used when
1379 * a device wants to inform the rest of the network about some sort of
1380 * reconfiguration such as a failover event or virtual machine
1383 void netdev_notify_peers(struct net_device *dev)
1386 __netdev_notify_peers(dev);
1389 EXPORT_SYMBOL(netdev_notify_peers);
1391 static int napi_threaded_poll(void *data);
1393 static int napi_kthread_create(struct napi_struct *n)
1397 /* Create and wake up the kthread once to put it in
1398 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1399 * warning and work with loadavg.
1401 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1402 n->dev->name, n->napi_id);
1403 if (IS_ERR(n->thread)) {
1404 err = PTR_ERR(n->thread);
1405 pr_err("kthread_run failed with err %d\n", err);
1412 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414 const struct net_device_ops *ops = dev->netdev_ops;
1418 dev_addr_check(dev);
1420 if (!netif_device_present(dev)) {
1421 /* may be detached because parent is runtime-suspended */
1422 if (dev->dev.parent)
1423 pm_runtime_resume(dev->dev.parent);
1424 if (!netif_device_present(dev))
1428 /* Block netpoll from trying to do any rx path servicing.
1429 * If we don't do this there is a chance ndo_poll_controller
1430 * or ndo_poll may be running while we open the device
1432 netpoll_poll_disable(dev);
1434 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1435 ret = notifier_to_errno(ret);
1439 set_bit(__LINK_STATE_START, &dev->state);
1441 if (ops->ndo_validate_addr)
1442 ret = ops->ndo_validate_addr(dev);
1444 if (!ret && ops->ndo_open)
1445 ret = ops->ndo_open(dev);
1447 netpoll_poll_enable(dev);
1450 clear_bit(__LINK_STATE_START, &dev->state);
1452 dev->flags |= IFF_UP;
1453 dev_set_rx_mode(dev);
1455 add_device_randomness(dev->dev_addr, dev->addr_len);
1462 * dev_open - prepare an interface for use.
1463 * @dev: device to open
1464 * @extack: netlink extended ack
1466 * Takes a device from down to up state. The device's private open
1467 * function is invoked and then the multicast lists are loaded. Finally
1468 * the device is moved into the up state and a %NETDEV_UP message is
1469 * sent to the netdev notifier chain.
1471 * Calling this function on an active interface is a nop. On a failure
1472 * a negative errno code is returned.
1474 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1478 if (dev->flags & IFF_UP)
1481 ret = __dev_open(dev, extack);
1485 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1486 call_netdevice_notifiers(NETDEV_UP, dev);
1490 EXPORT_SYMBOL(dev_open);
1492 static void __dev_close_many(struct list_head *head)
1494 struct net_device *dev;
1499 list_for_each_entry(dev, head, close_list) {
1500 /* Temporarily disable netpoll until the interface is down */
1501 netpoll_poll_disable(dev);
1503 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505 clear_bit(__LINK_STATE_START, &dev->state);
1507 /* Synchronize to scheduled poll. We cannot touch poll list, it
1508 * can be even on different cpu. So just clear netif_running().
1510 * dev->stop() will invoke napi_disable() on all of it's
1511 * napi_struct instances on this device.
1513 smp_mb__after_atomic(); /* Commit netif_running(). */
1516 dev_deactivate_many(head);
1518 list_for_each_entry(dev, head, close_list) {
1519 const struct net_device_ops *ops = dev->netdev_ops;
1522 * Call the device specific close. This cannot fail.
1523 * Only if device is UP
1525 * We allow it to be called even after a DETACH hot-plug
1531 dev->flags &= ~IFF_UP;
1532 netpoll_poll_enable(dev);
1536 static void __dev_close(struct net_device *dev)
1540 list_add(&dev->close_list, &single);
1541 __dev_close_many(&single);
1545 void dev_close_many(struct list_head *head, bool unlink)
1547 struct net_device *dev, *tmp;
1549 /* Remove the devices that don't need to be closed */
1550 list_for_each_entry_safe(dev, tmp, head, close_list)
1551 if (!(dev->flags & IFF_UP))
1552 list_del_init(&dev->close_list);
1554 __dev_close_many(head);
1556 list_for_each_entry_safe(dev, tmp, head, close_list) {
1557 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1558 call_netdevice_notifiers(NETDEV_DOWN, dev);
1560 list_del_init(&dev->close_list);
1563 EXPORT_SYMBOL(dev_close_many);
1566 * dev_close - shutdown an interface.
1567 * @dev: device to shutdown
1569 * This function moves an active device into down state. A
1570 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1571 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1574 void dev_close(struct net_device *dev)
1576 if (dev->flags & IFF_UP) {
1579 list_add(&dev->close_list, &single);
1580 dev_close_many(&single, true);
1584 EXPORT_SYMBOL(dev_close);
1588 * dev_disable_lro - disable Large Receive Offload on a device
1591 * Disable Large Receive Offload (LRO) on a net device. Must be
1592 * called under RTNL. This is needed if received packets may be
1593 * forwarded to another interface.
1595 void dev_disable_lro(struct net_device *dev)
1597 struct net_device *lower_dev;
1598 struct list_head *iter;
1600 dev->wanted_features &= ~NETIF_F_LRO;
1601 netdev_update_features(dev);
1603 if (unlikely(dev->features & NETIF_F_LRO))
1604 netdev_WARN(dev, "failed to disable LRO!\n");
1606 netdev_for_each_lower_dev(dev, lower_dev, iter)
1607 dev_disable_lro(lower_dev);
1609 EXPORT_SYMBOL(dev_disable_lro);
1612 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1615 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1616 * called under RTNL. This is needed if Generic XDP is installed on
1619 static void dev_disable_gro_hw(struct net_device *dev)
1621 dev->wanted_features &= ~NETIF_F_GRO_HW;
1622 netdev_update_features(dev);
1624 if (unlikely(dev->features & NETIF_F_GRO_HW))
1625 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1628 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1631 case NETDEV_##val: \
1632 return "NETDEV_" __stringify(val);
1634 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1635 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1636 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1637 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1638 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1639 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1640 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1641 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1642 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1643 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1644 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1648 return "UNKNOWN_NETDEV_EVENT";
1650 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1653 struct net_device *dev)
1655 struct netdev_notifier_info info = {
1659 return nb->notifier_call(nb, val, &info);
1662 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1663 struct net_device *dev)
1667 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1668 err = notifier_to_errno(err);
1672 if (!(dev->flags & IFF_UP))
1675 call_netdevice_notifier(nb, NETDEV_UP, dev);
1679 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1680 struct net_device *dev)
1682 if (dev->flags & IFF_UP) {
1683 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1690 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1693 struct net_device *dev;
1696 for_each_netdev(net, dev) {
1697 err = call_netdevice_register_notifiers(nb, dev);
1704 for_each_netdev_continue_reverse(net, dev)
1705 call_netdevice_unregister_notifiers(nb, dev);
1709 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1712 struct net_device *dev;
1714 for_each_netdev(net, dev)
1715 call_netdevice_unregister_notifiers(nb, dev);
1718 static int dev_boot_phase = 1;
1721 * register_netdevice_notifier - register a network notifier block
1724 * Register a notifier to be called when network device events occur.
1725 * The notifier passed is linked into the kernel structures and must
1726 * not be reused until it has been unregistered. A negative errno code
1727 * is returned on a failure.
1729 * When registered all registration and up events are replayed
1730 * to the new notifier to allow device to have a race free
1731 * view of the network device list.
1734 int register_netdevice_notifier(struct notifier_block *nb)
1739 /* Close race with setup_net() and cleanup_net() */
1740 down_write(&pernet_ops_rwsem);
1742 err = raw_notifier_chain_register(&netdev_chain, nb);
1748 err = call_netdevice_register_net_notifiers(nb, net);
1755 up_write(&pernet_ops_rwsem);
1759 for_each_net_continue_reverse(net)
1760 call_netdevice_unregister_net_notifiers(nb, net);
1762 raw_notifier_chain_unregister(&netdev_chain, nb);
1765 EXPORT_SYMBOL(register_netdevice_notifier);
1768 * unregister_netdevice_notifier - unregister a network notifier block
1771 * Unregister a notifier previously registered by
1772 * register_netdevice_notifier(). The notifier is unlinked into the
1773 * kernel structures and may then be reused. A negative errno code
1774 * is returned on a failure.
1776 * After unregistering unregister and down device events are synthesized
1777 * for all devices on the device list to the removed notifier to remove
1778 * the need for special case cleanup code.
1781 int unregister_netdevice_notifier(struct notifier_block *nb)
1786 /* Close race with setup_net() and cleanup_net() */
1787 down_write(&pernet_ops_rwsem);
1789 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1794 call_netdevice_unregister_net_notifiers(nb, net);
1798 up_write(&pernet_ops_rwsem);
1801 EXPORT_SYMBOL(unregister_netdevice_notifier);
1803 static int __register_netdevice_notifier_net(struct net *net,
1804 struct notifier_block *nb,
1805 bool ignore_call_fail)
1809 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815 err = call_netdevice_register_net_notifiers(nb, net);
1816 if (err && !ignore_call_fail)
1817 goto chain_unregister;
1822 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1826 static int __unregister_netdevice_notifier_net(struct net *net,
1827 struct notifier_block *nb)
1831 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1835 call_netdevice_unregister_net_notifiers(nb, net);
1840 * register_netdevice_notifier_net - register a per-netns network notifier block
1841 * @net: network namespace
1844 * Register a notifier to be called when network device events occur.
1845 * The notifier passed is linked into the kernel structures and must
1846 * not be reused until it has been unregistered. A negative errno code
1847 * is returned on a failure.
1849 * When registered all registration and up events are replayed
1850 * to the new notifier to allow device to have a race free
1851 * view of the network device list.
1854 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1859 err = __register_netdevice_notifier_net(net, nb, false);
1863 EXPORT_SYMBOL(register_netdevice_notifier_net);
1866 * unregister_netdevice_notifier_net - unregister a per-netns
1867 * network notifier block
1868 * @net: network namespace
1871 * Unregister a notifier previously registered by
1872 * register_netdevice_notifier_net(). The notifier is unlinked from the
1873 * kernel structures and may then be reused. A negative errno code
1874 * is returned on a failure.
1876 * After unregistering unregister and down device events are synthesized
1877 * for all devices on the device list to the removed notifier to remove
1878 * the need for special case cleanup code.
1881 int unregister_netdevice_notifier_net(struct net *net,
1882 struct notifier_block *nb)
1887 err = __unregister_netdevice_notifier_net(net, nb);
1891 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893 static void __move_netdevice_notifier_net(struct net *src_net,
1894 struct net *dst_net,
1895 struct notifier_block *nb)
1897 __unregister_netdevice_notifier_net(src_net, nb);
1898 __register_netdevice_notifier_net(dst_net, nb, true);
1901 int register_netdevice_notifier_dev_net(struct net_device *dev,
1902 struct notifier_block *nb,
1903 struct netdev_net_notifier *nn)
1908 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1911 list_add(&nn->list, &dev->net_notifier_list);
1916 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1919 struct notifier_block *nb,
1920 struct netdev_net_notifier *nn)
1925 list_del(&nn->list);
1926 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1930 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1935 struct netdev_net_notifier *nn;
1937 list_for_each_entry(nn, &dev->net_notifier_list, list)
1938 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1942 * call_netdevice_notifiers_info - call all network notifier blocks
1943 * @val: value passed unmodified to notifier function
1944 * @info: notifier information data
1946 * Call all network notifier blocks. Parameters and return value
1947 * are as for raw_notifier_call_chain().
1950 int call_netdevice_notifiers_info(unsigned long val,
1951 struct netdev_notifier_info *info)
1953 struct net *net = dev_net(info->dev);
1958 /* Run per-netns notifier block chain first, then run the global one.
1959 * Hopefully, one day, the global one is going to be removed after
1960 * all notifier block registrators get converted to be per-netns.
1962 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1963 if (ret & NOTIFY_STOP_MASK)
1965 return raw_notifier_call_chain(&netdev_chain, val, info);
1969 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1970 * for and rollback on error
1971 * @val_up: value passed unmodified to notifier function
1972 * @val_down: value passed unmodified to the notifier function when
1973 * recovering from an error on @val_up
1974 * @info: notifier information data
1976 * Call all per-netns network notifier blocks, but not notifier blocks on
1977 * the global notifier chain. Parameters and return value are as for
1978 * raw_notifier_call_chain_robust().
1982 call_netdevice_notifiers_info_robust(unsigned long val_up,
1983 unsigned long val_down,
1984 struct netdev_notifier_info *info)
1986 struct net *net = dev_net(info->dev);
1990 return raw_notifier_call_chain_robust(&net->netdev_chain,
1991 val_up, val_down, info);
1994 static int call_netdevice_notifiers_extack(unsigned long val,
1995 struct net_device *dev,
1996 struct netlink_ext_ack *extack)
1998 struct netdev_notifier_info info = {
2003 return call_netdevice_notifiers_info(val, &info);
2007 * call_netdevice_notifiers - call all network notifier blocks
2008 * @val: value passed unmodified to notifier function
2009 * @dev: net_device pointer passed unmodified to notifier function
2011 * Call all network notifier blocks. Parameters and return value
2012 * are as for raw_notifier_call_chain().
2015 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017 return call_netdevice_notifiers_extack(val, dev, NULL);
2019 EXPORT_SYMBOL(call_netdevice_notifiers);
2022 * call_netdevice_notifiers_mtu - call all network notifier blocks
2023 * @val: value passed unmodified to notifier function
2024 * @dev: net_device pointer passed unmodified to notifier function
2025 * @arg: additional u32 argument passed to the notifier function
2027 * Call all network notifier blocks. Parameters and return value
2028 * are as for raw_notifier_call_chain().
2030 static int call_netdevice_notifiers_mtu(unsigned long val,
2031 struct net_device *dev, u32 arg)
2033 struct netdev_notifier_info_ext info = {
2038 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040 return call_netdevice_notifiers_info(val, &info.info);
2043 #ifdef CONFIG_NET_INGRESS
2044 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046 void net_inc_ingress_queue(void)
2048 static_branch_inc(&ingress_needed_key);
2050 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052 void net_dec_ingress_queue(void)
2054 static_branch_dec(&ingress_needed_key);
2056 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2059 #ifdef CONFIG_NET_EGRESS
2060 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062 void net_inc_egress_queue(void)
2064 static_branch_inc(&egress_needed_key);
2066 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068 void net_dec_egress_queue(void)
2070 static_branch_dec(&egress_needed_key);
2072 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2075 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2076 EXPORT_SYMBOL(netstamp_needed_key);
2077 #ifdef CONFIG_JUMP_LABEL
2078 static atomic_t netstamp_needed_deferred;
2079 static atomic_t netstamp_wanted;
2080 static void netstamp_clear(struct work_struct *work)
2082 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2085 wanted = atomic_add_return(deferred, &netstamp_wanted);
2087 static_branch_enable(&netstamp_needed_key);
2089 static_branch_disable(&netstamp_needed_key);
2091 static DECLARE_WORK(netstamp_work, netstamp_clear);
2094 void net_enable_timestamp(void)
2096 #ifdef CONFIG_JUMP_LABEL
2097 int wanted = atomic_read(&netstamp_wanted);
2099 while (wanted > 0) {
2100 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2103 atomic_inc(&netstamp_needed_deferred);
2104 schedule_work(&netstamp_work);
2106 static_branch_inc(&netstamp_needed_key);
2109 EXPORT_SYMBOL(net_enable_timestamp);
2111 void net_disable_timestamp(void)
2113 #ifdef CONFIG_JUMP_LABEL
2114 int wanted = atomic_read(&netstamp_wanted);
2116 while (wanted > 1) {
2117 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2120 atomic_dec(&netstamp_needed_deferred);
2121 schedule_work(&netstamp_work);
2123 static_branch_dec(&netstamp_needed_key);
2126 EXPORT_SYMBOL(net_disable_timestamp);
2128 static inline void net_timestamp_set(struct sk_buff *skb)
2131 skb->mono_delivery_time = 0;
2132 if (static_branch_unlikely(&netstamp_needed_key))
2133 skb->tstamp = ktime_get_real();
2136 #define net_timestamp_check(COND, SKB) \
2137 if (static_branch_unlikely(&netstamp_needed_key)) { \
2138 if ((COND) && !(SKB)->tstamp) \
2139 (SKB)->tstamp = ktime_get_real(); \
2142 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144 return __is_skb_forwardable(dev, skb, true);
2146 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2151 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2154 skb->protocol = eth_type_trans(skb, dev);
2155 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163 return __dev_forward_skb2(dev, skb, true);
2165 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2168 * dev_forward_skb - loopback an skb to another netif
2170 * @dev: destination network device
2171 * @skb: buffer to forward
2174 * NET_RX_SUCCESS (no congestion)
2175 * NET_RX_DROP (packet was dropped, but freed)
2177 * dev_forward_skb can be used for injecting an skb from the
2178 * start_xmit function of one device into the receive queue
2179 * of another device.
2181 * The receiving device may be in another namespace, so
2182 * we have to clear all information in the skb that could
2183 * impact namespace isolation.
2185 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189 EXPORT_SYMBOL_GPL(dev_forward_skb);
2191 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2196 static inline int deliver_skb(struct sk_buff *skb,
2197 struct packet_type *pt_prev,
2198 struct net_device *orig_dev)
2200 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202 refcount_inc(&skb->users);
2203 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2206 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2207 struct packet_type **pt,
2208 struct net_device *orig_dev,
2210 struct list_head *ptype_list)
2212 struct packet_type *ptype, *pt_prev = *pt;
2214 list_for_each_entry_rcu(ptype, ptype_list, list) {
2215 if (ptype->type != type)
2218 deliver_skb(skb, pt_prev, orig_dev);
2224 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226 if (!ptype->af_packet_priv || !skb->sk)
2229 if (ptype->id_match)
2230 return ptype->id_match(ptype, skb->sk);
2231 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2238 * dev_nit_active - return true if any network interface taps are in use
2240 * @dev: network device to check for the presence of taps
2242 bool dev_nit_active(struct net_device *dev)
2244 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246 EXPORT_SYMBOL_GPL(dev_nit_active);
2249 * Support routine. Sends outgoing frames to any network
2250 * taps currently in use.
2253 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255 struct packet_type *ptype;
2256 struct sk_buff *skb2 = NULL;
2257 struct packet_type *pt_prev = NULL;
2258 struct list_head *ptype_list = &ptype_all;
2262 list_for_each_entry_rcu(ptype, ptype_list, list) {
2263 if (ptype->ignore_outgoing)
2266 /* Never send packets back to the socket
2269 if (skb_loop_sk(ptype, skb))
2273 deliver_skb(skb2, pt_prev, skb->dev);
2278 /* need to clone skb, done only once */
2279 skb2 = skb_clone(skb, GFP_ATOMIC);
2283 net_timestamp_set(skb2);
2285 /* skb->nh should be correctly
2286 * set by sender, so that the second statement is
2287 * just protection against buggy protocols.
2289 skb_reset_mac_header(skb2);
2291 if (skb_network_header(skb2) < skb2->data ||
2292 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2293 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2294 ntohs(skb2->protocol),
2296 skb_reset_network_header(skb2);
2299 skb2->transport_header = skb2->network_header;
2300 skb2->pkt_type = PACKET_OUTGOING;
2304 if (ptype_list == &ptype_all) {
2305 ptype_list = &dev->ptype_all;
2310 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2311 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2320 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2321 * @dev: Network device
2322 * @txq: number of queues available
2324 * If real_num_tx_queues is changed the tc mappings may no longer be
2325 * valid. To resolve this verify the tc mapping remains valid and if
2326 * not NULL the mapping. With no priorities mapping to this
2327 * offset/count pair it will no longer be used. In the worst case TC0
2328 * is invalid nothing can be done so disable priority mappings. If is
2329 * expected that drivers will fix this mapping if they can before
2330 * calling netif_set_real_num_tx_queues.
2332 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2335 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337 /* If TC0 is invalidated disable TC mapping */
2338 if (tc->offset + tc->count > txq) {
2339 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2344 /* Invalidated prio to tc mappings set to TC0 */
2345 for (i = 1; i < TC_BITMASK + 1; i++) {
2346 int q = netdev_get_prio_tc_map(dev, i);
2348 tc = &dev->tc_to_txq[q];
2349 if (tc->offset + tc->count > txq) {
2350 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352 netdev_set_prio_tc_map(dev, i, 0);
2357 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2360 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2363 /* walk through the TCs and see if it falls into any of them */
2364 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2365 if ((txq - tc->offset) < tc->count)
2369 /* didn't find it, just return -1 to indicate no match */
2375 EXPORT_SYMBOL(netdev_txq_to_tc);
2378 static struct static_key xps_needed __read_mostly;
2379 static struct static_key xps_rxqs_needed __read_mostly;
2380 static DEFINE_MUTEX(xps_map_mutex);
2381 #define xmap_dereference(P) \
2382 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2385 struct xps_dev_maps *old_maps, int tci, u16 index)
2387 struct xps_map *map = NULL;
2390 map = xmap_dereference(dev_maps->attr_map[tci]);
2394 for (pos = map->len; pos--;) {
2395 if (map->queues[pos] != index)
2399 map->queues[pos] = map->queues[--map->len];
2404 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2405 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2406 kfree_rcu(map, rcu);
2413 static bool remove_xps_queue_cpu(struct net_device *dev,
2414 struct xps_dev_maps *dev_maps,
2415 int cpu, u16 offset, u16 count)
2417 int num_tc = dev_maps->num_tc;
2418 bool active = false;
2421 for (tci = cpu * num_tc; num_tc--; tci++) {
2424 for (i = count, j = offset; i--; j++) {
2425 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2435 static void reset_xps_maps(struct net_device *dev,
2436 struct xps_dev_maps *dev_maps,
2437 enum xps_map_type type)
2439 static_key_slow_dec_cpuslocked(&xps_needed);
2440 if (type == XPS_RXQS)
2441 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445 kfree_rcu(dev_maps, rcu);
2448 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2449 u16 offset, u16 count)
2451 struct xps_dev_maps *dev_maps;
2452 bool active = false;
2455 dev_maps = xmap_dereference(dev->xps_maps[type]);
2459 for (j = 0; j < dev_maps->nr_ids; j++)
2460 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462 reset_xps_maps(dev, dev_maps, type);
2464 if (type == XPS_CPUS) {
2465 for (i = offset + (count - 1); count--; i--)
2466 netdev_queue_numa_node_write(
2467 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2471 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2474 if (!static_key_false(&xps_needed))
2478 mutex_lock(&xps_map_mutex);
2480 if (static_key_false(&xps_rxqs_needed))
2481 clean_xps_maps(dev, XPS_RXQS, offset, count);
2483 clean_xps_maps(dev, XPS_CPUS, offset, count);
2485 mutex_unlock(&xps_map_mutex);
2489 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2494 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2495 u16 index, bool is_rxqs_map)
2497 struct xps_map *new_map;
2498 int alloc_len = XPS_MIN_MAP_ALLOC;
2501 for (pos = 0; map && pos < map->len; pos++) {
2502 if (map->queues[pos] != index)
2507 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509 if (pos < map->alloc_len)
2512 alloc_len = map->alloc_len * 2;
2515 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2519 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2522 cpu_to_node(attr_index));
2526 for (i = 0; i < pos; i++)
2527 new_map->queues[i] = map->queues[i];
2528 new_map->alloc_len = alloc_len;
2534 /* Copy xps maps at a given index */
2535 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2536 struct xps_dev_maps *new_dev_maps, int index,
2537 int tc, bool skip_tc)
2539 int i, tci = index * dev_maps->num_tc;
2540 struct xps_map *map;
2542 /* copy maps belonging to foreign traffic classes */
2543 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2544 if (i == tc && skip_tc)
2547 /* fill in the new device map from the old device map */
2548 map = xmap_dereference(dev_maps->attr_map[tci]);
2549 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2553 /* Must be called under cpus_read_lock */
2554 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2555 u16 index, enum xps_map_type type)
2557 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2558 const unsigned long *online_mask = NULL;
2559 bool active = false, copy = false;
2560 int i, j, tci, numa_node_id = -2;
2561 int maps_sz, num_tc = 1, tc = 0;
2562 struct xps_map *map, *new_map;
2563 unsigned int nr_ids;
2565 WARN_ON_ONCE(index >= dev->num_tx_queues);
2568 /* Do not allow XPS on subordinate device directly */
2569 num_tc = dev->num_tc;
2573 /* If queue belongs to subordinate dev use its map */
2574 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576 tc = netdev_txq_to_tc(dev, index);
2581 mutex_lock(&xps_map_mutex);
2583 dev_maps = xmap_dereference(dev->xps_maps[type]);
2584 if (type == XPS_RXQS) {
2585 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2586 nr_ids = dev->num_rx_queues;
2588 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2589 if (num_possible_cpus() > 1)
2590 online_mask = cpumask_bits(cpu_online_mask);
2591 nr_ids = nr_cpu_ids;
2594 if (maps_sz < L1_CACHE_BYTES)
2595 maps_sz = L1_CACHE_BYTES;
2597 /* The old dev_maps could be larger or smaller than the one we're
2598 * setting up now, as dev->num_tc or nr_ids could have been updated in
2599 * between. We could try to be smart, but let's be safe instead and only
2600 * copy foreign traffic classes if the two map sizes match.
2603 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2606 /* allocate memory for queue storage */
2607 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609 if (!new_dev_maps) {
2610 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2611 if (!new_dev_maps) {
2612 mutex_unlock(&xps_map_mutex);
2616 new_dev_maps->nr_ids = nr_ids;
2617 new_dev_maps->num_tc = num_tc;
2620 tci = j * num_tc + tc;
2621 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2627 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2631 goto out_no_new_maps;
2634 /* Increment static keys at most once per type */
2635 static_key_slow_inc_cpuslocked(&xps_needed);
2636 if (type == XPS_RXQS)
2637 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2640 for (j = 0; j < nr_ids; j++) {
2641 bool skip_tc = false;
2643 tci = j * num_tc + tc;
2644 if (netif_attr_test_mask(j, mask, nr_ids) &&
2645 netif_attr_test_online(j, online_mask, nr_ids)) {
2646 /* add tx-queue to CPU/rx-queue maps */
2651 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2652 while ((pos < map->len) && (map->queues[pos] != index))
2655 if (pos == map->len)
2656 map->queues[map->len++] = index;
2658 if (type == XPS_CPUS) {
2659 if (numa_node_id == -2)
2660 numa_node_id = cpu_to_node(j);
2661 else if (numa_node_id != cpu_to_node(j))
2668 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2672 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674 /* Cleanup old maps */
2676 goto out_no_old_maps;
2678 for (j = 0; j < dev_maps->nr_ids; j++) {
2679 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2680 map = xmap_dereference(dev_maps->attr_map[tci]);
2685 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2690 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2691 kfree_rcu(map, rcu);
2695 old_dev_maps = dev_maps;
2698 dev_maps = new_dev_maps;
2702 if (type == XPS_CPUS)
2703 /* update Tx queue numa node */
2704 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2705 (numa_node_id >= 0) ?
