1 // SPDX-License-Identifier: GPL-2.0-only
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
14 * This file is derived from arch/powerpc/kvm/book3s.c,
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
48 #include <asm/ftrace.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
71 #include <asm/dbell.h>
73 #include <asm/pnv-pci.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
82 #include <asm/plpar_wrappers.h>
84 #include <trace/events/ipi.h>
87 #include "book3s_hv.h"
89 #define CREATE_TRACE_POINTS
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL (~(u64)0)
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119 .set = param_set_int,
120 .get = param_get_int,
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
138 * RWMR values for POWER8. These control the rate at which PURR
139 * and SPURR count and should be set according to the number of
140 * online threads in the vcore being run.
142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
167 struct kvm_vcpu *vcpu;
169 while (++i < MAX_SMT_THREADS) {
170 vcpu = READ_ONCE(vc->runnable_threads[i]);
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
183 static bool kvmppc_ipi_thread(int cpu)
185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188 if (kvmhv_on_pseries())
191 /* On POWER9 we can use msgsnd to IPI any cpu */
192 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193 msg |= get_hard_smp_processor_id(cpu);
195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
202 if (cpu_first_thread_sibling(cpu) ==
203 cpu_first_thread_sibling(smp_processor_id())) {
204 msg |= cpu_thread_in_core(cpu);
206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214 if (cpu >= 0 && cpu < nr_cpu_ids) {
215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
230 struct rcuwait *waitp;
233 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234 * create pending work vs below loads of cpu fields. The other side
235 * is the barrier in vcpu run that orders setting the cpu fields vs
236 * testing for pending work.
239 waitp = kvm_arch_vcpu_get_wait(vcpu);
240 if (rcuwait_wake_up(waitp))
241 ++vcpu->stat.generic.halt_wakeup;
243 cpu = READ_ONCE(vcpu->arch.thread_cpu);
244 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
247 /* CPU points to the first thread of the core */
249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250 smp_send_reschedule(cpu);
254 * We use the vcpu_load/put functions to measure stolen time.
256 * Stolen time is counted as time when either the vcpu is able to
257 * run as part of a virtual core, but the task running the vcore
258 * is preempted or sleeping, or when the vcpu needs something done
259 * in the kernel by the task running the vcpu, but that task is
260 * preempted or sleeping. Those two things have to be counted
261 * separately, since one of the vcpu tasks will take on the job
262 * of running the core, and the other vcpu tasks in the vcore will
263 * sleep waiting for it to do that, but that sleep shouldn't count
266 * Hence we accumulate stolen time when the vcpu can run as part of
267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268 * needs its task to do other things in the kernel (for example,
269 * service a page fault) in busy_stolen. We don't accumulate
270 * stolen time for a vcore when it is inactive, or for a vcpu
271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
272 * a misnomer; it means that the vcpu task is not executing in
273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274 * the kernel. We don't have any way of dividing up that time
275 * between time that the vcpu is genuinely stopped, time that
276 * the task is actively working on behalf of the vcpu, and time
277 * that the task is preempted, so we don't count any of it as
280 * Updates to busy_stolen are protected by arch.tbacct_lock;
281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282 * lock. The stolen times are measured in units of timebase ticks.
283 * (Note that the != TB_NIL checks below are purely defensive;
284 * they should never fail.)
286 * The POWER9 path is simpler, one vcpu per virtual core so the
287 * former case does not exist. If a vcpu is preempted when it is
288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290 * state in the P9 path.
293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
299 spin_lock_irqsave(&vc->stoltb_lock, flags);
301 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
310 spin_lock_irqsave(&vc->stoltb_lock, flags);
311 if (vc->preempt_tb != TB_NIL) {
312 vc->stolen_tb += tb - vc->preempt_tb;
313 vc->preempt_tb = TB_NIL;
315 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
320 struct kvmppc_vcore *vc = vcpu->arch.vcore;
324 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325 if (vcpu->arch.busy_preempt != TB_NIL) {
326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328 vcpu->arch.busy_preempt = TB_NIL;
336 * We can test vc->runner without taking the vcore lock,
337 * because only this task ever sets vc->runner to this
338 * vcpu, and once it is set to this vcpu, only this task
339 * ever sets it to NULL.
341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342 kvmppc_core_end_stolen(vc, now);
344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346 vcpu->arch.busy_preempt != TB_NIL) {
347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348 vcpu->arch.busy_preempt = TB_NIL;
350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
355 struct kvmppc_vcore *vc = vcpu->arch.vcore;
359 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
361 * In the P9 path, RUNNABLE is not preemptible
362 * (nor takes host interrupts)
364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
366 * Account stolen time when preempted while the vcpu task is
367 * running in the kernel (but not in qemu, which is INACTIVE).
369 if (task_is_running(current) &&
370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371 vcpu->arch.busy_preempt = mftb();
377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378 kvmppc_core_start_stolen(vc, now);
380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382 vcpu->arch.busy_preempt = now;
383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
388 vcpu->arch.pvr = pvr;
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
396 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
397 struct kvmppc_vcore *vc = vcpu->arch.vcore;
399 /* We can (emulate) our own architecture version and anything older */
400 if (cpu_has_feature(CPU_FTR_ARCH_31))
401 host_pcr_bit = PCR_ARCH_31;
402 else if (cpu_has_feature(CPU_FTR_ARCH_300))
403 host_pcr_bit = PCR_ARCH_300;
404 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
405 host_pcr_bit = PCR_ARCH_207;
406 else if (cpu_has_feature(CPU_FTR_ARCH_206))
407 host_pcr_bit = PCR_ARCH_206;
409 host_pcr_bit = PCR_ARCH_205;
411 /* Determine lowest PCR bit needed to run guest in given PVR level */
412 guest_pcr_bit = host_pcr_bit;
414 switch (arch_compat) {
416 guest_pcr_bit = PCR_ARCH_205;
420 guest_pcr_bit = PCR_ARCH_206;
423 guest_pcr_bit = PCR_ARCH_207;
426 guest_pcr_bit = PCR_ARCH_300;
427 cap = H_GUEST_CAP_POWER9;
430 guest_pcr_bit = PCR_ARCH_31;
431 cap = H_GUEST_CAP_POWER10;
438 /* Check requested PCR bits don't exceed our capabilities */
439 if (guest_pcr_bit > host_pcr_bit)
442 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
443 if (!(cap & nested_capabilities))
447 spin_lock(&vc->lock);
448 vc->arch_compat = arch_compat;
449 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
451 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
452 * Also set all reserved PCR bits
454 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
455 spin_unlock(&vc->lock);
460 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
464 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
465 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
466 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
467 for (r = 0; r < 16; ++r)
468 pr_err("r%2d = %.16lx r%d = %.16lx\n",
469 r, kvmppc_get_gpr(vcpu, r),
470 r+16, kvmppc_get_gpr(vcpu, r+16));
471 pr_err("ctr = %.16lx lr = %.16lx\n",
472 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
473 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
474 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
475 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
476 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
477 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
478 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
479 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
480 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
481 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
482 pr_err("fault dar = %.16lx dsisr = %.8x\n",
483 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
484 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
485 for (r = 0; r < vcpu->arch.slb_max; ++r)
486 pr_err(" ESID = %.16llx VSID = %.16llx\n",
487 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
488 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
489 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
490 vcpu->arch.last_inst);
493 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
495 return kvm_get_vcpu_by_id(kvm, id);
498 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
500 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
501 vpa->yield_count = cpu_to_be32(1);
504 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
505 unsigned long addr, unsigned long len)
507 /* check address is cacheline aligned */
508 if (addr & (L1_CACHE_BYTES - 1))
510 spin_lock(&vcpu->arch.vpa_update_lock);
511 if (v->next_gpa != addr || v->len != len) {
513 v->len = addr ? len : 0;
514 v->update_pending = 1;
516 spin_unlock(&vcpu->arch.vpa_update_lock);
520 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
529 static int vpa_is_registered(struct kvmppc_vpa *vpap)
531 if (vpap->update_pending)
532 return vpap->next_gpa != 0;
533 return vpap->pinned_addr != NULL;
536 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
538 unsigned long vcpuid, unsigned long vpa)
540 struct kvm *kvm = vcpu->kvm;
541 unsigned long len, nb;
543 struct kvm_vcpu *tvcpu;
546 struct kvmppc_vpa *vpap;
548 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
552 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
553 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
554 subfunc == H_VPA_REG_SLB) {
555 /* Registering new area - address must be cache-line aligned */
556 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
559 /* convert logical addr to kernel addr and read length */
560 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
563 if (subfunc == H_VPA_REG_VPA)
564 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
566 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
567 kvmppc_unpin_guest_page(kvm, va, vpa, false);
570 if (len > nb || len < sizeof(struct reg_vpa))
579 spin_lock(&tvcpu->arch.vpa_update_lock);
582 case H_VPA_REG_VPA: /* register VPA */
584 * The size of our lppaca is 1kB because of the way we align
585 * it for the guest to avoid crossing a 4kB boundary. We only
586 * use 640 bytes of the structure though, so we should accept
587 * clients that set a size of 640.
589 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
590 if (len < sizeof(struct lppaca))
592 vpap = &tvcpu->arch.vpa;
596 case H_VPA_REG_DTL: /* register DTL */
597 if (len < sizeof(struct dtl_entry))
599 len -= len % sizeof(struct dtl_entry);
601 /* Check that they have previously registered a VPA */
603 if (!vpa_is_registered(&tvcpu->arch.vpa))
606 vpap = &tvcpu->arch.dtl;
610 case H_VPA_REG_SLB: /* register SLB shadow buffer */
611 /* Check that they have previously registered a VPA */
613 if (!vpa_is_registered(&tvcpu->arch.vpa))
616 vpap = &tvcpu->arch.slb_shadow;
620 case H_VPA_DEREG_VPA: /* deregister VPA */
621 /* Check they don't still have a DTL or SLB buf registered */
623 if (vpa_is_registered(&tvcpu->arch.dtl) ||
624 vpa_is_registered(&tvcpu->arch.slb_shadow))
627 vpap = &tvcpu->arch.vpa;
631 case H_VPA_DEREG_DTL: /* deregister DTL */
632 vpap = &tvcpu->arch.dtl;
636 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
637 vpap = &tvcpu->arch.slb_shadow;
643 vpap->next_gpa = vpa;
645 vpap->update_pending = 1;
648 spin_unlock(&tvcpu->arch.vpa_update_lock);
653 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
655 struct kvm *kvm = vcpu->kvm;
661 * We need to pin the page pointed to by vpap->next_gpa,
662 * but we can't call kvmppc_pin_guest_page under the lock
663 * as it does get_user_pages() and down_read(). So we
664 * have to drop the lock, pin the page, then get the lock
665 * again and check that a new area didn't get registered
669 gpa = vpap->next_gpa;
670 spin_unlock(&vcpu->arch.vpa_update_lock);
674 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
675 spin_lock(&vcpu->arch.vpa_update_lock);
676 if (gpa == vpap->next_gpa)
678 /* sigh... unpin that one and try again */
680 kvmppc_unpin_guest_page(kvm, va, gpa, false);
683 vpap->update_pending = 0;
684 if (va && nb < vpap->len) {
686 * If it's now too short, it must be that userspace
687 * has changed the mappings underlying guest memory,
688 * so unregister the region.
690 kvmppc_unpin_guest_page(kvm, va, gpa, false);
693 if (vpap->pinned_addr)
694 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
697 vpap->pinned_addr = va;
700 vpap->pinned_end = va + vpap->len;
703 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
705 if (!(vcpu->arch.vpa.update_pending ||
706 vcpu->arch.slb_shadow.update_pending ||
707 vcpu->arch.dtl.update_pending))
710 spin_lock(&vcpu->arch.vpa_update_lock);
711 if (vcpu->arch.vpa.update_pending) {
712 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
713 if (vcpu->arch.vpa.pinned_addr)
714 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
716 if (vcpu->arch.dtl.update_pending) {
717 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
718 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
719 vcpu->arch.dtl_index = 0;
721 if (vcpu->arch.slb_shadow.update_pending)
722 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
723 spin_unlock(&vcpu->arch.vpa_update_lock);
727 * Return the accumulated stolen time for the vcore up until `now'.
728 * The caller should hold the vcore lock.
730 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
735 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
737 spin_lock_irqsave(&vc->stoltb_lock, flags);
739 if (vc->vcore_state != VCORE_INACTIVE &&
740 vc->preempt_tb != TB_NIL)
741 p += now - vc->preempt_tb;
742 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
746 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
748 unsigned int pcpu, u64 now,
749 unsigned long stolen)
751 struct dtl_entry *dt;
753 dt = vcpu->arch.dtl_ptr;
758 dt->dispatch_reason = 7;
759 dt->preempt_reason = 0;
760 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
761 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
762 dt->ready_to_enqueue_time = 0;
763 dt->waiting_to_ready_time = 0;
764 dt->timebase = cpu_to_be64(now);
766 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
767 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
770 if (dt == vcpu->arch.dtl.pinned_end)
771 dt = vcpu->arch.dtl.pinned_addr;
772 vcpu->arch.dtl_ptr = dt;
773 /* order writing *dt vs. writing vpa->dtl_idx */
775 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
777 /* vcpu->arch.dtl.dirty is set by the caller */
780 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
781 struct kvmppc_vcore *vc)
784 unsigned long stolen;
785 unsigned long core_stolen;
789 vpa = vcpu->arch.vpa.pinned_addr;
795 core_stolen = vcore_stolen_time(vc, now);
796 stolen = core_stolen - vcpu->arch.stolen_logged;
797 vcpu->arch.stolen_logged = core_stolen;
798 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
799 stolen += vcpu->arch.busy_stolen;
800 vcpu->arch.busy_stolen = 0;
801 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
803 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
805 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
807 vcpu->arch.vpa.dirty = true;
810 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
811 struct kvmppc_vcore *vc,
815 unsigned long stolen;
816 unsigned long stolen_delta;
818 vpa = vcpu->arch.vpa.pinned_addr;
822 stolen = vc->stolen_tb;
823 stolen_delta = stolen - vcpu->arch.stolen_logged;
824 vcpu->arch.stolen_logged = stolen;
826 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
828 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
830 vcpu->arch.vpa.dirty = true;
833 /* See if there is a doorbell interrupt pending for a vcpu */
834 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
837 struct kvmppc_vcore *vc;
839 if (vcpu->arch.doorbell_request)
841 if (cpu_has_feature(CPU_FTR_ARCH_300))
844 * Ensure that the read of vcore->dpdes comes after the read
845 * of vcpu->doorbell_request. This barrier matches the
846 * smp_wmb() in kvmppc_guest_entry_inject().
849 vc = vcpu->arch.vcore;
850 thr = vcpu->vcpu_id - vc->first_vcpuid;
851 return !!(vc->dpdes & (1 << thr));
854 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
856 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
858 if ((!kvmppc_get_arch_compat(vcpu)) &&
859 cpu_has_feature(CPU_FTR_ARCH_207S))
864 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
865 unsigned long resource, unsigned long value1,
866 unsigned long value2)
869 case H_SET_MODE_RESOURCE_SET_CIABR:
870 if (!kvmppc_power8_compatible(vcpu))
875 return H_UNSUPPORTED_FLAG_START;
876 /* Guests can't breakpoint the hypervisor */
877 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
879 kvmppc_set_ciabr_hv(vcpu, value1);
881 case H_SET_MODE_RESOURCE_SET_DAWR0:
882 if (!kvmppc_power8_compatible(vcpu))
884 if (!ppc_breakpoint_available())
887 return H_UNSUPPORTED_FLAG_START;
888 if (value2 & DABRX_HYP)
890 kvmppc_set_dawr0_hv(vcpu, value1);
891 kvmppc_set_dawrx0_hv(vcpu, value2);
893 case H_SET_MODE_RESOURCE_SET_DAWR1:
894 if (!kvmppc_power8_compatible(vcpu))
896 if (!ppc_breakpoint_available())
898 if (!cpu_has_feature(CPU_FTR_DAWR1))
900 if (!vcpu->kvm->arch.dawr1_enabled)
903 return H_UNSUPPORTED_FLAG_START;
904 if (value2 & DABRX_HYP)
906 kvmppc_set_dawr1_hv(vcpu, value1);
907 kvmppc_set_dawrx1_hv(vcpu, value2);
909 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
911 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
912 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
914 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
915 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
916 return H_UNSUPPORTED_FLAG_START;
923 /* Copy guest memory in place - must reside within a single memslot */
924 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
927 struct kvm_memory_slot *to_memslot = NULL;
928 struct kvm_memory_slot *from_memslot = NULL;
929 unsigned long to_addr, from_addr;
932 /* Get HPA for from address */
933 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
936 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
939 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
940 if (kvm_is_error_hva(from_addr))
942 from_addr |= (from & (PAGE_SIZE - 1));
944 /* Get HPA for to address */
945 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
948 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
951 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
952 if (kvm_is_error_hva(to_addr))
954 to_addr |= (to & (PAGE_SIZE - 1));
957 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
961 mark_page_dirty(kvm, to >> PAGE_SHIFT);
965 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
966 unsigned long dest, unsigned long src)
968 u64 pg_sz = SZ_4K; /* 4K page size */
969 u64 pg_mask = SZ_4K - 1;
972 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
973 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
974 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
977 /* dest (and src if copy_page flag set) must be page aligned */
978 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
981 /* zero and/or copy the page as determined by the flags */
982 if (flags & H_COPY_PAGE) {
983 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
986 } else if (flags & H_ZERO_PAGE) {
987 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
992 /* We can ignore the remaining flags */
997 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
999 struct kvmppc_vcore *vcore = target->arch.vcore;
1002 * We expect to have been called by the real mode handler
1003 * (kvmppc_rm_h_confer()) which would have directly returned
1004 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1005 * have useful work to do and should not confer) so we don't
1006 * recheck that here.