2706 numa_node_id : NUMA_NO_NODE);
2711 /* removes tx-queue from unused CPUs/rx-queues */
2712 for (j = 0; j < dev_maps->nr_ids; j++) {
2713 tci = j * dev_maps->num_tc;
2715 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2718 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2721 active |= remove_xps_queue(dev_maps,
2722 copy ? old_dev_maps : NULL,
2728 kfree_rcu(old_dev_maps, rcu);
2730 /* free map if not active */
2732 reset_xps_maps(dev, dev_maps, type);
2735 mutex_unlock(&xps_map_mutex);
2739 /* remove any maps that we added */
2740 for (j = 0; j < nr_ids; j++) {
2741 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2742 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744 xmap_dereference(dev_maps->attr_map[tci]) :
2746 if (new_map && new_map != map)
2751 mutex_unlock(&xps_map_mutex);
2753 kfree(new_dev_maps);
2756 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2769 EXPORT_SYMBOL(netif_set_xps_queue);
2772 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776 /* Unbind any subordinate channels */
2777 while (txq-- != &dev->_tx[0]) {
2779 netdev_unbind_sb_channel(dev, txq->sb_dev);
2783 void netdev_reset_tc(struct net_device *dev)
2786 netif_reset_xps_queues_gt(dev, 0);
2788 netdev_unbind_all_sb_channels(dev);
2790 /* Reset TC configuration of device */
2792 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2793 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795 EXPORT_SYMBOL(netdev_reset_tc);
2797 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799 if (tc >= dev->num_tc)
2803 netif_reset_xps_queues(dev, offset, count);
2805 dev->tc_to_txq[tc].count = count;
2806 dev->tc_to_txq[tc].offset = offset;
2809 EXPORT_SYMBOL(netdev_set_tc_queue);
2811 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813 if (num_tc > TC_MAX_QUEUE)
2817 netif_reset_xps_queues_gt(dev, 0);
2819 netdev_unbind_all_sb_channels(dev);
2821 dev->num_tc = num_tc;
2824 EXPORT_SYMBOL(netdev_set_num_tc);
2826 void netdev_unbind_sb_channel(struct net_device *dev,
2827 struct net_device *sb_dev)
2829 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2832 netif_reset_xps_queues_gt(sb_dev, 0);
2834 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2835 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837 while (txq-- != &dev->_tx[0]) {
2838 if (txq->sb_dev == sb_dev)
2842 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844 int netdev_bind_sb_channel_queue(struct net_device *dev,
2845 struct net_device *sb_dev,
2846 u8 tc, u16 count, u16 offset)
2848 /* Make certain the sb_dev and dev are already configured */
2849 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2852 /* We cannot hand out queues we don't have */
2853 if ((offset + count) > dev->real_num_tx_queues)
2856 /* Record the mapping */
2857 sb_dev->tc_to_txq[tc].count = count;
2858 sb_dev->tc_to_txq[tc].offset = offset;
2860 /* Provide a way for Tx queue to find the tc_to_txq map or
2861 * XPS map for itself.
2864 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2868 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872 /* Do not use a multiqueue device to represent a subordinate channel */
2873 if (netif_is_multiqueue(dev))
2876 /* We allow channels 1 - 32767 to be used for subordinate channels.
2877 * Channel 0 is meant to be "native" mode and used only to represent
2878 * the main root device. We allow writing 0 to reset the device back
2879 * to normal mode after being used as a subordinate channel.
2881 if (channel > S16_MAX)
2884 dev->num_tc = -channel;
2888 EXPORT_SYMBOL(netdev_set_sb_channel);
2891 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2892 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2899 disabling = txq < dev->real_num_tx_queues;
2901 if (txq < 1 || txq > dev->num_tx_queues)
2904 if (dev->reg_state == NETREG_REGISTERED ||
2905 dev->reg_state == NETREG_UNREGISTERING) {
2908 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914 netif_setup_tc(dev, txq);
2916 dev_qdisc_change_real_num_tx(dev, txq);
2918 dev->real_num_tx_queues = txq;
2922 qdisc_reset_all_tx_gt(dev, txq);
2924 netif_reset_xps_queues_gt(dev, txq);
2928 dev->real_num_tx_queues = txq;
2933 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2937 * netif_set_real_num_rx_queues - set actual number of RX queues used
2938 * @dev: Network device
2939 * @rxq: Actual number of RX queues
2941 * This must be called either with the rtnl_lock held or before
2942 * registration of the net device. Returns 0 on success, or a
2943 * negative error code. If called before registration, it always
2946 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2950 if (rxq < 1 || rxq > dev->num_rx_queues)
2953 if (dev->reg_state == NETREG_REGISTERED) {
2956 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962 dev->real_num_rx_queues = rxq;
2965 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2969 * netif_set_real_num_queues - set actual number of RX and TX queues used
2970 * @dev: Network device
2971 * @txq: Actual number of TX queues
2972 * @rxq: Actual number of RX queues
2974 * Set the real number of both TX and RX queues.
2975 * Does nothing if the number of queues is already correct.
2977 int netif_set_real_num_queues(struct net_device *dev,
2978 unsigned int txq, unsigned int rxq)
2980 unsigned int old_rxq = dev->real_num_rx_queues;
2983 if (txq < 1 || txq > dev->num_tx_queues ||
2984 rxq < 1 || rxq > dev->num_rx_queues)
2987 /* Start from increases, so the error path only does decreases -
2988 * decreases can't fail.
2990 if (rxq > dev->real_num_rx_queues) {
2991 err = netif_set_real_num_rx_queues(dev, rxq);
2995 if (txq > dev->real_num_tx_queues) {
2996 err = netif_set_real_num_tx_queues(dev, txq);
3000 if (rxq < dev->real_num_rx_queues)
3001 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3002 if (txq < dev->real_num_tx_queues)
3003 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3007 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3010 EXPORT_SYMBOL(netif_set_real_num_queues);
3013 * netif_set_tso_max_size() - set the max size of TSO frames supported
3014 * @dev: netdev to update
3015 * @size: max skb->len of a TSO frame
3017 * Set the limit on the size of TSO super-frames the device can handle.
3018 * Unless explicitly set the stack will assume the value of
3019 * %GSO_LEGACY_MAX_SIZE.
3021 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3024 if (size < READ_ONCE(dev->gso_max_size))
3025 netif_set_gso_max_size(dev, size);
3026 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3027 netif_set_gso_ipv4_max_size(dev, size);
3029 EXPORT_SYMBOL(netif_set_tso_max_size);
3032 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3033 * @dev: netdev to update
3034 * @segs: max number of TCP segments
3036 * Set the limit on the number of TCP segments the device can generate from
3037 * a single TSO super-frame.
3038 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042 dev->tso_max_segs = segs;
3043 if (segs < READ_ONCE(dev->gso_max_segs))
3044 netif_set_gso_max_segs(dev, segs);
3046 EXPORT_SYMBOL(netif_set_tso_max_segs);
3049 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3050 * @to: netdev to update
3051 * @from: netdev from which to copy the limits
3053 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055 netif_set_tso_max_size(to, from->tso_max_size);
3056 netif_set_tso_max_segs(to, from->tso_max_segs);
3058 EXPORT_SYMBOL(netif_inherit_tso_max);
3061 * netif_get_num_default_rss_queues - default number of RSS queues
3063 * Default value is the number of physical cores if there are only 1 or 2, or
3064 * divided by 2 if there are more.
3066 int netif_get_num_default_rss_queues(void)
3071 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3074 cpumask_copy(cpus, cpu_online_mask);
3075 for_each_cpu(cpu, cpus) {
3077 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079 free_cpumask_var(cpus);
3081 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085 static void __netif_reschedule(struct Qdisc *q)
3087 struct softnet_data *sd;
3088 unsigned long flags;
3090 local_irq_save(flags);
3091 sd = this_cpu_ptr(&softnet_data);
3092 q->next_sched = NULL;
3093 *sd->output_queue_tailp = q;
3094 sd->output_queue_tailp = &q->next_sched;
3095 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3096 local_irq_restore(flags);
3099 void __netif_schedule(struct Qdisc *q)
3101 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3102 __netif_reschedule(q);
3104 EXPORT_SYMBOL(__netif_schedule);
3106 struct dev_kfree_skb_cb {
3107 enum skb_drop_reason reason;
3110 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112 return (struct dev_kfree_skb_cb *)skb->cb;
3115 void netif_schedule_queue(struct netdev_queue *txq)
3118 if (!netif_xmit_stopped(txq)) {
3119 struct Qdisc *q = rcu_dereference(txq->qdisc);
3121 __netif_schedule(q);
3125 EXPORT_SYMBOL(netif_schedule_queue);
3127 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3133 q = rcu_dereference(dev_queue->qdisc);
3134 __netif_schedule(q);
3138 EXPORT_SYMBOL(netif_tx_wake_queue);
3140 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142 unsigned long flags;
3147 if (likely(refcount_read(&skb->users) == 1)) {
3149 refcount_set(&skb->users, 0);
3150 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3153 get_kfree_skb_cb(skb)->reason = reason;
3154 local_irq_save(flags);
3155 skb->next = __this_cpu_read(softnet_data.completion_queue);
3156 __this_cpu_write(softnet_data.completion_queue, skb);
3157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3158 local_irq_restore(flags);
3160 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164 if (in_hardirq() || irqs_disabled())
3165 dev_kfree_skb_irq_reason(skb, reason);
3167 kfree_skb_reason(skb, reason);
3169 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3173 * netif_device_detach - mark device as removed
3174 * @dev: network device
3176 * Mark device as removed from system and therefore no longer available.
3178 void netif_device_detach(struct net_device *dev)
3180 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181 netif_running(dev)) {
3182 netif_tx_stop_all_queues(dev);
3185 EXPORT_SYMBOL(netif_device_detach);
3188 * netif_device_attach - mark device as attached
3189 * @dev: network device
3191 * Mark device as attached from system and restart if needed.
3193 void netif_device_attach(struct net_device *dev)
3195 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3196 netif_running(dev)) {
3197 netif_tx_wake_all_queues(dev);
3198 __netdev_watchdog_up(dev);
3201 EXPORT_SYMBOL(netif_device_attach);
3204 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3205 * to be used as a distribution range.
3207 static u16 skb_tx_hash(const struct net_device *dev,
3208 const struct net_device *sb_dev,
3209 struct sk_buff *skb)
3213 u16 qcount = dev->real_num_tx_queues;
3216 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218 qoffset = sb_dev->tc_to_txq[tc].offset;
3219 qcount = sb_dev->tc_to_txq[tc].count;
3220 if (unlikely(!qcount)) {
3221 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3222 sb_dev->name, qoffset, tc);
3224 qcount = dev->real_num_tx_queues;
3228 if (skb_rx_queue_recorded(skb)) {
3229 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3230 hash = skb_get_rx_queue(skb);
3231 if (hash >= qoffset)
3233 while (unlikely(hash >= qcount))
3235 return hash + qoffset;
3238 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3241 void skb_warn_bad_offload(const struct sk_buff *skb)
3243 static const netdev_features_t null_features;
3244 struct net_device *dev = skb->dev;
3245 const char *name = "";
3247 if (!net_ratelimit())
3251 if (dev->dev.parent)
3252 name = dev_driver_string(dev->dev.parent);
3254 name = netdev_name(dev);
3256 skb_dump(KERN_WARNING, skb, false);
3257 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3258 name, dev ? &dev->features : &null_features,
3259 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3263 * Invalidate hardware checksum when packet is to be mangled, and
3264 * complete checksum manually on outgoing path.
3266 int skb_checksum_help(struct sk_buff *skb)
3269 int ret = 0, offset;
3271 if (skb->ip_summed == CHECKSUM_COMPLETE)
3272 goto out_set_summed;
3274 if (unlikely(skb_is_gso(skb))) {
3275 skb_warn_bad_offload(skb);
3279 /* Before computing a checksum, we should make sure no frag could
3280 * be modified by an external entity : checksum could be wrong.
3282 if (skb_has_shared_frag(skb)) {
3283 ret = __skb_linearize(skb);
3288 offset = skb_checksum_start_offset(skb);
3290 if (unlikely(offset >= skb_headlen(skb))) {
3291 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3292 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3293 offset, skb_headlen(skb));
3296 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298 offset += skb->csum_offset;
3299 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3300 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3301 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3302 offset + sizeof(__sum16), skb_headlen(skb));
3305 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3309 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 skb->ip_summed = CHECKSUM_NONE;
3315 EXPORT_SYMBOL(skb_checksum_help);
3317 int skb_crc32c_csum_help(struct sk_buff *skb)
3320 int ret = 0, offset, start;
3322 if (skb->ip_summed != CHECKSUM_PARTIAL)
3325 if (unlikely(skb_is_gso(skb)))
3328 /* Before computing a checksum, we should make sure no frag could
3329 * be modified by an external entity : checksum could be wrong.
3331 if (unlikely(skb_has_shared_frag(skb))) {
3332 ret = __skb_linearize(skb);
3336 start = skb_checksum_start_offset(skb);
3337 offset = start + offsetof(struct sctphdr, checksum);
3338 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3343 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3347 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3348 skb->len - start, ~(__u32)0,
3350 *(__le32 *)(skb->data + offset) = crc32c_csum;
3351 skb_reset_csum_not_inet(skb);
3356 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 __be16 type = skb->protocol;
3360 /* Tunnel gso handlers can set protocol to ethernet. */
3361 if (type == htons(ETH_P_TEB)) {
3364 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3367 eth = (struct ethhdr *)skb->data;
3368 type = eth->h_proto;
3371 return vlan_get_protocol_and_depth(skb, type, depth);
3375 /* Take action when hardware reception checksum errors are detected. */
3377 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 netdev_err(dev, "hw csum failure\n");
3380 skb_dump(KERN_ERR, skb, true);
3384 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 EXPORT_SYMBOL(netdev_rx_csum_fault);
3391 /* XXX: check that highmem exists at all on the given machine. */
3392 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 #ifdef CONFIG_HIGHMEM
3397 if (!(dev->features & NETIF_F_HIGHDMA)) {
3398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3399 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401 if (PageHighMem(skb_frag_page(frag)))
3409 /* If MPLS offload request, verify we are testing hardware MPLS features
3410 * instead of standard features for the netdev.
3412 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3413 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3414 netdev_features_t features,
3417 if (eth_p_mpls(type))
3418 features &= skb->dev->mpls_features;
3423 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3424 netdev_features_t features,
3431 static netdev_features_t harmonize_features(struct sk_buff *skb,
3432 netdev_features_t features)
3436 type = skb_network_protocol(skb, NULL);
3437 features = net_mpls_features(skb, features, type);
3439 if (skb->ip_summed != CHECKSUM_NONE &&
3440 !can_checksum_protocol(features, type)) {
3441 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443 if (illegal_highdma(skb->dev, skb))
3444 features &= ~NETIF_F_SG;
3449 netdev_features_t passthru_features_check(struct sk_buff *skb,
3450 struct net_device *dev,
3451 netdev_features_t features)
3455 EXPORT_SYMBOL(passthru_features_check);
3457 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3458 struct net_device *dev,
3459 netdev_features_t features)
3461 return vlan_features_check(skb, features);
3464 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3465 struct net_device *dev,
3466 netdev_features_t features)
3468 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3471 return features & ~NETIF_F_GSO_MASK;
3473 if (!skb_shinfo(skb)->gso_type) {
3474 skb_warn_bad_offload(skb);
3475 return features & ~NETIF_F_GSO_MASK;
3478 /* Support for GSO partial features requires software
3479 * intervention before we can actually process the packets
3480 * so we need to strip support for any partial features now
3481 * and we can pull them back in after we have partially
3482 * segmented the frame.
3484 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3485 features &= ~dev->gso_partial_features;
3487 /* Make sure to clear the IPv4 ID mangling feature if the
3488 * IPv4 header has the potential to be fragmented.
3490 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3491 struct iphdr *iph = skb->encapsulation ?
3492 inner_ip_hdr(skb) : ip_hdr(skb);
3494 if (!(iph->frag_off & htons(IP_DF)))
3495 features &= ~NETIF_F_TSO_MANGLEID;
3501 netdev_features_t netif_skb_features(struct sk_buff *skb)
3503 struct net_device *dev = skb->dev;
3504 netdev_features_t features = dev->features;
3506 if (skb_is_gso(skb))
3507 features = gso_features_check(skb, dev, features);
3509 /* If encapsulation offload request, verify we are testing
3510 * hardware encapsulation features instead of standard
3511 * features for the netdev
3513 if (skb->encapsulation)
3514 features &= dev->hw_enc_features;
3516 if (skb_vlan_tagged(skb))
3517 features = netdev_intersect_features(features,
3518 dev->vlan_features |
3519 NETIF_F_HW_VLAN_CTAG_TX |
3520 NETIF_F_HW_VLAN_STAG_TX);
3522 if (dev->netdev_ops->ndo_features_check)
3523 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3526 features &= dflt_features_check(skb, dev, features);
3528 return harmonize_features(skb, features);
3530 EXPORT_SYMBOL(netif_skb_features);
3532 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3533 struct netdev_queue *txq, bool more)
3538 if (dev_nit_active(dev))
3539 dev_queue_xmit_nit(skb, dev);
3542 trace_net_dev_start_xmit(skb, dev);
3543 rc = netdev_start_xmit(skb, dev, txq, more);
3544 trace_net_dev_xmit(skb, rc, dev, len);
3549 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3550 struct netdev_queue *txq, int *ret)
3552 struct sk_buff *skb = first;
3553 int rc = NETDEV_TX_OK;
3556 struct sk_buff *next = skb->next;
3558 skb_mark_not_on_list(skb);
3559 rc = xmit_one(skb, dev, txq, next != NULL);
3560 if (unlikely(!dev_xmit_complete(rc))) {
3566 if (netif_tx_queue_stopped(txq) && skb) {
3567 rc = NETDEV_TX_BUSY;
3577 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3578 netdev_features_t features)
3580 if (skb_vlan_tag_present(skb) &&
3581 !vlan_hw_offload_capable(features, skb->vlan_proto))
3582 skb = __vlan_hwaccel_push_inside(skb);
3586 int skb_csum_hwoffload_help(struct sk_buff *skb,
3587 const netdev_features_t features)
3589 if (unlikely(skb_csum_is_sctp(skb)))
3590 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3591 skb_crc32c_csum_help(skb);
3593 if (features & NETIF_F_HW_CSUM)
3596 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3597 switch (skb->csum_offset) {
3598 case offsetof(struct tcphdr, check):
3599 case offsetof(struct udphdr, check):
3604 return skb_checksum_help(skb);
3606 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3608 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3610 netdev_features_t features;
3612 features = netif_skb_features(skb);
3613 skb = validate_xmit_vlan(skb, features);
3617 skb = sk_validate_xmit_skb(skb, dev);
3621 if (netif_needs_gso(skb, features)) {
3622 struct sk_buff *segs;
3624 segs = skb_gso_segment(skb, features);
3632 if (skb_needs_linearize(skb, features) &&
3633 __skb_linearize(skb))
3636 /* If packet is not checksummed and device does not
3637 * support checksumming for this protocol, complete
3638 * checksumming here.
3640 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3641 if (skb->encapsulation)
3642 skb_set_inner_transport_header(skb,
3643 skb_checksum_start_offset(skb));
3645 skb_set_transport_header(skb,
3646 skb_checksum_start_offset(skb));
3647 if (skb_csum_hwoffload_help(skb, features))
3652 skb = validate_xmit_xfrm(skb, features, again);
3659 dev_core_stats_tx_dropped_inc(dev);
3663 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3665 struct sk_buff *next, *head = NULL, *tail;
3667 for (; skb != NULL; skb = next) {
3669 skb_mark_not_on_list(skb);
3671 /* in case skb wont be segmented, point to itself */
3674 skb = validate_xmit_skb(skb, dev, again);
3682 /* If skb was segmented, skb->prev points to
3683 * the last segment. If not, it still contains skb.
3689 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3691 static void qdisc_pkt_len_init(struct sk_buff *skb)
3693 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3695 qdisc_skb_cb(skb)->pkt_len = skb->len;
3697 /* To get more precise estimation of bytes sent on wire,
3698 * we add to pkt_len the headers size of all segments
3700 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3701 u16 gso_segs = shinfo->gso_segs;
3702 unsigned int hdr_len;
3704 /* mac layer + network layer */
3705 hdr_len = skb_transport_offset(skb);
3707 /* + transport layer */
3708 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3709 const struct tcphdr *th;
3710 struct tcphdr _tcphdr;
3712 th = skb_header_pointer(skb, hdr_len,
3713 sizeof(_tcphdr), &_tcphdr);
3715 hdr_len += __tcp_hdrlen(th);
3717 struct udphdr _udphdr;
3719 if (skb_header_pointer(skb, hdr_len,
3720 sizeof(_udphdr), &_udphdr))
3721 hdr_len += sizeof(struct udphdr);
3724 if (shinfo->gso_type & SKB_GSO_DODGY)
3725 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3732 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3733 struct sk_buff **to_free,
3734 struct netdev_queue *txq)
3738 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3739 if (rc == NET_XMIT_SUCCESS)
3740 trace_qdisc_enqueue(q, txq, skb);
3744 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3745 struct net_device *dev,
3746 struct netdev_queue *txq)
3748 spinlock_t *root_lock = qdisc_lock(q);
3749 struct sk_buff *to_free = NULL;
3753 qdisc_calculate_pkt_len(skb, q);
3755 if (q->flags & TCQ_F_NOLOCK) {
3756 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3757 qdisc_run_begin(q)) {
3758 /* Retest nolock_qdisc_is_empty() within the protection
3759 * of q->seqlock to protect from racing with requeuing.
3761 if (unlikely(!nolock_qdisc_is_empty(q))) {
3762 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 qdisc_bstats_cpu_update(q, skb);
3770 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3771 !nolock_qdisc_is_empty(q))
3775 return NET_XMIT_SUCCESS;
3778 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3782 if (unlikely(to_free))
3783 kfree_skb_list_reason(to_free,
3784 SKB_DROP_REASON_QDISC_DROP);
3789 * Heuristic to force contended enqueues to serialize on a
3790 * separate lock before trying to get qdisc main lock.
3791 * This permits qdisc->running owner to get the lock more
3792 * often and dequeue packets faster.
3793 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3794 * and then other tasks will only enqueue packets. The packets will be
3795 * sent after the qdisc owner is scheduled again. To prevent this
3796 * scenario the task always serialize on the lock.
3798 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3799 if (unlikely(contended))
3800 spin_lock(&q->busylock);
3802 spin_lock(root_lock);
3803 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3804 __qdisc_drop(skb, &to_free);
3806 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3807 qdisc_run_begin(q)) {
3809 * This is a work-conserving queue; there are no old skbs
3810 * waiting to be sent out; and the qdisc is not running -
3811 * xmit the skb directly.
3814 qdisc_bstats_update(q, skb);
3816 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3817 if (unlikely(contended)) {
3818 spin_unlock(&q->busylock);
3825 rc = NET_XMIT_SUCCESS;
3827 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3828 if (qdisc_run_begin(q)) {
3829 if (unlikely(contended)) {
3830 spin_unlock(&q->busylock);
3837 spin_unlock(root_lock);
3838 if (unlikely(to_free))
3839 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3840 if (unlikely(contended))
3841 spin_unlock(&q->busylock);
3845 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3846 static void skb_update_prio(struct sk_buff *skb)
3848 const struct netprio_map *map;
3849 const struct sock *sk;
3850 unsigned int prioidx;
3854 map = rcu_dereference_bh(skb->dev->priomap);
3857 sk = skb_to_full_sk(skb);
3861 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3863 if (prioidx < map->priomap_len)
3864 skb->priority = map->priomap[prioidx];
3867 #define skb_update_prio(skb)
3871 * dev_loopback_xmit - loop back @skb
3872 * @net: network namespace this loopback is happening in
3873 * @sk: sk needed to be a netfilter okfn
3874 * @skb: buffer to transmit
3876 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3878 skb_reset_mac_header(skb);
3879 __skb_pull(skb, skb_network_offset(skb));
3880 skb->pkt_type = PACKET_LOOPBACK;
3881 if (skb->ip_summed == CHECKSUM_NONE)
3882 skb->ip_summed = CHECKSUM_UNNECESSARY;
3883 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3888 EXPORT_SYMBOL(dev_loopback_xmit);
3890 #ifdef CONFIG_NET_EGRESS
3891 static struct netdev_queue *
3892 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3894 int qm = skb_get_queue_mapping(skb);
3896 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3899 static bool netdev_xmit_txqueue_skipped(void)
3901 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3904 void netdev_xmit_skip_txqueue(bool skip)
3906 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3908 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3909 #endif /* CONFIG_NET_EGRESS */
3911 #ifdef CONFIG_NET_XGRESS
3912 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3913 enum skb_drop_reason *drop_reason)
3915 int ret = TC_ACT_UNSPEC;
3916 #ifdef CONFIG_NET_CLS_ACT
3917 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3918 struct tcf_result res;
3923 tc_skb_cb(skb)->mru = 0;
3924 tc_skb_cb(skb)->post_ct = false;
3925 res.drop_reason = *drop_reason;
3927 mini_qdisc_bstats_cpu_update(miniq, skb);
3928 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3929 /* Only tcf related quirks below. */
3932 *drop_reason = res.drop_reason;
3933 mini_qdisc_qstats_cpu_drop(miniq);
3936 case TC_ACT_RECLASSIFY:
3937 skb->tc_index = TC_H_MIN(res.classid);
3940 #endif /* CONFIG_NET_CLS_ACT */
3944 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3948 static_branch_inc(&tcx_needed_key);
3953 static_branch_dec(&tcx_needed_key);
3956 static __always_inline enum tcx_action_base
3957 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3958 const bool needs_mac)
3960 const struct bpf_mprog_fp *fp;
3961 const struct bpf_prog *prog;
3965 __skb_push(skb, skb->mac_len);
3966 bpf_mprog_foreach_prog(entry, fp, prog) {
3967 bpf_compute_data_pointers(skb);
3968 ret = bpf_prog_run(prog, skb);
3969 if (ret != TCX_NEXT)
3973 __skb_pull(skb, skb->mac_len);
3974 return tcx_action_code(skb, ret);
3977 static __always_inline struct sk_buff *
3978 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3979 struct net_device *orig_dev, bool *another)
3981 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3982 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3988 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3992 qdisc_skb_cb(skb)->pkt_len = skb->len;
3993 tcx_set_ingress(skb, true);
3995 if (static_branch_unlikely(&tcx_needed_key)) {
3996 sch_ret = tcx_run(entry, skb, true);
3997 if (sch_ret != TC_ACT_UNSPEC)
3998 goto ingress_verdict;
4000 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4003 case TC_ACT_REDIRECT:
4004 /* skb_mac_header check was done by BPF, so we can safely
4005 * push the L2 header back before redirecting to another
4008 __skb_push(skb, skb->mac_len);
4009 if (skb_do_redirect(skb) == -EAGAIN) {
4010 __skb_pull(skb, skb->mac_len);
4014 *ret = NET_RX_SUCCESS;
4017 kfree_skb_reason(skb, drop_reason);
4020 /* used by tc_run */
4026 case TC_ACT_CONSUMED:
4027 *ret = NET_RX_SUCCESS;
4034 static __always_inline struct sk_buff *
4035 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4037 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4038 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4044 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4045 * already set by the caller.
4047 if (static_branch_unlikely(&tcx_needed_key)) {
4048 sch_ret = tcx_run(entry, skb, false);
4049 if (sch_ret != TC_ACT_UNSPEC)
4050 goto egress_verdict;
4052 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4055 case TC_ACT_REDIRECT:
4056 /* No need to push/pop skb's mac_header here on egress! */
4057 skb_do_redirect(skb);
4058 *ret = NET_XMIT_SUCCESS;
4061 kfree_skb_reason(skb, drop_reason);
4062 *ret = NET_XMIT_DROP;
4064 /* used by tc_run */
4070 case TC_ACT_CONSUMED:
4071 *ret = NET_XMIT_SUCCESS;
4078 static __always_inline struct sk_buff *
4079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4080 struct net_device *orig_dev, bool *another)
4085 static __always_inline struct sk_buff *
4086 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4090 #endif /* CONFIG_NET_XGRESS */
4093 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4094 struct xps_dev_maps *dev_maps, unsigned int tci)
4096 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4097 struct xps_map *map;
4098 int queue_index = -1;
4100 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4103 tci *= dev_maps->num_tc;
4106 map = rcu_dereference(dev_maps->attr_map[tci]);
4109 queue_index = map->queues[0];
4111 queue_index = map->queues[reciprocal_scale(
4112 skb_get_hash(skb), map->len)];
4113 if (unlikely(queue_index >= dev->real_num_tx_queues))
4120 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4121 struct sk_buff *skb)
4124 struct xps_dev_maps *dev_maps;
4125 struct sock *sk = skb->sk;
4126 int queue_index = -1;
4128 if (!static_key_false(&xps_needed))
4132 if (!static_key_false(&xps_rxqs_needed))
4135 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4137 int tci = sk_rx_queue_get(sk);
4140 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4145 if (queue_index < 0) {
4146 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4148 unsigned int tci = skb->sender_cpu - 1;
4150 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4162 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4163 struct net_device *sb_dev)
4167 EXPORT_SYMBOL(dev_pick_tx_zero);
4169 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4170 struct net_device *sb_dev)
4172 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4174 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4176 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4177 struct net_device *sb_dev)
4179 struct sock *sk = skb->sk;
4180 int queue_index = sk_tx_queue_get(sk);
4182 sb_dev = sb_dev ? : dev;
4184 if (queue_index < 0 || skb->ooo_okay ||
4185 queue_index >= dev->real_num_tx_queues) {
4186 int new_index = get_xps_queue(dev, sb_dev, skb);
4189 new_index = skb_tx_hash(dev, sb_dev, skb);
4191 if (queue_index != new_index && sk &&
4193 rcu_access_pointer(sk->sk_dst_cache))
4194 sk_tx_queue_set(sk, new_index);
4196 queue_index = new_index;
4201 EXPORT_SYMBOL(netdev_pick_tx);
4203 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4204 struct sk_buff *skb,
4205 struct net_device *sb_dev)
4207 int queue_index = 0;
4210 u32 sender_cpu = skb->sender_cpu - 1;
4212 if (sender_cpu >= (u32)NR_CPUS)
4213 skb->sender_cpu = raw_smp_processor_id() + 1;
4216 if (dev->real_num_tx_queues != 1) {
4217 const struct net_device_ops *ops = dev->netdev_ops;
4219 if (ops->ndo_select_queue)
4220 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4222 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4224 queue_index = netdev_cap_txqueue(dev, queue_index);
4227 skb_set_queue_mapping(skb, queue_index);
4228 return netdev_get_tx_queue(dev, queue_index);
4232 * __dev_queue_xmit() - transmit a buffer
4233 * @skb: buffer to transmit
4234 * @sb_dev: suboordinate device used for L2 forwarding offload
4236 * Queue a buffer for transmission to a network device. The caller must
4237 * have set the device and priority and built the buffer before calling
4238 * this function. The function can be called from an interrupt.
4240 * When calling this method, interrupts MUST be enabled. This is because
4241 * the BH enable code must have IRQs enabled so that it will not deadlock.
4243 * Regardless of the return value, the skb is consumed, so it is currently
4244 * difficult to retry a send to this method. (You can bump the ref count
4245 * before sending to hold a reference for retry if you are careful.)
4248 * * 0 - buffer successfully transmitted
4249 * * positive qdisc return code - NET_XMIT_DROP etc.
4250 * * negative errno - other errors
4252 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4254 struct net_device *dev = skb->dev;
4255 struct netdev_queue *txq = NULL;
4260 skb_reset_mac_header(skb);
4261 skb_assert_len(skb);
4263 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4264 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4266 /* Disable soft irqs for various locks below. Also
4267 * stops preemption for RCU.
4271 skb_update_prio(skb);
4273 qdisc_pkt_len_init(skb);
4274 tcx_set_ingress(skb, false);
4275 #ifdef CONFIG_NET_EGRESS
4276 if (static_branch_unlikely(&egress_needed_key)) {
4277 if (nf_hook_egress_active()) {
4278 skb = nf_hook_egress(skb, &rc, dev);
4283 netdev_xmit_skip_txqueue(false);
4285 nf_skip_egress(skb, true);
4286 skb = sch_handle_egress(skb, &rc, dev);
4289 nf_skip_egress(skb, false);
4291 if (netdev_xmit_txqueue_skipped())
4292 txq = netdev_tx_queue_mapping(dev, skb);
4295 /* If device/qdisc don't need skb->dst, release it right now while
4296 * its hot in this cpu cache.
4298 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4304 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4306 q = rcu_dereference_bh(txq->qdisc);
4308 trace_net_dev_queue(skb);
4310 rc = __dev_xmit_skb(skb, q, dev, txq);
4314 /* The device has no queue. Common case for software devices:
4315 * loopback, all the sorts of tunnels...
4317 * Really, it is unlikely that netif_tx_lock protection is necessary
4318 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4320 * However, it is possible, that they rely on protection
4323 * Check this and shot the lock. It is not prone from deadlocks.
4324 *Either shot noqueue qdisc, it is even simpler 8)
4326 if (dev->flags & IFF_UP) {
4327 int cpu = smp_processor_id(); /* ok because BHs are off */
4329 /* Other cpus might concurrently change txq->xmit_lock_owner
4330 * to -1 or to their cpu id, but not to our id.
4332 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4333 if (dev_xmit_recursion())
4334 goto recursion_alert;
4336 skb = validate_xmit_skb(skb, dev, &again);
4340 HARD_TX_LOCK(dev, txq, cpu);
4342 if (!netif_xmit_stopped(txq)) {
4343 dev_xmit_recursion_inc();
4344 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4345 dev_xmit_recursion_dec();
4346 if (dev_xmit_complete(rc)) {
4347 HARD_TX_UNLOCK(dev, txq);
4351 HARD_TX_UNLOCK(dev, txq);
4352 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4355 /* Recursion is detected! It is possible,
4359 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4365 rcu_read_unlock_bh();
4367 dev_core_stats_tx_dropped_inc(dev);
4368 kfree_skb_list(skb);
4371 rcu_read_unlock_bh();
4374 EXPORT_SYMBOL(__dev_queue_xmit);
4376 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4378 struct net_device *dev = skb->dev;
4379 struct sk_buff *orig_skb = skb;
4380 struct netdev_queue *txq;
4381 int ret = NETDEV_TX_BUSY;
4384 if (unlikely(!netif_running(dev) ||
4385 !netif_carrier_ok(dev)))
4388 skb = validate_xmit_skb_list(skb, dev, &again);
4389 if (skb != orig_skb)
4392 skb_set_queue_mapping(skb, queue_id);
4393 txq = skb_get_tx_queue(dev, skb);
4397 dev_xmit_recursion_inc();
4398 HARD_TX_LOCK(dev, txq, smp_processor_id());
4399 if (!netif_xmit_frozen_or_drv_stopped(txq))
4400 ret = netdev_start_xmit(skb, dev, txq, false);
4401 HARD_TX_UNLOCK(dev, txq);
4402 dev_xmit_recursion_dec();
4407 dev_core_stats_tx_dropped_inc(dev);
4408 kfree_skb_list(skb);
4409 return NET_XMIT_DROP;
4411 EXPORT_SYMBOL(__dev_direct_xmit);
4413 /*************************************************************************
4415 *************************************************************************/
4417 int netdev_max_backlog __read_mostly = 1000;
4418 EXPORT_SYMBOL(netdev_max_backlog);
4420 int netdev_tstamp_prequeue __read_mostly = 1;
4421 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4422 int netdev_budget __read_mostly = 300;
4423 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4424 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4425 int weight_p __read_mostly = 64; /* old backlog weight */
4426 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4427 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4428 int dev_rx_weight __read_mostly = 64;
4429 int dev_tx_weight __read_mostly = 64;
4431 /* Called with irq disabled */
4432 static inline void ____napi_schedule(struct softnet_data *sd,
4433 struct napi_struct *napi)
4435 struct task_struct *thread;
4437 lockdep_assert_irqs_disabled();
4439 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4440 /* Paired with smp_mb__before_atomic() in
4441 * napi_enable()/dev_set_threaded().
4442 * Use READ_ONCE() to guarantee a complete
4443 * read on napi->thread. Only call
4444 * wake_up_process() when it's not NULL.
4446 thread = READ_ONCE(napi->thread);
4448 /* Avoid doing set_bit() if the thread is in
4449 * INTERRUPTIBLE state, cause napi_thread_wait()
4450 * makes sure to proceed with napi polling
4451 * if the thread is explicitly woken from here.
4453 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4454 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4455 wake_up_process(thread);
4460 list_add_tail(&napi->poll_list, &sd->poll_list);
4461 WRITE_ONCE(napi->list_owner, smp_processor_id());
4462 /* If not called from net_rx_action()
4463 * we have to raise NET_RX_SOFTIRQ.
4465 if (!sd->in_net_rx_action)
4466 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471 /* One global table that all flow-based protocols share. */
4472 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4473 EXPORT_SYMBOL(rps_sock_flow_table);
4474 u32 rps_cpu_mask __read_mostly;
4475 EXPORT_SYMBOL(rps_cpu_mask);
4477 struct static_key_false rps_needed __read_mostly;
4478 EXPORT_SYMBOL(rps_needed);
4479 struct static_key_false rfs_needed __read_mostly;
4480 EXPORT_SYMBOL(rfs_needed);
4482 static struct rps_dev_flow *
4483 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484 struct rps_dev_flow *rflow, u16 next_cpu)
4486 if (next_cpu < nr_cpu_ids) {
4487 #ifdef CONFIG_RFS_ACCEL
4488 struct netdev_rx_queue *rxqueue;
4489 struct rps_dev_flow_table *flow_table;
4490 struct rps_dev_flow *old_rflow;
4495 /* Should we steer this flow to a different hardware queue? */
4496 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4497 !(dev->features & NETIF_F_NTUPLE))
4499 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4500 if (rxq_index == skb_get_rx_queue(skb))
4503 rxqueue = dev->_rx + rxq_index;
4504 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507 flow_id = skb_get_hash(skb) & flow_table->mask;
4508 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4509 rxq_index, flow_id);
4513 rflow = &flow_table->flows[flow_id];
4515 if (old_rflow->filter == rflow->filter)
4516 old_rflow->filter = RPS_NO_FILTER;
4520 per_cpu(softnet_data, next_cpu).input_queue_head;
4523 rflow->cpu = next_cpu;
4528 * get_rps_cpu is called from netif_receive_skb and returns the target
4529 * CPU from the RPS map of the receiving queue for a given skb.
4530 * rcu_read_lock must be held on entry.
4532 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4533 struct rps_dev_flow **rflowp)
4535 const struct rps_sock_flow_table *sock_flow_table;
4536 struct netdev_rx_queue *rxqueue = dev->_rx;
4537 struct rps_dev_flow_table *flow_table;
4538 struct rps_map *map;
4543 if (skb_rx_queue_recorded(skb)) {
4544 u16 index = skb_get_rx_queue(skb);
4546 if (unlikely(index >= dev->real_num_rx_queues)) {
4547 WARN_ONCE(dev->real_num_rx_queues > 1,
4548 "%s received packet on queue %u, but number "
4549 "of RX queues is %u\n",
4550 dev->name, index, dev->real_num_rx_queues);
4556 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4558 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 map = rcu_dereference(rxqueue->rps_map);
4560 if (!flow_table && !map)
4563 skb_reset_network_header(skb);
4564 hash = skb_get_hash(skb);
4568 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4569 if (flow_table && sock_flow_table) {
4570 struct rps_dev_flow *rflow;
4574 /* First check into global flow table if there is a match.
4575 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4577 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4578 if ((ident ^ hash) & ~rps_cpu_mask)
4581 next_cpu = ident & rps_cpu_mask;
4583 /* OK, now we know there is a match,
4584 * we can look at the local (per receive queue) flow table
4586 rflow = &flow_table->flows[hash & flow_table->mask];
4590 * If the desired CPU (where last recvmsg was done) is
4591 * different from current CPU (one in the rx-queue flow
4592 * table entry), switch if one of the following holds:
4593 * - Current CPU is unset (>= nr_cpu_ids).
4594 * - Current CPU is offline.
4595 * - The current CPU's queue tail has advanced beyond the
4596 * last packet that was enqueued using this table entry.
4597 * This guarantees that all previous packets for the flow
4598 * have been dequeued, thus preserving in order delivery.
4600 if (unlikely(tcpu != next_cpu) &&
4601 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4602 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4603 rflow->last_qtail)) >= 0)) {
4605 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4608 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4618 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4619 if (cpu_online(tcpu)) {
4629 #ifdef CONFIG_RFS_ACCEL
4632 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4633 * @dev: Device on which the filter was set
4634 * @rxq_index: RX queue index
4635 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4636 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4638 * Drivers that implement ndo_rx_flow_steer() should periodically call
4639 * this function for each installed filter and remove the filters for
4640 * which it returns %true.
4642 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4643 u32 flow_id, u16 filter_id)
4645 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4646 struct rps_dev_flow_table *flow_table;
4647 struct rps_dev_flow *rflow;
4652 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4653 if (flow_table && flow_id <= flow_table->mask) {
4654 rflow = &flow_table->flows[flow_id];
4655 cpu = READ_ONCE(rflow->cpu);
4656 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4657 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4658 rflow->last_qtail) <
4659 (int)(10 * flow_table->mask)))
4665 EXPORT_SYMBOL(rps_may_expire_flow);
4667 #endif /* CONFIG_RFS_ACCEL */
4669 /* Called from hardirq (IPI) context */
4670 static void rps_trigger_softirq(void *data)
4672 struct softnet_data *sd = data;
4674 ____napi_schedule(sd, &sd->backlog);
4678 #endif /* CONFIG_RPS */
4680 /* Called from hardirq (IPI) context */
4681 static void trigger_rx_softirq(void *data)
4683 struct softnet_data *sd = data;
4685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686 smp_store_release(&sd->defer_ipi_scheduled, 0);
4690 * After we queued a packet into sd->input_pkt_queue,
4691 * we need to make sure this queue is serviced soon.
4693 * - If this is another cpu queue, link it to our rps_ipi_list,
4694 * and make sure we will process rps_ipi_list from net_rx_action().
4696 * - If this is our own queue, NAPI schedule our backlog.
4697 * Note that this also raises NET_RX_SOFTIRQ.
4699 static void napi_schedule_rps(struct softnet_data *sd)
4701 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4705 sd->rps_ipi_next = mysd->rps_ipi_list;
4706 mysd->rps_ipi_list = sd;
4708 /* If not called from net_rx_action() or napi_threaded_poll()
4709 * we have to raise NET_RX_SOFTIRQ.
4711 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4712 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4715 #endif /* CONFIG_RPS */
4716 __napi_schedule_irqoff(&mysd->backlog);
4719 #ifdef CONFIG_NET_FLOW_LIMIT
4720 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4723 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4725 #ifdef CONFIG_NET_FLOW_LIMIT
4726 struct sd_flow_limit *fl;
4727 struct softnet_data *sd;
4728 unsigned int old_flow, new_flow;
4730 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4733 sd = this_cpu_ptr(&softnet_data);
4736 fl = rcu_dereference(sd->flow_limit);
4738 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4739 old_flow = fl->history[fl->history_head];
4740 fl->history[fl->history_head] = new_flow;
4743 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4745 if (likely(fl->buckets[old_flow]))
4746 fl->buckets[old_flow]--;
4748 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4760 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4761 * queue (may be a remote CPU queue).
4763 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4764 unsigned int *qtail)
4766 enum skb_drop_reason reason;
4767 struct softnet_data *sd;
4768 unsigned long flags;
4771 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4772 sd = &per_cpu(softnet_data, cpu);
4774 rps_lock_irqsave(sd, &flags);
4775 if (!netif_running(skb->dev))
4777 qlen = skb_queue_len(&sd->input_pkt_queue);
4778 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4781 __skb_queue_tail(&sd->input_pkt_queue, skb);
4782 input_queue_tail_incr_save(sd, qtail);
4783 rps_unlock_irq_restore(sd, &flags);
4784 return NET_RX_SUCCESS;
4787 /* Schedule NAPI for backlog device
4788 * We can use non atomic operation since we own the queue lock
4790 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791 napi_schedule_rps(sd);
4794 reason = SKB_DROP_REASON_CPU_BACKLOG;
4798 rps_unlock_irq_restore(sd, &flags);
4800 dev_core_stats_rx_dropped_inc(skb->dev);
4801 kfree_skb_reason(skb, reason);
4805 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4807 struct net_device *dev = skb->dev;
4808 struct netdev_rx_queue *rxqueue;
4812 if (skb_rx_queue_recorded(skb)) {
4813 u16 index = skb_get_rx_queue(skb);
4815 if (unlikely(index >= dev->real_num_rx_queues)) {
4816 WARN_ONCE(dev->real_num_rx_queues > 1,
4817 "%s received packet on queue %u, but number "
4818 "of RX queues is %u\n",
4819 dev->name, index, dev->real_num_rx_queues);
4821 return rxqueue; /* Return first rxqueue */
4828 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4829 struct bpf_prog *xdp_prog)
4831 void *orig_data, *orig_data_end, *hard_start;
4832 struct netdev_rx_queue *rxqueue;
4833 bool orig_bcast, orig_host;
4834 u32 mac_len, frame_sz;
4835 __be16 orig_eth_type;
4840 /* The XDP program wants to see the packet starting at the MAC
4843 mac_len = skb->data - skb_mac_header(skb);
4844 hard_start = skb->data - skb_headroom(skb);
4846 /* SKB "head" area always have tailroom for skb_shared_info */
4847 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4848 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4850 rxqueue = netif_get_rxqueue(skb);
4851 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4852 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4853 skb_headlen(skb) + mac_len, true);
4855 orig_data_end = xdp->data_end;
4856 orig_data = xdp->data;
4857 eth = (struct ethhdr *)xdp->data;
4858 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4859 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4860 orig_eth_type = eth->h_proto;
4862 act = bpf_prog_run_xdp(xdp_prog, xdp);
4864 /* check if bpf_xdp_adjust_head was used */
4865 off = xdp->data - orig_data;
4868 __skb_pull(skb, off);
4870 __skb_push(skb, -off);
4872 skb->mac_header += off;
4873 skb_reset_network_header(skb);
4876 /* check if bpf_xdp_adjust_tail was used */
4877 off = xdp->data_end - orig_data_end;
4879 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4880 skb->len += off; /* positive on grow, negative on shrink */
4883 /* check if XDP changed eth hdr such SKB needs update */
4884 eth = (struct ethhdr *)xdp->data;
4885 if ((orig_eth_type != eth->h_proto) ||
4886 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4887 skb->dev->dev_addr)) ||
4888 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4889 __skb_push(skb, ETH_HLEN);
4890 skb->pkt_type = PACKET_HOST;
4891 skb->protocol = eth_type_trans(skb, skb->dev);
4894 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4895 * before calling us again on redirect path. We do not call do_redirect
4896 * as we leave that up to the caller.
4898 * Caller is responsible for managing lifetime of skb (i.e. calling
4899 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4904 __skb_push(skb, mac_len);
4907 metalen = xdp->data - xdp->data_meta;
4909 skb_metadata_set(skb, metalen);
4916 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4917 struct xdp_buff *xdp,
4918 struct bpf_prog *xdp_prog)
4922 /* Reinjected packets coming from act_mirred or similar should
4923 * not get XDP generic processing.
4925 if (skb_is_redirected(skb))
4928 /* XDP packets must be linear and must have sufficient headroom
4929 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4930 * native XDP provides, thus we need to do it here as well.
4932 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4933 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4934 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4935 int troom = skb->tail + skb->data_len - skb->end;
4937 /* In case we have to go down the path and also linearize,
4938 * then lets do the pskb_expand_head() work just once here.
4940 if (pskb_expand_head(skb,
4941 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4942 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4944 if (skb_linearize(skb))
4948 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4955 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4958 trace_xdp_exception(skb->dev, xdp_prog, act);
4969 /* When doing generic XDP we have to bypass the qdisc layer and the
4970 * network taps in order to match in-driver-XDP behavior. This also means
4971 * that XDP packets are able to starve other packets going through a qdisc,
4972 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4973 * queues, so they do not have this starvation issue.
4975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4977 struct net_device *dev = skb->dev;
4978 struct netdev_queue *txq;
4979 bool free_skb = true;
4982 txq = netdev_core_pick_tx(dev, skb, NULL);
4983 cpu = smp_processor_id();
4984 HARD_TX_LOCK(dev, txq, cpu);
4985 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4986 rc = netdev_start_xmit(skb, dev, txq, 0);
4987 if (dev_xmit_complete(rc))
4990 HARD_TX_UNLOCK(dev, txq);
4992 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4993 dev_core_stats_tx_dropped_inc(dev);
4998 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5003 struct xdp_buff xdp;
5007 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5008 if (act != XDP_PASS) {
5011 err = xdp_do_generic_redirect(skb->dev, skb,
5017 generic_xdp_tx(skb, xdp_prog);
5025 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5028 EXPORT_SYMBOL_GPL(do_xdp_generic);
5030 static int netif_rx_internal(struct sk_buff *skb)
5034 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5036 trace_netif_rx(skb);
5039 if (static_branch_unlikely(&rps_needed)) {
5040 struct rps_dev_flow voidflow, *rflow = &voidflow;
5045 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5047 cpu = smp_processor_id();
5049 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5057 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5063 * __netif_rx - Slightly optimized version of netif_rx
5064 * @skb: buffer to post
5066 * This behaves as netif_rx except that it does not disable bottom halves.
5067 * As a result this function may only be invoked from the interrupt context
5068 * (either hard or soft interrupt).
5070 int __netif_rx(struct sk_buff *skb)
5074 lockdep_assert_once(hardirq_count() | softirq_count());
5076 trace_netif_rx_entry(skb);
5077 ret = netif_rx_internal(skb);
5078 trace_netif_rx_exit(ret);
5081 EXPORT_SYMBOL(__netif_rx);
5084 * netif_rx - post buffer to the network code
5085 * @skb: buffer to post
5087 * This function receives a packet from a device driver and queues it for
5088 * the upper (protocol) levels to process via the backlog NAPI device. It
5089 * always succeeds. The buffer may be dropped during processing for
5090 * congestion control or by the protocol layers.
5091 * The network buffer is passed via the backlog NAPI device. Modern NIC
5092 * driver should use NAPI and GRO.
5093 * This function can used from interrupt and from process context. The
5094 * caller from process context must not disable interrupts before invoking
5098 * NET_RX_SUCCESS (no congestion)
5099 * NET_RX_DROP (packet was dropped)
5102 int netif_rx(struct sk_buff *skb)
5104 bool need_bh_off = !(hardirq_count() | softirq_count());
5109 trace_netif_rx_entry(skb);
5110 ret = netif_rx_internal(skb);
5111 trace_netif_rx_exit(ret);
5116 EXPORT_SYMBOL(netif_rx);
5118 static __latent_entropy void net_tx_action(struct softirq_action *h)
5120 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5122 if (sd->completion_queue) {
5123 struct sk_buff *clist;
5125 local_irq_disable();
5126 clist = sd->completion_queue;
5127 sd->completion_queue = NULL;
5131 struct sk_buff *skb = clist;
5133 clist = clist->next;
5135 WARN_ON(refcount_read(&skb->users));
5136 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5137 trace_consume_skb(skb, net_tx_action);
5139 trace_kfree_skb(skb, net_tx_action,
5140 get_kfree_skb_cb(skb)->reason);
5142 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5145 __napi_kfree_skb(skb,
5146 get_kfree_skb_cb(skb)->reason);
5150 if (sd->output_queue) {
5153 local_irq_disable();
5154 head = sd->output_queue;
5155 sd->output_queue = NULL;
5156 sd->output_queue_tailp = &sd->output_queue;
5162 struct Qdisc *q = head;
5163 spinlock_t *root_lock = NULL;
5165 head = head->next_sched;
5167 /* We need to make sure head->next_sched is read
5168 * before clearing __QDISC_STATE_SCHED
5170 smp_mb__before_atomic();
5172 if (!(q->flags & TCQ_F_NOLOCK)) {
5173 root_lock = qdisc_lock(q);
5174 spin_lock(root_lock);
5175 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5177 /* There is a synchronize_net() between
5178 * STATE_DEACTIVATED flag being set and
5179 * qdisc_reset()/some_qdisc_is_busy() in
5180 * dev_deactivate(), so we can safely bail out
5181 * early here to avoid data race between
5182 * qdisc_deactivate() and some_qdisc_is_busy()
5183 * for lockless qdisc.