1008 * In the case of the P9 single vcpu per vcore case, the real
1009 * mode handler is not called but no other threads are in the
1012 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1013 spin_lock(&vcore->lock);
1014 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1015 vcore->vcore_state != VCORE_INACTIVE &&
1017 target = vcore->runner;
1018 spin_unlock(&vcore->lock);
1021 return kvm_vcpu_yield_to(target);
1024 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1026 int yield_count = 0;
1027 struct lppaca *lppaca;
1029 spin_lock(&vcpu->arch.vpa_update_lock);
1030 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1032 yield_count = be32_to_cpu(lppaca->yield_count);
1033 spin_unlock(&vcpu->arch.vpa_update_lock);
1038 * H_RPT_INVALIDATE hcall handler for nested guests.
1040 * Handles only nested process-scoped invalidation requests in L0.
1042 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1044 unsigned long type = kvmppc_get_gpr(vcpu, 6);
1045 unsigned long pid, pg_sizes, start, end;
1048 * The partition-scoped invalidations aren't handled here in L0.
1050 if (type & H_RPTI_TYPE_NESTED)
1053 pid = kvmppc_get_gpr(vcpu, 4);
1054 pg_sizes = kvmppc_get_gpr(vcpu, 7);
1055 start = kvmppc_get_gpr(vcpu, 8);
1056 end = kvmppc_get_gpr(vcpu, 9);
1058 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1059 type, pg_sizes, start, end);
1061 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1062 return RESUME_GUEST;
1065 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1066 unsigned long id, unsigned long target,
1067 unsigned long type, unsigned long pg_sizes,
1068 unsigned long start, unsigned long end)
1070 if (!kvm_is_radix(vcpu->kvm))
1071 return H_UNSUPPORTED;
1077 * Partition-scoped invalidation for nested guests.
1079 if (type & H_RPTI_TYPE_NESTED) {
1080 if (!nesting_enabled(vcpu->kvm))
1083 /* Support only cores as target */
1084 if (target != H_RPTI_TARGET_CMMU)
1087 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1092 * Process-scoped invalidation for L1 guests.
1094 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1095 type, pg_sizes, start, end);
1099 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1101 struct kvm *kvm = vcpu->kvm;
1102 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1103 unsigned long target, ret = H_SUCCESS;
1105 struct kvm_vcpu *tvcpu;
1108 if (req <= MAX_HCALL_OPCODE &&
1109 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1114 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1115 kvmppc_get_gpr(vcpu, 5),
1116 kvmppc_get_gpr(vcpu, 6));
1117 if (ret == H_TOO_HARD)
1121 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1122 kvmppc_get_gpr(vcpu, 5),
1123 kvmppc_get_gpr(vcpu, 6),
1124 kvmppc_get_gpr(vcpu, 7));
1125 if (ret == H_TOO_HARD)
1129 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1130 kvmppc_get_gpr(vcpu, 5));
1131 if (ret == H_TOO_HARD)
1135 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1136 kvmppc_get_gpr(vcpu, 5));
1137 if (ret == H_TOO_HARD)
1141 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1142 kvmppc_get_gpr(vcpu, 5));
1143 if (ret == H_TOO_HARD)
1147 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1148 kvmppc_get_gpr(vcpu, 5),
1149 kvmppc_get_gpr(vcpu, 6));
1150 if (ret == H_TOO_HARD)
1154 ret = kvmppc_h_bulk_remove(vcpu);
1155 if (ret == H_TOO_HARD)
1162 target = kvmppc_get_gpr(vcpu, 4);
1163 tvcpu = kvmppc_find_vcpu(kvm, target);
1168 tvcpu->arch.prodded = 1;
1169 smp_mb(); /* This orders prodded store vs ceded load */
1170 if (tvcpu->arch.ceded)
1171 kvmppc_fast_vcpu_kick_hv(tvcpu);
1174 target = kvmppc_get_gpr(vcpu, 4);
1177 tvcpu = kvmppc_find_vcpu(kvm, target);
1182 yield_count = kvmppc_get_gpr(vcpu, 5);
1183 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1185 kvm_arch_vcpu_yield_to(tvcpu);
1187 case H_REGISTER_VPA:
1188 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1189 kvmppc_get_gpr(vcpu, 5),
1190 kvmppc_get_gpr(vcpu, 6));
1193 if (list_empty(&kvm->arch.rtas_tokens))
1196 idx = srcu_read_lock(&kvm->srcu);
1197 rc = kvmppc_rtas_hcall(vcpu);
1198 srcu_read_unlock(&kvm->srcu, idx);
1205 /* Send the error out to userspace via KVM_RUN */
1207 case H_LOGICAL_CI_LOAD:
1208 ret = kvmppc_h_logical_ci_load(vcpu);
1209 if (ret == H_TOO_HARD)
1212 case H_LOGICAL_CI_STORE:
1213 ret = kvmppc_h_logical_ci_store(vcpu);
1214 if (ret == H_TOO_HARD)
1218 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1219 kvmppc_get_gpr(vcpu, 5),
1220 kvmppc_get_gpr(vcpu, 6),
1221 kvmppc_get_gpr(vcpu, 7));
1222 if (ret == H_TOO_HARD)
1231 if (kvmppc_xics_enabled(vcpu)) {
1232 if (xics_on_xive()) {
1233 ret = H_NOT_AVAILABLE;
1234 return RESUME_GUEST;
1236 ret = kvmppc_xics_hcall(vcpu, req);
1241 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1244 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1245 kvmppc_get_gpr(vcpu, 5));
1247 #ifdef CONFIG_SPAPR_TCE_IOMMU
1249 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1250 kvmppc_get_gpr(vcpu, 5));
1251 if (ret == H_TOO_HARD)
1255 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1256 kvmppc_get_gpr(vcpu, 5),
1257 kvmppc_get_gpr(vcpu, 6));
1258 if (ret == H_TOO_HARD)
1261 case H_PUT_TCE_INDIRECT:
1262 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1263 kvmppc_get_gpr(vcpu, 5),
1264 kvmppc_get_gpr(vcpu, 6),
1265 kvmppc_get_gpr(vcpu, 7));
1266 if (ret == H_TOO_HARD)
1270 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1271 kvmppc_get_gpr(vcpu, 5),
1272 kvmppc_get_gpr(vcpu, 6),
1273 kvmppc_get_gpr(vcpu, 7));
1274 if (ret == H_TOO_HARD)
1281 if (!arch_get_random_seed_longs(&rand, 1))
1283 kvmppc_set_gpr(vcpu, 4, rand);
1286 case H_RPT_INVALIDATE:
1287 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1288 kvmppc_get_gpr(vcpu, 5),
1289 kvmppc_get_gpr(vcpu, 6),
1290 kvmppc_get_gpr(vcpu, 7),
1291 kvmppc_get_gpr(vcpu, 8),
1292 kvmppc_get_gpr(vcpu, 9));
1295 case H_SET_PARTITION_TABLE:
1297 if (nesting_enabled(kvm))
1298 ret = kvmhv_set_partition_table(vcpu);
1300 case H_ENTER_NESTED:
1302 if (!nesting_enabled(kvm))
1304 ret = kvmhv_enter_nested_guest(vcpu);
1305 if (ret == H_INTERRUPT) {
1306 kvmppc_set_gpr(vcpu, 3, 0);
1307 vcpu->arch.hcall_needed = 0;
1309 } else if (ret == H_TOO_HARD) {
1310 kvmppc_set_gpr(vcpu, 3, 0);
1311 vcpu->arch.hcall_needed = 0;
1315 case H_TLB_INVALIDATE:
1317 if (nesting_enabled(kvm))
1318 ret = kvmhv_do_nested_tlbie(vcpu);
1320 case H_COPY_TOFROM_GUEST:
1322 if (nesting_enabled(kvm))
1323 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1326 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1327 kvmppc_get_gpr(vcpu, 5),
1328 kvmppc_get_gpr(vcpu, 6));
1331 ret = H_UNSUPPORTED;
1332 if (kvmppc_get_srr1(vcpu) & MSR_S)
1333 ret = kvmppc_h_svm_page_in(kvm,
1334 kvmppc_get_gpr(vcpu, 4),
1335 kvmppc_get_gpr(vcpu, 5),
1336 kvmppc_get_gpr(vcpu, 6));
1338 case H_SVM_PAGE_OUT:
1339 ret = H_UNSUPPORTED;
1340 if (kvmppc_get_srr1(vcpu) & MSR_S)
1341 ret = kvmppc_h_svm_page_out(kvm,
1342 kvmppc_get_gpr(vcpu, 4),
1343 kvmppc_get_gpr(vcpu, 5),
1344 kvmppc_get_gpr(vcpu, 6));
1346 case H_SVM_INIT_START:
1347 ret = H_UNSUPPORTED;
1348 if (kvmppc_get_srr1(vcpu) & MSR_S)
1349 ret = kvmppc_h_svm_init_start(kvm);
1351 case H_SVM_INIT_DONE:
1352 ret = H_UNSUPPORTED;
1353 if (kvmppc_get_srr1(vcpu) & MSR_S)
1354 ret = kvmppc_h_svm_init_done(kvm);
1356 case H_SVM_INIT_ABORT:
1358 * Even if that call is made by the Ultravisor, the SSR1 value
1359 * is the guest context one, with the secure bit clear as it has
1360 * not yet been secured. So we can't check it here.
1361 * Instead the kvm->arch.secure_guest flag is checked inside
1362 * kvmppc_h_svm_init_abort().
1364 ret = kvmppc_h_svm_init_abort(kvm);
1370 WARN_ON_ONCE(ret == H_TOO_HARD);
1371 kvmppc_set_gpr(vcpu, 3, ret);
1372 vcpu->arch.hcall_needed = 0;
1373 return RESUME_GUEST;
1377 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1378 * handlers in book3s_hv_rmhandlers.S.
1380 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1381 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1383 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1385 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1386 vcpu->arch.ceded = 1;
1388 if (vcpu->arch.prodded) {
1389 vcpu->arch.prodded = 0;
1391 vcpu->arch.ceded = 0;
1395 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1401 case H_REGISTER_VPA:
1403 #ifdef CONFIG_SPAPR_TCE_IOMMU
1406 case H_PUT_TCE_INDIRECT:
1409 case H_LOGICAL_CI_LOAD:
1410 case H_LOGICAL_CI_STORE:
1411 #ifdef CONFIG_KVM_XICS
1420 case H_RPT_INVALIDATE:
1424 /* See if it's in the real-mode table */
1425 return kvmppc_hcall_impl_hv_realmode(cmd);
1428 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1430 ppc_inst_t last_inst;
1432 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1435 * Fetch failed, so return to guest and
1436 * try executing it again.
1438 return RESUME_GUEST;
1441 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1442 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1443 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1446 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1447 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1448 return RESUME_GUEST;
1452 static void do_nothing(void *x)
1456 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1458 int thr, cpu, pcpu, nthreads;
1460 unsigned long dpdes;
1462 nthreads = vcpu->kvm->arch.emul_smt_mode;
1464 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1465 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1466 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1470 * If the vcpu is currently running on a physical cpu thread,
1471 * interrupt it in order to pull it out of the guest briefly,
1472 * which will update its vcore->dpdes value.
1474 pcpu = READ_ONCE(v->cpu);
1476 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1477 if (kvmppc_doorbell_pending(v))
1484 * On POWER9, emulate doorbell-related instructions in order to
1485 * give the guest the illusion of running on a multi-threaded core.
1486 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1489 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1493 struct kvm *kvm = vcpu->kvm;
1494 struct kvm_vcpu *tvcpu;
1497 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1498 return RESUME_GUEST;
1499 inst = ppc_inst_val(pinst);
1500 if (get_op(inst) != 31)
1501 return EMULATE_FAIL;
1503 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1504 switch (get_xop(inst)) {
1505 case OP_31_XOP_MSGSNDP:
1506 arg = kvmppc_get_gpr(vcpu, rb);
1507 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1510 if (arg >= kvm->arch.emul_smt_mode)
1512 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1515 if (!tvcpu->arch.doorbell_request) {
1516 tvcpu->arch.doorbell_request = 1;
1517 kvmppc_fast_vcpu_kick_hv(tvcpu);
1520 case OP_31_XOP_MSGCLRP:
1521 arg = kvmppc_get_gpr(vcpu, rb);
1522 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1524 vcpu->arch.vcore->dpdes = 0;
1525 vcpu->arch.doorbell_request = 0;
1527 case OP_31_XOP_MFSPR:
1528 switch (get_sprn(inst)) {
1533 arg = kvmppc_read_dpdes(vcpu);
1536 return EMULATE_FAIL;
1538 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1541 return EMULATE_FAIL;
1543 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1544 return RESUME_GUEST;
1548 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1549 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1550 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1551 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1552 * allow the guest access to continue.
1554 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1556 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1557 return EMULATE_FAIL;
1559 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1561 return RESUME_GUEST;
1564 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1566 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1567 return EMULATE_FAIL;
1569 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1571 return RESUME_GUEST;
1574 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1576 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1577 return EMULATE_FAIL;
1579 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1581 return RESUME_GUEST;
1584 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1585 struct task_struct *tsk)
1587 struct kvm_run *run = vcpu->run;
1588 int r = RESUME_HOST;
1590 vcpu->stat.sum_exits++;
1593 * This can happen if an interrupt occurs in the last stages
1594 * of guest entry or the first stages of guest exit (i.e. after
1595 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1596 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1597 * That can happen due to a bug, or due to a machine check
1598 * occurring at just the wrong time.
1600 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1601 printk(KERN_EMERG "KVM trap in HV mode!\n");
1602 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1603 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1604 vcpu->arch.shregs.msr);
1605 kvmppc_dump_regs(vcpu);
1606 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1607 run->hw.hardware_exit_reason = vcpu->arch.trap;
1610 run->exit_reason = KVM_EXIT_UNKNOWN;
1611 run->ready_for_interrupt_injection = 1;
1612 switch (vcpu->arch.trap) {
1613 /* We're good on these - the host merely wanted to get our attention */
1614 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1615 WARN_ON_ONCE(1); /* Should never happen */
1616 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1618 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1619 vcpu->stat.dec_exits++;
1622 case BOOK3S_INTERRUPT_EXTERNAL:
1623 case BOOK3S_INTERRUPT_H_DOORBELL:
1624 case BOOK3S_INTERRUPT_H_VIRT:
1625 vcpu->stat.ext_intr_exits++;
1628 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1629 case BOOK3S_INTERRUPT_HMI:
1630 case BOOK3S_INTERRUPT_PERFMON:
1631 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1634 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1635 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1636 DEFAULT_RATELIMIT_BURST);
1638 * Print the MCE event to host console. Ratelimit so the guest
1639 * can't flood the host log.
1641 if (__ratelimit(&rs))
1642 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1645 * If the guest can do FWNMI, exit to userspace so it can
1646 * deliver a FWNMI to the guest.
1647 * Otherwise we synthesize a machine check for the guest
1648 * so that it knows that the machine check occurred.
1650 if (!vcpu->kvm->arch.fwnmi_enabled) {
1651 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1652 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1653 kvmppc_core_queue_machine_check(vcpu, flags);
1658 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1659 run->exit_reason = KVM_EXIT_NMI;
1660 run->hw.hardware_exit_reason = vcpu->arch.trap;
1661 /* Clear out the old NMI status from run->flags */
1662 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1663 /* Now set the NMI status */
1664 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1665 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1667 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1672 case BOOK3S_INTERRUPT_PROGRAM:
1676 * Normally program interrupts are delivered directly
1677 * to the guest by the hardware, but we can get here
1678 * as a result of a hypervisor emulation interrupt
1679 * (e40) getting turned into a 700 by BML RTAS.