5185 clear_bit(__QDISC_STATE_SCHED, &q->state);
5189 clear_bit(__QDISC_STATE_SCHED, &q->state);
5192 spin_unlock(root_lock);
5198 xfrm_dev_backlog(sd);
5201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5202 /* This hook is defined here for ATM LANE */
5203 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5204 unsigned char *addr) __read_mostly;
5205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5209 * netdev_is_rx_handler_busy - check if receive handler is registered
5210 * @dev: device to check
5212 * Check if a receive handler is already registered for a given device.
5213 * Return true if there one.
5215 * The caller must hold the rtnl_mutex.
5217 bool netdev_is_rx_handler_busy(struct net_device *dev)
5220 return dev && rtnl_dereference(dev->rx_handler);
5222 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5225 * netdev_rx_handler_register - register receive handler
5226 * @dev: device to register a handler for
5227 * @rx_handler: receive handler to register
5228 * @rx_handler_data: data pointer that is used by rx handler
5230 * Register a receive handler for a device. This handler will then be
5231 * called from __netif_receive_skb. A negative errno code is returned
5234 * The caller must hold the rtnl_mutex.
5236 * For a general description of rx_handler, see enum rx_handler_result.
5238 int netdev_rx_handler_register(struct net_device *dev,
5239 rx_handler_func_t *rx_handler,
5240 void *rx_handler_data)
5242 if (netdev_is_rx_handler_busy(dev))
5245 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5248 /* Note: rx_handler_data must be set before rx_handler */
5249 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5250 rcu_assign_pointer(dev->rx_handler, rx_handler);
5254 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5257 * netdev_rx_handler_unregister - unregister receive handler
5258 * @dev: device to unregister a handler from
5260 * Unregister a receive handler from a device.
5262 * The caller must hold the rtnl_mutex.
5264 void netdev_rx_handler_unregister(struct net_device *dev)
5268 RCU_INIT_POINTER(dev->rx_handler, NULL);
5269 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5270 * section has a guarantee to see a non NULL rx_handler_data
5274 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5276 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5279 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5280 * the special handling of PFMEMALLOC skbs.
5282 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5284 switch (skb->protocol) {
5285 case htons(ETH_P_ARP):
5286 case htons(ETH_P_IP):
5287 case htons(ETH_P_IPV6):
5288 case htons(ETH_P_8021Q):
5289 case htons(ETH_P_8021AD):
5296 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5297 int *ret, struct net_device *orig_dev)
5299 if (nf_hook_ingress_active(skb)) {
5303 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5308 ingress_retval = nf_hook_ingress(skb);
5310 return ingress_retval;
5315 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5316 struct packet_type **ppt_prev)
5318 struct packet_type *ptype, *pt_prev;
5319 rx_handler_func_t *rx_handler;
5320 struct sk_buff *skb = *pskb;
5321 struct net_device *orig_dev;
5322 bool deliver_exact = false;
5323 int ret = NET_RX_DROP;
5326 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5328 trace_netif_receive_skb(skb);
5330 orig_dev = skb->dev;
5332 skb_reset_network_header(skb);
5333 if (!skb_transport_header_was_set(skb))
5334 skb_reset_transport_header(skb);
5335 skb_reset_mac_len(skb);
5340 skb->skb_iif = skb->dev->ifindex;
5342 __this_cpu_inc(softnet_data.processed);
5344 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5348 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5351 if (ret2 != XDP_PASS) {
5357 if (eth_type_vlan(skb->protocol)) {
5358 skb = skb_vlan_untag(skb);
5363 if (skb_skip_tc_classify(skb))
5369 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5371 ret = deliver_skb(skb, pt_prev, orig_dev);
5375 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5377 ret = deliver_skb(skb, pt_prev, orig_dev);
5382 #ifdef CONFIG_NET_INGRESS
5383 if (static_branch_unlikely(&ingress_needed_key)) {
5384 bool another = false;
5386 nf_skip_egress(skb, true);
5387 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5394 nf_skip_egress(skb, false);
5395 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5399 skb_reset_redirect(skb);
5401 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5404 if (skb_vlan_tag_present(skb)) {
5406 ret = deliver_skb(skb, pt_prev, orig_dev);
5409 if (vlan_do_receive(&skb))
5411 else if (unlikely(!skb))
5415 rx_handler = rcu_dereference(skb->dev->rx_handler);
5418 ret = deliver_skb(skb, pt_prev, orig_dev);
5421 switch (rx_handler(&skb)) {
5422 case RX_HANDLER_CONSUMED:
5423 ret = NET_RX_SUCCESS;
5425 case RX_HANDLER_ANOTHER:
5427 case RX_HANDLER_EXACT:
5428 deliver_exact = true;
5430 case RX_HANDLER_PASS:
5437 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5439 if (skb_vlan_tag_get_id(skb)) {
5440 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5443 skb->pkt_type = PACKET_OTHERHOST;
5444 } else if (eth_type_vlan(skb->protocol)) {
5445 /* Outer header is 802.1P with vlan 0, inner header is
5446 * 802.1Q or 802.1AD and vlan_do_receive() above could
5447 * not find vlan dev for vlan id 0.
5449 __vlan_hwaccel_clear_tag(skb);
5450 skb = skb_vlan_untag(skb);
5453 if (vlan_do_receive(&skb))
5454 /* After stripping off 802.1P header with vlan 0
5455 * vlan dev is found for inner header.
5458 else if (unlikely(!skb))
5461 /* We have stripped outer 802.1P vlan 0 header.
5462 * But could not find vlan dev.
5463 * check again for vlan id to set OTHERHOST.
5467 /* Note: we might in the future use prio bits
5468 * and set skb->priority like in vlan_do_receive()
5469 * For the time being, just ignore Priority Code Point
5471 __vlan_hwaccel_clear_tag(skb);
5474 type = skb->protocol;
5476 /* deliver only exact match when indicated */
5477 if (likely(!deliver_exact)) {
5478 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479 &ptype_base[ntohs(type) &
5483 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 &orig_dev->ptype_specific);
5486 if (unlikely(skb->dev != orig_dev)) {
5487 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5488 &skb->dev->ptype_specific);
5492 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5494 *ppt_prev = pt_prev;
5498 dev_core_stats_rx_dropped_inc(skb->dev);
5500 dev_core_stats_rx_nohandler_inc(skb->dev);
5501 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5502 /* Jamal, now you will not able to escape explaining
5503 * me how you were going to use this. :-)
5509 /* The invariant here is that if *ppt_prev is not NULL
5510 * then skb should also be non-NULL.
5512 * Apparently *ppt_prev assignment above holds this invariant due to
5513 * skb dereferencing near it.
5519 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5521 struct net_device *orig_dev = skb->dev;
5522 struct packet_type *pt_prev = NULL;
5525 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5527 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5528 skb->dev, pt_prev, orig_dev);
5533 * netif_receive_skb_core - special purpose version of netif_receive_skb
5534 * @skb: buffer to process
5536 * More direct receive version of netif_receive_skb(). It should
5537 * only be used by callers that have a need to skip RPS and Generic XDP.
5538 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5540 * This function may only be called from softirq context and interrupts
5541 * should be enabled.
5543 * Return values (usually ignored):
5544 * NET_RX_SUCCESS: no congestion
5545 * NET_RX_DROP: packet was dropped
5547 int netif_receive_skb_core(struct sk_buff *skb)
5552 ret = __netif_receive_skb_one_core(skb, false);
5557 EXPORT_SYMBOL(netif_receive_skb_core);
5559 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5560 struct packet_type *pt_prev,
5561 struct net_device *orig_dev)
5563 struct sk_buff *skb, *next;
5567 if (list_empty(head))
5569 if (pt_prev->list_func != NULL)
5570 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5571 ip_list_rcv, head, pt_prev, orig_dev);
5573 list_for_each_entry_safe(skb, next, head, list) {
5574 skb_list_del_init(skb);
5575 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5579 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5581 /* Fast-path assumptions:
5582 * - There is no RX handler.
5583 * - Only one packet_type matches.
5584 * If either of these fails, we will end up doing some per-packet
5585 * processing in-line, then handling the 'last ptype' for the whole
5586 * sublist. This can't cause out-of-order delivery to any single ptype,
5587 * because the 'last ptype' must be constant across the sublist, and all
5588 * other ptypes are handled per-packet.
5590 /* Current (common) ptype of sublist */
5591 struct packet_type *pt_curr = NULL;
5592 /* Current (common) orig_dev of sublist */
5593 struct net_device *od_curr = NULL;
5594 struct list_head sublist;
5595 struct sk_buff *skb, *next;
5597 INIT_LIST_HEAD(&sublist);
5598 list_for_each_entry_safe(skb, next, head, list) {
5599 struct net_device *orig_dev = skb->dev;
5600 struct packet_type *pt_prev = NULL;
5602 skb_list_del_init(skb);
5603 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5606 if (pt_curr != pt_prev || od_curr != orig_dev) {
5607 /* dispatch old sublist */
5608 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5609 /* start new sublist */
5610 INIT_LIST_HEAD(&sublist);
5614 list_add_tail(&skb->list, &sublist);
5617 /* dispatch final sublist */
5618 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5621 static int __netif_receive_skb(struct sk_buff *skb)
5625 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5626 unsigned int noreclaim_flag;
5629 * PFMEMALLOC skbs are special, they should
5630 * - be delivered to SOCK_MEMALLOC sockets only
5631 * - stay away from userspace
5632 * - have bounded memory usage
5634 * Use PF_MEMALLOC as this saves us from propagating the allocation
5635 * context down to all allocation sites.
5637 noreclaim_flag = memalloc_noreclaim_save();
5638 ret = __netif_receive_skb_one_core(skb, true);
5639 memalloc_noreclaim_restore(noreclaim_flag);
5641 ret = __netif_receive_skb_one_core(skb, false);
5646 static void __netif_receive_skb_list(struct list_head *head)
5648 unsigned long noreclaim_flag = 0;
5649 struct sk_buff *skb, *next;
5650 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5652 list_for_each_entry_safe(skb, next, head, list) {
5653 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5654 struct list_head sublist;
5656 /* Handle the previous sublist */
5657 list_cut_before(&sublist, head, &skb->list);
5658 if (!list_empty(&sublist))
5659 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5660 pfmemalloc = !pfmemalloc;
5661 /* See comments in __netif_receive_skb */
5663 noreclaim_flag = memalloc_noreclaim_save();
5665 memalloc_noreclaim_restore(noreclaim_flag);
5668 /* Handle the remaining sublist */
5669 if (!list_empty(head))
5670 __netif_receive_skb_list_core(head, pfmemalloc);
5671 /* Restore pflags */
5673 memalloc_noreclaim_restore(noreclaim_flag);
5676 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5678 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5679 struct bpf_prog *new = xdp->prog;
5682 switch (xdp->command) {
5683 case XDP_SETUP_PROG:
5684 rcu_assign_pointer(dev->xdp_prog, new);
5689 static_branch_dec(&generic_xdp_needed_key);
5690 } else if (new && !old) {
5691 static_branch_inc(&generic_xdp_needed_key);
5692 dev_disable_lro(dev);
5693 dev_disable_gro_hw(dev);
5705 static int netif_receive_skb_internal(struct sk_buff *skb)
5709 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5711 if (skb_defer_rx_timestamp(skb))
5712 return NET_RX_SUCCESS;
5716 if (static_branch_unlikely(&rps_needed)) {
5717 struct rps_dev_flow voidflow, *rflow = &voidflow;
5718 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5721 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5727 ret = __netif_receive_skb(skb);
5732 void netif_receive_skb_list_internal(struct list_head *head)
5734 struct sk_buff *skb, *next;
5735 struct list_head sublist;
5737 INIT_LIST_HEAD(&sublist);
5738 list_for_each_entry_safe(skb, next, head, list) {
5739 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740 skb_list_del_init(skb);
5741 if (!skb_defer_rx_timestamp(skb))
5742 list_add_tail(&skb->list, &sublist);
5744 list_splice_init(&sublist, head);
5748 if (static_branch_unlikely(&rps_needed)) {
5749 list_for_each_entry_safe(skb, next, head, list) {
5750 struct rps_dev_flow voidflow, *rflow = &voidflow;
5751 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5754 /* Will be handled, remove from list */
5755 skb_list_del_init(skb);
5756 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5761 __netif_receive_skb_list(head);
5766 * netif_receive_skb - process receive buffer from network
5767 * @skb: buffer to process
5769 * netif_receive_skb() is the main receive data processing function.
5770 * It always succeeds. The buffer may be dropped during processing
5771 * for congestion control or by the protocol layers.
5773 * This function may only be called from softirq context and interrupts
5774 * should be enabled.
5776 * Return values (usually ignored):
5777 * NET_RX_SUCCESS: no congestion
5778 * NET_RX_DROP: packet was dropped
5780 int netif_receive_skb(struct sk_buff *skb)
5784 trace_netif_receive_skb_entry(skb);
5786 ret = netif_receive_skb_internal(skb);
5787 trace_netif_receive_skb_exit(ret);
5791 EXPORT_SYMBOL(netif_receive_skb);
5794 * netif_receive_skb_list - process many receive buffers from network
5795 * @head: list of skbs to process.
5797 * Since return value of netif_receive_skb() is normally ignored, and
5798 * wouldn't be meaningful for a list, this function returns void.
5800 * This function may only be called from softirq context and interrupts
5801 * should be enabled.
5803 void netif_receive_skb_list(struct list_head *head)
5805 struct sk_buff *skb;
5807 if (list_empty(head))
5809 if (trace_netif_receive_skb_list_entry_enabled()) {
5810 list_for_each_entry(skb, head, list)
5811 trace_netif_receive_skb_list_entry(skb);
5813 netif_receive_skb_list_internal(head);
5814 trace_netif_receive_skb_list_exit(0);
5816 EXPORT_SYMBOL(netif_receive_skb_list);
5818 static DEFINE_PER_CPU(struct work_struct, flush_works);
5820 /* Network device is going away, flush any packets still pending */
5821 static void flush_backlog(struct work_struct *work)
5823 struct sk_buff *skb, *tmp;
5824 struct softnet_data *sd;
5827 sd = this_cpu_ptr(&softnet_data);
5829 rps_lock_irq_disable(sd);
5830 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5831 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832 __skb_unlink(skb, &sd->input_pkt_queue);
5833 dev_kfree_skb_irq(skb);
5834 input_queue_head_incr(sd);
5837 rps_unlock_irq_enable(sd);
5839 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5840 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5841 __skb_unlink(skb, &sd->process_queue);
5843 input_queue_head_incr(sd);
5849 static bool flush_required(int cpu)
5851 #if IS_ENABLED(CONFIG_RPS)
5852 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5855 rps_lock_irq_disable(sd);
5857 /* as insertion into process_queue happens with the rps lock held,
5858 * process_queue access may race only with dequeue
5860 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5861 !skb_queue_empty_lockless(&sd->process_queue);
5862 rps_unlock_irq_enable(sd);
5866 /* without RPS we can't safely check input_pkt_queue: during a
5867 * concurrent remote skb_queue_splice() we can detect as empty both
5868 * input_pkt_queue and process_queue even if the latter could end-up
5869 * containing a lot of packets.
5874 static void flush_all_backlogs(void)
5876 static cpumask_t flush_cpus;
5879 /* since we are under rtnl lock protection we can use static data
5880 * for the cpumask and avoid allocating on stack the possibly
5887 cpumask_clear(&flush_cpus);
5888 for_each_online_cpu(cpu) {
5889 if (flush_required(cpu)) {
5890 queue_work_on(cpu, system_highpri_wq,
5891 per_cpu_ptr(&flush_works, cpu));
5892 cpumask_set_cpu(cpu, &flush_cpus);
5896 /* we can have in flight packet[s] on the cpus we are not flushing,
5897 * synchronize_net() in unregister_netdevice_many() will take care of
5900 for_each_cpu(cpu, &flush_cpus)
5901 flush_work(per_cpu_ptr(&flush_works, cpu));
5906 static void net_rps_send_ipi(struct softnet_data *remsd)
5910 struct softnet_data *next = remsd->rps_ipi_next;
5912 if (cpu_online(remsd->cpu))
5913 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5920 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5921 * Note: called with local irq disabled, but exits with local irq enabled.
5923 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5926 struct softnet_data *remsd = sd->rps_ipi_list;
5929 sd->rps_ipi_list = NULL;
5933 /* Send pending IPI's to kick RPS processing on remote cpus. */
5934 net_rps_send_ipi(remsd);
5940 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5943 return sd->rps_ipi_list != NULL;
5949 static int process_backlog(struct napi_struct *napi, int quota)
5951 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5955 /* Check if we have pending ipi, its better to send them now,
5956 * not waiting net_rx_action() end.
5958 if (sd_has_rps_ipi_waiting(sd)) {
5959 local_irq_disable();
5960 net_rps_action_and_irq_enable(sd);
5963 napi->weight = READ_ONCE(dev_rx_weight);
5965 struct sk_buff *skb;
5967 while ((skb = __skb_dequeue(&sd->process_queue))) {
5969 __netif_receive_skb(skb);
5971 input_queue_head_incr(sd);
5972 if (++work >= quota)
5977 rps_lock_irq_disable(sd);
5978 if (skb_queue_empty(&sd->input_pkt_queue)) {
5980 * Inline a custom version of __napi_complete().
5981 * only current cpu owns and manipulates this napi,
5982 * and NAPI_STATE_SCHED is the only possible flag set
5984 * We can use a plain write instead of clear_bit(),
5985 * and we dont need an smp_mb() memory barrier.
5990 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5991 &sd->process_queue);
5993 rps_unlock_irq_enable(sd);
6000 * __napi_schedule - schedule for receive
6001 * @n: entry to schedule
6003 * The entry's receive function will be scheduled to run.
6004 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6006 void __napi_schedule(struct napi_struct *n)
6008 unsigned long flags;
6010 local_irq_save(flags);
6011 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012 local_irq_restore(flags);
6014 EXPORT_SYMBOL(__napi_schedule);
6017 * napi_schedule_prep - check if napi can be scheduled
6020 * Test if NAPI routine is already running, and if not mark
6021 * it as running. This is used as a condition variable to
6022 * insure only one NAPI poll instance runs. We also make
6023 * sure there is no pending NAPI disable.
6025 bool napi_schedule_prep(struct napi_struct *n)
6027 unsigned long new, val = READ_ONCE(n->state);
6030 if (unlikely(val & NAPIF_STATE_DISABLE))
6032 new = val | NAPIF_STATE_SCHED;
6034 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6035 * This was suggested by Alexander Duyck, as compiler
6036 * emits better code than :
6037 * if (val & NAPIF_STATE_SCHED)
6038 * new |= NAPIF_STATE_MISSED;
6040 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6042 } while (!try_cmpxchg(&n->state, &val, new));
6044 return !(val & NAPIF_STATE_SCHED);
6046 EXPORT_SYMBOL(napi_schedule_prep);
6049 * __napi_schedule_irqoff - schedule for receive
6050 * @n: entry to schedule
6052 * Variant of __napi_schedule() assuming hard irqs are masked.
6054 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6055 * because the interrupt disabled assumption might not be true
6056 * due to force-threaded interrupts and spinlock substitution.
6058 void __napi_schedule_irqoff(struct napi_struct *n)
6060 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6061 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6065 EXPORT_SYMBOL(__napi_schedule_irqoff);
6067 bool napi_complete_done(struct napi_struct *n, int work_done)
6069 unsigned long flags, val, new, timeout = 0;
6073 * 1) Don't let napi dequeue from the cpu poll list
6074 * just in case its running on a different cpu.
6075 * 2) If we are busy polling, do nothing here, we have
6076 * the guarantee we will be called later.
6078 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6079 NAPIF_STATE_IN_BUSY_POLL)))
6084 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6085 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6087 if (n->defer_hard_irqs_count > 0) {
6088 n->defer_hard_irqs_count--;
6089 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6093 if (n->gro_bitmask) {
6094 /* When the NAPI instance uses a timeout and keeps postponing
6095 * it, we need to bound somehow the time packets are kept in
6098 napi_gro_flush(n, !!timeout);
6103 if (unlikely(!list_empty(&n->poll_list))) {
6104 /* If n->poll_list is not empty, we need to mask irqs */
6105 local_irq_save(flags);
6106 list_del_init(&n->poll_list);
6107 local_irq_restore(flags);
6109 WRITE_ONCE(n->list_owner, -1);
6111 val = READ_ONCE(n->state);
6113 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6115 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6116 NAPIF_STATE_SCHED_THREADED |
6117 NAPIF_STATE_PREFER_BUSY_POLL);
6119 /* If STATE_MISSED was set, leave STATE_SCHED set,
6120 * because we will call napi->poll() one more time.
6121 * This C code was suggested by Alexander Duyck to help gcc.
6123 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6125 } while (!try_cmpxchg(&n->state, &val, new));
6127 if (unlikely(val & NAPIF_STATE_MISSED)) {
6133 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6134 HRTIMER_MODE_REL_PINNED);
6137 EXPORT_SYMBOL(napi_complete_done);
6139 /* must be called under rcu_read_lock(), as we dont take a reference */
6140 static struct napi_struct *napi_by_id(unsigned int napi_id)
6142 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6143 struct napi_struct *napi;
6145 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6146 if (napi->napi_id == napi_id)
6152 #if defined(CONFIG_NET_RX_BUSY_POLL)
6154 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6156 if (!skip_schedule) {
6157 gro_normal_list(napi);
6158 __napi_schedule(napi);
6162 if (napi->gro_bitmask) {
6163 /* flush too old packets
6164 * If HZ < 1000, flush all packets.
6166 napi_gro_flush(napi, HZ >= 1000);
6169 gro_normal_list(napi);
6170 clear_bit(NAPI_STATE_SCHED, &napi->state);
6173 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6176 bool skip_schedule = false;
6177 unsigned long timeout;
6180 /* Busy polling means there is a high chance device driver hard irq
6181 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6182 * set in napi_schedule_prep().
6183 * Since we are about to call napi->poll() once more, we can safely
6184 * clear NAPI_STATE_MISSED.
6186 * Note: x86 could use a single "lock and ..." instruction
6187 * to perform these two clear_bit()
6189 clear_bit(NAPI_STATE_MISSED, &napi->state);
6190 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6194 if (prefer_busy_poll) {
6195 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6196 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6197 if (napi->defer_hard_irqs_count && timeout) {
6198 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6199 skip_schedule = true;
6203 /* All we really want here is to re-enable device interrupts.
6204 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6206 rc = napi->poll(napi, budget);
6207 /* We can't gro_normal_list() here, because napi->poll() might have
6208 * rearmed the napi (napi_complete_done()) in which case it could
6209 * already be running on another CPU.
6211 trace_napi_poll(napi, rc, budget);
6212 netpoll_poll_unlock(have_poll_lock);
6214 __busy_poll_stop(napi, skip_schedule);
6218 void napi_busy_loop(unsigned int napi_id,
6219 bool (*loop_end)(void *, unsigned long),
6220 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6222 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6223 int (*napi_poll)(struct napi_struct *napi, int budget);
6224 void *have_poll_lock = NULL;
6225 struct napi_struct *napi;
6232 napi = napi_by_id(napi_id);
6236 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6243 unsigned long val = READ_ONCE(napi->state);
6245 /* If multiple threads are competing for this napi,
6246 * we avoid dirtying napi->state as much as we can.
6248 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249 NAPIF_STATE_IN_BUSY_POLL)) {
6250 if (prefer_busy_poll)
6251 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6254 if (cmpxchg(&napi->state, val,
6255 val | NAPIF_STATE_IN_BUSY_POLL |
6256 NAPIF_STATE_SCHED) != val) {
6257 if (prefer_busy_poll)
6258 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6261 have_poll_lock = netpoll_poll_lock(napi);
6262 napi_poll = napi->poll;
6264 work = napi_poll(napi, budget);
6265 trace_napi_poll(napi, work, budget);
6266 gro_normal_list(napi);
6269 __NET_ADD_STATS(dev_net(napi->dev),
6270 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6273 if (!loop_end || loop_end(loop_end_arg, start_time))
6276 if (unlikely(need_resched())) {
6278 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6279 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6283 if (loop_end(loop_end_arg, start_time))
6290 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6291 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6296 EXPORT_SYMBOL(napi_busy_loop);
6298 #endif /* CONFIG_NET_RX_BUSY_POLL */
6300 static void napi_hash_add(struct napi_struct *napi)
6302 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6305 spin_lock(&napi_hash_lock);
6307 /* 0..NR_CPUS range is reserved for sender_cpu use */
6309 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6310 napi_gen_id = MIN_NAPI_ID;
6311 } while (napi_by_id(napi_gen_id));
6312 napi->napi_id = napi_gen_id;
6314 hlist_add_head_rcu(&napi->napi_hash_node,
6315 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6317 spin_unlock(&napi_hash_lock);
6320 /* Warning : caller is responsible to make sure rcu grace period
6321 * is respected before freeing memory containing @napi
6323 static void napi_hash_del(struct napi_struct *napi)
6325 spin_lock(&napi_hash_lock);
6327 hlist_del_init_rcu(&napi->napi_hash_node);
6329 spin_unlock(&napi_hash_lock);
6332 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6334 struct napi_struct *napi;
6336 napi = container_of(timer, struct napi_struct, timer);
6338 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6339 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6341 if (!napi_disable_pending(napi) &&
6342 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6343 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6344 __napi_schedule_irqoff(napi);
6347 return HRTIMER_NORESTART;
6350 static void init_gro_hash(struct napi_struct *napi)
6354 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6355 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6356 napi->gro_hash[i].count = 0;
6358 napi->gro_bitmask = 0;
6361 int dev_set_threaded(struct net_device *dev, bool threaded)
6363 struct napi_struct *napi;
6366 if (dev->threaded == threaded)
6370 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6371 if (!napi->thread) {
6372 err = napi_kthread_create(napi);
6381 dev->threaded = threaded;
6383 /* Make sure kthread is created before THREADED bit
6386 smp_mb__before_atomic();
6388 /* Setting/unsetting threaded mode on a napi might not immediately
6389 * take effect, if the current napi instance is actively being
6390 * polled. In this case, the switch between threaded mode and
6391 * softirq mode will happen in the next round of napi_schedule().
6392 * This should not cause hiccups/stalls to the live traffic.
6394 list_for_each_entry(napi, &dev->napi_list, dev_list)
6395 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6399 EXPORT_SYMBOL(dev_set_threaded);
6401 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6402 int (*poll)(struct napi_struct *, int), int weight)
6404 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6407 INIT_LIST_HEAD(&napi->poll_list);
6408 INIT_HLIST_NODE(&napi->napi_hash_node);
6409 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6410 napi->timer.function = napi_watchdog;
6411 init_gro_hash(napi);
6413 INIT_LIST_HEAD(&napi->rx_list);
6416 if (weight > NAPI_POLL_WEIGHT)
6417 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6419 napi->weight = weight;
6421 #ifdef CONFIG_NETPOLL
6422 napi->poll_owner = -1;
6424 napi->list_owner = -1;
6425 set_bit(NAPI_STATE_SCHED, &napi->state);
6426 set_bit(NAPI_STATE_NPSVC, &napi->state);
6427 list_add_rcu(&napi->dev_list, &dev->napi_list);
6428 napi_hash_add(napi);
6429 napi_get_frags_check(napi);
6430 /* Create kthread for this napi if dev->threaded is set.
6431 * Clear dev->threaded if kthread creation failed so that
6432 * threaded mode will not be enabled in napi_enable().
6434 if (dev->threaded && napi_kthread_create(napi))
6437 EXPORT_SYMBOL(netif_napi_add_weight);
6439 void napi_disable(struct napi_struct *n)
6441 unsigned long val, new;
6444 set_bit(NAPI_STATE_DISABLE, &n->state);
6446 val = READ_ONCE(n->state);
6448 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6449 usleep_range(20, 200);
6450 val = READ_ONCE(n->state);
6453 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6454 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6455 } while (!try_cmpxchg(&n->state, &val, new));
6457 hrtimer_cancel(&n->timer);
6459 clear_bit(NAPI_STATE_DISABLE, &n->state);
6461 EXPORT_SYMBOL(napi_disable);
6464 * napi_enable - enable NAPI scheduling
6467 * Resume NAPI from being scheduled on this context.
6468 * Must be paired with napi_disable.
6470 void napi_enable(struct napi_struct *n)
6472 unsigned long new, val = READ_ONCE(n->state);
6475 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6477 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6478 if (n->dev->threaded && n->thread)
6479 new |= NAPIF_STATE_THREADED;
6480 } while (!try_cmpxchg(&n->state, &val, new));
6482 EXPORT_SYMBOL(napi_enable);
6484 static void flush_gro_hash(struct napi_struct *napi)
6488 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489 struct sk_buff *skb, *n;
6491 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6493 napi->gro_hash[i].count = 0;
6497 /* Must be called in process context */
6498 void __netif_napi_del(struct napi_struct *napi)
6500 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6503 napi_hash_del(napi);
6504 list_del_rcu(&napi->dev_list);
6505 napi_free_frags(napi);
6507 flush_gro_hash(napi);
6508 napi->gro_bitmask = 0;
6511 kthread_stop(napi->thread);
6512 napi->thread = NULL;
6515 EXPORT_SYMBOL(__netif_napi_del);
6517 static int __napi_poll(struct napi_struct *n, bool *repoll)
6523 /* This NAPI_STATE_SCHED test is for avoiding a race
6524 * with netpoll's poll_napi(). Only the entity which
6525 * obtains the lock and sees NAPI_STATE_SCHED set will
6526 * actually make the ->poll() call. Therefore we avoid
6527 * accidentally calling ->poll() when NAPI is not scheduled.
6530 if (napi_is_scheduled(n)) {
6531 work = n->poll(n, weight);
6532 trace_napi_poll(n, work, weight);
6534 xdp_do_check_flushed(n);
6537 if (unlikely(work > weight))
6538 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6539 n->poll, work, weight);
6541 if (likely(work < weight))
6544 /* Drivers must not modify the NAPI state if they
6545 * consume the entire weight. In such cases this code
6546 * still "owns" the NAPI instance and therefore can
6547 * move the instance around on the list at-will.
6549 if (unlikely(napi_disable_pending(n))) {
6554 /* The NAPI context has more processing work, but busy-polling
6555 * is preferred. Exit early.
6557 if (napi_prefer_busy_poll(n)) {
6558 if (napi_complete_done(n, work)) {
6559 /* If timeout is not set, we need to make sure
6560 * that the NAPI is re-scheduled.
6567 if (n->gro_bitmask) {
6568 /* flush too old packets
6569 * If HZ < 1000, flush all packets.
6571 napi_gro_flush(n, HZ >= 1000);
6576 /* Some drivers may have called napi_schedule
6577 * prior to exhausting their budget.
6579 if (unlikely(!list_empty(&n->poll_list))) {
6580 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6581 n->dev ? n->dev->name : "backlog");
6590 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6592 bool do_repoll = false;
6596 list_del_init(&n->poll_list);
6598 have = netpoll_poll_lock(n);
6600 work = __napi_poll(n, &do_repoll);
6603 list_add_tail(&n->poll_list, repoll);
6605 netpoll_poll_unlock(have);
6610 static int napi_thread_wait(struct napi_struct *napi)
6614 set_current_state(TASK_INTERRUPTIBLE);
6616 while (!kthread_should_stop()) {
6617 /* Testing SCHED_THREADED bit here to make sure the current
6618 * kthread owns this napi and could poll on this napi.
6619 * Testing SCHED bit is not enough because SCHED bit might be
6620 * set by some other busy poll thread or by napi_disable().
6622 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6623 WARN_ON(!list_empty(&napi->poll_list));
6624 __set_current_state(TASK_RUNNING);
6629 /* woken being true indicates this thread owns this napi. */
6631 set_current_state(TASK_INTERRUPTIBLE);
6633 __set_current_state(TASK_RUNNING);
6638 static void skb_defer_free_flush(struct softnet_data *sd)
6640 struct sk_buff *skb, *next;
6642 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6643 if (!READ_ONCE(sd->defer_list))
6646 spin_lock(&sd->defer_lock);
6647 skb = sd->defer_list;
6648 sd->defer_list = NULL;
6649 sd->defer_count = 0;
6650 spin_unlock(&sd->defer_lock);
6652 while (skb != NULL) {
6654 napi_consume_skb(skb, 1);
6659 static int napi_threaded_poll(void *data)
6661 struct napi_struct *napi = data;
6662 struct softnet_data *sd;
6665 while (!napi_thread_wait(napi)) {
6667 bool repoll = false;
6670 sd = this_cpu_ptr(&softnet_data);
6671 sd->in_napi_threaded_poll = true;
6673 have = netpoll_poll_lock(napi);
6674 __napi_poll(napi, &repoll);
6675 netpoll_poll_unlock(have);
6677 sd->in_napi_threaded_poll = false;
6680 if (sd_has_rps_ipi_waiting(sd)) {
6681 local_irq_disable();
6682 net_rps_action_and_irq_enable(sd);
6684 skb_defer_free_flush(sd);
6696 static __latent_entropy void net_rx_action(struct softirq_action *h)
6698 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6699 unsigned long time_limit = jiffies +
6700 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6701 int budget = READ_ONCE(netdev_budget);
6706 sd->in_net_rx_action = true;
6707 local_irq_disable();
6708 list_splice_init(&sd->poll_list, &list);
6712 struct napi_struct *n;
6714 skb_defer_free_flush(sd);
6716 if (list_empty(&list)) {
6717 if (list_empty(&repoll)) {
6718 sd->in_net_rx_action = false;
6720 /* We need to check if ____napi_schedule()
6721 * had refilled poll_list while
6722 * sd->in_net_rx_action was true.
6724 if (!list_empty(&sd->poll_list))
6726 if (!sd_has_rps_ipi_waiting(sd))
6732 n = list_first_entry(&list, struct napi_struct, poll_list);
6733 budget -= napi_poll(n, &repoll);
6735 /* If softirq window is exhausted then punt.
6736 * Allow this to run for 2 jiffies since which will allow
6737 * an average latency of 1.5/HZ.
6739 if (unlikely(budget <= 0 ||
6740 time_after_eq(jiffies, time_limit))) {
6746 local_irq_disable();
6748 list_splice_tail_init(&sd->poll_list, &list);
6749 list_splice_tail(&repoll, &list);
6750 list_splice(&list, &sd->poll_list);
6751 if (!list_empty(&sd->poll_list))
6752 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6754 sd->in_net_rx_action = false;
6756 net_rps_action_and_irq_enable(sd);
6760 struct netdev_adjacent {
6761 struct net_device *dev;
6762 netdevice_tracker dev_tracker;
6764 /* upper master flag, there can only be one master device per list */
6767 /* lookup ignore flag */
6770 /* counter for the number of times this device was added to us */
6773 /* private field for the users */
6776 struct list_head list;
6777 struct rcu_head rcu;
6780 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6781 struct list_head *adj_list)
6783 struct netdev_adjacent *adj;
6785 list_for_each_entry(adj, adj_list, list) {
6786 if (adj->dev == adj_dev)
6792 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6793 struct netdev_nested_priv *priv)
6795 struct net_device *dev = (struct net_device *)priv->data;
6797 return upper_dev == dev;
6801 * netdev_has_upper_dev - Check if device is linked to an upper device
6803 * @upper_dev: upper device to check
6805 * Find out if a device is linked to specified upper device and return true
6806 * in case it is. Note that this checks only immediate upper device,
6807 * not through a complete stack of devices. The caller must hold the RTNL lock.
6809 bool netdev_has_upper_dev(struct net_device *dev,
6810 struct net_device *upper_dev)
6812 struct netdev_nested_priv priv = {
6813 .data = (void *)upper_dev,
6818 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6821 EXPORT_SYMBOL(netdev_has_upper_dev);
6824 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6826 * @upper_dev: upper device to check
6828 * Find out if a device is linked to specified upper device and return true
6829 * in case it is. Note that this checks the entire upper device chain.
6830 * The caller must hold rcu lock.
6833 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6834 struct net_device *upper_dev)
6836 struct netdev_nested_priv priv = {
6837 .data = (void *)upper_dev,
6840 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6843 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6846 * netdev_has_any_upper_dev - Check if device is linked to some device
6849 * Find out if a device is linked to an upper device and return true in case
6850 * it is. The caller must hold the RTNL lock.
6852 bool netdev_has_any_upper_dev(struct net_device *dev)
6856 return !list_empty(&dev->adj_list.upper);
6858 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6861 * netdev_master_upper_dev_get - Get master upper device
6864 * Find a master upper device and return pointer to it or NULL in case
6865 * it's not there. The caller must hold the RTNL lock.
6867 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6869 struct netdev_adjacent *upper;
6873 if (list_empty(&dev->adj_list.upper))
6876 upper = list_first_entry(&dev->adj_list.upper,
6877 struct netdev_adjacent, list);
6878 if (likely(upper->master))
6882 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6884 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6886 struct netdev_adjacent *upper;
6890 if (list_empty(&dev->adj_list.upper))
6893 upper = list_first_entry(&dev->adj_list.upper,
6894 struct netdev_adjacent, list);
6895 if (likely(upper->master) && !upper->ignore)
6901 * netdev_has_any_lower_dev - Check if device is linked to some device
6904 * Find out if a device is linked to a lower device and return true in case
6905 * it is. The caller must hold the RTNL lock.
6907 static bool netdev_has_any_lower_dev(struct net_device *dev)
6911 return !list_empty(&dev->adj_list.lower);
6914 void *netdev_adjacent_get_private(struct list_head *adj_list)
6916 struct netdev_adjacent *adj;
6918 adj = list_entry(adj_list, struct netdev_adjacent, list);
6920 return adj->private;
6922 EXPORT_SYMBOL(netdev_adjacent_get_private);
6925 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6927 * @iter: list_head ** of the current position
6929 * Gets the next device from the dev's upper list, starting from iter
6930 * position. The caller must hold RCU read lock.
6932 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6933 struct list_head **iter)
6935 struct netdev_adjacent *upper;
6937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6941 if (&upper->list == &dev->adj_list.upper)
6944 *iter = &upper->list;
6948 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6950 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6951 struct list_head **iter,
6954 struct netdev_adjacent *upper;
6956 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6958 if (&upper->list == &dev->adj_list.upper)
6961 *iter = &upper->list;
6962 *ignore = upper->ignore;
6967 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6968 struct list_head **iter)
6970 struct netdev_adjacent *upper;
6972 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6974 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6976 if (&upper->list == &dev->adj_list.upper)
6979 *iter = &upper->list;
6984 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6985 int (*fn)(struct net_device *dev,
6986 struct netdev_nested_priv *priv),
6987 struct netdev_nested_priv *priv)
6989 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6990 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6995 iter = &dev->adj_list.upper;
6999 ret = fn(now, priv);
7006 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7013 niter = &udev->adj_list.upper;
7014 dev_stack[cur] = now;
7015 iter_stack[cur++] = iter;
7022 next = dev_stack[--cur];
7023 niter = iter_stack[cur];
7033 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7034 int (*fn)(struct net_device *dev,
7035 struct netdev_nested_priv *priv),
7036 struct netdev_nested_priv *priv)
7038 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7039 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7043 iter = &dev->adj_list.upper;
7047 ret = fn(now, priv);
7054 udev = netdev_next_upper_dev_rcu(now, &iter);
7059 niter = &udev->adj_list.upper;
7060 dev_stack[cur] = now;
7061 iter_stack[cur++] = iter;
7068 next = dev_stack[--cur];
7069 niter = iter_stack[cur];
7078 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7080 static bool __netdev_has_upper_dev(struct net_device *dev,
7081 struct net_device *upper_dev)
7083 struct netdev_nested_priv priv = {
7085 .data = (void *)upper_dev,
7090 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7095 * netdev_lower_get_next_private - Get the next ->private from the
7096 * lower neighbour list
7098 * @iter: list_head ** of the current position
7100 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7101 * list, starting from iter position. The caller must hold either hold the
7102 * RTNL lock or its own locking that guarantees that the neighbour lower
7103 * list will remain unchanged.
7105 void *netdev_lower_get_next_private(struct net_device *dev,
7106 struct list_head **iter)
7108 struct netdev_adjacent *lower;
7110 lower = list_entry(*iter, struct netdev_adjacent, list);
7112 if (&lower->list == &dev->adj_list.lower)
7115 *iter = lower->list.next;
7117 return lower->private;
7119 EXPORT_SYMBOL(netdev_lower_get_next_private);
7122 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7123 * lower neighbour list, RCU
7126 * @iter: list_head ** of the current position
7128 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7129 * list, starting from iter position. The caller must hold RCU read lock.
7131 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7132 struct list_head **iter)
7134 struct netdev_adjacent *lower;
7136 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7138 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7140 if (&lower->list == &dev->adj_list.lower)
7143 *iter = &lower->list;
7145 return lower->private;
7147 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7150 * netdev_lower_get_next - Get the next device from the lower neighbour
7153 * @iter: list_head ** of the current position
7155 * Gets the next netdev_adjacent from the dev's lower neighbour
7156 * list, starting from iter position. The caller must hold RTNL lock or
7157 * its own locking that guarantees that the neighbour lower
7158 * list will remain unchanged.
7160 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7162 struct netdev_adjacent *lower;
7164 lower = list_entry(*iter, struct netdev_adjacent, list);
7166 if (&lower->list == &dev->adj_list.lower)
7169 *iter = lower->list.next;
7173 EXPORT_SYMBOL(netdev_lower_get_next);
7175 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7176 struct list_head **iter)
7178 struct netdev_adjacent *lower;
7180 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7182 if (&lower->list == &dev->adj_list.lower)
7185 *iter = &lower->list;
7190 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7191 struct list_head **iter,
7194 struct netdev_adjacent *lower;
7196 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7198 if (&lower->list == &dev->adj_list.lower)
7201 *iter = &lower->list;
7202 *ignore = lower->ignore;
7207 int netdev_walk_all_lower_dev(struct net_device *dev,
7208 int (*fn)(struct net_device *dev,
7209 struct netdev_nested_priv *priv),
7210 struct netdev_nested_priv *priv)
7212 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7213 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7217 iter = &dev->adj_list.lower;
7221 ret = fn(now, priv);
7228 ldev = netdev_next_lower_dev(now, &iter);
7233 niter = &ldev->adj_list.lower;
7234 dev_stack[cur] = now;
7235 iter_stack[cur++] = iter;
7242 next = dev_stack[--cur];
7243 niter = iter_stack[cur];
7252 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7254 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7255 int (*fn)(struct net_device *dev,
7256 struct netdev_nested_priv *priv),
7257 struct netdev_nested_priv *priv)
7259 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7260 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7265 iter = &dev->adj_list.lower;
7269 ret = fn(now, priv);
7276 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7283 niter = &ldev->adj_list.lower;
7284 dev_stack[cur] = now;
7285 iter_stack[cur++] = iter;
7292 next = dev_stack[--cur];
7293 niter = iter_stack[cur];
7303 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7304 struct list_head **iter)
7306 struct netdev_adjacent *lower;
7308 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7309 if (&lower->list == &dev->adj_list.lower)
7312 *iter = &lower->list;
7316 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7318 static u8 __netdev_upper_depth(struct net_device *dev)
7320 struct net_device *udev;
7321 struct list_head *iter;
7325 for (iter = &dev->adj_list.upper,
7326 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7328 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7331 if (max_depth < udev->upper_level)
7332 max_depth = udev->upper_level;
7338 static u8 __netdev_lower_depth(struct net_device *dev)
7340 struct net_device *ldev;
7341 struct list_head *iter;
7345 for (iter = &dev->adj_list.lower,
7346 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7348 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7351 if (max_depth < ldev->lower_level)
7352 max_depth = ldev->lower_level;
7358 static int __netdev_update_upper_level(struct net_device *dev,
7359 struct netdev_nested_priv *__unused)
7361 dev->upper_level = __netdev_upper_depth(dev) + 1;
7365 #ifdef CONFIG_LOCKDEP
7366 static LIST_HEAD(net_unlink_list);
7368 static void net_unlink_todo(struct net_device *dev)
7370 if (list_empty(&dev->unlink_list))
7371 list_add_tail(&dev->unlink_list, &net_unlink_list);
7375 static int __netdev_update_lower_level(struct net_device *dev,
7376 struct netdev_nested_priv *priv)
7378 dev->lower_level = __netdev_lower_depth(dev) + 1;
7380 #ifdef CONFIG_LOCKDEP
7384 if (priv->flags & NESTED_SYNC_IMM)
7385 dev->nested_level = dev->lower_level - 1;
7386 if (priv->flags & NESTED_SYNC_TODO)
7387 net_unlink_todo(dev);
7392 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7393 int (*fn)(struct net_device *dev,
7394 struct netdev_nested_priv *priv),
7395 struct netdev_nested_priv *priv)
7397 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7398 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7402 iter = &dev->adj_list.lower;
7406 ret = fn(now, priv);
7413 ldev = netdev_next_lower_dev_rcu(now, &iter);
7418 niter = &ldev->adj_list.lower;
7419 dev_stack[cur] = now;
7420 iter_stack[cur++] = iter;
7427 next = dev_stack[--cur];
7428 niter = iter_stack[cur];
7437 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7440 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7441 * lower neighbour list, RCU
7445 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7446 * list. The caller must hold RCU read lock.
7448 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7450 struct netdev_adjacent *lower;
7452 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7453 struct netdev_adjacent, list);
7455 return lower->private;
7458 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7461 * netdev_master_upper_dev_get_rcu - Get master upper device
7464 * Find a master upper device and return pointer to it or NULL in case
7465 * it's not there. The caller must hold the RCU read lock.
7467 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7469 struct netdev_adjacent *upper;
7471 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7472 struct netdev_adjacent, list);
7473 if (upper && likely(upper->master))
7477 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7479 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7480 struct net_device *adj_dev,
7481 struct list_head *dev_list)
7483 char linkname[IFNAMSIZ+7];
7485 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7486 "upper_%s" : "lower_%s", adj_dev->name);
7487 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7490 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7492 struct list_head *dev_list)
7494 char linkname[IFNAMSIZ+7];
7496 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7497 "upper_%s" : "lower_%s", name);
7498 sysfs_remove_link(&(dev->dev.kobj), linkname);
7501 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7502 struct net_device *adj_dev,
7503 struct list_head *dev_list)
7505 return (dev_list == &dev->adj_list.upper ||
7506 dev_list == &dev->adj_list.lower) &&
7507 net_eq(dev_net(dev), dev_net(adj_dev));
7510 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7511 struct net_device *adj_dev,
7512 struct list_head *dev_list,
7513 void *private, bool master)
7515 struct netdev_adjacent *adj;
7518 adj = __netdev_find_adj(adj_dev, dev_list);
7522 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7523 dev->name, adj_dev->name, adj->ref_nr);
7528 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7533 adj->master = master;
7535 adj->private = private;
7536 adj->ignore = false;
7537 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7539 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7540 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7542 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7543 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7548 /* Ensure that master link is always the first item in list. */
7550 ret = sysfs_create_link(&(dev->dev.kobj),
7551 &(adj_dev->dev.kobj), "master");
7553 goto remove_symlinks;
7555 list_add_rcu(&adj->list, dev_list);
7557 list_add_tail_rcu(&adj->list, dev_list);
7563 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7564 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7566 netdev_put(adj_dev, &adj->dev_tracker);
7572 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7573 struct net_device *adj_dev,
7575 struct list_head *dev_list)
7577 struct netdev_adjacent *adj;
7579 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7580 dev->name, adj_dev->name, ref_nr);
7582 adj = __netdev_find_adj(adj_dev, dev_list);
7585 pr_err("Adjacency does not exist for device %s from %s\n",
7586 dev->name, adj_dev->name);
7591 if (adj->ref_nr > ref_nr) {
7592 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7593 dev->name, adj_dev->name, ref_nr,
7594 adj->ref_nr - ref_nr);
7595 adj->ref_nr -= ref_nr;
7600 sysfs_remove_link(&(dev->dev.kobj), "master");
7602 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7603 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7605 list_del_rcu(&adj->list);
7606 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7607 adj_dev->name, dev->name, adj_dev->name);
7608 netdev_put(adj_dev, &adj->dev_tracker);
7609 kfree_rcu(adj, rcu);
7612 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7613 struct net_device *upper_dev,
7614 struct list_head *up_list,
7615 struct list_head *down_list,
7616 void *private, bool master)
7620 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7625 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7628 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7635 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7636 struct net_device *upper_dev,
7638 struct list_head *up_list,
7639 struct list_head *down_list)
7641 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7642 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7645 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7646 struct net_device *upper_dev,
7647 void *private, bool master)
7649 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7650 &dev->adj_list.upper,
7651 &upper_dev->adj_list.lower,
7655 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7656 struct net_device *upper_dev)
7658 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7659 &dev->adj_list.upper,
7660 &upper_dev->adj_list.lower);
7663 static int __netdev_upper_dev_link(struct net_device *dev,
7664 struct net_device *upper_dev, bool master,
7665 void *upper_priv, void *upper_info,
7666 struct netdev_nested_priv *priv,
7667 struct netlink_ext_ack *extack)
7669 struct netdev_notifier_changeupper_info changeupper_info = {
7674 .upper_dev = upper_dev,
7677 .upper_info = upper_info,
7679 struct net_device *master_dev;
7684 if (dev == upper_dev)
7687 /* To prevent loops, check if dev is not upper device to upper_dev. */
7688 if (__netdev_has_upper_dev(upper_dev, dev))
7691 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7695 if (__netdev_has_upper_dev(dev, upper_dev))
7698 master_dev = __netdev_master_upper_dev_get(dev);
7700 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7703 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7704 &changeupper_info.info);
7705 ret = notifier_to_errno(ret);
7709 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7714 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7715 &changeupper_info.info);
7716 ret = notifier_to_errno(ret);
7720 __netdev_update_upper_level(dev, NULL);
7721 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7723 __netdev_update_lower_level(upper_dev, priv);
7724 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7730 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7736 * netdev_upper_dev_link - Add a link to the upper device
7738 * @upper_dev: new upper device
7739 * @extack: netlink extended ack
7741 * Adds a link to device which is upper to this one. The caller must hold
7742 * the RTNL lock. On a failure a negative errno code is returned.
7743 * On success the reference counts are adjusted and the function
7746 int netdev_upper_dev_link(struct net_device *dev,
7747 struct net_device *upper_dev,
7748 struct netlink_ext_ack *extack)
7750 struct netdev_nested_priv priv = {
7751 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7755 return __netdev_upper_dev_link(dev, upper_dev, false,
7756 NULL, NULL, &priv, extack);
7758 EXPORT_SYMBOL(netdev_upper_dev_link);
7761 * netdev_master_upper_dev_link - Add a master link to the upper device
7763 * @upper_dev: new upper device
7764 * @upper_priv: upper device private
7765 * @upper_info: upper info to be passed down via notifier
7766 * @extack: netlink extended ack
7768 * Adds a link to device which is upper to this one. In this case, only
7769 * one master upper device can be linked, although other non-master devices
7770 * might be linked as well. The caller must hold the RTNL lock.
7771 * On a failure a negative errno code is returned. On success the reference
7772 * counts are adjusted and the function returns zero.
7774 int netdev_master_upper_dev_link(struct net_device *dev,
7775 struct net_device *upper_dev,
7776 void *upper_priv, void *upper_info,
7777 struct netlink_ext_ack *extack)
7779 struct netdev_nested_priv priv = {
7780 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7784 return __netdev_upper_dev_link(dev, upper_dev, true,
7785 upper_priv, upper_info, &priv, extack);
7787 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7789 static void __netdev_upper_dev_unlink(struct net_device *dev,
7790 struct net_device *upper_dev,
7791 struct netdev_nested_priv *priv)
7793 struct netdev_notifier_changeupper_info changeupper_info = {
7797 .upper_dev = upper_dev,
7803 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7805 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7806 &changeupper_info.info);
7808 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7810 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7811 &changeupper_info.info);
7813 __netdev_update_upper_level(dev, NULL);
7814 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7816 __netdev_update_lower_level(upper_dev, priv);
7817 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7822 * netdev_upper_dev_unlink - Removes a link to upper device
7824 * @upper_dev: new upper device
7826 * Removes a link to device which is upper to this one. The caller must hold
7829 void netdev_upper_dev_unlink(struct net_device *dev,
7830 struct net_device *upper_dev)
7832 struct netdev_nested_priv priv = {
7833 .flags = NESTED_SYNC_TODO,
7837 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7839 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7841 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7842 struct net_device *lower_dev,
7845 struct netdev_adjacent *adj;
7847 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7851 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7856 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7857 struct net_device *lower_dev)
7859 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7862 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7863 struct net_device *lower_dev)
7865 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7868 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7869 struct net_device *new_dev,
7870 struct net_device *dev,
7871 struct netlink_ext_ack *extack)
7873 struct netdev_nested_priv priv = {
7882 if (old_dev && new_dev != old_dev)
7883 netdev_adjacent_dev_disable(dev, old_dev);
7884 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7887 if (old_dev && new_dev != old_dev)
7888 netdev_adjacent_dev_enable(dev, old_dev);
7894 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7896 void netdev_adjacent_change_commit(struct net_device *old_dev,
7897 struct net_device *new_dev,
7898 struct net_device *dev)
7900 struct netdev_nested_priv priv = {
7901 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7905 if (!new_dev || !old_dev)
7908 if (new_dev == old_dev)
7911 netdev_adjacent_dev_enable(dev, old_dev);
7912 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7914 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7916 void netdev_adjacent_change_abort(struct net_device *old_dev,
7917 struct net_device *new_dev,
7918 struct net_device *dev)
7920 struct netdev_nested_priv priv = {
7928 if (old_dev && new_dev != old_dev)
7929 netdev_adjacent_dev_enable(dev, old_dev);
7931 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7933 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7936 * netdev_bonding_info_change - Dispatch event about slave change
7938 * @bonding_info: info to dispatch
7940 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7941 * The caller must hold the RTNL lock.