1681 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1682 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1683 kvmppc_core_queue_program(vcpu, flags);
1687 case BOOK3S_INTERRUPT_SYSCALL:
1691 if (unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1693 * Guest userspace executed sc 1. This can only be
1694 * reached by the P9 path because the old path
1695 * handles this case in realmode hcall handlers.
1697 if (!kvmhv_vcpu_is_radix(vcpu)) {
1699 * A guest could be running PR KVM, so this
1700 * may be a PR KVM hcall. It must be reflected
1701 * to the guest kernel as a sc interrupt.
1703 kvmppc_core_queue_syscall(vcpu);
1706 * Radix guests can not run PR KVM or nested HV
1707 * hash guests which might run PR KVM, so this
1708 * is always a privilege fault. Send a program
1709 * check to guest kernel.
1711 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1718 * hcall - gather args and set exit_reason. This will next be
1719 * handled by kvmppc_pseries_do_hcall which may be able to deal
1720 * with it and resume guest, or may punt to userspace.
1722 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1723 for (i = 0; i < 9; ++i)
1724 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1725 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1726 vcpu->arch.hcall_needed = 1;
1731 * We get these next two if the guest accesses a page which it thinks
1732 * it has mapped but which is not actually present, either because
1733 * it is for an emulated I/O device or because the corresonding
1734 * host page has been paged out.
1736 * Any other HDSI/HISI interrupts have been handled already for P7/8
1737 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1738 * fault handling is done here.
1740 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1744 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1745 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1746 r = RESUME_GUEST; /* Just retry if it's the canary */
1750 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1752 * Radix doesn't require anything, and pre-ISAv3.0 hash
1753 * already attempted to handle this in rmhandlers. The
1754 * hash fault handling below is v3 only (it uses ASDR
1757 r = RESUME_PAGE_FAULT;
1761 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1762 kvmppc_core_queue_data_storage(vcpu,
1763 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1764 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1769 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1770 vsid = vcpu->kvm->arch.vrma_slb_v;
1772 vsid = vcpu->arch.fault_gpa;
1774 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1775 vsid, vcpu->arch.fault_dsisr, true);
1778 } else if (err == -1 || err == -2) {
1779 r = RESUME_PAGE_FAULT;
1781 kvmppc_core_queue_data_storage(vcpu,
1782 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1783 vcpu->arch.fault_dar, err);
1788 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1792 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1793 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1794 DSISR_SRR1_MATCH_64S;
1795 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1797 * Radix doesn't require anything, and pre-ISAv3.0 hash
1798 * already attempted to handle this in rmhandlers. The
1799 * hash fault handling below is v3 only (it uses ASDR
1802 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1803 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1804 r = RESUME_PAGE_FAULT;
1808 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1809 kvmppc_core_queue_inst_storage(vcpu,
1810 vcpu->arch.fault_dsisr |
1811 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1816 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1817 vsid = vcpu->kvm->arch.vrma_slb_v;
1819 vsid = vcpu->arch.fault_gpa;
1821 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1822 vsid, vcpu->arch.fault_dsisr, false);
1825 } else if (err == -1) {
1826 r = RESUME_PAGE_FAULT;
1828 kvmppc_core_queue_inst_storage(vcpu,
1829 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1836 * This occurs if the guest executes an illegal instruction.
1837 * If the guest debug is disabled, generate a program interrupt
1838 * to the guest. If guest debug is enabled, we need to check
1839 * whether the instruction is a software breakpoint instruction.
1840 * Accordingly return to Guest or Host.
1842 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1843 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1844 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1845 swab32(vcpu->arch.emul_inst) :
1846 vcpu->arch.emul_inst;
1847 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1848 r = kvmppc_emulate_debug_inst(vcpu);
1850 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1851 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1857 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1859 * This occurs for various TM-related instructions that
1860 * we need to emulate on POWER9 DD2.2. We have already
1861 * handled the cases where the guest was in real-suspend
1862 * mode and was transitioning to transactional state.
1864 r = kvmhv_p9_tm_emulation(vcpu);
1867 fallthrough; /* go to facility unavailable handler */
1871 * This occurs if the guest (kernel or userspace), does something that
1872 * is prohibited by HFSCR.
1873 * On POWER9, this could be a doorbell instruction that we need
1875 * Otherwise, we just generate a program interrupt to the guest.
1877 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1878 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1881 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1882 if (cause == FSCR_MSGP_LG)
1883 r = kvmppc_emulate_doorbell_instr(vcpu);
1884 if (cause == FSCR_PM_LG)
1885 r = kvmppc_pmu_unavailable(vcpu);
1886 if (cause == FSCR_EBB_LG)
1887 r = kvmppc_ebb_unavailable(vcpu);
1888 if (cause == FSCR_TM_LG)
1889 r = kvmppc_tm_unavailable(vcpu);
1891 if (r == EMULATE_FAIL) {
1892 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1893 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1899 case BOOK3S_INTERRUPT_HV_RM_HARD:
1900 r = RESUME_PASSTHROUGH;
1903 kvmppc_dump_regs(vcpu);
1904 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1905 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1906 __kvmppc_get_msr_hv(vcpu));
1907 run->hw.hardware_exit_reason = vcpu->arch.trap;
1915 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1920 vcpu->stat.sum_exits++;
1923 * This can happen if an interrupt occurs in the last stages
1924 * of guest entry or the first stages of guest exit (i.e. after
1925 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1926 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1927 * That can happen due to a bug, or due to a machine check
1928 * occurring at just the wrong time.
1930 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1931 pr_emerg("KVM trap in HV mode while nested!\n");
1932 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1933 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1934 __kvmppc_get_msr_hv(vcpu));
1935 kvmppc_dump_regs(vcpu);
1938 switch (vcpu->arch.trap) {
1939 /* We're good on these - the host merely wanted to get our attention */
1940 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1941 vcpu->stat.dec_exits++;
1944 case BOOK3S_INTERRUPT_EXTERNAL:
1945 vcpu->stat.ext_intr_exits++;
1948 case BOOK3S_INTERRUPT_H_DOORBELL:
1949 case BOOK3S_INTERRUPT_H_VIRT:
1950 vcpu->stat.ext_intr_exits++;
1953 /* These need to go to the nested HV */
1954 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1955 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1956 vcpu->stat.dec_exits++;
1959 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1960 case BOOK3S_INTERRUPT_HMI:
1961 case BOOK3S_INTERRUPT_PERFMON:
1962 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1965 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1967 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1968 DEFAULT_RATELIMIT_BURST);
1969 /* Pass the machine check to the L1 guest */
1971 /* Print the MCE event to host console. */
1972 if (__ratelimit(&rs))
1973 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1977 * We get these next two if the guest accesses a page which it thinks
1978 * it has mapped but which is not actually present, either because
1979 * it is for an emulated I/O device or because the corresonding
1980 * host page has been paged out.
1982 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1983 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1984 r = kvmhv_nested_page_fault(vcpu);
1985 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1987 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1988 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1989 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1990 DSISR_SRR1_MATCH_64S;
1991 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1992 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1993 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1994 r = kvmhv_nested_page_fault(vcpu);
1995 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1998 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1999 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2001 * This occurs for various TM-related instructions that
2002 * we need to emulate on POWER9 DD2.2. We have already
2003 * handled the cases where the guest was in real-suspend
2004 * mode and was transitioning to transactional state.
2006 r = kvmhv_p9_tm_emulation(vcpu);
2009 fallthrough; /* go to facility unavailable handler */
2012 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2013 u64 cause = vcpu->arch.hfscr >> 56;
2016 * Only pass HFU interrupts to the L1 if the facility is
2017 * permitted but disabled by the L1's HFSCR, otherwise
2018 * the interrupt does not make sense to the L1 so turn
2021 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2022 (vcpu->arch.nested_hfscr & (1UL << cause))) {
2024 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2027 * If the fetch failed, return to guest and
2028 * try executing it again.
2030 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2031 vcpu->arch.emul_inst = ppc_inst_val(pinst);
2032 if (r != EMULATE_DONE)
2043 case BOOK3S_INTERRUPT_HV_RM_HARD:
2044 vcpu->arch.trap = 0;
2046 if (!xics_on_xive())
2047 kvmppc_xics_rm_complete(vcpu, 0);
2049 case BOOK3S_INTERRUPT_SYSCALL:
2051 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2054 * The H_RPT_INVALIDATE hcalls issued by nested
2055 * guests for process-scoped invalidations when
2056 * GTSE=0, are handled here in L0.
2058 if (req == H_RPT_INVALIDATE) {
2059 r = kvmppc_nested_h_rpt_invalidate(vcpu);
2074 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2075 struct kvm_sregs *sregs)
2079 memset(sregs, 0, sizeof(struct kvm_sregs));
2080 sregs->pvr = vcpu->arch.pvr;
2081 for (i = 0; i < vcpu->arch.slb_max; i++) {
2082 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2083 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2089 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2090 struct kvm_sregs *sregs)
2094 /* Only accept the same PVR as the host's, since we can't spoof it */
2095 if (sregs->pvr != vcpu->arch.pvr)
2099 for (i = 0; i < vcpu->arch.slb_nr; i++) {
2100 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2101 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2102 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2106 vcpu->arch.slb_max = j;
2112 * Enforce limits on guest LPCR values based on hardware availability,
2113 * guest configuration, and possibly hypervisor support and security
2116 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2118 /* LPCR_TC only applies to HPT guests */
2119 if (kvm_is_radix(kvm))
2122 /* On POWER8 and above, userspace can modify AIL */
2123 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2125 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2126 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2128 * On some POWER9s we force AIL off for radix guests to prevent
2129 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2130 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2131 * be cached, which the host TLB management does not expect.
2133 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2137 * On POWER9, allow userspace to enable large decrementer for the
2138 * guest, whether or not the host has it enabled.
2140 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2146 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2148 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2149 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2150 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2154 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2155 bool preserve_top32)
2157 struct kvm *kvm = vcpu->kvm;
2158 struct kvmppc_vcore *vc = vcpu->arch.vcore;
2161 spin_lock(&vc->lock);
2164 * Userspace can only modify
2165 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2166 * TC (translation control), AIL (alternate interrupt location),
2167 * LD (large decrementer).
2168 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2170 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2172 /* Broken 32-bit version of LPCR must not clear top bits */
2176 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2177 (vc->lpcr & ~mask) | (new_lpcr & mask));
2180 * If ILE (interrupt little-endian) has changed, update the
2181 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2183 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2184 struct kvm_vcpu *vcpu;
2187 kvm_for_each_vcpu(i, vcpu, kvm) {
2188 if (vcpu->arch.vcore != vc)
2190 if (new_lpcr & LPCR_ILE)
2191 vcpu->arch.intr_msr |= MSR_LE;
2193 vcpu->arch.intr_msr &= ~MSR_LE;
2197 vc->lpcr = new_lpcr;
2198 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2200 spin_unlock(&vc->lock);
2203 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2204 union kvmppc_one_reg *val)
2210 case KVM_REG_PPC_DEBUG_INST:
2211 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2213 case KVM_REG_PPC_HIOR:
2214 *val = get_reg_val(id, 0);
2216 case KVM_REG_PPC_DABR:
2217 *val = get_reg_val(id, vcpu->arch.dabr);
2219 case KVM_REG_PPC_DABRX:
2220 *val = get_reg_val(id, vcpu->arch.dabrx);
2222 case KVM_REG_PPC_DSCR:
2223 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2225 case KVM_REG_PPC_PURR:
2226 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2228 case KVM_REG_PPC_SPURR:
2229 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2231 case KVM_REG_PPC_AMR:
2232 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2234 case KVM_REG_PPC_UAMOR:
2235 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2237 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2238 i = id - KVM_REG_PPC_MMCR0;
2239 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2241 case KVM_REG_PPC_MMCR2:
2242 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2244 case KVM_REG_PPC_MMCRA:
2245 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2247 case KVM_REG_PPC_MMCRS:
2248 *val = get_reg_val(id, vcpu->arch.mmcrs);
2250 case KVM_REG_PPC_MMCR3:
2251 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2253 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2254 i = id - KVM_REG_PPC_PMC1;
2255 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2257 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2258 i = id - KVM_REG_PPC_SPMC1;
2259 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2261 case KVM_REG_PPC_SIAR:
2262 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2264 case KVM_REG_PPC_SDAR:
2265 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2267 case KVM_REG_PPC_SIER:
2268 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2270 case KVM_REG_PPC_SIER2:
2271 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2273 case KVM_REG_PPC_SIER3:
2274 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2276 case KVM_REG_PPC_IAMR:
2277 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2279 case KVM_REG_PPC_PSPB:
2280 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2282 case KVM_REG_PPC_DPDES:
2284 * On POWER9, where we are emulating msgsndp etc.,
2285 * we return 1 bit for each vcpu, which can come from
2286 * either vcore->dpdes or doorbell_request.
2287 * On POWER8, doorbell_request is 0.