7943 void netdev_bonding_info_change(struct net_device *dev,
7944 struct netdev_bonding_info *bonding_info)
7946 struct netdev_notifier_bonding_info info = {
7950 memcpy(&info.bonding_info, bonding_info,
7951 sizeof(struct netdev_bonding_info));
7952 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7955 EXPORT_SYMBOL(netdev_bonding_info_change);
7957 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7958 struct netlink_ext_ack *extack)
7960 struct netdev_notifier_offload_xstats_info info = {
7962 .info.extack = extack,
7963 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7968 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7970 if (!dev->offload_xstats_l3)
7973 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7974 NETDEV_OFFLOAD_XSTATS_DISABLE,
7976 err = notifier_to_errno(rc);
7983 kfree(dev->offload_xstats_l3);
7984 dev->offload_xstats_l3 = NULL;
7988 int netdev_offload_xstats_enable(struct net_device *dev,
7989 enum netdev_offload_xstats_type type,
7990 struct netlink_ext_ack *extack)
7994 if (netdev_offload_xstats_enabled(dev, type))
7998 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7999 return netdev_offload_xstats_enable_l3(dev, extack);
8005 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8007 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8009 struct netdev_notifier_offload_xstats_info info = {
8011 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8014 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8016 kfree(dev->offload_xstats_l3);
8017 dev->offload_xstats_l3 = NULL;
8020 int netdev_offload_xstats_disable(struct net_device *dev,
8021 enum netdev_offload_xstats_type type)
8025 if (!netdev_offload_xstats_enabled(dev, type))
8029 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8030 netdev_offload_xstats_disable_l3(dev);
8037 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8039 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8041 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8044 static struct rtnl_hw_stats64 *
8045 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8046 enum netdev_offload_xstats_type type)
8049 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8050 return dev->offload_xstats_l3;
8057 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8058 enum netdev_offload_xstats_type type)
8062 return netdev_offload_xstats_get_ptr(dev, type);
8064 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8066 struct netdev_notifier_offload_xstats_ru {
8070 struct netdev_notifier_offload_xstats_rd {
8071 struct rtnl_hw_stats64 stats;
8075 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8076 const struct rtnl_hw_stats64 *src)
8078 dest->rx_packets += src->rx_packets;
8079 dest->tx_packets += src->tx_packets;
8080 dest->rx_bytes += src->rx_bytes;
8081 dest->tx_bytes += src->tx_bytes;
8082 dest->rx_errors += src->rx_errors;
8083 dest->tx_errors += src->tx_errors;
8084 dest->rx_dropped += src->rx_dropped;
8085 dest->tx_dropped += src->tx_dropped;
8086 dest->multicast += src->multicast;
8089 static int netdev_offload_xstats_get_used(struct net_device *dev,
8090 enum netdev_offload_xstats_type type,
8092 struct netlink_ext_ack *extack)
8094 struct netdev_notifier_offload_xstats_ru report_used = {};
8095 struct netdev_notifier_offload_xstats_info info = {
8097 .info.extack = extack,
8099 .report_used = &report_used,
8103 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8104 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8106 *p_used = report_used.used;
8107 return notifier_to_errno(rc);
8110 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8111 enum netdev_offload_xstats_type type,
8112 struct rtnl_hw_stats64 *p_stats,
8114 struct netlink_ext_ack *extack)
8116 struct netdev_notifier_offload_xstats_rd report_delta = {};
8117 struct netdev_notifier_offload_xstats_info info = {
8119 .info.extack = extack,
8121 .report_delta = &report_delta,
8123 struct rtnl_hw_stats64 *stats;
8126 stats = netdev_offload_xstats_get_ptr(dev, type);
8127 if (WARN_ON(!stats))
8130 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8133 /* Cache whatever we got, even if there was an error, otherwise the
8134 * successful stats retrievals would get lost.
8136 netdev_hw_stats64_add(stats, &report_delta.stats);
8140 *p_used = report_delta.used;
8142 return notifier_to_errno(rc);
8145 int netdev_offload_xstats_get(struct net_device *dev,
8146 enum netdev_offload_xstats_type type,
8147 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8148 struct netlink_ext_ack *extack)
8153 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8156 return netdev_offload_xstats_get_used(dev, type, p_used,
8159 EXPORT_SYMBOL(netdev_offload_xstats_get);
8162 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8163 const struct rtnl_hw_stats64 *stats)
8165 report_delta->used = true;
8166 netdev_hw_stats64_add(&report_delta->stats, stats);
8168 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8171 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8173 report_used->used = true;
8175 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8177 void netdev_offload_xstats_push_delta(struct net_device *dev,
8178 enum netdev_offload_xstats_type type,
8179 const struct rtnl_hw_stats64 *p_stats)
8181 struct rtnl_hw_stats64 *stats;
8185 stats = netdev_offload_xstats_get_ptr(dev, type);
8186 if (WARN_ON(!stats))
8189 netdev_hw_stats64_add(stats, p_stats);
8191 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8194 * netdev_get_xmit_slave - Get the xmit slave of master device
8197 * @all_slaves: assume all the slaves are active
8199 * The reference counters are not incremented so the caller must be
8200 * careful with locks. The caller must hold RCU lock.
8201 * %NULL is returned if no slave is found.
8204 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8205 struct sk_buff *skb,
8208 const struct net_device_ops *ops = dev->netdev_ops;
8210 if (!ops->ndo_get_xmit_slave)
8212 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8214 EXPORT_SYMBOL(netdev_get_xmit_slave);
8216 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8219 const struct net_device_ops *ops = dev->netdev_ops;
8221 if (!ops->ndo_sk_get_lower_dev)
8223 return ops->ndo_sk_get_lower_dev(dev, sk);
8227 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8231 * %NULL is returned if no lower device is found.
8234 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8237 struct net_device *lower;
8239 lower = netdev_sk_get_lower_dev(dev, sk);
8242 lower = netdev_sk_get_lower_dev(dev, sk);
8247 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8249 static void netdev_adjacent_add_links(struct net_device *dev)
8251 struct netdev_adjacent *iter;
8253 struct net *net = dev_net(dev);
8255 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8256 if (!net_eq(net, dev_net(iter->dev)))
8258 netdev_adjacent_sysfs_add(iter->dev, dev,
8259 &iter->dev->adj_list.lower);
8260 netdev_adjacent_sysfs_add(dev, iter->dev,
8261 &dev->adj_list.upper);
8264 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8265 if (!net_eq(net, dev_net(iter->dev)))
8267 netdev_adjacent_sysfs_add(iter->dev, dev,
8268 &iter->dev->adj_list.upper);
8269 netdev_adjacent_sysfs_add(dev, iter->dev,
8270 &dev->adj_list.lower);
8274 static void netdev_adjacent_del_links(struct net_device *dev)
8276 struct netdev_adjacent *iter;
8278 struct net *net = dev_net(dev);
8280 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8281 if (!net_eq(net, dev_net(iter->dev)))
8283 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8284 &iter->dev->adj_list.lower);
8285 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8286 &dev->adj_list.upper);
8289 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8290 if (!net_eq(net, dev_net(iter->dev)))
8292 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8293 &iter->dev->adj_list.upper);
8294 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8295 &dev->adj_list.lower);
8299 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8301 struct netdev_adjacent *iter;
8303 struct net *net = dev_net(dev);
8305 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8306 if (!net_eq(net, dev_net(iter->dev)))
8308 netdev_adjacent_sysfs_del(iter->dev, oldname,
8309 &iter->dev->adj_list.lower);
8310 netdev_adjacent_sysfs_add(iter->dev, dev,
8311 &iter->dev->adj_list.lower);
8314 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8315 if (!net_eq(net, dev_net(iter->dev)))
8317 netdev_adjacent_sysfs_del(iter->dev, oldname,
8318 &iter->dev->adj_list.upper);
8319 netdev_adjacent_sysfs_add(iter->dev, dev,
8320 &iter->dev->adj_list.upper);
8324 void *netdev_lower_dev_get_private(struct net_device *dev,
8325 struct net_device *lower_dev)
8327 struct netdev_adjacent *lower;
8331 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8335 return lower->private;
8337 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8341 * netdev_lower_state_changed - Dispatch event about lower device state change
8342 * @lower_dev: device
8343 * @lower_state_info: state to dispatch
8345 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8346 * The caller must hold the RTNL lock.
8348 void netdev_lower_state_changed(struct net_device *lower_dev,
8349 void *lower_state_info)
8351 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8352 .info.dev = lower_dev,
8356 changelowerstate_info.lower_state_info = lower_state_info;
8357 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8358 &changelowerstate_info.info);
8360 EXPORT_SYMBOL(netdev_lower_state_changed);
8362 static void dev_change_rx_flags(struct net_device *dev, int flags)
8364 const struct net_device_ops *ops = dev->netdev_ops;
8366 if (ops->ndo_change_rx_flags)
8367 ops->ndo_change_rx_flags(dev, flags);
8370 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8372 unsigned int old_flags = dev->flags;
8378 dev->flags |= IFF_PROMISC;
8379 dev->promiscuity += inc;
8380 if (dev->promiscuity == 0) {
8383 * If inc causes overflow, untouch promisc and return error.
8386 dev->flags &= ~IFF_PROMISC;
8388 dev->promiscuity -= inc;
8389 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8393 if (dev->flags != old_flags) {
8394 netdev_info(dev, "%s promiscuous mode\n",
8395 dev->flags & IFF_PROMISC ? "entered" : "left");
8396 if (audit_enabled) {
8397 current_uid_gid(&uid, &gid);
8398 audit_log(audit_context(), GFP_ATOMIC,
8399 AUDIT_ANOM_PROMISCUOUS,
8400 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8401 dev->name, (dev->flags & IFF_PROMISC),
8402 (old_flags & IFF_PROMISC),
8403 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8404 from_kuid(&init_user_ns, uid),
8405 from_kgid(&init_user_ns, gid),
8406 audit_get_sessionid(current));
8409 dev_change_rx_flags(dev, IFF_PROMISC);
8412 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8417 * dev_set_promiscuity - update promiscuity count on a device
8421 * Add or remove promiscuity from a device. While the count in the device
8422 * remains above zero the interface remains promiscuous. Once it hits zero
8423 * the device reverts back to normal filtering operation. A negative inc
8424 * value is used to drop promiscuity on the device.
8425 * Return 0 if successful or a negative errno code on error.
8427 int dev_set_promiscuity(struct net_device *dev, int inc)
8429 unsigned int old_flags = dev->flags;
8432 err = __dev_set_promiscuity(dev, inc, true);
8435 if (dev->flags != old_flags)
8436 dev_set_rx_mode(dev);
8439 EXPORT_SYMBOL(dev_set_promiscuity);
8441 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8443 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8447 dev->flags |= IFF_ALLMULTI;
8448 dev->allmulti += inc;
8449 if (dev->allmulti == 0) {
8452 * If inc causes overflow, untouch allmulti and return error.
8455 dev->flags &= ~IFF_ALLMULTI;
8457 dev->allmulti -= inc;
8458 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8462 if (dev->flags ^ old_flags) {
8463 netdev_info(dev, "%s allmulticast mode\n",
8464 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8465 dev_change_rx_flags(dev, IFF_ALLMULTI);
8466 dev_set_rx_mode(dev);
8468 __dev_notify_flags(dev, old_flags,
8469 dev->gflags ^ old_gflags, 0, NULL);
8475 * dev_set_allmulti - update allmulti count on a device
8479 * Add or remove reception of all multicast frames to a device. While the
8480 * count in the device remains above zero the interface remains listening
8481 * to all interfaces. Once it hits zero the device reverts back to normal
8482 * filtering operation. A negative @inc value is used to drop the counter
8483 * when releasing a resource needing all multicasts.
8484 * Return 0 if successful or a negative errno code on error.
8487 int dev_set_allmulti(struct net_device *dev, int inc)
8489 return __dev_set_allmulti(dev, inc, true);
8491 EXPORT_SYMBOL(dev_set_allmulti);
8494 * Upload unicast and multicast address lists to device and
8495 * configure RX filtering. When the device doesn't support unicast
8496 * filtering it is put in promiscuous mode while unicast addresses
8499 void __dev_set_rx_mode(struct net_device *dev)
8501 const struct net_device_ops *ops = dev->netdev_ops;
8503 /* dev_open will call this function so the list will stay sane. */
8504 if (!(dev->flags&IFF_UP))
8507 if (!netif_device_present(dev))
8510 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8511 /* Unicast addresses changes may only happen under the rtnl,
8512 * therefore calling __dev_set_promiscuity here is safe.
8514 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8515 __dev_set_promiscuity(dev, 1, false);
8516 dev->uc_promisc = true;
8517 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8518 __dev_set_promiscuity(dev, -1, false);
8519 dev->uc_promisc = false;
8523 if (ops->ndo_set_rx_mode)
8524 ops->ndo_set_rx_mode(dev);
8527 void dev_set_rx_mode(struct net_device *dev)
8529 netif_addr_lock_bh(dev);
8530 __dev_set_rx_mode(dev);
8531 netif_addr_unlock_bh(dev);
8535 * dev_get_flags - get flags reported to userspace
8538 * Get the combination of flag bits exported through APIs to userspace.
8540 unsigned int dev_get_flags(const struct net_device *dev)
8544 flags = (dev->flags & ~(IFF_PROMISC |
8549 (dev->gflags & (IFF_PROMISC |
8552 if (netif_running(dev)) {
8553 if (netif_oper_up(dev))
8554 flags |= IFF_RUNNING;
8555 if (netif_carrier_ok(dev))
8556 flags |= IFF_LOWER_UP;
8557 if (netif_dormant(dev))
8558 flags |= IFF_DORMANT;
8563 EXPORT_SYMBOL(dev_get_flags);
8565 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8566 struct netlink_ext_ack *extack)
8568 unsigned int old_flags = dev->flags;
8574 * Set the flags on our device.
8577 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8578 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8580 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8584 * Load in the correct multicast list now the flags have changed.
8587 if ((old_flags ^ flags) & IFF_MULTICAST)
8588 dev_change_rx_flags(dev, IFF_MULTICAST);
8590 dev_set_rx_mode(dev);
8593 * Have we downed the interface. We handle IFF_UP ourselves
8594 * according to user attempts to set it, rather than blindly
8599 if ((old_flags ^ flags) & IFF_UP) {
8600 if (old_flags & IFF_UP)
8603 ret = __dev_open(dev, extack);
8606 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8607 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8608 unsigned int old_flags = dev->flags;
8610 dev->gflags ^= IFF_PROMISC;
8612 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8613 if (dev->flags != old_flags)
8614 dev_set_rx_mode(dev);
8617 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8618 * is important. Some (broken) drivers set IFF_PROMISC, when
8619 * IFF_ALLMULTI is requested not asking us and not reporting.
8621 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8622 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8624 dev->gflags ^= IFF_ALLMULTI;
8625 __dev_set_allmulti(dev, inc, false);
8631 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8632 unsigned int gchanges, u32 portid,
8633 const struct nlmsghdr *nlh)
8635 unsigned int changes = dev->flags ^ old_flags;
8638 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8640 if (changes & IFF_UP) {
8641 if (dev->flags & IFF_UP)
8642 call_netdevice_notifiers(NETDEV_UP, dev);
8644 call_netdevice_notifiers(NETDEV_DOWN, dev);
8647 if (dev->flags & IFF_UP &&
8648 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8649 struct netdev_notifier_change_info change_info = {
8653 .flags_changed = changes,
8656 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8661 * dev_change_flags - change device settings
8663 * @flags: device state flags
8664 * @extack: netlink extended ack
8666 * Change settings on device based state flags. The flags are
8667 * in the userspace exported format.
8669 int dev_change_flags(struct net_device *dev, unsigned int flags,
8670 struct netlink_ext_ack *extack)
8673 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8675 ret = __dev_change_flags(dev, flags, extack);
8679 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8680 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8683 EXPORT_SYMBOL(dev_change_flags);
8685 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8687 const struct net_device_ops *ops = dev->netdev_ops;
8689 if (ops->ndo_change_mtu)
8690 return ops->ndo_change_mtu(dev, new_mtu);
8692 /* Pairs with all the lockless reads of dev->mtu in the stack */
8693 WRITE_ONCE(dev->mtu, new_mtu);
8696 EXPORT_SYMBOL(__dev_set_mtu);
8698 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8699 struct netlink_ext_ack *extack)
8701 /* MTU must be positive, and in range */
8702 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8703 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8707 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8708 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8715 * dev_set_mtu_ext - Change maximum transfer unit
8717 * @new_mtu: new transfer unit
8718 * @extack: netlink extended ack
8720 * Change the maximum transfer size of the network device.
8722 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8723 struct netlink_ext_ack *extack)
8727 if (new_mtu == dev->mtu)
8730 err = dev_validate_mtu(dev, new_mtu, extack);
8734 if (!netif_device_present(dev))
8737 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8738 err = notifier_to_errno(err);
8742 orig_mtu = dev->mtu;
8743 err = __dev_set_mtu(dev, new_mtu);
8746 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8748 err = notifier_to_errno(err);
8750 /* setting mtu back and notifying everyone again,
8751 * so that they have a chance to revert changes.
8753 __dev_set_mtu(dev, orig_mtu);
8754 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8761 int dev_set_mtu(struct net_device *dev, int new_mtu)
8763 struct netlink_ext_ack extack;
8766 memset(&extack, 0, sizeof(extack));
8767 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8768 if (err && extack._msg)
8769 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8772 EXPORT_SYMBOL(dev_set_mtu);
8775 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8777 * @new_len: new tx queue length
8779 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8781 unsigned int orig_len = dev->tx_queue_len;
8784 if (new_len != (unsigned int)new_len)
8787 if (new_len != orig_len) {
8788 dev->tx_queue_len = new_len;
8789 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8790 res = notifier_to_errno(res);
8793 res = dev_qdisc_change_tx_queue_len(dev);
8801 netdev_err(dev, "refused to change device tx_queue_len\n");
8802 dev->tx_queue_len = orig_len;
8807 * dev_set_group - Change group this device belongs to
8809 * @new_group: group this device should belong to
8811 void dev_set_group(struct net_device *dev, int new_group)
8813 dev->group = new_group;
8817 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8819 * @addr: new address
8820 * @extack: netlink extended ack
8822 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8823 struct netlink_ext_ack *extack)
8825 struct netdev_notifier_pre_changeaddr_info info = {
8827 .info.extack = extack,
8832 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8833 return notifier_to_errno(rc);
8835 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8838 * dev_set_mac_address - Change Media Access Control Address
8841 * @extack: netlink extended ack
8843 * Change the hardware (MAC) address of the device
8845 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8846 struct netlink_ext_ack *extack)
8848 const struct net_device_ops *ops = dev->netdev_ops;
8851 if (!ops->ndo_set_mac_address)
8853 if (sa->sa_family != dev->type)
8855 if (!netif_device_present(dev))
8857 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8860 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8861 err = ops->ndo_set_mac_address(dev, sa);
8865 dev->addr_assign_type = NET_ADDR_SET;
8866 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8867 add_device_randomness(dev->dev_addr, dev->addr_len);
8870 EXPORT_SYMBOL(dev_set_mac_address);
8872 static DECLARE_RWSEM(dev_addr_sem);
8874 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8875 struct netlink_ext_ack *extack)
8879 down_write(&dev_addr_sem);
8880 ret = dev_set_mac_address(dev, sa, extack);
8881 up_write(&dev_addr_sem);
8884 EXPORT_SYMBOL(dev_set_mac_address_user);
8886 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8888 size_t size = sizeof(sa->sa_data_min);
8889 struct net_device *dev;
8892 down_read(&dev_addr_sem);
8895 dev = dev_get_by_name_rcu(net, dev_name);
8901 memset(sa->sa_data, 0, size);
8903 memcpy(sa->sa_data, dev->dev_addr,
8904 min_t(size_t, size, dev->addr_len));
8905 sa->sa_family = dev->type;
8909 up_read(&dev_addr_sem);
8912 EXPORT_SYMBOL(dev_get_mac_address);
8915 * dev_change_carrier - Change device carrier
8917 * @new_carrier: new value
8919 * Change device carrier
8921 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8923 const struct net_device_ops *ops = dev->netdev_ops;
8925 if (!ops->ndo_change_carrier)
8927 if (!netif_device_present(dev))
8929 return ops->ndo_change_carrier(dev, new_carrier);
8933 * dev_get_phys_port_id - Get device physical port ID
8937 * Get device physical port ID
8939 int dev_get_phys_port_id(struct net_device *dev,
8940 struct netdev_phys_item_id *ppid)
8942 const struct net_device_ops *ops = dev->netdev_ops;
8944 if (!ops->ndo_get_phys_port_id)
8946 return ops->ndo_get_phys_port_id(dev, ppid);
8950 * dev_get_phys_port_name - Get device physical port name
8953 * @len: limit of bytes to copy to name
8955 * Get device physical port name
8957 int dev_get_phys_port_name(struct net_device *dev,
8958 char *name, size_t len)
8960 const struct net_device_ops *ops = dev->netdev_ops;
8963 if (ops->ndo_get_phys_port_name) {
8964 err = ops->ndo_get_phys_port_name(dev, name, len);
8965 if (err != -EOPNOTSUPP)
8968 return devlink_compat_phys_port_name_get(dev, name, len);
8972 * dev_get_port_parent_id - Get the device's port parent identifier
8973 * @dev: network device
8974 * @ppid: pointer to a storage for the port's parent identifier
8975 * @recurse: allow/disallow recursion to lower devices
8977 * Get the devices's port parent identifier
8979 int dev_get_port_parent_id(struct net_device *dev,
8980 struct netdev_phys_item_id *ppid,
8983 const struct net_device_ops *ops = dev->netdev_ops;
8984 struct netdev_phys_item_id first = { };
8985 struct net_device *lower_dev;
8986 struct list_head *iter;
8989 if (ops->ndo_get_port_parent_id) {
8990 err = ops->ndo_get_port_parent_id(dev, ppid);
8991 if (err != -EOPNOTSUPP)
8995 err = devlink_compat_switch_id_get(dev, ppid);
8996 if (!recurse || err != -EOPNOTSUPP)
8999 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9000 err = dev_get_port_parent_id(lower_dev, ppid, true);
9005 else if (memcmp(&first, ppid, sizeof(*ppid)))
9011 EXPORT_SYMBOL(dev_get_port_parent_id);
9014 * netdev_port_same_parent_id - Indicate if two network devices have
9015 * the same port parent identifier
9016 * @a: first network device
9017 * @b: second network device
9019 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9021 struct netdev_phys_item_id a_id = { };
9022 struct netdev_phys_item_id b_id = { };
9024 if (dev_get_port_parent_id(a, &a_id, true) ||
9025 dev_get_port_parent_id(b, &b_id, true))
9028 return netdev_phys_item_id_same(&a_id, &b_id);
9030 EXPORT_SYMBOL(netdev_port_same_parent_id);
9032 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9034 #if IS_ENABLED(CONFIG_DPLL)
9036 dev->dpll_pin = dpll_pin;
9041 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9044 netdev_dpll_pin_assign(dev, dpll_pin);
9046 EXPORT_SYMBOL(netdev_dpll_pin_set);
9048 void netdev_dpll_pin_clear(struct net_device *dev)
9050 netdev_dpll_pin_assign(dev, NULL);
9052 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9055 * dev_change_proto_down - set carrier according to proto_down.
9058 * @proto_down: new value
9060 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9062 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9064 if (!netif_device_present(dev))
9067 netif_carrier_off(dev);
9069 netif_carrier_on(dev);
9070 dev->proto_down = proto_down;
9075 * dev_change_proto_down_reason - proto down reason
9078 * @mask: proto down mask
9079 * @value: proto down value
9081 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9087 dev->proto_down_reason = value;
9089 for_each_set_bit(b, &mask, 32) {
9090 if (value & (1 << b))
9091 dev->proto_down_reason |= BIT(b);
9093 dev->proto_down_reason &= ~BIT(b);
9098 struct bpf_xdp_link {
9099 struct bpf_link link;
9100 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9104 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9106 if (flags & XDP_FLAGS_HW_MODE)
9108 if (flags & XDP_FLAGS_DRV_MODE)
9109 return XDP_MODE_DRV;
9110 if (flags & XDP_FLAGS_SKB_MODE)
9111 return XDP_MODE_SKB;
9112 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9115 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9119 return generic_xdp_install;
9122 return dev->netdev_ops->ndo_bpf;
9128 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9129 enum bpf_xdp_mode mode)
9131 return dev->xdp_state[mode].link;
9134 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9135 enum bpf_xdp_mode mode)
9137 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9140 return link->link.prog;
9141 return dev->xdp_state[mode].prog;
9144 u8 dev_xdp_prog_count(struct net_device *dev)
9149 for (i = 0; i < __MAX_XDP_MODE; i++)
9150 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9154 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9156 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9158 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9160 return prog ? prog->aux->id : 0;
9163 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9164 struct bpf_xdp_link *link)
9166 dev->xdp_state[mode].link = link;
9167 dev->xdp_state[mode].prog = NULL;
9170 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9171 struct bpf_prog *prog)
9173 dev->xdp_state[mode].link = NULL;
9174 dev->xdp_state[mode].prog = prog;
9177 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9178 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9179 u32 flags, struct bpf_prog *prog)
9181 struct netdev_bpf xdp;
9184 memset(&xdp, 0, sizeof(xdp));
9185 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9186 xdp.extack = extack;
9190 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9191 * "moved" into driver), so they don't increment it on their own, but
9192 * they do decrement refcnt when program is detached or replaced.