2289 if (cpu_has_feature(CPU_FTR_ARCH_300))
2290 *val = get_reg_val(id, vcpu->arch.doorbell_request);
2292 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2294 case KVM_REG_PPC_VTB:
2295 *val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2297 case KVM_REG_PPC_DAWR:
2298 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2300 case KVM_REG_PPC_DAWRX:
2301 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2303 case KVM_REG_PPC_DAWR1:
2304 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2306 case KVM_REG_PPC_DAWRX1:
2307 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2309 case KVM_REG_PPC_CIABR:
2310 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2312 case KVM_REG_PPC_CSIGR:
2313 *val = get_reg_val(id, vcpu->arch.csigr);
2315 case KVM_REG_PPC_TACR:
2316 *val = get_reg_val(id, vcpu->arch.tacr);
2318 case KVM_REG_PPC_TCSCR:
2319 *val = get_reg_val(id, vcpu->arch.tcscr);
2321 case KVM_REG_PPC_PID:
2322 *val = get_reg_val(id, kvmppc_get_pid(vcpu));
2324 case KVM_REG_PPC_ACOP:
2325 *val = get_reg_val(id, vcpu->arch.acop);
2327 case KVM_REG_PPC_WORT:
2328 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2330 case KVM_REG_PPC_TIDR:
2331 *val = get_reg_val(id, vcpu->arch.tid);
2333 case KVM_REG_PPC_PSSCR:
2334 *val = get_reg_val(id, vcpu->arch.psscr);
2336 case KVM_REG_PPC_VPA_ADDR:
2337 spin_lock(&vcpu->arch.vpa_update_lock);
2338 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2339 spin_unlock(&vcpu->arch.vpa_update_lock);
2341 case KVM_REG_PPC_VPA_SLB:
2342 spin_lock(&vcpu->arch.vpa_update_lock);
2343 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2344 val->vpaval.length = vcpu->arch.slb_shadow.len;
2345 spin_unlock(&vcpu->arch.vpa_update_lock);
2347 case KVM_REG_PPC_VPA_DTL:
2348 spin_lock(&vcpu->arch.vpa_update_lock);
2349 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2350 val->vpaval.length = vcpu->arch.dtl.len;
2351 spin_unlock(&vcpu->arch.vpa_update_lock);
2353 case KVM_REG_PPC_TB_OFFSET:
2354 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2356 case KVM_REG_PPC_LPCR:
2357 case KVM_REG_PPC_LPCR_64:
2358 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2360 case KVM_REG_PPC_PPR:
2361 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2363 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2364 case KVM_REG_PPC_TFHAR:
2365 *val = get_reg_val(id, vcpu->arch.tfhar);
2367 case KVM_REG_PPC_TFIAR:
2368 *val = get_reg_val(id, vcpu->arch.tfiar);
2370 case KVM_REG_PPC_TEXASR:
2371 *val = get_reg_val(id, vcpu->arch.texasr);
2373 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2374 i = id - KVM_REG_PPC_TM_GPR0;
2375 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2377 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2380 i = id - KVM_REG_PPC_TM_VSR0;
2382 for (j = 0; j < TS_FPRWIDTH; j++)
2383 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2385 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2386 val->vval = vcpu->arch.vr_tm.vr[i-32];
2392 case KVM_REG_PPC_TM_CR:
2393 *val = get_reg_val(id, vcpu->arch.cr_tm);
2395 case KVM_REG_PPC_TM_XER:
2396 *val = get_reg_val(id, vcpu->arch.xer_tm);
2398 case KVM_REG_PPC_TM_LR:
2399 *val = get_reg_val(id, vcpu->arch.lr_tm);
2401 case KVM_REG_PPC_TM_CTR:
2402 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2404 case KVM_REG_PPC_TM_FPSCR:
2405 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2407 case KVM_REG_PPC_TM_AMR:
2408 *val = get_reg_val(id, vcpu->arch.amr_tm);
2410 case KVM_REG_PPC_TM_PPR:
2411 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2413 case KVM_REG_PPC_TM_VRSAVE:
2414 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2416 case KVM_REG_PPC_TM_VSCR:
2417 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2418 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2422 case KVM_REG_PPC_TM_DSCR:
2423 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2425 case KVM_REG_PPC_TM_TAR:
2426 *val = get_reg_val(id, vcpu->arch.tar_tm);
2429 case KVM_REG_PPC_ARCH_COMPAT:
2430 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2432 case KVM_REG_PPC_DEC_EXPIRY:
2433 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2435 case KVM_REG_PPC_ONLINE:
2436 *val = get_reg_val(id, vcpu->arch.online);
2438 case KVM_REG_PPC_PTCR:
2439 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2441 case KVM_REG_PPC_FSCR:
2442 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2452 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2453 union kvmppc_one_reg *val)
2457 unsigned long addr, len;
2460 case KVM_REG_PPC_HIOR:
2461 /* Only allow this to be set to zero */
2462 if (set_reg_val(id, *val))
2465 case KVM_REG_PPC_DABR:
2466 vcpu->arch.dabr = set_reg_val(id, *val);
2468 case KVM_REG_PPC_DABRX:
2469 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2471 case KVM_REG_PPC_DSCR:
2472 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2474 case KVM_REG_PPC_PURR:
2475 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2477 case KVM_REG_PPC_SPURR:
2478 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2480 case KVM_REG_PPC_AMR:
2481 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2483 case KVM_REG_PPC_UAMOR:
2484 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2486 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2487 i = id - KVM_REG_PPC_MMCR0;
2488 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2490 case KVM_REG_PPC_MMCR2:
2491 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2493 case KVM_REG_PPC_MMCRA:
2494 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2496 case KVM_REG_PPC_MMCRS:
2497 vcpu->arch.mmcrs = set_reg_val(id, *val);
2499 case KVM_REG_PPC_MMCR3:
2500 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2502 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2503 i = id - KVM_REG_PPC_PMC1;
2504 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2506 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2507 i = id - KVM_REG_PPC_SPMC1;
2508 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2510 case KVM_REG_PPC_SIAR:
2511 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2513 case KVM_REG_PPC_SDAR:
2514 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2516 case KVM_REG_PPC_SIER:
2517 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2519 case KVM_REG_PPC_SIER2:
2520 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2522 case KVM_REG_PPC_SIER3:
2523 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2525 case KVM_REG_PPC_IAMR:
2526 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2528 case KVM_REG_PPC_PSPB:
2529 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2531 case KVM_REG_PPC_DPDES:
2532 if (cpu_has_feature(CPU_FTR_ARCH_300))
2533 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2535 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2537 case KVM_REG_PPC_VTB:
2538 kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2540 case KVM_REG_PPC_DAWR:
2541 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2543 case KVM_REG_PPC_DAWRX:
2544 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2546 case KVM_REG_PPC_DAWR1:
2547 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2549 case KVM_REG_PPC_DAWRX1:
2550 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2552 case KVM_REG_PPC_CIABR:
2553 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2554 /* Don't allow setting breakpoints in hypervisor code */
2555 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2556 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2558 case KVM_REG_PPC_CSIGR:
2559 vcpu->arch.csigr = set_reg_val(id, *val);
2561 case KVM_REG_PPC_TACR:
2562 vcpu->arch.tacr = set_reg_val(id, *val);
2564 case KVM_REG_PPC_TCSCR:
2565 vcpu->arch.tcscr = set_reg_val(id, *val);
2567 case KVM_REG_PPC_PID:
2568 kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2570 case KVM_REG_PPC_ACOP:
2571 vcpu->arch.acop = set_reg_val(id, *val);
2573 case KVM_REG_PPC_WORT:
2574 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2576 case KVM_REG_PPC_TIDR:
2577 vcpu->arch.tid = set_reg_val(id, *val);
2579 case KVM_REG_PPC_PSSCR:
2580 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2582 case KVM_REG_PPC_VPA_ADDR:
2583 addr = set_reg_val(id, *val);
2585 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2586 vcpu->arch.dtl.next_gpa))
2588 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2590 case KVM_REG_PPC_VPA_SLB:
2591 addr = val->vpaval.addr;
2592 len = val->vpaval.length;
2594 if (addr && !vcpu->arch.vpa.next_gpa)
2596 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2598 case KVM_REG_PPC_VPA_DTL:
2599 addr = val->vpaval.addr;
2600 len = val->vpaval.length;
2602 if (addr && (len < sizeof(struct dtl_entry) ||
2603 !vcpu->arch.vpa.next_gpa))
2605 len -= len % sizeof(struct dtl_entry);
2606 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2608 case KVM_REG_PPC_TB_OFFSET:
2610 /* round up to multiple of 2^24 */
2611 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2614 * Now that we know the timebase offset, update the
2615 * decrementer expiry with a guest timebase value. If
2616 * the userspace does not set DEC_EXPIRY, this ensures
2617 * a migrated vcpu at least starts with an expired
2618 * decrementer, which is better than a large one that
2621 kvmppc_set_tb_offset(vcpu, tb_offset);
2622 if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2623 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2625 kvmppc_set_tb_offset(vcpu, tb_offset);
2628 case KVM_REG_PPC_LPCR:
2629 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2631 case KVM_REG_PPC_LPCR_64:
2632 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2634 case KVM_REG_PPC_PPR:
2635 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2637 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2638 case KVM_REG_PPC_TFHAR:
2639 vcpu->arch.tfhar = set_reg_val(id, *val);
2641 case KVM_REG_PPC_TFIAR:
2642 vcpu->arch.tfiar = set_reg_val(id, *val);
2644 case KVM_REG_PPC_TEXASR:
2645 vcpu->arch.texasr = set_reg_val(id, *val);
2647 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2648 i = id - KVM_REG_PPC_TM_GPR0;
2649 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2651 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2654 i = id - KVM_REG_PPC_TM_VSR0;
2656 for (j = 0; j < TS_FPRWIDTH; j++)
2657 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2659 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2660 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2665 case KVM_REG_PPC_TM_CR:
2666 vcpu->arch.cr_tm = set_reg_val(id, *val);
2668 case KVM_REG_PPC_TM_XER:
2669 vcpu->arch.xer_tm = set_reg_val(id, *val);
2671 case KVM_REG_PPC_TM_LR:
2672 vcpu->arch.lr_tm = set_reg_val(id, *val);
2674 case KVM_REG_PPC_TM_CTR:
2675 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2677 case KVM_REG_PPC_TM_FPSCR:
2678 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2680 case KVM_REG_PPC_TM_AMR:
2681 vcpu->arch.amr_tm = set_reg_val(id, *val);
2683 case KVM_REG_PPC_TM_PPR:
2684 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2686 case KVM_REG_PPC_TM_VRSAVE:
2687 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2689 case KVM_REG_PPC_TM_VSCR:
2690 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2691 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2695 case KVM_REG_PPC_TM_DSCR:
2696 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2698 case KVM_REG_PPC_TM_TAR:
2699 vcpu->arch.tar_tm = set_reg_val(id, *val);
2702 case KVM_REG_PPC_ARCH_COMPAT:
2703 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2705 case KVM_REG_PPC_DEC_EXPIRY:
2706 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2708 case KVM_REG_PPC_ONLINE:
2709 i = set_reg_val(id, *val);
2710 if (i && !vcpu->arch.online)
2711 atomic_inc(&vcpu->arch.vcore->online_count);
2712 else if (!i && vcpu->arch.online)
2713 atomic_dec(&vcpu->arch.vcore->online_count);
2714 vcpu->arch.online = i;
2716 case KVM_REG_PPC_PTCR:
2717 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2719 case KVM_REG_PPC_FSCR:
2720 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2731 * On POWER9, threads are independent and can be in different partitions.
2732 * Therefore we consider each thread to be a subcore.
2733 * There is a restriction that all threads have to be in the same
2734 * MMU mode (radix or HPT), unfortunately, but since we only support
2735 * HPT guests on a HPT host so far, that isn't an impediment yet.
2737 static int threads_per_vcore(struct kvm *kvm)
2739 if (cpu_has_feature(CPU_FTR_ARCH_300))
2741 return threads_per_subcore;
2744 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2746 struct kvmppc_vcore *vcore;
2748 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2753 spin_lock_init(&vcore->lock);
2754 spin_lock_init(&vcore->stoltb_lock);
2755 rcuwait_init(&vcore->wait);
2756 vcore->preempt_tb = TB_NIL;
2757 vcore->lpcr = kvm->arch.lpcr;
2758 vcore->first_vcpuid = id;
2760 INIT_LIST_HEAD(&vcore->preempt_list);
2765 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2766 static struct debugfs_timings_element {
2770 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2771 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2772 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2773 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
2774 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
2775 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2776 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
2777 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
2779 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2780 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2781 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2782 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2783 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2787 #define N_TIMINGS (ARRAY_SIZE(timings))
2789 struct debugfs_timings_state {
2790 struct kvm_vcpu *vcpu;
2791 unsigned int buflen;
2792 char buf[N_TIMINGS * 100];
2795 static int debugfs_timings_open(struct inode *inode, struct file *file)
2797 struct kvm_vcpu *vcpu = inode->i_private;
2798 struct debugfs_timings_state *p;
2800 p = kzalloc(sizeof(*p), GFP_KERNEL);
2804 kvm_get_kvm(vcpu->kvm);
2806 file->private_data = p;
2808 return nonseekable_open(inode, file);
2811 static int debugfs_timings_release(struct inode *inode, struct file *file)
2813 struct debugfs_timings_state *p = file->private_data;
2815 kvm_put_kvm(p->vcpu->kvm);
2820 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2821 size_t len, loff_t *ppos)
2823 struct debugfs_timings_state *p = file->private_data;
2824 struct kvm_vcpu *vcpu = p->vcpu;
2826 struct kvmhv_tb_accumulator tb;
2835 buf_end = s + sizeof(p->buf);
2836 for (i = 0; i < N_TIMINGS; ++i) {
2837 struct kvmhv_tb_accumulator *acc;
2839 acc = (struct kvmhv_tb_accumulator *)
2840 ((unsigned long)vcpu + timings[i].offset);
2842 for (loops = 0; loops < 1000; ++loops) {
2843 count = acc->seqcount;
2848 if (count == acc->seqcount) {
2856 snprintf(s, buf_end - s, "%s: stuck\n",
2859 snprintf(s, buf_end - s,
2860 "%s: %llu %llu %llu %llu\n",
2861 timings[i].name, count / 2,
2862 tb_to_ns(tb.tb_total),
2863 tb_to_ns(tb.tb_min),
2864 tb_to_ns(tb.tb_max));
2867 p->buflen = s - p->buf;
2871 if (pos >= p->buflen)
2873 if (len > p->buflen - pos)
2874 len = p->buflen - pos;
2875 n = copy_to_user(buf, p->buf + pos, len);
2885 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2886 size_t len, loff_t *ppos)
2891 static const struct file_operations debugfs_timings_ops = {
2892 .owner = THIS_MODULE,
2893 .open = debugfs_timings_open,
2894 .release = debugfs_timings_release,
2895 .read = debugfs_timings_read,
2896 .write = debugfs_timings_write,
2897 .llseek = generic_file_llseek,
2900 /* Create a debugfs directory for the vcpu */
2901 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2903 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2904 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2905 &debugfs_timings_ops);
2909 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2910 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2914 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2916 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2920 struct kvmppc_vcore *vcore;
2927 vcpu->arch.shared = &vcpu->arch.shregs;
2928 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2930 * The shared struct is never shared on HV,
2931 * so we can always use host endianness
2933 #ifdef __BIG_ENDIAN__
2934 vcpu->arch.shared_big_endian = true;
2936 vcpu->arch.shared_big_endian = false;
2940 if (kvmhv_is_nestedv2()) {
2941 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2946 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2947 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2948 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2949 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2952 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2953 /* default to host PVR, since we can't spoof it */
2954 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2955 spin_lock_init(&vcpu->arch.vpa_update_lock);
2956 spin_lock_init(&vcpu->arch.tbacct_lock);
2957 vcpu->arch.busy_preempt = TB_NIL;
2958 __kvmppc_set_msr_hv(vcpu, MSR_ME);
2959 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2962 * Set the default HFSCR for the guest from the host value.
2963 * This value is only used on POWER9 and later.
2964 * On >= POWER9, we want to virtualize the doorbell facility, so we
2965 * don't set the HFSCR_MSGP bit, and that causes those instructions
2966 * to trap and then we emulate them.
2968 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2969 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
2971 /* On POWER10 and later, allow prefixed instructions */
2972 if (cpu_has_feature(CPU_FTR_ARCH_31))
2973 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
2975 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2976 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
2978 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2979 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2980 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
2983 if (cpu_has_feature(CPU_FTR_TM_COMP))
2984 vcpu->arch.hfscr |= HFSCR_TM;
2986 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
2989 * PM, EBB, TM are demand-faulted so start with it clear.
2991 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
2993 kvmppc_mmu_book3s_hv_init(vcpu);
2995 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2997 init_waitqueue_head(&vcpu->arch.cpu_run);
2999 mutex_lock(&kvm->lock);
3002 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3003 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3004 pr_devel("KVM: VCPU ID too high\n");
3005 core = KVM_MAX_VCORES;
3007 BUG_ON(kvm->arch.smt_mode != 1);
3008 core = kvmppc_pack_vcpu_id(kvm, id);
3011 core = id / kvm->arch.smt_mode;
3013 if (core < KVM_MAX_VCORES) {
3014 vcore = kvm->arch.vcores[core];
3015 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3016 pr_devel("KVM: collision on id %u", id);
3018 } else if (!vcore) {
3020 * Take mmu_setup_lock for mutual exclusion
3021 * with kvmppc_update_lpcr().
3024 vcore = kvmppc_vcore_create(kvm,
3025 id & ~(kvm->arch.smt_mode - 1));
3026 mutex_lock(&kvm->arch.mmu_setup_lock);
3027 kvm->arch.vcores[core] = vcore;
3028 kvm->arch.online_vcores++;
3029 mutex_unlock(&kvm->arch.mmu_setup_lock);
3032 mutex_unlock(&kvm->lock);
3037 spin_lock(&vcore->lock);
3038 ++vcore->num_threads;
3039 spin_unlock(&vcore->lock);
3040 vcpu->arch.vcore = vcore;
3041 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3042 vcpu->arch.thread_cpu = -1;
3043 vcpu->arch.prev_cpu = -1;
3045 vcpu->arch.cpu_type = KVM_CPU_3S_64;
3046 kvmppc_sanity_check(vcpu);
3051 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3052 unsigned long flags)
3059 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3061 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3063 * On POWER8 (or POWER7), the threading mode is "strict",
3064 * so we pack smt_mode vcpus per vcore.
3066 if (smt_mode > threads_per_subcore)
3070 * On POWER9, the threading mode is "loose",
3071 * so each vcpu gets its own vcore.
3076 mutex_lock(&kvm->lock);
3078 if (!kvm->arch.online_vcores) {
3079 kvm->arch.smt_mode = smt_mode;
3080 kvm->arch.emul_smt_mode = esmt;
3083 mutex_unlock(&kvm->lock);
3088 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3090 if (vpa->pinned_addr)
3091 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3095 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3097 spin_lock(&vcpu->arch.vpa_update_lock);
3098 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3099 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3100 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3101 spin_unlock(&vcpu->arch.vpa_update_lock);
3102 if (kvmhv_is_nestedv2())
3103 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3106 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3108 /* Indicate we want to get back into the guest */
3112 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3114 unsigned long dec_nsec, now;
3117 if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3118 /* decrementer has already gone negative */
3119 kvmppc_core_queue_dec(vcpu);
3120 kvmppc_core_prepare_to_enter(vcpu);
3123 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3124 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3125 vcpu->arch.timer_running = 1;
3128 extern int __kvmppc_vcore_entry(void);
3130 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3131 struct kvm_vcpu *vcpu, u64 tb)
3135 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3137 spin_lock_irq(&vcpu->arch.tbacct_lock);
3139 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3140 vcpu->arch.stolen_logged;
3141 vcpu->arch.busy_preempt = now;
3142 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3143 spin_unlock_irq(&vcpu->arch.tbacct_lock);
3145 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3148 static int kvmppc_grab_hwthread(int cpu)
3150 struct paca_struct *tpaca;
3151 long timeout = 10000;
3153 tpaca = paca_ptrs[cpu];
3155 /* Ensure the thread won't go into the kernel if it wakes */
3156 tpaca->kvm_hstate.kvm_vcpu = NULL;
3157 tpaca->kvm_hstate.kvm_vcore = NULL;
3158 tpaca->kvm_hstate.napping = 0;
3160 tpaca->kvm_hstate.hwthread_req = 1;
3163 * If the thread is already executing in the kernel (e.g. handling
3164 * a stray interrupt), wait for it to get back to nap mode.
3165 * The smp_mb() is to ensure that our setting of hwthread_req
3166 * is visible before we look at hwthread_state, so if this
3167 * races with the code at system_reset_pSeries and the thread
3168 * misses our setting of hwthread_req, we are sure to see its
3169 * setting of hwthread_state, and vice versa.
3172 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3173 if (--timeout <= 0) {
3174 pr_err("KVM: couldn't grab cpu %d\n", cpu);
3182 static void kvmppc_release_hwthread(int cpu)
3184 struct paca_struct *tpaca;
3186 tpaca = paca_ptrs[cpu];
3187 tpaca->kvm_hstate.hwthread_req = 0;
3188 tpaca->kvm_hstate.kvm_vcpu = NULL;
3189 tpaca->kvm_hstate.kvm_vcore = NULL;
3190 tpaca->kvm_hstate.kvm_split_mode = NULL;
3193 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3195 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3197 struct kvm_nested_guest *nested = vcpu->arch.nested;
3198 cpumask_t *need_tlb_flush;
3202 need_tlb_flush = &nested->need_tlb_flush;
3204 need_tlb_flush = &kvm->arch.need_tlb_flush;
3206 cpu = cpu_first_tlb_thread_sibling(cpu);
3207 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3208 i += cpu_tlb_thread_sibling_step())
3209 cpumask_set_cpu(i, need_tlb_flush);
3212 * Make sure setting of bit in need_tlb_flush precedes testing of
3213 * cpu_in_guest. The matching barrier on the other side is hwsync
3214 * when switching to guest MMU mode, which happens between
3215 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3220 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3221 i += cpu_tlb_thread_sibling_step()) {
3222 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3225 smp_call_function_single(i, do_nothing, NULL, 1);
3229 static void do_migrate_away_vcpu(void *arg)
3231 struct kvm_vcpu *vcpu = arg;
3232 struct kvm *kvm = vcpu->kvm;
3235 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3236 * ptesync sequence on the old CPU before migrating to a new one, in
3237 * case we interrupted the guest between a tlbie ; eieio ;
3238 * tlbsync; ptesync sequence.
3240 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3242 if (kvm->arch.lpcr & LPCR_GTSE)
3243 asm volatile("eieio; tlbsync; ptesync");
3245 asm volatile("ptesync");
3248 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3250 struct kvm_nested_guest *nested = vcpu->arch.nested;
3251 struct kvm *kvm = vcpu->kvm;
3254 if (!cpu_has_feature(CPU_FTR_HVMODE))
3258 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3260 prev_cpu = vcpu->arch.prev_cpu;
3263 * With radix, the guest can do TLB invalidations itself,
3264 * and it could choose to use the local form (tlbiel) if
3265 * it is invalidating a translation that has only ever been
3266 * used on one vcpu. However, that doesn't mean it has
3267 * only ever been used on one physical cpu, since vcpus
3268 * can move around between pcpus. To cope with this, when
3269 * a vcpu moves from one pcpu to another, we need to tell
3270 * any vcpus running on the same core as this vcpu previously
3271 * ran to flush the TLB.
3273 if (prev_cpu != pcpu) {
3274 if (prev_cpu >= 0) {
3275 if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3276 cpu_first_tlb_thread_sibling(pcpu))
3277 radix_flush_cpu(kvm, prev_cpu, vcpu);
3279 smp_call_function_single(prev_cpu,
3280 do_migrate_away_vcpu, vcpu, 1);
3283 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3285 vcpu->arch.prev_cpu = pcpu;
3289 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3292 struct paca_struct *tpaca;
3296 if (vcpu->arch.timer_running) {
3297 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3298 vcpu->arch.timer_running = 0;
3300 cpu += vcpu->arch.ptid;
3301 vcpu->cpu = vc->pcpu;
3302 vcpu->arch.thread_cpu = cpu;
3304 tpaca = paca_ptrs[cpu];
3305 tpaca->kvm_hstate.kvm_vcpu = vcpu;
3306 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3307 tpaca->kvm_hstate.fake_suspend = 0;
3308 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3310 tpaca->kvm_hstate.kvm_vcore = vc;
3311 if (cpu != smp_processor_id())
3312 kvmppc_ipi_thread(cpu);
3315 static void kvmppc_wait_for_nap(int n_threads)
3317 int cpu = smp_processor_id();
3322 for (loops = 0; loops < 1000000; ++loops) {
3324 * Check if all threads are finished.
3325 * We set the vcore pointer when starting a thread
3326 * and the thread clears it when finished, so we look
3327 * for any threads that still have a non-NULL vcore ptr.
3329 for (i = 1; i < n_threads; ++i)
3330 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3332 if (i == n_threads) {
3339 for (i = 1; i < n_threads; ++i)
3340 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3341 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3345 * Check that we are on thread 0 and that any other threads in
3346 * this core are off-line. Then grab the threads so they can't
3349 static int on_primary_thread(void)
3351 int cpu = smp_processor_id();
3354 /* Are we on a primary subcore? */
3355 if (cpu_thread_in_subcore(cpu))
3359 while (++thr < threads_per_subcore)
3360 if (cpu_online(cpu + thr))
3363 /* Grab all hw threads so they can't go into the kernel */
3364 for (thr = 1; thr < threads_per_subcore; ++thr) {
3365 if (kvmppc_grab_hwthread(cpu + thr)) {
3366 /* Couldn't grab one; let the others go */
3368 kvmppc_release_hwthread(cpu + thr);
3369 } while (--thr > 0);
3377 * A list of virtual cores for each physical CPU.
3378 * These are vcores that could run but their runner VCPU tasks are
3379 * (or may be) preempted.
3381 struct preempted_vcore_list {
3382 struct list_head list;
3386 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3388 static void init_vcore_lists(void)
3392 for_each_possible_cpu(cpu) {
3393 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3394 spin_lock_init(&lp->lock);
3395 INIT_LIST_HEAD(&lp->list);
3399 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3401 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3403 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3405 vc->vcore_state = VCORE_PREEMPT;
3406 vc->pcpu = smp_processor_id();
3407 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3408 spin_lock(&lp->lock);
3409 list_add_tail(&vc->preempt_list, &lp->list);
3410 spin_unlock(&lp->lock);
3413 /* Start accumulating stolen time */
3414 kvmppc_core_start_stolen(vc, mftb());
3417 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3419 struct preempted_vcore_list *lp;
3421 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3423 kvmppc_core_end_stolen(vc, mftb());
3424 if (!list_empty(&vc->preempt_list)) {
3425 lp = &per_cpu(preempted_vcores, vc->pcpu);
3426 spin_lock(&lp->lock);
3427 list_del_init(&vc->preempt_list);
3428 spin_unlock(&lp->lock);
3430 vc->vcore_state = VCORE_INACTIVE;
3434 * This stores information about the virtual cores currently
3435 * assigned to a physical core.
3439 int max_subcore_threads;
3441 int subcore_threads[MAX_SUBCORES];
3442 struct kvmppc_vcore *vc[MAX_SUBCORES];
3446 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3447 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3449 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3451 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3453 memset(cip, 0, sizeof(*cip));
3454 cip->n_subcores = 1;
3455 cip->max_subcore_threads = vc->num_threads;
3456 cip->total_threads = vc->num_threads;
3457 cip->subcore_threads[0] = vc->num_threads;
3461 static bool subcore_config_ok(int n_subcores, int n_threads)
3464 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3465 * split-core mode, with one thread per subcore.
3467 if (cpu_has_feature(CPU_FTR_ARCH_300))
3468 return n_subcores <= 4 && n_threads == 1;
3470 /* On POWER8, can only dynamically split if unsplit to begin with */
3471 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3473 if (n_subcores > MAX_SUBCORES)
3475 if (n_subcores > 1) {
3476 if (!(dynamic_mt_modes & 2))
3478 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3482 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3485 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3487 vc->entry_exit_map = 0;
3489 vc->napping_threads = 0;
3490 vc->conferring_threads = 0;
3491 vc->tb_offset_applied = 0;
3494 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3496 int n_threads = vc->num_threads;
3499 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3502 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3503 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3506 if (n_threads < cip->max_subcore_threads)
3507 n_threads = cip->max_subcore_threads;
3508 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3510 cip->max_subcore_threads = n_threads;
3512 sub = cip->n_subcores;
3514 cip->total_threads += vc->num_threads;
3515 cip->subcore_threads[sub] = vc->num_threads;
3517 init_vcore_to_run(vc);
3518 list_del_init(&vc->preempt_list);
3524 * Work out whether it is possible to piggyback the execution of
3525 * vcore *pvc onto the execution of the other vcores described in *cip.
3527 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3530 if (cip->total_threads + pvc->num_threads > target_threads)
3533 return can_dynamic_split(pvc, cip);
3536 static void prepare_threads(struct kvmppc_vcore *vc)
3539 struct kvm_vcpu *vcpu;
3541 for_each_runnable_thread(i, vcpu, vc) {
3542 if (signal_pending(vcpu->arch.run_task))
3543 vcpu->arch.ret = -EINTR;
3544 else if (vcpu->arch.vpa.update_pending ||
3545 vcpu->arch.slb_shadow.update_pending ||
3546 vcpu->arch.dtl.update_pending)
3547 vcpu->arch.ret = RESUME_GUEST;
3550 kvmppc_remove_runnable(vc, vcpu, mftb());
3551 wake_up(&vcpu->arch.cpu_run);
3555 static void collect_piggybacks(struct core_info *cip, int target_threads)
3557 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3558 struct kvmppc_vcore *pvc, *vcnext;
3560 spin_lock(&lp->lock);
3561 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3562 if (!spin_trylock(&pvc->lock))
3564 prepare_threads(pvc);
3565 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3566 list_del_init(&pvc->preempt_list);
3567 if (pvc->runner == NULL) {
3568 pvc->vcore_state = VCORE_INACTIVE;
3569 kvmppc_core_end_stolen(pvc, mftb());
3571 spin_unlock(&pvc->lock);
3574 if (!can_piggyback(pvc, cip, target_threads)) {
3575 spin_unlock(&pvc->lock);
3578 kvmppc_core_end_stolen(pvc, mftb());
3579 pvc->vcore_state = VCORE_PIGGYBACK;
3580 if (cip->total_threads >= target_threads)
3583 spin_unlock(&lp->lock);
3586 static bool recheck_signals_and_mmu(struct core_info *cip)
3589 struct kvm_vcpu *vcpu;
3590 struct kvmppc_vcore *vc;
3592 for (sub = 0; sub < cip->n_subcores; ++sub) {
3594 if (!vc->kvm->arch.mmu_ready)
3596 for_each_runnable_thread(i, vcpu, vc)
3597 if (signal_pending(vcpu->arch.run_task))
3603 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3605 int still_running = 0, i;
3608 struct kvm_vcpu *vcpu;
3610 spin_lock(&vc->lock);
3612 for_each_runnable_thread(i, vcpu, vc) {
3614 * It's safe to unlock the vcore in the loop here, because
3615 * for_each_runnable_thread() is safe against removal of
3616 * the vcpu, and the vcore state is VCORE_EXITING here,
3617 * so any vcpus becoming runnable will have their arch.trap
3618 * set to zero and can't actually run in the guest.
3620 spin_unlock(&vc->lock);
3621 /* cancel pending dec exception if dec is positive */
3622 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3623 kvmppc_core_pending_dec(vcpu))
3624 kvmppc_core_dequeue_dec(vcpu);
3626 trace_kvm_guest_exit(vcpu);
3629 if (vcpu->arch.trap)
3630 ret = kvmppc_handle_exit_hv(vcpu,
3631 vcpu->arch.run_task);
3633 vcpu->arch.ret = ret;
3634 vcpu->arch.trap = 0;
3636 spin_lock(&vc->lock);
3637 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3638 if (vcpu->arch.pending_exceptions)
3639 kvmppc_core_prepare_to_enter(vcpu);
3640 if (vcpu->arch.ceded)
3641 kvmppc_set_timer(vcpu);
3645 kvmppc_remove_runnable(vc, vcpu, mftb());
3646 wake_up(&vcpu->arch.cpu_run);
3650 if (still_running > 0) {
3651 kvmppc_vcore_preempt(vc);
3652 } else if (vc->runner) {
3653 vc->vcore_state = VCORE_PREEMPT;
3654 kvmppc_core_start_stolen(vc, mftb());
3656 vc->vcore_state = VCORE_INACTIVE;
3658 if (vc->n_runnable > 0 && vc->runner == NULL) {
3659 /* make sure there's a candidate runner awake */
3661 vcpu = next_runnable_thread(vc, &i);
3662 wake_up(&vcpu->arch.cpu_run);
3665 spin_unlock(&vc->lock);
3669 * Clear core from the list of active host cores as we are about to
3670 * enter the guest. Only do this if it is the primary thread of the
3671 * core (not if a subcore) that is entering the guest.
3673 static inline int kvmppc_clear_host_core(unsigned int cpu)
3677 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3680 * Memory barrier can be omitted here as we will do a smp_wmb()
3681 * later in kvmppc_start_thread and we need ensure that state is
3682 * visible to other CPUs only after we enter guest.
3684 core = cpu >> threads_shift;
3685 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3690 * Advertise this core as an active host core since we exited the guest
3691 * Only need to do this if it is the primary thread of the core that is
3694 static inline int kvmppc_set_host_core(unsigned int cpu)
3698 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3702 * Memory barrier can be omitted here because we do a spin_unlock
3703 * immediately after this which provides the memory barrier.
3705 core = cpu >> threads_shift;
3706 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3710 static void set_irq_happened(int trap)
3713 case BOOK3S_INTERRUPT_EXTERNAL:
3714 local_paca->irq_happened |= PACA_IRQ_EE;
3716 case BOOK3S_INTERRUPT_H_DOORBELL:
3717 local_paca->irq_happened |= PACA_IRQ_DBELL;
3719 case BOOK3S_INTERRUPT_HMI:
3720 local_paca->irq_happened |= PACA_IRQ_HMI;
3722 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3723 replay_system_reset();
3729 * Run a set of guest threads on a physical core.
3730 * Called with vc->lock held.
3732 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3734 struct kvm_vcpu *vcpu;
3737 struct core_info core_info;
3738 struct kvmppc_vcore *pvc;
3739 struct kvm_split_mode split_info, *sip;
3740 int split, subcore_size, active;
3743 unsigned long cmd_bit, stat_bit;
3746 int controlled_threads;
3750 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3754 * Remove from the list any threads that have a signal pending
3755 * or need a VPA update done
3757 prepare_threads(vc);
3759 /* if the runner is no longer runnable, let the caller pick a new one */
3760 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3766 init_vcore_to_run(vc);
3767 vc->preempt_tb = TB_NIL;
3770 * Number of threads that we will be controlling: the same as
3771 * the number of threads per subcore, except on POWER9,
3772 * where it's 1 because the threads are (mostly) independent.
3774 controlled_threads = threads_per_vcore(vc->kvm);
3777 * Make sure we are running on primary threads, and that secondary
3778 * threads are offline. Also check if the number of threads in this
3779 * guest are greater than the current system threads per guest.
3781 if ((controlled_threads > 1) &&
3782 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3783 for_each_runnable_thread(i, vcpu, vc) {
3784 vcpu->arch.ret = -EBUSY;
3785 kvmppc_remove_runnable(vc, vcpu, mftb());
3786 wake_up(&vcpu->arch.cpu_run);
3792 * See if we could run any other vcores on the physical core
3793 * along with this one.
3795 init_core_info(&core_info, vc);
3796 pcpu = smp_processor_id();
3797 target_threads = controlled_threads;
3798 if (target_smt_mode && target_smt_mode < target_threads)
3799 target_threads = target_smt_mode;
3800 if (vc->num_threads < target_threads)
3801 collect_piggybacks(&core_info, target_threads);
3804 * Hard-disable interrupts, and check resched flag and signals.
3805 * If we need to reschedule or deliver a signal, clean up
3806 * and return without going into the guest(s).