9193 * Given net_device also owns link/prog, we need to bump refcnt here
9194 * to prevent drivers from underflowing it.
9198 err = bpf_op(dev, &xdp);
9205 if (mode != XDP_MODE_HW)
9206 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9211 static void dev_xdp_uninstall(struct net_device *dev)
9213 struct bpf_xdp_link *link;
9214 struct bpf_prog *prog;
9215 enum bpf_xdp_mode mode;
9220 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9221 prog = dev_xdp_prog(dev, mode);
9225 bpf_op = dev_xdp_bpf_op(dev, mode);
9229 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9231 /* auto-detach link from net device */
9232 link = dev_xdp_link(dev, mode);
9238 dev_xdp_set_link(dev, mode, NULL);
9242 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9243 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9244 struct bpf_prog *old_prog, u32 flags)
9246 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9247 struct bpf_prog *cur_prog;
9248 struct net_device *upper;
9249 struct list_head *iter;
9250 enum bpf_xdp_mode mode;
9256 /* either link or prog attachment, never both */
9257 if (link && (new_prog || old_prog))
9259 /* link supports only XDP mode flags */
9260 if (link && (flags & ~XDP_FLAGS_MODES)) {
9261 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9264 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9265 if (num_modes > 1) {
9266 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9269 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9270 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9271 NL_SET_ERR_MSG(extack,
9272 "More than one program loaded, unset mode is ambiguous");
9275 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9276 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9277 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9281 mode = dev_xdp_mode(dev, flags);
9282 /* can't replace attached link */
9283 if (dev_xdp_link(dev, mode)) {
9284 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9288 /* don't allow if an upper device already has a program */
9289 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9290 if (dev_xdp_prog_count(upper) > 0) {
9291 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9296 cur_prog = dev_xdp_prog(dev, mode);
9297 /* can't replace attached prog with link */
9298 if (link && cur_prog) {
9299 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9302 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9303 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9307 /* put effective new program into new_prog */
9309 new_prog = link->link.prog;
9312 bool offload = mode == XDP_MODE_HW;
9313 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9314 ? XDP_MODE_DRV : XDP_MODE_SKB;
9316 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9317 NL_SET_ERR_MSG(extack, "XDP program already attached");
9320 if (!offload && dev_xdp_prog(dev, other_mode)) {
9321 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9324 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9325 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9328 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9329 NL_SET_ERR_MSG(extack, "Program bound to different device");
9332 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9333 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9336 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9337 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9342 /* don't call drivers if the effective program didn't change */
9343 if (new_prog != cur_prog) {
9344 bpf_op = dev_xdp_bpf_op(dev, mode);
9346 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9350 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9356 dev_xdp_set_link(dev, mode, link);
9358 dev_xdp_set_prog(dev, mode, new_prog);
9360 bpf_prog_put(cur_prog);
9365 static int dev_xdp_attach_link(struct net_device *dev,
9366 struct netlink_ext_ack *extack,
9367 struct bpf_xdp_link *link)
9369 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9372 static int dev_xdp_detach_link(struct net_device *dev,
9373 struct netlink_ext_ack *extack,
9374 struct bpf_xdp_link *link)
9376 enum bpf_xdp_mode mode;
9381 mode = dev_xdp_mode(dev, link->flags);
9382 if (dev_xdp_link(dev, mode) != link)
9385 bpf_op = dev_xdp_bpf_op(dev, mode);
9386 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9387 dev_xdp_set_link(dev, mode, NULL);
9391 static void bpf_xdp_link_release(struct bpf_link *link)
9393 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9397 /* if racing with net_device's tear down, xdp_link->dev might be
9398 * already NULL, in which case link was already auto-detached
9400 if (xdp_link->dev) {
9401 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9402 xdp_link->dev = NULL;
9408 static int bpf_xdp_link_detach(struct bpf_link *link)
9410 bpf_xdp_link_release(link);
9414 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9416 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9421 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9422 struct seq_file *seq)
9424 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9429 ifindex = xdp_link->dev->ifindex;
9432 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9435 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9436 struct bpf_link_info *info)
9438 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9443 ifindex = xdp_link->dev->ifindex;
9446 info->xdp.ifindex = ifindex;
9450 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9451 struct bpf_prog *old_prog)
9453 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9454 enum bpf_xdp_mode mode;
9460 /* link might have been auto-released already, so fail */
9461 if (!xdp_link->dev) {
9466 if (old_prog && link->prog != old_prog) {
9470 old_prog = link->prog;
9471 if (old_prog->type != new_prog->type ||
9472 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9477 if (old_prog == new_prog) {
9478 /* no-op, don't disturb drivers */
9479 bpf_prog_put(new_prog);
9483 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9484 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9485 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9486 xdp_link->flags, new_prog);
9490 old_prog = xchg(&link->prog, new_prog);
9491 bpf_prog_put(old_prog);
9498 static const struct bpf_link_ops bpf_xdp_link_lops = {
9499 .release = bpf_xdp_link_release,
9500 .dealloc = bpf_xdp_link_dealloc,
9501 .detach = bpf_xdp_link_detach,
9502 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9503 .fill_link_info = bpf_xdp_link_fill_link_info,
9504 .update_prog = bpf_xdp_link_update,
9507 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9509 struct net *net = current->nsproxy->net_ns;
9510 struct bpf_link_primer link_primer;
9511 struct netlink_ext_ack extack = {};
9512 struct bpf_xdp_link *link;
9513 struct net_device *dev;
9517 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9523 link = kzalloc(sizeof(*link), GFP_USER);
9529 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9531 link->flags = attr->link_create.flags;
9533 err = bpf_link_prime(&link->link, &link_primer);
9539 err = dev_xdp_attach_link(dev, &extack, link);
9544 bpf_link_cleanup(&link_primer);
9545 trace_bpf_xdp_link_attach_failed(extack._msg);
9549 fd = bpf_link_settle(&link_primer);
9550 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9563 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9565 * @extack: netlink extended ack
9566 * @fd: new program fd or negative value to clear
9567 * @expected_fd: old program fd that userspace expects to replace or clear
9568 * @flags: xdp-related flags
9570 * Set or clear a bpf program for a device
9572 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9573 int fd, int expected_fd, u32 flags)
9575 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9576 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9582 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9583 mode != XDP_MODE_SKB);
9584 if (IS_ERR(new_prog))
9585 return PTR_ERR(new_prog);
9588 if (expected_fd >= 0) {
9589 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9590 mode != XDP_MODE_SKB);
9591 if (IS_ERR(old_prog)) {
9592 err = PTR_ERR(old_prog);
9598 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9601 if (err && new_prog)
9602 bpf_prog_put(new_prog);
9604 bpf_prog_put(old_prog);
9609 * dev_index_reserve() - allocate an ifindex in a namespace
9610 * @net: the applicable net namespace
9611 * @ifindex: requested ifindex, pass %0 to get one allocated
9613 * Allocate a ifindex for a new device. Caller must either use the ifindex
9614 * to store the device (via list_netdevice()) or call dev_index_release()
9615 * to give the index up.
9617 * Return: a suitable unique value for a new device interface number or -errno.
9619 static int dev_index_reserve(struct net *net, u32 ifindex)
9623 if (ifindex > INT_MAX) {
9624 DEBUG_NET_WARN_ON_ONCE(1);
9629 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9630 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9632 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9639 static void dev_index_release(struct net *net, int ifindex)
9641 /* Expect only unused indexes, unlist_netdevice() removes the used */
9642 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9645 /* Delayed registration/unregisteration */
9646 LIST_HEAD(net_todo_list);
9647 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9649 static void net_set_todo(struct net_device *dev)
9651 list_add_tail(&dev->todo_list, &net_todo_list);
9652 atomic_inc(&dev_net(dev)->dev_unreg_count);
9655 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9656 struct net_device *upper, netdev_features_t features)
9658 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9659 netdev_features_t feature;
9662 for_each_netdev_feature(upper_disables, feature_bit) {
9663 feature = __NETIF_F_BIT(feature_bit);
9664 if (!(upper->wanted_features & feature)
9665 && (features & feature)) {
9666 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9667 &feature, upper->name);
9668 features &= ~feature;
9675 static void netdev_sync_lower_features(struct net_device *upper,
9676 struct net_device *lower, netdev_features_t features)
9678 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9679 netdev_features_t feature;
9682 for_each_netdev_feature(upper_disables, feature_bit) {
9683 feature = __NETIF_F_BIT(feature_bit);
9684 if (!(features & feature) && (lower->features & feature)) {
9685 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9686 &feature, lower->name);
9687 lower->wanted_features &= ~feature;
9688 __netdev_update_features(lower);
9690 if (unlikely(lower->features & feature))
9691 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9692 &feature, lower->name);
9694 netdev_features_change(lower);
9699 static netdev_features_t netdev_fix_features(struct net_device *dev,
9700 netdev_features_t features)
9702 /* Fix illegal checksum combinations */
9703 if ((features & NETIF_F_HW_CSUM) &&
9704 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9705 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9706 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9709 /* TSO requires that SG is present as well. */
9710 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9711 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9712 features &= ~NETIF_F_ALL_TSO;
9715 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9716 !(features & NETIF_F_IP_CSUM)) {
9717 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9718 features &= ~NETIF_F_TSO;
9719 features &= ~NETIF_F_TSO_ECN;
9722 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9723 !(features & NETIF_F_IPV6_CSUM)) {
9724 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9725 features &= ~NETIF_F_TSO6;
9728 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9729 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9730 features &= ~NETIF_F_TSO_MANGLEID;
9732 /* TSO ECN requires that TSO is present as well. */
9733 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9734 features &= ~NETIF_F_TSO_ECN;
9736 /* Software GSO depends on SG. */
9737 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9738 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9739 features &= ~NETIF_F_GSO;
9742 /* GSO partial features require GSO partial be set */
9743 if ((features & dev->gso_partial_features) &&
9744 !(features & NETIF_F_GSO_PARTIAL)) {
9746 "Dropping partially supported GSO features since no GSO partial.\n");
9747 features &= ~dev->gso_partial_features;
9750 if (!(features & NETIF_F_RXCSUM)) {
9751 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9752 * successfully merged by hardware must also have the
9753 * checksum verified by hardware. If the user does not
9754 * want to enable RXCSUM, logically, we should disable GRO_HW.
9756 if (features & NETIF_F_GRO_HW) {
9757 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9758 features &= ~NETIF_F_GRO_HW;
9762 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9763 if (features & NETIF_F_RXFCS) {
9764 if (features & NETIF_F_LRO) {
9765 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9766 features &= ~NETIF_F_LRO;
9769 if (features & NETIF_F_GRO_HW) {
9770 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9771 features &= ~NETIF_F_GRO_HW;
9775 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9776 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9777 features &= ~NETIF_F_LRO;
9780 if (features & NETIF_F_HW_TLS_TX) {
9781 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9782 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9783 bool hw_csum = features & NETIF_F_HW_CSUM;
9785 if (!ip_csum && !hw_csum) {
9786 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9787 features &= ~NETIF_F_HW_TLS_TX;
9791 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9792 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9793 features &= ~NETIF_F_HW_TLS_RX;
9799 int __netdev_update_features(struct net_device *dev)
9801 struct net_device *upper, *lower;
9802 netdev_features_t features;
9803 struct list_head *iter;
9808 features = netdev_get_wanted_features(dev);
9810 if (dev->netdev_ops->ndo_fix_features)
9811 features = dev->netdev_ops->ndo_fix_features(dev, features);
9813 /* driver might be less strict about feature dependencies */
9814 features = netdev_fix_features(dev, features);
9816 /* some features can't be enabled if they're off on an upper device */
9817 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9818 features = netdev_sync_upper_features(dev, upper, features);
9820 if (dev->features == features)
9823 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9824 &dev->features, &features);
9826 if (dev->netdev_ops->ndo_set_features)
9827 err = dev->netdev_ops->ndo_set_features(dev, features);
9831 if (unlikely(err < 0)) {
9833 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9834 err, &features, &dev->features);
9835 /* return non-0 since some features might have changed and
9836 * it's better to fire a spurious notification than miss it
9842 /* some features must be disabled on lower devices when disabled
9843 * on an upper device (think: bonding master or bridge)
9845 netdev_for_each_lower_dev(dev, lower, iter)
9846 netdev_sync_lower_features(dev, lower, features);
9849 netdev_features_t diff = features ^ dev->features;
9851 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9852 /* udp_tunnel_{get,drop}_rx_info both need
9853 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9854 * device, or they won't do anything.
9855 * Thus we need to update dev->features
9856 * *before* calling udp_tunnel_get_rx_info,
9857 * but *after* calling udp_tunnel_drop_rx_info.
9859 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9860 dev->features = features;
9861 udp_tunnel_get_rx_info(dev);
9863 udp_tunnel_drop_rx_info(dev);
9867 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9868 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9869 dev->features = features;
9870 err |= vlan_get_rx_ctag_filter_info(dev);
9872 vlan_drop_rx_ctag_filter_info(dev);
9876 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9877 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9878 dev->features = features;
9879 err |= vlan_get_rx_stag_filter_info(dev);
9881 vlan_drop_rx_stag_filter_info(dev);
9885 dev->features = features;
9888 return err < 0 ? 0 : 1;
9892 * netdev_update_features - recalculate device features
9893 * @dev: the device to check
9895 * Recalculate dev->features set and send notifications if it
9896 * has changed. Should be called after driver or hardware dependent
9897 * conditions might have changed that influence the features.
9899 void netdev_update_features(struct net_device *dev)
9901 if (__netdev_update_features(dev))
9902 netdev_features_change(dev);
9904 EXPORT_SYMBOL(netdev_update_features);
9907 * netdev_change_features - recalculate device features
9908 * @dev: the device to check
9910 * Recalculate dev->features set and send notifications even
9911 * if they have not changed. Should be called instead of
9912 * netdev_update_features() if also dev->vlan_features might
9913 * have changed to allow the changes to be propagated to stacked
9916 void netdev_change_features(struct net_device *dev)
9918 __netdev_update_features(dev);
9919 netdev_features_change(dev);
9921 EXPORT_SYMBOL(netdev_change_features);
9924 * netif_stacked_transfer_operstate - transfer operstate
9925 * @rootdev: the root or lower level device to transfer state from
9926 * @dev: the device to transfer operstate to
9928 * Transfer operational state from root to device. This is normally
9929 * called when a stacking relationship exists between the root
9930 * device and the device(a leaf device).
9932 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9933 struct net_device *dev)
9935 if (rootdev->operstate == IF_OPER_DORMANT)
9936 netif_dormant_on(dev);
9938 netif_dormant_off(dev);
9940 if (rootdev->operstate == IF_OPER_TESTING)
9941 netif_testing_on(dev);
9943 netif_testing_off(dev);
9945 if (netif_carrier_ok(rootdev))
9946 netif_carrier_on(dev);
9948 netif_carrier_off(dev);
9950 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9952 static int netif_alloc_rx_queues(struct net_device *dev)
9954 unsigned int i, count = dev->num_rx_queues;
9955 struct netdev_rx_queue *rx;
9956 size_t sz = count * sizeof(*rx);
9961 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9967 for (i = 0; i < count; i++) {
9970 /* XDP RX-queue setup */
9971 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9978 /* Rollback successful reg's and free other resources */
9980 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9986 static void netif_free_rx_queues(struct net_device *dev)
9988 unsigned int i, count = dev->num_rx_queues;
9990 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9994 for (i = 0; i < count; i++)
9995 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10000 static void netdev_init_one_queue(struct net_device *dev,
10001 struct netdev_queue *queue, void *_unused)
10003 /* Initialize queue lock */
10004 spin_lock_init(&queue->_xmit_lock);
10005 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10006 queue->xmit_lock_owner = -1;
10007 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10010 dql_init(&queue->dql, HZ);
10014 static void netif_free_tx_queues(struct net_device *dev)
10019 static int netif_alloc_netdev_queues(struct net_device *dev)
10021 unsigned int count = dev->num_tx_queues;
10022 struct netdev_queue *tx;
10023 size_t sz = count * sizeof(*tx);
10025 if (count < 1 || count > 0xffff)
10028 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10034 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10035 spin_lock_init(&dev->tx_global_lock);
10040 void netif_tx_stop_all_queues(struct net_device *dev)
10044 for (i = 0; i < dev->num_tx_queues; i++) {
10045 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10047 netif_tx_stop_queue(txq);
10050 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10053 * register_netdevice() - register a network device
10054 * @dev: device to register
10056 * Take a prepared network device structure and make it externally accessible.
10057 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10058 * Callers must hold the rtnl lock - you may want register_netdev()
10061 int register_netdevice(struct net_device *dev)
10064 struct net *net = dev_net(dev);
10066 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10067 NETDEV_FEATURE_COUNT);
10068 BUG_ON(dev_boot_phase);
10073 /* When net_device's are persistent, this will be fatal. */
10074 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10077 ret = ethtool_check_ops(dev->ethtool_ops);
10081 spin_lock_init(&dev->addr_list_lock);
10082 netdev_set_addr_lockdep_class(dev);
10084 ret = dev_get_valid_name(net, dev, dev->name);
10089 dev->name_node = netdev_name_node_head_alloc(dev);
10090 if (!dev->name_node)
10093 /* Init, if this function is available */
10094 if (dev->netdev_ops->ndo_init) {
10095 ret = dev->netdev_ops->ndo_init(dev);
10099 goto err_free_name;
10103 if (((dev->hw_features | dev->features) &
10104 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10105 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10106 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10107 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10112 ret = dev_index_reserve(net, dev->ifindex);
10115 dev->ifindex = ret;
10117 /* Transfer changeable features to wanted_features and enable
10118 * software offloads (GSO and GRO).
10120 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10121 dev->features |= NETIF_F_SOFT_FEATURES;
10123 if (dev->udp_tunnel_nic_info) {
10124 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10125 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10128 dev->wanted_features = dev->features & dev->hw_features;
10130 if (!(dev->flags & IFF_LOOPBACK))
10131 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10133 /* If IPv4 TCP segmentation offload is supported we should also
10134 * allow the device to enable segmenting the frame with the option
10135 * of ignoring a static IP ID value. This doesn't enable the
10136 * feature itself but allows the user to enable it later.
10138 if (dev->hw_features & NETIF_F_TSO)
10139 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10140 if (dev->vlan_features & NETIF_F_TSO)
10141 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10142 if (dev->mpls_features & NETIF_F_TSO)
10143 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10144 if (dev->hw_enc_features & NETIF_F_TSO)
10145 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10147 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10149 dev->vlan_features |= NETIF_F_HIGHDMA;
10151 /* Make NETIF_F_SG inheritable to tunnel devices.
10153 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10155 /* Make NETIF_F_SG inheritable to MPLS.
10157 dev->mpls_features |= NETIF_F_SG;
10159 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10160 ret = notifier_to_errno(ret);
10162 goto err_ifindex_release;
10164 ret = netdev_register_kobject(dev);
10165 write_lock(&dev_base_lock);
10166 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10167 write_unlock(&dev_base_lock);
10169 goto err_uninit_notify;
10171 __netdev_update_features(dev);
10174 * Default initial state at registry is that the
10175 * device is present.
10178 set_bit(__LINK_STATE_PRESENT, &dev->state);
10180 linkwatch_init_dev(dev);
10182 dev_init_scheduler(dev);
10184 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10185 list_netdevice(dev);
10187 add_device_randomness(dev->dev_addr, dev->addr_len);
10189 /* If the device has permanent device address, driver should
10190 * set dev_addr and also addr_assign_type should be set to
10191 * NET_ADDR_PERM (default value).
10193 if (dev->addr_assign_type == NET_ADDR_PERM)
10194 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10196 /* Notify protocols, that a new device appeared. */
10197 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10198 ret = notifier_to_errno(ret);
10200 /* Expect explicit free_netdev() on failure */
10201 dev->needs_free_netdev = false;
10202 unregister_netdevice_queue(dev, NULL);
10206 * Prevent userspace races by waiting until the network
10207 * device is fully setup before sending notifications.
10209 if (!dev->rtnl_link_ops ||
10210 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10211 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10217 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10218 err_ifindex_release:
10219 dev_index_release(net, dev->ifindex);
10221 if (dev->netdev_ops->ndo_uninit)
10222 dev->netdev_ops->ndo_uninit(dev);
10223 if (dev->priv_destructor)
10224 dev->priv_destructor(dev);
10226 netdev_name_node_free(dev->name_node);
10229 EXPORT_SYMBOL(register_netdevice);
10232 * init_dummy_netdev - init a dummy network device for NAPI
10233 * @dev: device to init
10235 * This takes a network device structure and initialize the minimum
10236 * amount of fields so it can be used to schedule NAPI polls without
10237 * registering a full blown interface. This is to be used by drivers
10238 * that need to tie several hardware interfaces to a single NAPI
10239 * poll scheduler due to HW limitations.
10241 int init_dummy_netdev(struct net_device *dev)
10243 /* Clear everything. Note we don't initialize spinlocks
10244 * are they aren't supposed to be taken by any of the
10245 * NAPI code and this dummy netdev is supposed to be
10246 * only ever used for NAPI polls
10248 memset(dev, 0, sizeof(struct net_device));
10250 /* make sure we BUG if trying to hit standard
10251 * register/unregister code path
10253 dev->reg_state = NETREG_DUMMY;
10255 /* NAPI wants this */
10256 INIT_LIST_HEAD(&dev->napi_list);
10258 /* a dummy interface is started by default */
10259 set_bit(__LINK_STATE_PRESENT, &dev->state);
10260 set_bit(__LINK_STATE_START, &dev->state);
10262 /* napi_busy_loop stats accounting wants this */
10263 dev_net_set(dev, &init_net);
10265 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10266 * because users of this 'device' dont need to change
10272 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10276 * register_netdev - register a network device
10277 * @dev: device to register
10279 * Take a completed network device structure and add it to the kernel
10280 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10281 * chain. 0 is returned on success. A negative errno code is returned
10282 * on a failure to set up the device, or if the name is a duplicate.
10284 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10285 * and expands the device name if you passed a format string to
10288 int register_netdev(struct net_device *dev)
10292 if (rtnl_lock_killable())
10294 err = register_netdevice(dev);
10298 EXPORT_SYMBOL(register_netdev);
10300 int netdev_refcnt_read(const struct net_device *dev)
10302 #ifdef CONFIG_PCPU_DEV_REFCNT
10305 for_each_possible_cpu(i)
10306 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10309 return refcount_read(&dev->dev_refcnt);
10312 EXPORT_SYMBOL(netdev_refcnt_read);
10314 int netdev_unregister_timeout_secs __read_mostly = 10;
10316 #define WAIT_REFS_MIN_MSECS 1
10317 #define WAIT_REFS_MAX_MSECS 250
10319 * netdev_wait_allrefs_any - wait until all references are gone.
10320 * @list: list of net_devices to wait on
10322 * This is called when unregistering network devices.
10324 * Any protocol or device that holds a reference should register
10325 * for netdevice notification, and cleanup and put back the
10326 * reference if they receive an UNREGISTER event.
10327 * We can get stuck here if buggy protocols don't correctly
10330 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10332 unsigned long rebroadcast_time, warning_time;
10333 struct net_device *dev;
10336 rebroadcast_time = warning_time = jiffies;
10338 list_for_each_entry(dev, list, todo_list)
10339 if (netdev_refcnt_read(dev) == 1)
10343 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10346 /* Rebroadcast unregister notification */
10347 list_for_each_entry(dev, list, todo_list)
10348 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10354 list_for_each_entry(dev, list, todo_list)
10355 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10357 /* We must not have linkwatch events
10358 * pending on unregister. If this
10359 * happens, we simply run the queue
10360 * unscheduled, resulting in a noop
10363 linkwatch_run_queue();
10369 rebroadcast_time = jiffies;
10374 wait = WAIT_REFS_MIN_MSECS;
10377 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10380 list_for_each_entry(dev, list, todo_list)
10381 if (netdev_refcnt_read(dev) == 1)
10384 if (time_after(jiffies, warning_time +
10385 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10386 list_for_each_entry(dev, list, todo_list) {
10387 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10388 dev->name, netdev_refcnt_read(dev));
10389 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10392 warning_time = jiffies;
10397 /* The sequence is:
10401 * register_netdevice(x1);
10402 * register_netdevice(x2);
10404 * unregister_netdevice(y1);
10405 * unregister_netdevice(y2);
10411 * We are invoked by rtnl_unlock().
10412 * This allows us to deal with problems:
10413 * 1) We can delete sysfs objects which invoke hotplug
10414 * without deadlocking with linkwatch via keventd.
10415 * 2) Since we run with the RTNL semaphore not held, we can sleep
10416 * safely in order to wait for the netdev refcnt to drop to zero.
10418 * We must not return until all unregister events added during
10419 * the interval the lock was held have been completed.
10421 void netdev_run_todo(void)
10423 struct net_device *dev, *tmp;
10424 struct list_head list;
10425 #ifdef CONFIG_LOCKDEP
10426 struct list_head unlink_list;
10428 list_replace_init(&net_unlink_list, &unlink_list);
10430 while (!list_empty(&unlink_list)) {
10431 struct net_device *dev = list_first_entry(&unlink_list,
10434 list_del_init(&dev->unlink_list);
10435 dev->nested_level = dev->lower_level - 1;
10439 /* Snapshot list, allow later requests */
10440 list_replace_init(&net_todo_list, &list);
10444 /* Wait for rcu callbacks to finish before next phase */
10445 if (!list_empty(&list))
10448 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10449 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10450 netdev_WARN(dev, "run_todo but not unregistering\n");
10451 list_del(&dev->todo_list);
10455 write_lock(&dev_base_lock);
10456 dev->reg_state = NETREG_UNREGISTERED;
10457 write_unlock(&dev_base_lock);
10458 linkwatch_forget_dev(dev);
10461 while (!list_empty(&list)) {
10462 dev = netdev_wait_allrefs_any(&list);
10463 list_del(&dev->todo_list);
10466 BUG_ON(netdev_refcnt_read(dev) != 1);
10467 BUG_ON(!list_empty(&dev->ptype_all));
10468 BUG_ON(!list_empty(&dev->ptype_specific));
10469 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10470 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10472 if (dev->priv_destructor)
10473 dev->priv_destructor(dev);
10474 if (dev->needs_free_netdev)
10477 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10478 wake_up(&netdev_unregistering_wq);
10480 /* Free network device */
10481 kobject_put(&dev->dev.kobj);
10485 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10486 * all the same fields in the same order as net_device_stats, with only
10487 * the type differing, but rtnl_link_stats64 may have additional fields
10488 * at the end for newer counters.