3807 * If the mmu_ready flag has been cleared, don't go into the
3808 * guest because that means a HPT resize operation is in progress.
3810 local_irq_disable();
3812 if (lazy_irq_pending() || need_resched() ||
3813 recheck_signals_and_mmu(&core_info)) {
3815 vc->vcore_state = VCORE_INACTIVE;
3816 /* Unlock all except the primary vcore */
3817 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3818 pvc = core_info.vc[sub];
3819 /* Put back on to the preempted vcores list */
3820 kvmppc_vcore_preempt(pvc);
3821 spin_unlock(&pvc->lock);
3823 for (i = 0; i < controlled_threads; ++i)
3824 kvmppc_release_hwthread(pcpu + i);
3828 kvmppc_clear_host_core(pcpu);
3830 /* Decide on micro-threading (split-core) mode */
3831 subcore_size = threads_per_subcore;
3832 cmd_bit = stat_bit = 0;
3833 split = core_info.n_subcores;
3835 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3839 memset(&split_info, 0, sizeof(split_info));
3840 for (sub = 0; sub < core_info.n_subcores; ++sub)
3841 split_info.vc[sub] = core_info.vc[sub];
3844 if (split == 2 && (dynamic_mt_modes & 2)) {
3845 cmd_bit = HID0_POWER8_1TO2LPAR;
3846 stat_bit = HID0_POWER8_2LPARMODE;
3849 cmd_bit = HID0_POWER8_1TO4LPAR;
3850 stat_bit = HID0_POWER8_4LPARMODE;
3852 subcore_size = MAX_SMT_THREADS / split;
3853 split_info.rpr = mfspr(SPRN_RPR);
3854 split_info.pmmar = mfspr(SPRN_PMMAR);
3855 split_info.ldbar = mfspr(SPRN_LDBAR);
3856 split_info.subcore_size = subcore_size;
3858 split_info.subcore_size = 1;
3861 /* order writes to split_info before kvm_split_mode pointer */
3865 for (thr = 0; thr < controlled_threads; ++thr) {
3866 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3868 paca->kvm_hstate.napping = 0;
3869 paca->kvm_hstate.kvm_split_mode = sip;
3872 /* Initiate micro-threading (split-core) on POWER8 if required */
3874 unsigned long hid0 = mfspr(SPRN_HID0);
3876 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3878 mtspr(SPRN_HID0, hid0);
3881 hid0 = mfspr(SPRN_HID0);
3882 if (hid0 & stat_bit)
3889 * On POWER8, set RWMR register.
3890 * Since it only affects PURR and SPURR, it doesn't affect
3891 * the host, so we don't save/restore the host value.
3894 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3895 int n_online = atomic_read(&vc->online_count);
3898 * Use the 8-thread value if we're doing split-core
3899 * or if the vcore's online count looks bogus.
3901 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3902 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3903 rwmr_val = p8_rwmr_values[n_online];
3904 mtspr(SPRN_RWMR, rwmr_val);
3907 /* Start all the threads */
3909 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3910 thr = is_power8 ? subcore_thread_map[sub] : sub;
3913 pvc = core_info.vc[sub];
3914 pvc->pcpu = pcpu + thr;
3915 for_each_runnable_thread(i, vcpu, pvc) {
3917 * XXX: is kvmppc_start_thread called too late here?
3918 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3919 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3920 * kick is called after new exceptions become available
3921 * and exceptions are checked earlier than here, by
3922 * kvmppc_core_prepare_to_enter.
3924 kvmppc_start_thread(vcpu, pvc);
3925 kvmppc_update_vpa_dispatch(vcpu, pvc);
3926 trace_kvm_guest_enter(vcpu);
3927 if (!vcpu->arch.ptid)
3929 active |= 1 << (thr + vcpu->arch.ptid);
3932 * We need to start the first thread of each subcore
3933 * even if it doesn't have a vcpu.
3936 kvmppc_start_thread(NULL, pvc);
3940 * Ensure that split_info.do_nap is set after setting
3941 * the vcore pointer in the PACA of the secondaries.
3946 * When doing micro-threading, poke the inactive threads as well.
3947 * This gets them to the nap instruction after kvm_do_nap,
3948 * which reduces the time taken to unsplit later.
3951 split_info.do_nap = 1; /* ask secondaries to nap when done */
3952 for (thr = 1; thr < threads_per_subcore; ++thr)
3953 if (!(active & (1 << thr)))
3954 kvmppc_ipi_thread(pcpu + thr);
3957 vc->vcore_state = VCORE_RUNNING;
3960 trace_kvmppc_run_core(vc, 0);
3962 for (sub = 0; sub < core_info.n_subcores; ++sub)
3963 spin_unlock(&core_info.vc[sub]->lock);
3965 guest_timing_enter_irqoff();
3967 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3969 guest_state_enter_irqoff();
3970 this_cpu_disable_ftrace();
3972 trap = __kvmppc_vcore_entry();
3974 this_cpu_enable_ftrace();
3975 guest_state_exit_irqoff();
3977 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3979 set_irq_happened(trap);
3981 spin_lock(&vc->lock);
3982 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3983 vc->vcore_state = VCORE_EXITING;
3985 /* wait for secondary threads to finish writing their state to memory */
3986 kvmppc_wait_for_nap(controlled_threads);
3988 /* Return to whole-core mode if we split the core earlier */
3990 unsigned long hid0 = mfspr(SPRN_HID0);
3991 unsigned long loops = 0;
3993 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3994 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3996 mtspr(SPRN_HID0, hid0);
3999 hid0 = mfspr(SPRN_HID0);
4000 if (!(hid0 & stat_bit))
4005 split_info.do_nap = 0;
4008 kvmppc_set_host_core(pcpu);
4010 if (!vtime_accounting_enabled_this_cpu()) {
4013 * Service IRQs here before guest_timing_exit_irqoff() so any
4014 * ticks that occurred while running the guest are accounted to
4015 * the guest. If vtime accounting is enabled, accounting uses
4016 * TB rather than ticks, so it can be done without enabling
4017 * interrupts here, which has the problem that it accounts
4018 * interrupt processing overhead to the host.
4020 local_irq_disable();
4022 guest_timing_exit_irqoff();
4026 /* Let secondaries go back to the offline loop */
4027 for (i = 0; i < controlled_threads; ++i) {
4028 kvmppc_release_hwthread(pcpu + i);
4029 if (sip && sip->napped[i])
4030 kvmppc_ipi_thread(pcpu + i);
4033 spin_unlock(&vc->lock);
4035 /* make sure updates to secondary vcpu structs are visible now */
4040 for (sub = 0; sub < core_info.n_subcores; ++sub) {
4041 pvc = core_info.vc[sub];
4042 post_guest_process(pvc, pvc == vc);
4045 spin_lock(&vc->lock);
4048 vc->vcore_state = VCORE_INACTIVE;
4049 trace_kvmppc_run_core(vc, 1);
4052 static inline bool hcall_is_xics(unsigned long req)
4054 return req == H_EOI || req == H_CPPR || req == H_IPI ||
4055 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4058 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4060 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4062 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4063 lp->yield_count = cpu_to_be32(yield_count);
4064 vcpu->arch.vpa.dirty = 1;
4068 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4069 unsigned long lpcr, u64 *tb)
4071 struct kvmhv_nestedv2_io *io;
4072 unsigned long msr, i;
4076 io = &vcpu->arch.nestedv2_io;
4079 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4080 if (lazy_irq_pending())
4083 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4087 accumulate_time(vcpu, &vcpu->arch.in_guest);
4088 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4091 if (rc != H_SUCCESS) {
4092 pr_err("KVM Guest Run VCPU hcall failed\n");
4093 if (rc == H_INVALID_ELEMENT_ID)
4094 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4095 else if (rc == H_INVALID_ELEMENT_SIZE)
4096 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4097 else if (rc == H_INVALID_ELEMENT_VALUE)
4098 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4101 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4104 kvmppc_gsm_reset(io->vcpu_message);
4105 kvmppc_gsm_reset(io->vcore_message);
4106 kvmppc_gsbm_zero(&io->valids);
4108 rc = kvmhv_nestedv2_parse_output(vcpu);
4112 timer_rearm_host_dec(*tb);
4117 /* call our hypervisor to load up HV regs and go */
4118 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4120 unsigned long host_psscr;
4122 struct hv_guest_state hvregs;
4123 struct p9_host_os_sprs host_os_sprs;
4129 save_p9_host_os_sprs(&host_os_sprs);
4132 * We need to save and restore the guest visible part of the
4133 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4134 * doesn't do this for us. Note only required if pseries since
4135 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4137 host_psscr = mfspr(SPRN_PSSCR_PR);
4139 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4140 if (lazy_irq_pending())
4143 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4144 msr = mfmsr(); /* TM restore can update msr */
4146 if (vcpu->arch.psscr != host_psscr)
4147 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4149 kvmhv_save_hv_regs(vcpu, &hvregs);
4152 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4153 hvregs.version = HV_GUEST_STATE_VERSION;
4154 if (vcpu->arch.nested) {
4155 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4156 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4158 hvregs.lpid = vcpu->kvm->arch.lpid;
4159 hvregs.vcpu_token = vcpu->vcpu_id;
4161 hvregs.hdec_expiry = time_limit;
4164 * When setting DEC, we must always deal with irq_work_raise
4165 * via NMI vs setting DEC. The problem occurs right as we
4166 * switch into guest mode if a NMI hits and sets pending work
4167 * and sets DEC, then that will apply to the guest and not
4168 * bring us back to the host.
4170 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4171 * for example) and set HDEC to 1? That wouldn't solve the
4172 * nested hv case which needs to abort the hcall or zero the
4175 * XXX: Another day's problem.
4177 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4179 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4180 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4181 switch_pmu_to_guest(vcpu, &host_os_sprs);
4182 accumulate_time(vcpu, &vcpu->arch.in_guest);
4183 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4184 __pa(&vcpu->arch.regs));
4185 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4186 kvmhv_restore_hv_return_state(vcpu, &hvregs);
4187 switch_pmu_to_host(vcpu, &host_os_sprs);
4188 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4189 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4190 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4191 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4193 store_vcpu_state(vcpu);
4195 dec = mfspr(SPRN_DEC);
4196 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4199 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4201 timer_rearm_host_dec(*tb);
4203 restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4204 if (vcpu->arch.psscr != host_psscr)
4205 mtspr(SPRN_PSSCR_PR, host_psscr);
4211 * Guest entry for POWER9 and later CPUs.
4213 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4214 unsigned long lpcr, u64 *tb)
4216 struct kvm *kvm = vcpu->kvm;
4217 struct kvm_nested_guest *nested = vcpu->arch.nested;
4221 next_timer = timer_get_next_tb();
4222 if (*tb >= next_timer)
4223 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4224 if (next_timer < time_limit)
4225 time_limit = next_timer;
4226 else if (*tb >= time_limit) /* nested time limit */
4227 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4229 vcpu->arch.ceded = 0;
4231 vcpu_vpa_increment_dispatch(vcpu);
4233 if (kvmhv_on_pseries()) {
4234 if (kvmhv_is_nestedv1())
4235 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4237 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4239 /* H_CEDE has to be handled now, not later */
4240 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4241 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4243 kvmppc_set_gpr(vcpu, 3, 0);
4247 } else if (nested) {
4248 __this_cpu_write(cpu_in_guest, kvm);
4249 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4250 __this_cpu_write(cpu_in_guest, NULL);
4253 kvmppc_xive_push_vcpu(vcpu);
4255 __this_cpu_write(cpu_in_guest, kvm);
4256 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4257 __this_cpu_write(cpu_in_guest, NULL);
4259 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4260 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4261 unsigned long req = kvmppc_get_gpr(vcpu, 3);
4264 * XIVE rearm and XICS hcalls must be handled
4265 * before xive context is pulled (is this
4268 if (req == H_CEDE) {
4269 /* H_CEDE has to be handled now */
4271 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4273 * Pending escalation so abort
4276 vcpu->arch.ceded = 0;
4278 kvmppc_set_gpr(vcpu, 3, 0);
4281 } else if (req == H_ENTER_NESTED) {
4283 * L2 should not run with the L1
4284 * context so rearm and pull it.
4286 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4288 * Pending escalation so abort
4291 kvmppc_set_gpr(vcpu, 3, 0);
4295 } else if (hcall_is_xics(req)) {
4298 ret = kvmppc_xive_xics_hcall(vcpu, req);
4299 if (ret != H_TOO_HARD) {
4300 kvmppc_set_gpr(vcpu, 3, ret);
4305 kvmppc_xive_pull_vcpu(vcpu);
4307 if (kvm_is_radix(kvm))
4308 vcpu->arch.slb_max = 0;
4311 vcpu_vpa_increment_dispatch(vcpu);
4317 * Wait for some other vcpu thread to execute us, and
4318 * wake us up when we need to handle something in the host.
4320 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4321 struct kvm_vcpu *vcpu, int wait_state)
4325 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4326 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4327 spin_unlock(&vc->lock);
4329 spin_lock(&vc->lock);
4331 finish_wait(&vcpu->arch.cpu_run, &wait);
4334 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4336 if (!halt_poll_ns_grow)
4339 vc->halt_poll_ns *= halt_poll_ns_grow;
4340 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4341 vc->halt_poll_ns = halt_poll_ns_grow_start;
4344 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4346 if (halt_poll_ns_shrink == 0)
4347 vc->halt_poll_ns = 0;
4349 vc->halt_poll_ns /= halt_poll_ns_shrink;
4352 #ifdef CONFIG_KVM_XICS
4353 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4355 if (!xics_on_xive())
4357 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4358 vcpu->arch.xive_saved_state.cppr;
4361 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4365 #endif /* CONFIG_KVM_XICS */
4367 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4369 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4370 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4376 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4378 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4384 * Check to see if any of the runnable vcpus on the vcore have pending
4385 * exceptions or are no longer ceded
4387 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4389 struct kvm_vcpu *vcpu;
4392 for_each_runnable_thread(i, vcpu, vc) {
4393 if (kvmppc_vcpu_check_block(vcpu))
4401 * All the vcpus in this vcore are idle, so wait for a decrementer
4402 * or external interrupt to one of the vcpus. vc->lock is held.
4404 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4406 ktime_t cur, start_poll, start_wait;
4410 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4412 /* Poll for pending exceptions and ceded state */
4413 cur = start_poll = ktime_get();
4414 if (vc->halt_poll_ns) {
4415 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4416 ++vc->runner->stat.generic.halt_attempted_poll;
4418 vc->vcore_state = VCORE_POLLING;
4419 spin_unlock(&vc->lock);
4422 if (kvmppc_vcore_check_block(vc)) {
4427 } while (kvm_vcpu_can_poll(cur, stop));
4429 spin_lock(&vc->lock);
4430 vc->vcore_state = VCORE_INACTIVE;
4433 ++vc->runner->stat.generic.halt_successful_poll;
4438 prepare_to_rcuwait(&vc->wait);
4439 set_current_state(TASK_INTERRUPTIBLE);
4440 if (kvmppc_vcore_check_block(vc)) {
4441 finish_rcuwait(&vc->wait);
4443 /* If we polled, count this as a successful poll */
4444 if (vc->halt_poll_ns)
4445 ++vc->runner->stat.generic.halt_successful_poll;
4449 start_wait = ktime_get();
4451 vc->vcore_state = VCORE_SLEEPING;
4452 trace_kvmppc_vcore_blocked(vc->runner, 0);
4453 spin_unlock(&vc->lock);
4455 finish_rcuwait(&vc->wait);
4456 spin_lock(&vc->lock);
4457 vc->vcore_state = VCORE_INACTIVE;
4458 trace_kvmppc_vcore_blocked(vc->runner, 1);
4459 ++vc->runner->stat.halt_successful_wait;
4464 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4466 /* Attribute wait time */
4468 vc->runner->stat.generic.halt_wait_ns +=
4469 ktime_to_ns(cur) - ktime_to_ns(start_wait);
4470 KVM_STATS_LOG_HIST_UPDATE(
4471 vc->runner->stat.generic.halt_wait_hist,
4472 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4473 /* Attribute failed poll time */
4474 if (vc->halt_poll_ns) {
4475 vc->runner->stat.generic.halt_poll_fail_ns +=
4476 ktime_to_ns(start_wait) -
4477 ktime_to_ns(start_poll);
4478 KVM_STATS_LOG_HIST_UPDATE(
4479 vc->runner->stat.generic.halt_poll_fail_hist,
4480 ktime_to_ns(start_wait) -
4481 ktime_to_ns(start_poll));
4484 /* Attribute successful poll time */
4485 if (vc->halt_poll_ns) {
4486 vc->runner->stat.generic.halt_poll_success_ns +=
4488 ktime_to_ns(start_poll);
4489 KVM_STATS_LOG_HIST_UPDATE(
4490 vc->runner->stat.generic.halt_poll_success_hist,
4491 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4495 /* Adjust poll time */
4497 if (block_ns <= vc->halt_poll_ns)
4499 /* We slept and blocked for longer than the max halt time */
4500 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4501 shrink_halt_poll_ns(vc);
4502 /* We slept and our poll time is too small */
4503 else if (vc->halt_poll_ns < halt_poll_ns &&
4504 block_ns < halt_poll_ns)
4505 grow_halt_poll_ns(vc);
4506 if (vc->halt_poll_ns > halt_poll_ns)
4507 vc->halt_poll_ns = halt_poll_ns;
4509 vc->halt_poll_ns = 0;
4511 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4515 * This never fails for a radix guest, as none of the operations it does
4516 * for a radix guest can fail or have a way to report failure.
4518 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4521 struct kvm *kvm = vcpu->kvm;
4523 mutex_lock(&kvm->arch.mmu_setup_lock);
4524 if (!kvm->arch.mmu_ready) {
4525 if (!kvm_is_radix(kvm))
4526 r = kvmppc_hv_setup_htab_rma(vcpu);
4528 if (cpu_has_feature(CPU_FTR_ARCH_300))
4529 kvmppc_setup_partition_table(kvm);
4530 kvm->arch.mmu_ready = 1;
4533 mutex_unlock(&kvm->arch.mmu_setup_lock);
4537 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4539 struct kvm_run *run = vcpu->run;
4541 struct kvmppc_vcore *vc;
4544 trace_kvmppc_run_vcpu_enter(vcpu);
4546 run->exit_reason = 0;
4547 vcpu->arch.ret = RESUME_GUEST;
4548 vcpu->arch.trap = 0;
4549 kvmppc_update_vpas(vcpu);
4552 * Synchronize with other threads in this virtual core
4554 vc = vcpu->arch.vcore;
4555 spin_lock(&vc->lock);
4556 vcpu->arch.ceded = 0;
4557 vcpu->arch.run_task = current;
4558 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4559 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4560 vcpu->arch.busy_preempt = TB_NIL;
4561 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4565 * This happens the first time this is called for a vcpu.
4566 * If the vcore is already running, we may be able to start
4567 * this thread straight away and have it join in.
4569 if (!signal_pending(current)) {
4570 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4571 vc->vcore_state == VCORE_RUNNING) &&
4572 !VCORE_IS_EXITING(vc)) {
4573 kvmppc_update_vpa_dispatch(vcpu, vc);
4574 kvmppc_start_thread(vcpu, vc);
4575 trace_kvm_guest_enter(vcpu);
4576 } else if (vc->vcore_state == VCORE_SLEEPING) {
4577 rcuwait_wake_up(&vc->wait);
4582 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4583 !signal_pending(current)) {
4584 /* See if the MMU is ready to go */
4585 if (!vcpu->kvm->arch.mmu_ready) {
4586 spin_unlock(&vc->lock);
4587 r = kvmhv_setup_mmu(vcpu);
4588 spin_lock(&vc->lock);
4590 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4592 hardware_entry_failure_reason = 0;
4598 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4599 kvmppc_vcore_end_preempt(vc);
4601 if (vc->vcore_state != VCORE_INACTIVE) {
4602 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4605 for_each_runnable_thread(i, v, vc) {
4606 kvmppc_core_prepare_to_enter(v);
4607 if (signal_pending(v->arch.run_task)) {
4608 kvmppc_remove_runnable(vc, v, mftb());
4609 v->stat.signal_exits++;
4610 v->run->exit_reason = KVM_EXIT_INTR;
4611 v->arch.ret = -EINTR;
4612 wake_up(&v->arch.cpu_run);
4615 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4618 for_each_runnable_thread(i, v, vc) {
4619 if (!kvmppc_vcpu_woken(v))
4620 n_ceded += v->arch.ceded;
4625 if (n_ceded == vc->n_runnable) {
4626 kvmppc_vcore_blocked(vc);
4627 } else if (need_resched()) {
4628 kvmppc_vcore_preempt(vc);
4629 /* Let something else run */
4630 cond_resched_lock(&vc->lock);
4631 if (vc->vcore_state == VCORE_PREEMPT)
4632 kvmppc_vcore_end_preempt(vc);
4634 kvmppc_run_core(vc);
4639 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4640 (vc->vcore_state == VCORE_RUNNING ||
4641 vc->vcore_state == VCORE_EXITING ||
4642 vc->vcore_state == VCORE_PIGGYBACK))
4643 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4645 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4646 kvmppc_vcore_end_preempt(vc);
4648 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4649 kvmppc_remove_runnable(vc, vcpu, mftb());
4650 vcpu->stat.signal_exits++;
4651 run->exit_reason = KVM_EXIT_INTR;
4652 vcpu->arch.ret = -EINTR;
4655 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4656 /* Wake up some vcpu to run the core */
4658 v = next_runnable_thread(vc, &i);
4659 wake_up(&v->arch.cpu_run);
4662 trace_kvmppc_run_vcpu_exit(vcpu);
4663 spin_unlock(&vc->lock);
4664 return vcpu->arch.ret;
4667 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4670 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4671 struct kvm_run *run = vcpu->run;
4674 struct kvmppc_vcore *vc;
4675 struct kvm *kvm = vcpu->kvm;
4676 struct kvm_nested_guest *nested = vcpu->arch.nested;
4677 unsigned long flags;
4680 trace_kvmppc_run_vcpu_enter(vcpu);
4682 run->exit_reason = 0;
4683 vcpu->arch.ret = RESUME_GUEST;
4684 vcpu->arch.trap = 0;
4686 vc = vcpu->arch.vcore;
4687 vcpu->arch.ceded = 0;
4688 vcpu->arch.run_task = current;
4689 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4691 /* See if the MMU is ready to go */
4692 if (unlikely(!kvm->arch.mmu_ready)) {
4693 r = kvmhv_setup_mmu(vcpu);
4695 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4696 run->fail_entry.hardware_entry_failure_reason = 0;
4705 kvmppc_update_vpas(vcpu);
4708 pcpu = smp_processor_id();
4709 if (kvm_is_radix(kvm))
4710 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4712 /* flags save not required, but irq_pmu has no disable/enable API */
4713 powerpc_local_irq_pmu_save(flags);
4715 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4717 if (signal_pending(current))
4719 if (need_resched() || !kvm->arch.mmu_ready)
4723 vcpu->arch.thread_cpu = pcpu;
4725 local_paca->kvm_hstate.kvm_vcpu = vcpu;
4726 local_paca->kvm_hstate.ptid = 0;
4727 local_paca->kvm_hstate.fake_suspend = 0;
4730 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4731 * doorbells below. The other side is when these fields are set vs
4732 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4733 * kick a vCPU to notice the pending interrupt.
4738 kvmppc_core_prepare_to_enter(vcpu);
4739 if (__kvmppc_get_msr_hv(vcpu) & MSR_EE) {
4740 if (xive_interrupt_pending(vcpu))
4741 kvmppc_inject_interrupt_hv(vcpu,
4742 BOOK3S_INTERRUPT_EXTERNAL, 0);
4743 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4744 &vcpu->arch.pending_exceptions)) {
4747 } else if (vcpu->arch.pending_exceptions ||
4748 vcpu->arch.doorbell_request ||
4749 xive_interrupt_pending(vcpu)) {
4750 vcpu->arch.ret = RESUME_HOST;
4754 if (vcpu->arch.timer_running) {
4755 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4756 vcpu->arch.timer_running = 0;
4761 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
4763 trace_kvm_guest_enter(vcpu);
4765 guest_timing_enter_irqoff();
4767 srcu_idx = srcu_read_lock(&kvm->srcu);
4769 guest_state_enter_irqoff();
4770 this_cpu_disable_ftrace();
4772 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4773 vcpu->arch.trap = trap;
4775 this_cpu_enable_ftrace();
4776 guest_state_exit_irqoff();
4778 srcu_read_unlock(&kvm->srcu, srcu_idx);
4780 set_irq_happened(trap);
4783 vcpu->arch.thread_cpu = -1;
4784 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4786 if (!vtime_accounting_enabled_this_cpu()) {
4787 powerpc_local_irq_pmu_restore(flags);
4789 * Service IRQs here before guest_timing_exit_irqoff() so any
4790 * ticks that occurred while running the guest are accounted to
4791 * the guest. If vtime accounting is enabled, accounting uses
4792 * TB rather than ticks, so it can be done without enabling
4793 * interrupts here, which has the problem that it accounts
4794 * interrupt processing overhead to the host.
4796 powerpc_local_irq_pmu_save(flags);
4798 guest_timing_exit_irqoff();
4800 powerpc_local_irq_pmu_restore(flags);
4805 * cancel pending decrementer exception if DEC is now positive, or if
4806 * entering a nested guest in which case the decrementer is now owned
4807 * by L2 and the L1 decrementer is provided in hdec_expires
4809 if (kvmppc_core_pending_dec(vcpu) &&
4810 ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4811 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4812 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4813 kvmppc_core_dequeue_dec(vcpu);
4815 trace_kvm_guest_exit(vcpu);
4819 r = kvmppc_handle_exit_hv(vcpu, current);
4821 r = kvmppc_handle_nested_exit(vcpu);
4825 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4826 kvmppc_set_timer(vcpu);
4828 prepare_to_rcuwait(wait);
4830 set_current_state(TASK_INTERRUPTIBLE);
4831 if (signal_pending(current)) {
4832 vcpu->stat.signal_exits++;
4833 run->exit_reason = KVM_EXIT_INTR;
4834 vcpu->arch.ret = -EINTR;
4838 if (kvmppc_vcpu_check_block(vcpu))
4841 trace_kvmppc_vcore_blocked(vcpu, 0);
4843 trace_kvmppc_vcore_blocked(vcpu, 1);
4845 finish_rcuwait(wait);
4847 vcpu->arch.ceded = 0;
4850 trace_kvmppc_run_vcpu_exit(vcpu);
4852 return vcpu->arch.ret;
4855 vcpu->stat.signal_exits++;
4856 run->exit_reason = KVM_EXIT_INTR;
4857 vcpu->arch.ret = -EINTR;
4860 vcpu->arch.thread_cpu = -1;
4861 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4862 powerpc_local_irq_pmu_restore(flags);
4867 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4869 struct kvm_run *run = vcpu->run;
4875 start_timing(vcpu, &vcpu->arch.vcpu_entry);
4877 if (!vcpu->arch.sane) {
4878 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4882 /* No need to go into the guest when all we'll do is come back out */
4883 if (signal_pending(current)) {
4884 run->exit_reason = KVM_EXIT_INTR;
4888 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4890 * Don't allow entry with a suspended transaction, because
4891 * the guest entry/exit code will lose it.
4893 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4894 (current->thread.regs->msr & MSR_TM)) {
4895 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4896 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4897 run->fail_entry.hardware_entry_failure_reason = 0;
4904 * Force online to 1 for the sake of old userspace which doesn't
4907 if (!vcpu->arch.online) {
4908 atomic_inc(&vcpu->arch.vcore->online_count);
4909 vcpu->arch.online = 1;
4912 kvmppc_core_prepare_to_enter(vcpu);
4915 atomic_inc(&kvm->arch.vcpus_running);
4916 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4920 if (IS_ENABLED(CONFIG_PPC_FPU))
4922 if (cpu_has_feature(CPU_FTR_ALTIVEC))
4924 if (cpu_has_feature(CPU_FTR_VSX))
4926 if ((cpu_has_feature(CPU_FTR_TM) ||
4927 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4928 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4930 msr = msr_check_and_set(msr);
4932 kvmppc_save_user_regs();
4934 kvmppc_save_current_sprs();
4936 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4937 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4938 vcpu->arch.pgdir = kvm->mm->pgd;
4939 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4942 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4943 if (cpu_has_feature(CPU_FTR_ARCH_300))
4944 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4945 vcpu->arch.vcore->lpcr);
4947 r = kvmppc_run_vcpu(vcpu);
4949 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4950 accumulate_time(vcpu, &vcpu->arch.hcall);
4952 if (WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4954 * These should have been caught reflected
4955 * into the guest by now. Final sanity check:
4956 * don't allow userspace to execute hcalls in
4962 trace_kvm_hcall_enter(vcpu);
4963 r = kvmppc_pseries_do_hcall(vcpu);
4964 trace_kvm_hcall_exit(vcpu, r);
4965 kvmppc_core_prepare_to_enter(vcpu);
4966 } else if (r == RESUME_PAGE_FAULT) {
4967 accumulate_time(vcpu, &vcpu->arch.pg_fault);
4968 srcu_idx = srcu_read_lock(&kvm->srcu);
4969 r = kvmppc_book3s_hv_page_fault(vcpu,
4970 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4971 srcu_read_unlock(&kvm->srcu, srcu_idx);
4972 } else if (r == RESUME_PASSTHROUGH) {
4973 if (WARN_ON(xics_on_xive()))
4976 r = kvmppc_xics_rm_complete(vcpu, 0);
4978 } while (is_kvmppc_resume_guest(r));
4979 accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4981 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4982 atomic_dec(&kvm->arch.vcpus_running);
4984 srr_regs_clobbered();
4991 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4992 int shift, int sllp)
4994 (*sps)->page_shift = shift;
4995 (*sps)->slb_enc = sllp;
4996 (*sps)->enc[0].page_shift = shift;
4997 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4999 * Add 16MB MPSS support (may get filtered out by userspace)
5002 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5004 (*sps)->enc[1].page_shift = 24;
5005 (*sps)->enc[1].pte_enc = penc;
5011 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5012 struct kvm_ppc_smmu_info *info)
5014 struct kvm_ppc_one_seg_page_size *sps;
5017 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5018 * POWER7 doesn't support keys for instruction accesses,
5019 * POWER8 and POWER9 do.
5021 info->data_keys = 32;
5022 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5024 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5025 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5026 info->slb_size = 32;
5028 /* We only support these sizes for now, and no muti-size segments */
5029 sps = &info->sps[0];
5030 kvmppc_add_seg_page_size(&sps, 12, 0);
5031 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5032 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5034 /* If running as a nested hypervisor, we don't support HPT guests */
5035 if (kvmhv_on_pseries())
5036 info->flags |= KVM_PPC_NO_HASH;
5042 * Get (and clear) the dirty memory log for a memory slot.
5044 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5045 struct kvm_dirty_log *log)
5047 struct kvm_memslots *slots;
5048 struct kvm_memory_slot *memslot;
5051 unsigned long *buf, *p;
5052 struct kvm_vcpu *vcpu;
5054 mutex_lock(&kvm->slots_lock);
5057 if (log->slot >= KVM_USER_MEM_SLOTS)
5060 slots = kvm_memslots(kvm);
5061 memslot = id_to_memslot(slots, log->slot);
5063 if (!memslot || !memslot->dirty_bitmap)
5067 * Use second half of bitmap area because both HPT and radix
5068 * accumulate bits in the first half.
5070 n = kvm_dirty_bitmap_bytes(memslot);
5071 buf = memslot->dirty_bitmap + n / sizeof(long);
5074 if (kvm_is_radix(kvm))
5075 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5077 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5082 * We accumulate dirty bits in the first half of the
5083 * memslot's dirty_bitmap area, for when pages are paged
5084 * out or modified by the host directly. Pick up these
5085 * bits and add them to the map.
5087 p = memslot->dirty_bitmap;
5088 for (i = 0; i < n / sizeof(long); ++i)
5089 buf[i] |= xchg(&p[i], 0);
5091 /* Harvest dirty bits from VPA and DTL updates */
5092 /* Note: we never modify the SLB shadow buffer areas */
5093 kvm_for_each_vcpu(i, vcpu, kvm) {
5094 spin_lock(&vcpu->arch.vpa_update_lock);
5095 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5096 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5097 spin_unlock(&vcpu->arch.vpa_update_lock);
5101 if (copy_to_user(log->dirty_bitmap, buf, n))
5106 mutex_unlock(&kvm->slots_lock);
5110 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5112 vfree(slot->arch.rmap);
5113 slot->arch.rmap = NULL;
5116 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5117 const struct kvm_memory_slot *old,
5118 struct kvm_memory_slot *new,
5119 enum kvm_mr_change change)
5121 if (change == KVM_MR_CREATE) {
5122 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5124 if ((size >> PAGE_SHIFT) > totalram_pages())
5127 new->arch.rmap = vzalloc(size);
5128 if (!new->arch.rmap)
5130 } else if (change != KVM_MR_DELETE) {
5131 new->arch.rmap = old->arch.rmap;
5137 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5138 struct kvm_memory_slot *old,
5139 const struct kvm_memory_slot *new,
5140 enum kvm_mr_change change)
5143 * If we are creating or modifying a memslot, it might make
5144 * some address that was previously cached as emulated
5145 * MMIO be no longer emulated MMIO, so invalidate
5146 * all the caches of emulated MMIO translations.