10490 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10491 const struct net_device_stats *netdev_stats)
10493 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10494 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10495 u64 *dst = (u64 *)stats64;
10497 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10498 for (i = 0; i < n; i++)
10499 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10500 /* zero out counters that only exist in rtnl_link_stats64 */
10501 memset((char *)stats64 + n * sizeof(u64), 0,
10502 sizeof(*stats64) - n * sizeof(u64));
10504 EXPORT_SYMBOL(netdev_stats_to_stats64);
10506 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10507 struct net_device *dev)
10509 struct net_device_core_stats __percpu *p;
10511 p = alloc_percpu_gfp(struct net_device_core_stats,
10512 GFP_ATOMIC | __GFP_NOWARN);
10514 if (p && cmpxchg(&dev->core_stats, NULL, p))
10517 /* This READ_ONCE() pairs with the cmpxchg() above */
10518 return READ_ONCE(dev->core_stats);
10521 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10523 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10524 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10525 unsigned long __percpu *field;
10527 if (unlikely(!p)) {
10528 p = netdev_core_stats_alloc(dev);
10533 field = (__force unsigned long __percpu *)((__force void *)p + offset);
10534 this_cpu_inc(*field);
10536 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10539 * dev_get_stats - get network device statistics
10540 * @dev: device to get statistics from
10541 * @storage: place to store stats
10543 * Get network statistics from device. Return @storage.
10544 * The device driver may provide its own method by setting
10545 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10546 * otherwise the internal statistics structure is used.
10548 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10549 struct rtnl_link_stats64 *storage)
10551 const struct net_device_ops *ops = dev->netdev_ops;
10552 const struct net_device_core_stats __percpu *p;
10554 if (ops->ndo_get_stats64) {
10555 memset(storage, 0, sizeof(*storage));
10556 ops->ndo_get_stats64(dev, storage);
10557 } else if (ops->ndo_get_stats) {
10558 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10560 netdev_stats_to_stats64(storage, &dev->stats);
10563 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10564 p = READ_ONCE(dev->core_stats);
10566 const struct net_device_core_stats *core_stats;
10569 for_each_possible_cpu(i) {
10570 core_stats = per_cpu_ptr(p, i);
10571 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10572 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10573 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10574 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10579 EXPORT_SYMBOL(dev_get_stats);
10582 * dev_fetch_sw_netstats - get per-cpu network device statistics
10583 * @s: place to store stats
10584 * @netstats: per-cpu network stats to read from
10586 * Read per-cpu network statistics and populate the related fields in @s.
10588 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10589 const struct pcpu_sw_netstats __percpu *netstats)
10593 for_each_possible_cpu(cpu) {
10594 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10595 const struct pcpu_sw_netstats *stats;
10596 unsigned int start;
10598 stats = per_cpu_ptr(netstats, cpu);
10600 start = u64_stats_fetch_begin(&stats->syncp);
10601 rx_packets = u64_stats_read(&stats->rx_packets);
10602 rx_bytes = u64_stats_read(&stats->rx_bytes);
10603 tx_packets = u64_stats_read(&stats->tx_packets);
10604 tx_bytes = u64_stats_read(&stats->tx_bytes);
10605 } while (u64_stats_fetch_retry(&stats->syncp, start));
10607 s->rx_packets += rx_packets;
10608 s->rx_bytes += rx_bytes;
10609 s->tx_packets += tx_packets;
10610 s->tx_bytes += tx_bytes;
10613 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10616 * dev_get_tstats64 - ndo_get_stats64 implementation
10617 * @dev: device to get statistics from
10618 * @s: place to store stats
10620 * Populate @s from dev->stats and dev->tstats. Can be used as
10621 * ndo_get_stats64() callback.
10623 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10625 netdev_stats_to_stats64(s, &dev->stats);
10626 dev_fetch_sw_netstats(s, dev->tstats);
10628 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10630 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10632 struct netdev_queue *queue = dev_ingress_queue(dev);
10634 #ifdef CONFIG_NET_CLS_ACT
10637 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10640 netdev_init_one_queue(dev, queue, NULL);
10641 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10642 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10643 rcu_assign_pointer(dev->ingress_queue, queue);
10648 static const struct ethtool_ops default_ethtool_ops;
10650 void netdev_set_default_ethtool_ops(struct net_device *dev,
10651 const struct ethtool_ops *ops)
10653 if (dev->ethtool_ops == &default_ethtool_ops)
10654 dev->ethtool_ops = ops;
10656 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10659 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10660 * @dev: netdev to enable the IRQ coalescing on
10662 * Sets a conservative default for SW IRQ coalescing. Users can use
10663 * sysfs attributes to override the default values.
10665 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10667 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10669 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10670 dev->gro_flush_timeout = 20000;
10671 dev->napi_defer_hard_irqs = 1;
10674 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10676 void netdev_freemem(struct net_device *dev)
10678 char *addr = (char *)dev - dev->padded;
10684 * alloc_netdev_mqs - allocate network device
10685 * @sizeof_priv: size of private data to allocate space for
10686 * @name: device name format string
10687 * @name_assign_type: origin of device name
10688 * @setup: callback to initialize device
10689 * @txqs: the number of TX subqueues to allocate
10690 * @rxqs: the number of RX subqueues to allocate
10692 * Allocates a struct net_device with private data area for driver use
10693 * and performs basic initialization. Also allocates subqueue structs
10694 * for each queue on the device.
10696 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10697 unsigned char name_assign_type,
10698 void (*setup)(struct net_device *),
10699 unsigned int txqs, unsigned int rxqs)
10701 struct net_device *dev;
10702 unsigned int alloc_size;
10703 struct net_device *p;
10705 BUG_ON(strlen(name) >= sizeof(dev->name));
10708 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10713 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10717 alloc_size = sizeof(struct net_device);
10719 /* ensure 32-byte alignment of private area */
10720 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10721 alloc_size += sizeof_priv;
10723 /* ensure 32-byte alignment of whole construct */
10724 alloc_size += NETDEV_ALIGN - 1;
10726 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10730 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10731 dev->padded = (char *)dev - (char *)p;
10733 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10734 #ifdef CONFIG_PCPU_DEV_REFCNT
10735 dev->pcpu_refcnt = alloc_percpu(int);
10736 if (!dev->pcpu_refcnt)
10740 refcount_set(&dev->dev_refcnt, 1);
10743 if (dev_addr_init(dev))
10749 dev_net_set(dev, &init_net);
10751 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10752 dev->xdp_zc_max_segs = 1;
10753 dev->gso_max_segs = GSO_MAX_SEGS;
10754 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10755 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10756 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10757 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10758 dev->tso_max_segs = TSO_MAX_SEGS;
10759 dev->upper_level = 1;
10760 dev->lower_level = 1;
10761 #ifdef CONFIG_LOCKDEP
10762 dev->nested_level = 0;
10763 INIT_LIST_HEAD(&dev->unlink_list);
10766 INIT_LIST_HEAD(&dev->napi_list);
10767 INIT_LIST_HEAD(&dev->unreg_list);
10768 INIT_LIST_HEAD(&dev->close_list);
10769 INIT_LIST_HEAD(&dev->link_watch_list);
10770 INIT_LIST_HEAD(&dev->adj_list.upper);
10771 INIT_LIST_HEAD(&dev->adj_list.lower);
10772 INIT_LIST_HEAD(&dev->ptype_all);
10773 INIT_LIST_HEAD(&dev->ptype_specific);
10774 INIT_LIST_HEAD(&dev->net_notifier_list);
10775 #ifdef CONFIG_NET_SCHED
10776 hash_init(dev->qdisc_hash);
10778 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10781 if (!dev->tx_queue_len) {
10782 dev->priv_flags |= IFF_NO_QUEUE;
10783 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10786 dev->num_tx_queues = txqs;
10787 dev->real_num_tx_queues = txqs;
10788 if (netif_alloc_netdev_queues(dev))
10791 dev->num_rx_queues = rxqs;
10792 dev->real_num_rx_queues = rxqs;
10793 if (netif_alloc_rx_queues(dev))
10796 strcpy(dev->name, name);
10797 dev->name_assign_type = name_assign_type;
10798 dev->group = INIT_NETDEV_GROUP;
10799 if (!dev->ethtool_ops)
10800 dev->ethtool_ops = &default_ethtool_ops;
10802 nf_hook_netdev_init(dev);
10811 #ifdef CONFIG_PCPU_DEV_REFCNT
10812 free_percpu(dev->pcpu_refcnt);
10815 netdev_freemem(dev);
10818 EXPORT_SYMBOL(alloc_netdev_mqs);
10821 * free_netdev - free network device
10824 * This function does the last stage of destroying an allocated device
10825 * interface. The reference to the device object is released. If this
10826 * is the last reference then it will be freed.Must be called in process
10829 void free_netdev(struct net_device *dev)
10831 struct napi_struct *p, *n;
10835 /* When called immediately after register_netdevice() failed the unwind
10836 * handling may still be dismantling the device. Handle that case by
10837 * deferring the free.
10839 if (dev->reg_state == NETREG_UNREGISTERING) {
10841 dev->needs_free_netdev = true;
10845 netif_free_tx_queues(dev);
10846 netif_free_rx_queues(dev);
10848 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10850 /* Flush device addresses */
10851 dev_addr_flush(dev);
10853 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10856 ref_tracker_dir_exit(&dev->refcnt_tracker);
10857 #ifdef CONFIG_PCPU_DEV_REFCNT
10858 free_percpu(dev->pcpu_refcnt);
10859 dev->pcpu_refcnt = NULL;
10861 free_percpu(dev->core_stats);
10862 dev->core_stats = NULL;
10863 free_percpu(dev->xdp_bulkq);
10864 dev->xdp_bulkq = NULL;
10866 /* Compatibility with error handling in drivers */
10867 if (dev->reg_state == NETREG_UNINITIALIZED) {
10868 netdev_freemem(dev);
10872 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10873 dev->reg_state = NETREG_RELEASED;
10875 /* will free via device release */
10876 put_device(&dev->dev);
10878 EXPORT_SYMBOL(free_netdev);
10881 * synchronize_net - Synchronize with packet receive processing
10883 * Wait for packets currently being received to be done.
10884 * Does not block later packets from starting.
10886 void synchronize_net(void)
10889 if (rtnl_is_locked())
10890 synchronize_rcu_expedited();
10894 EXPORT_SYMBOL(synchronize_net);
10897 * unregister_netdevice_queue - remove device from the kernel
10901 * This function shuts down a device interface and removes it
10902 * from the kernel tables.
10903 * If head not NULL, device is queued to be unregistered later.
10905 * Callers must hold the rtnl semaphore. You may want
10906 * unregister_netdev() instead of this.
10909 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10914 list_move_tail(&dev->unreg_list, head);
10918 list_add(&dev->unreg_list, &single);
10919 unregister_netdevice_many(&single);
10922 EXPORT_SYMBOL(unregister_netdevice_queue);
10924 void unregister_netdevice_many_notify(struct list_head *head,
10925 u32 portid, const struct nlmsghdr *nlh)
10927 struct net_device *dev, *tmp;
10928 LIST_HEAD(close_head);
10930 BUG_ON(dev_boot_phase);
10933 if (list_empty(head))
10936 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10937 /* Some devices call without registering
10938 * for initialization unwind. Remove those
10939 * devices and proceed with the remaining.
10941 if (dev->reg_state == NETREG_UNINITIALIZED) {
10942 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10946 list_del(&dev->unreg_list);
10949 dev->dismantle = true;
10950 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10953 /* If device is running, close it first. */
10954 list_for_each_entry(dev, head, unreg_list)
10955 list_add_tail(&dev->close_list, &close_head);
10956 dev_close_many(&close_head, true);
10958 list_for_each_entry(dev, head, unreg_list) {
10959 /* And unlink it from device chain. */
10960 write_lock(&dev_base_lock);
10961 unlist_netdevice(dev, false);
10962 dev->reg_state = NETREG_UNREGISTERING;
10963 write_unlock(&dev_base_lock);
10965 flush_all_backlogs();
10969 list_for_each_entry(dev, head, unreg_list) {
10970 struct sk_buff *skb = NULL;
10972 /* Shutdown queueing discipline. */
10974 dev_tcx_uninstall(dev);
10975 dev_xdp_uninstall(dev);
10976 bpf_dev_bound_netdev_unregister(dev);
10978 netdev_offload_xstats_disable_all(dev);
10980 /* Notify protocols, that we are about to destroy
10981 * this device. They should clean all the things.
10983 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10985 if (!dev->rtnl_link_ops ||
10986 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10987 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10988 GFP_KERNEL, NULL, 0,
10992 * Flush the unicast and multicast chains
10997 netdev_name_node_alt_flush(dev);
10998 netdev_name_node_free(dev->name_node);
11000 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11002 if (dev->netdev_ops->ndo_uninit)
11003 dev->netdev_ops->ndo_uninit(dev);
11006 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11008 /* Notifier chain MUST detach us all upper devices. */
11009 WARN_ON(netdev_has_any_upper_dev(dev));
11010 WARN_ON(netdev_has_any_lower_dev(dev));
11012 /* Remove entries from kobject tree */
11013 netdev_unregister_kobject(dev);
11015 /* Remove XPS queueing entries */
11016 netif_reset_xps_queues_gt(dev, 0);
11022 list_for_each_entry(dev, head, unreg_list) {
11023 netdev_put(dev, &dev->dev_registered_tracker);
11031 * unregister_netdevice_many - unregister many devices
11032 * @head: list of devices
11034 * Note: As most callers use a stack allocated list_head,
11035 * we force a list_del() to make sure stack wont be corrupted later.
11037 void unregister_netdevice_many(struct list_head *head)
11039 unregister_netdevice_many_notify(head, 0, NULL);
11041 EXPORT_SYMBOL(unregister_netdevice_many);
11044 * unregister_netdev - remove device from the kernel
11047 * This function shuts down a device interface and removes it
11048 * from the kernel tables.
11050 * This is just a wrapper for unregister_netdevice that takes
11051 * the rtnl semaphore. In general you want to use this and not
11052 * unregister_netdevice.
11054 void unregister_netdev(struct net_device *dev)
11057 unregister_netdevice(dev);
11060 EXPORT_SYMBOL(unregister_netdev);
11063 * __dev_change_net_namespace - move device to different nethost namespace
11065 * @net: network namespace
11066 * @pat: If not NULL name pattern to try if the current device name
11067 * is already taken in the destination network namespace.
11068 * @new_ifindex: If not zero, specifies device index in the target
11071 * This function shuts down a device interface and moves it
11072 * to a new network namespace. On success 0 is returned, on
11073 * a failure a netagive errno code is returned.
11075 * Callers must hold the rtnl semaphore.
11078 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11079 const char *pat, int new_ifindex)
11081 struct netdev_name_node *name_node;
11082 struct net *net_old = dev_net(dev);
11083 char new_name[IFNAMSIZ] = {};
11088 /* Don't allow namespace local devices to be moved. */
11090 if (dev->features & NETIF_F_NETNS_LOCAL)
11093 /* Ensure the device has been registrered */
11094 if (dev->reg_state != NETREG_REGISTERED)
11097 /* Get out if there is nothing todo */
11099 if (net_eq(net_old, net))
11102 /* Pick the destination device name, and ensure
11103 * we can use it in the destination network namespace.
11106 if (netdev_name_in_use(net, dev->name)) {
11107 /* We get here if we can't use the current device name */
11110 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11114 /* Check that none of the altnames conflicts. */
11116 netdev_for_each_altname(dev, name_node)
11117 if (netdev_name_in_use(net, name_node->name))
11120 /* Check that new_ifindex isn't used yet. */
11122 err = dev_index_reserve(net, new_ifindex);
11126 /* If there is an ifindex conflict assign a new one */
11127 err = dev_index_reserve(net, dev->ifindex);
11129 err = dev_index_reserve(net, 0);
11136 * And now a mini version of register_netdevice unregister_netdevice.
11139 /* If device is running close it first. */
11142 /* And unlink it from device chain */
11143 unlist_netdevice(dev, true);
11147 /* Shutdown queueing discipline. */
11150 /* Notify protocols, that we are about to destroy
11151 * this device. They should clean all the things.
11153 * Note that dev->reg_state stays at NETREG_REGISTERED.
11154 * This is wanted because this way 8021q and macvlan know
11155 * the device is just moving and can keep their slaves up.
11157 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11160 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11162 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11166 * Flush the unicast and multicast chains
11171 /* Send a netdev-removed uevent to the old namespace */
11172 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11173 netdev_adjacent_del_links(dev);
11175 /* Move per-net netdevice notifiers that are following the netdevice */
11176 move_netdevice_notifiers_dev_net(dev, net);
11178 /* Actually switch the network namespace */
11179 dev_net_set(dev, net);
11180 dev->ifindex = new_ifindex;
11182 /* Send a netdev-add uevent to the new namespace */
11183 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11184 netdev_adjacent_add_links(dev);
11186 if (new_name[0]) /* Rename the netdev to prepared name */
11187 strscpy(dev->name, new_name, IFNAMSIZ);
11189 /* Fixup kobjects */
11190 err = device_rename(&dev->dev, dev->name);
11193 /* Adapt owner in case owning user namespace of target network
11194 * namespace is different from the original one.
11196 err = netdev_change_owner(dev, net_old, net);
11199 /* Add the device back in the hashes */
11200 list_netdevice(dev);
11202 /* Notify protocols, that a new device appeared. */
11203 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11206 * Prevent userspace races by waiting until the network
11207 * device is fully setup before sending notifications.
11209 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11216 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11218 static int dev_cpu_dead(unsigned int oldcpu)
11220 struct sk_buff **list_skb;
11221 struct sk_buff *skb;
11223 struct softnet_data *sd, *oldsd, *remsd = NULL;
11225 local_irq_disable();
11226 cpu = smp_processor_id();
11227 sd = &per_cpu(softnet_data, cpu);
11228 oldsd = &per_cpu(softnet_data, oldcpu);
11230 /* Find end of our completion_queue. */
11231 list_skb = &sd->completion_queue;
11233 list_skb = &(*list_skb)->next;
11234 /* Append completion queue from offline CPU. */
11235 *list_skb = oldsd->completion_queue;
11236 oldsd->completion_queue = NULL;
11238 /* Append output queue from offline CPU. */
11239 if (oldsd->output_queue) {
11240 *sd->output_queue_tailp = oldsd->output_queue;
11241 sd->output_queue_tailp = oldsd->output_queue_tailp;
11242 oldsd->output_queue = NULL;
11243 oldsd->output_queue_tailp = &oldsd->output_queue;
11245 /* Append NAPI poll list from offline CPU, with one exception :
11246 * process_backlog() must be called by cpu owning percpu backlog.
11247 * We properly handle process_queue & input_pkt_queue later.
11249 while (!list_empty(&oldsd->poll_list)) {
11250 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11251 struct napi_struct,
11254 list_del_init(&napi->poll_list);
11255 if (napi->poll == process_backlog)
11258 ____napi_schedule(sd, napi);
11261 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11262 local_irq_enable();
11265 remsd = oldsd->rps_ipi_list;
11266 oldsd->rps_ipi_list = NULL;
11268 /* send out pending IPI's on offline CPU */
11269 net_rps_send_ipi(remsd);
11271 /* Process offline CPU's input_pkt_queue */
11272 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11274 input_queue_head_incr(oldsd);
11276 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11278 input_queue_head_incr(oldsd);
11285 * netdev_increment_features - increment feature set by one
11286 * @all: current feature set
11287 * @one: new feature set
11288 * @mask: mask feature set
11290 * Computes a new feature set after adding a device with feature set
11291 * @one to the master device with current feature set @all. Will not
11292 * enable anything that is off in @mask. Returns the new feature set.
11294 netdev_features_t netdev_increment_features(netdev_features_t all,
11295 netdev_features_t one, netdev_features_t mask)
11297 if (mask & NETIF_F_HW_CSUM)
11298 mask |= NETIF_F_CSUM_MASK;
11299 mask |= NETIF_F_VLAN_CHALLENGED;
11301 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11302 all &= one | ~NETIF_F_ALL_FOR_ALL;
11304 /* If one device supports hw checksumming, set for all. */
11305 if (all & NETIF_F_HW_CSUM)
11306 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11310 EXPORT_SYMBOL(netdev_increment_features);
11312 static struct hlist_head * __net_init netdev_create_hash(void)
11315 struct hlist_head *hash;
11317 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11319 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11320 INIT_HLIST_HEAD(&hash[i]);
11325 /* Initialize per network namespace state */
11326 static int __net_init netdev_init(struct net *net)
11328 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11329 8 * sizeof_field(struct napi_struct, gro_bitmask));
11331 INIT_LIST_HEAD(&net->dev_base_head);
11333 net->dev_name_head = netdev_create_hash();
11334 if (net->dev_name_head == NULL)
11337 net->dev_index_head = netdev_create_hash();
11338 if (net->dev_index_head == NULL)
11341 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11343 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11348 kfree(net->dev_name_head);
11354 * netdev_drivername - network driver for the device
11355 * @dev: network device
11357 * Determine network driver for device.
11359 const char *netdev_drivername(const struct net_device *dev)
11361 const struct device_driver *driver;
11362 const struct device *parent;
11363 const char *empty = "";
11365 parent = dev->dev.parent;
11369 driver = parent->driver;
11370 if (driver && driver->name)
11371 return driver->name;
11375 static void __netdev_printk(const char *level, const struct net_device *dev,
11376 struct va_format *vaf)
11378 if (dev && dev->dev.parent) {
11379 dev_printk_emit(level[1] - '0',
11382 dev_driver_string(dev->dev.parent),
11383 dev_name(dev->dev.parent),
11384 netdev_name(dev), netdev_reg_state(dev),
11387 printk("%s%s%s: %pV",
11388 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11390 printk("%s(NULL net_device): %pV", level, vaf);
11394 void netdev_printk(const char *level, const struct net_device *dev,
11395 const char *format, ...)
11397 struct va_format vaf;
11400 va_start(args, format);
11405 __netdev_printk(level, dev, &vaf);
11409 EXPORT_SYMBOL(netdev_printk);
11411 #define define_netdev_printk_level(func, level) \
11412 void func(const struct net_device *dev, const char *fmt, ...) \
11414 struct va_format vaf; \
11417 va_start(args, fmt); \
11422 __netdev_printk(level, dev, &vaf); \
11426 EXPORT_SYMBOL(func);
11428 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11429 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11430 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11431 define_netdev_printk_level(netdev_err, KERN_ERR);
11432 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11433 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11434 define_netdev_printk_level(netdev_info, KERN_INFO);
11436 static void __net_exit netdev_exit(struct net *net)
11438 kfree(net->dev_name_head);
11439 kfree(net->dev_index_head);
11440 xa_destroy(&net->dev_by_index);
11441 if (net != &init_net)
11442 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11445 static struct pernet_operations __net_initdata netdev_net_ops = {
11446 .init = netdev_init,
11447 .exit = netdev_exit,
11450 static void __net_exit default_device_exit_net(struct net *net)
11452 struct net_device *dev, *aux;
11454 * Push all migratable network devices back to the
11455 * initial network namespace
11458 for_each_netdev_safe(net, dev, aux) {
11460 char fb_name[IFNAMSIZ];
11462 /* Ignore unmoveable devices (i.e. loopback) */
11463 if (dev->features & NETIF_F_NETNS_LOCAL)
11466 /* Leave virtual devices for the generic cleanup */
11467 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11470 /* Push remaining network devices to init_net */
11471 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11472 if (netdev_name_in_use(&init_net, fb_name))
11473 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11474 err = dev_change_net_namespace(dev, &init_net, fb_name);
11476 pr_emerg("%s: failed to move %s to init_net: %d\n",
11477 __func__, dev->name, err);
11483 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11485 /* At exit all network devices most be removed from a network
11486 * namespace. Do this in the reverse order of registration.
11487 * Do this across as many network namespaces as possible to
11488 * improve batching efficiency.
11490 struct net_device *dev;
11492 LIST_HEAD(dev_kill_list);
11495 list_for_each_entry(net, net_list, exit_list) {
11496 default_device_exit_net(net);
11500 list_for_each_entry(net, net_list, exit_list) {
11501 for_each_netdev_reverse(net, dev) {
11502 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11503 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11505 unregister_netdevice_queue(dev, &dev_kill_list);
11508 unregister_netdevice_many(&dev_kill_list);
11512 static struct pernet_operations __net_initdata default_device_ops = {
11513 .exit_batch = default_device_exit_batch,
11517 * Initialize the DEV module. At boot time this walks the device list and
11518 * unhooks any devices that fail to initialise (normally hardware not
11519 * present) and leaves us with a valid list of present and active devices.
11524 * This is called single threaded during boot, so no need
11525 * to take the rtnl semaphore.
11527 static int __init net_dev_init(void)
11529 int i, rc = -ENOMEM;
11531 BUG_ON(!dev_boot_phase);
11533 if (dev_proc_init())
11536 if (netdev_kobject_init())
11539 INIT_LIST_HEAD(&ptype_all);
11540 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11541 INIT_LIST_HEAD(&ptype_base[i]);
11543 if (register_pernet_subsys(&netdev_net_ops))
11547 * Initialise the packet receive queues.
11550 for_each_possible_cpu(i) {
11551 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11552 struct softnet_data *sd = &per_cpu(softnet_data, i);
11554 INIT_WORK(flush, flush_backlog);
11556 skb_queue_head_init(&sd->input_pkt_queue);
11557 skb_queue_head_init(&sd->process_queue);
11558 #ifdef CONFIG_XFRM_OFFLOAD
11559 skb_queue_head_init(&sd->xfrm_backlog);
11561 INIT_LIST_HEAD(&sd->poll_list);
11562 sd->output_queue_tailp = &sd->output_queue;
11564 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11567 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11568 spin_lock_init(&sd->defer_lock);
11570 init_gro_hash(&sd->backlog);
11571 sd->backlog.poll = process_backlog;
11572 sd->backlog.weight = weight_p;
11575 dev_boot_phase = 0;
11577 /* The loopback device is special if any other network devices
11578 * is present in a network namespace the loopback device must
11579 * be present. Since we now dynamically allocate and free the
11580 * loopback device ensure this invariant is maintained by
11581 * keeping the loopback device as the first device on the
11582 * list of network devices. Ensuring the loopback devices
11583 * is the first device that appears and the last network device
11586 if (register_pernet_device(&loopback_net_ops))
11589 if (register_pernet_device(&default_device_ops))
11592 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11593 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11595 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11596 NULL, dev_cpu_dead);
11603 subsys_initcall(net_dev_init);