5148 if (change != KVM_MR_DELETE)
5149 atomic64_inc(&kvm->arch.mmio_update);
5152 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5153 * have already called kvm_arch_flush_shadow_memslot() to
5154 * flush shadow mappings. For KVM_MR_CREATE we have no
5155 * previous mappings. So the only case to handle is
5156 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5158 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5159 * to get rid of any THP PTEs in the partition-scoped page tables
5160 * so we can track dirtiness at the page level; we flush when
5161 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5164 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5165 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5166 kvmppc_radix_flush_memslot(kvm, old);
5168 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5170 if (!kvm->arch.secure_guest)
5176 * @TODO kvmppc_uvmem_memslot_create() can fail and
5177 * return error. Fix this.
5179 kvmppc_uvmem_memslot_create(kvm, new);
5182 kvmppc_uvmem_memslot_delete(kvm, old);
5185 /* TODO: Handle KVM_MR_MOVE */
5191 * Update LPCR values in kvm->arch and in vcores.
5192 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5193 * of kvm->arch.lpcr update).
5195 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5200 if ((kvm->arch.lpcr & mask) == lpcr)
5203 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5205 for (i = 0; i < KVM_MAX_VCORES; ++i) {
5206 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5210 spin_lock(&vc->lock);
5211 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5212 verify_lpcr(kvm, vc->lpcr);
5213 spin_unlock(&vc->lock);
5214 if (++cores_done >= kvm->arch.online_vcores)
5218 if (kvmhv_is_nestedv2()) {
5219 struct kvm_vcpu *vcpu;
5221 kvm_for_each_vcpu(i, vcpu, kvm) {
5222 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5227 void kvmppc_setup_partition_table(struct kvm *kvm)
5229 unsigned long dw0, dw1;
5231 if (!kvm_is_radix(kvm)) {
5232 /* PS field - page size for VRMA */
5233 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5234 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5235 /* HTABSIZE and HTABORG fields */
5236 dw0 |= kvm->arch.sdr1;
5238 /* Second dword as set by userspace */
5239 dw1 = kvm->arch.process_table;
5241 dw0 = PATB_HR | radix__get_tree_size() |
5242 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5243 dw1 = PATB_GR | kvm->arch.process_table;
5245 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5249 * Set up HPT (hashed page table) and RMA (real-mode area).
5250 * Must be called with kvm->arch.mmu_setup_lock held.
5252 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5255 struct kvm *kvm = vcpu->kvm;
5257 struct kvm_memory_slot *memslot;
5258 struct vm_area_struct *vma;
5259 unsigned long lpcr = 0, senc;
5260 unsigned long psize, porder;
5263 /* Allocate hashed page table (if not done already) and reset it */
5264 if (!kvm->arch.hpt.virt) {
5265 int order = KVM_DEFAULT_HPT_ORDER;
5266 struct kvm_hpt_info info;
5268 err = kvmppc_allocate_hpt(&info, order);
5269 /* If we get here, it means userspace didn't specify a
5270 * size explicitly. So, try successively smaller
5271 * sizes if the default failed. */
5272 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5273 err = kvmppc_allocate_hpt(&info, order);
5276 pr_err("KVM: Couldn't alloc HPT\n");
5280 kvmppc_set_hpt(kvm, &info);
5283 /* Look up the memslot for guest physical address 0 */
5284 srcu_idx = srcu_read_lock(&kvm->srcu);
5285 memslot = gfn_to_memslot(kvm, 0);
5287 /* We must have some memory at 0 by now */
5289 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5292 /* Look up the VMA for the start of this memory slot */
5293 hva = memslot->userspace_addr;
5294 mmap_read_lock(kvm->mm);
5295 vma = vma_lookup(kvm->mm, hva);
5296 if (!vma || (vma->vm_flags & VM_IO))
5299 psize = vma_kernel_pagesize(vma);
5301 mmap_read_unlock(kvm->mm);
5303 /* We can handle 4k, 64k or 16M pages in the VRMA */
5304 if (psize >= 0x1000000)
5306 else if (psize >= 0x10000)
5310 porder = __ilog2(psize);
5312 senc = slb_pgsize_encoding(psize);
5313 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5314 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5315 /* Create HPTEs in the hash page table for the VRMA */
5316 kvmppc_map_vrma(vcpu, memslot, porder);
5318 /* Update VRMASD field in the LPCR */
5319 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5320 /* the -4 is to account for senc values starting at 0x10 */
5321 lpcr = senc << (LPCR_VRMASD_SH - 4);
5322 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5325 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5329 srcu_read_unlock(&kvm->srcu, srcu_idx);
5334 mmap_read_unlock(kvm->mm);
5339 * Must be called with kvm->arch.mmu_setup_lock held and
5340 * mmu_ready = 0 and no vcpus running.
5342 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5344 unsigned long lpcr, lpcr_mask;
5346 if (nesting_enabled(kvm))
5347 kvmhv_release_all_nested(kvm);
5348 kvmppc_rmap_reset(kvm);
5349 kvm->arch.process_table = 0;
5350 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5351 spin_lock(&kvm->mmu_lock);
5352 kvm->arch.radix = 0;
5353 spin_unlock(&kvm->mmu_lock);
5354 kvmppc_free_radix(kvm);
5357 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5358 if (cpu_has_feature(CPU_FTR_ARCH_31))
5359 lpcr_mask |= LPCR_HAIL;
5360 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5366 * Must be called with kvm->arch.mmu_setup_lock held and
5367 * mmu_ready = 0 and no vcpus running.
5369 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5371 unsigned long lpcr, lpcr_mask;
5374 err = kvmppc_init_vm_radix(kvm);
5377 kvmppc_rmap_reset(kvm);
5378 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5379 spin_lock(&kvm->mmu_lock);
5380 kvm->arch.radix = 1;
5381 spin_unlock(&kvm->mmu_lock);
5382 kvmppc_free_hpt(&kvm->arch.hpt);
5384 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5385 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5386 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5387 lpcr_mask |= LPCR_HAIL;
5388 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5389 (kvm->arch.host_lpcr & LPCR_HAIL))
5392 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5397 #ifdef CONFIG_KVM_XICS
5399 * Allocate a per-core structure for managing state about which cores are
5400 * running in the host versus the guest and for exchanging data between
5401 * real mode KVM and CPU running in the host.
5402 * This is only done for the first VM.
5403 * The allocated structure stays even if all VMs have stopped.
5404 * It is only freed when the kvm-hv module is unloaded.
5405 * It's OK for this routine to fail, we just don't support host
5406 * core operations like redirecting H_IPI wakeups.
5408 void kvmppc_alloc_host_rm_ops(void)
5410 struct kvmppc_host_rm_ops *ops;
5411 unsigned long l_ops;
5415 if (cpu_has_feature(CPU_FTR_ARCH_300))
5418 /* Not the first time here ? */
5419 if (kvmppc_host_rm_ops_hv != NULL)
5422 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5426 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5427 ops->rm_core = kzalloc(size, GFP_KERNEL);
5429 if (!ops->rm_core) {
5436 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5437 if (!cpu_online(cpu))
5440 core = cpu >> threads_shift;
5441 ops->rm_core[core].rm_state.in_host = 1;
5444 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5447 * Make the contents of the kvmppc_host_rm_ops structure visible
5448 * to other CPUs before we assign it to the global variable.
5449 * Do an atomic assignment (no locks used here), but if someone
5450 * beats us to it, just free our copy and return.
5453 l_ops = (unsigned long) ops;
5455 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5457 kfree(ops->rm_core);
5462 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5463 "ppc/kvm_book3s:prepare",
5464 kvmppc_set_host_core,
5465 kvmppc_clear_host_core);
5469 void kvmppc_free_host_rm_ops(void)
5471 if (kvmppc_host_rm_ops_hv) {
5472 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5473 kfree(kvmppc_host_rm_ops_hv->rm_core);
5474 kfree(kvmppc_host_rm_ops_hv);
5475 kvmppc_host_rm_ops_hv = NULL;
5480 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5482 unsigned long lpcr, lpid;
5485 mutex_init(&kvm->arch.uvmem_lock);
5486 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5487 mutex_init(&kvm->arch.mmu_setup_lock);
5489 /* Allocate the guest's logical partition ID */
5491 if (!kvmhv_is_nestedv2()) {
5492 lpid = kvmppc_alloc_lpid();
5495 kvm->arch.lpid = lpid;
5498 kvmppc_alloc_host_rm_ops();
5500 kvmhv_vm_nested_init(kvm);
5502 if (kvmhv_is_nestedv2()) {
5504 unsigned long guest_id;
5506 rc = plpar_guest_create(0, &guest_id);
5508 if (rc != H_SUCCESS)
5509 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5516 case H_NOT_ENOUGH_RESOURCES:
5521 case H_NOT_AVAILABLE:
5524 kvm->arch.lpid = guest_id;
5529 * Since we don't flush the TLB when tearing down a VM,
5530 * and this lpid might have previously been used,
5531 * make sure we flush on each core before running the new VM.
5532 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5533 * does this flush for us.
5535 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5536 cpumask_setall(&kvm->arch.need_tlb_flush);
5538 /* Start out with the default set of hcalls enabled */
5539 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5540 sizeof(kvm->arch.enabled_hcalls));
5542 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5543 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5545 /* Init LPCR for virtual RMA mode */
5546 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5547 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5548 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5549 lpcr &= LPCR_PECE | LPCR_LPES;
5552 * The L2 LPES mode will be set by the L0 according to whether
5553 * or not it needs to take external interrupts in HV mode.
5557 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5558 LPCR_VPM0 | LPCR_VPM1;
5559 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5560 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5561 /* On POWER8 turn on online bit to enable PURR/SPURR */
5562 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5565 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5566 * Set HVICE bit to enable hypervisor virtualization interrupts.
5567 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5568 * be unnecessary but better safe than sorry in case we re-enable
5569 * EE in HV mode with this LPCR still set)
5571 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5573 lpcr |= LPCR_HVICE | LPCR_HEIC;
5576 * If xive is enabled, we route 0x500 interrupts directly
5584 * If the host uses radix, the guest starts out as radix.
5586 if (radix_enabled()) {
5587 kvm->arch.radix = 1;
5588 kvm->arch.mmu_ready = 1;
5590 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5591 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5592 cpu_has_feature(CPU_FTR_ARCH_31) &&
5593 (kvm->arch.host_lpcr & LPCR_HAIL))
5595 ret = kvmppc_init_vm_radix(kvm);
5597 if (kvmhv_is_nestedv2())
5598 plpar_guest_delete(0, kvm->arch.lpid);
5600 kvmppc_free_lpid(kvm->arch.lpid);
5603 kvmppc_setup_partition_table(kvm);
5606 verify_lpcr(kvm, lpcr);
5607 kvm->arch.lpcr = lpcr;
5609 /* Initialization for future HPT resizes */
5610 kvm->arch.resize_hpt = NULL;
5613 * Work out how many sets the TLB has, for the use of
5614 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5616 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5618 * P10 will flush all the congruence class with a single tlbiel
5620 kvm->arch.tlb_sets = 1;
5621 } else if (radix_enabled())
5622 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5623 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5624 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5625 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5626 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5628 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5631 * Track that we now have a HV mode VM active. This blocks secondary
5632 * CPU threads from coming online.
5634 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5635 kvm_hv_vm_activated();
5638 * Initialize smt_mode depending on processor.
5639 * POWER8 and earlier have to use "strict" threading, where
5640 * all vCPUs in a vcore have to run on the same (sub)core,
5641 * whereas on POWER9 the threads can each run a different
5644 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5645 kvm->arch.smt_mode = threads_per_subcore;
5647 kvm->arch.smt_mode = 1;
5648 kvm->arch.emul_smt_mode = 1;
5653 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5655 kvmppc_mmu_debugfs_init(kvm);
5656 if (radix_enabled())
5657 kvmhv_radix_debugfs_init(kvm);
5661 static void kvmppc_free_vcores(struct kvm *kvm)
5665 for (i = 0; i < KVM_MAX_VCORES; ++i)
5666 kfree(kvm->arch.vcores[i]);
5667 kvm->arch.online_vcores = 0;
5670 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5672 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5673 kvm_hv_vm_deactivated();
5675 kvmppc_free_vcores(kvm);
5678 if (kvm_is_radix(kvm))
5679 kvmppc_free_radix(kvm);
5681 kvmppc_free_hpt(&kvm->arch.hpt);
5683 /* Perform global invalidation and return lpid to the pool */
5684 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5685 if (nesting_enabled(kvm))
5686 kvmhv_release_all_nested(kvm);
5687 kvm->arch.process_table = 0;
5688 if (kvm->arch.secure_guest)
5689 uv_svm_terminate(kvm->arch.lpid);
5690 if (!kvmhv_is_nestedv2())
5691 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5694 if (kvmhv_is_nestedv2())
5695 plpar_guest_delete(0, kvm->arch.lpid);
5697 kvmppc_free_lpid(kvm->arch.lpid);
5699 kvmppc_free_pimap(kvm);
5702 /* We don't need to emulate any privileged instructions or dcbz */
5703 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5704 unsigned int inst, int *advance)
5706 return EMULATE_FAIL;
5709 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5712 return EMULATE_FAIL;
5715 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5718 return EMULATE_FAIL;
5721 static int kvmppc_core_check_processor_compat_hv(void)
5723 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5724 cpu_has_feature(CPU_FTR_ARCH_206))
5727 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5728 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5734 #ifdef CONFIG_KVM_XICS
5736 void kvmppc_free_pimap(struct kvm *kvm)
5738 kfree(kvm->arch.pimap);
5741 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5743 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5746 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5748 struct irq_desc *desc;
5749 struct kvmppc_irq_map *irq_map;
5750 struct kvmppc_passthru_irqmap *pimap;
5751 struct irq_chip *chip;
5753 struct irq_data *host_data;
5755 if (!kvm_irq_bypass)
5758 desc = irq_to_desc(host_irq);
5762 mutex_lock(&kvm->lock);
5764 pimap = kvm->arch.pimap;
5765 if (pimap == NULL) {
5766 /* First call, allocate structure to hold IRQ map */
5767 pimap = kvmppc_alloc_pimap();
5768 if (pimap == NULL) {
5769 mutex_unlock(&kvm->lock);
5772 kvm->arch.pimap = pimap;
5776 * For now, we only support interrupts for which the EOI operation
5777 * is an OPAL call followed by a write to XIRR, since that's
5778 * what our real-mode EOI code does, or a XIVE interrupt
5780 chip = irq_data_get_irq_chip(&desc->irq_data);
5781 if (!chip || !is_pnv_opal_msi(chip)) {
5782 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5783 host_irq, guest_gsi);
5784 mutex_unlock(&kvm->lock);
5789 * See if we already have an entry for this guest IRQ number.
5790 * If it's mapped to a hardware IRQ number, that's an error,
5791 * otherwise re-use this entry.
5793 for (i = 0; i < pimap->n_mapped; i++) {
5794 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5795 if (pimap->mapped[i].r_hwirq) {
5796 mutex_unlock(&kvm->lock);
5803 if (i == KVMPPC_PIRQ_MAPPED) {
5804 mutex_unlock(&kvm->lock);
5805 return -EAGAIN; /* table is full */
5808 irq_map = &pimap->mapped[i];
5810 irq_map->v_hwirq = guest_gsi;
5811 irq_map->desc = desc;
5814 * Order the above two stores before the next to serialize with
5815 * the KVM real mode handler.
5820 * The 'host_irq' number is mapped in the PCI-MSI domain but
5821 * the underlying calls, which will EOI the interrupt in real
5822 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5824 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5825 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5827 if (i == pimap->n_mapped)
5831 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5833 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5835 irq_map->r_hwirq = 0;
5837 mutex_unlock(&kvm->lock);
5842 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5844 struct irq_desc *desc;
5845 struct kvmppc_passthru_irqmap *pimap;
5848 if (!kvm_irq_bypass)
5851 desc = irq_to_desc(host_irq);
5855 mutex_lock(&kvm->lock);
5856 if (!kvm->arch.pimap)
5859 pimap = kvm->arch.pimap;
5861 for (i = 0; i < pimap->n_mapped; i++) {
5862 if (guest_gsi == pimap->mapped[i].v_hwirq)
5866 if (i == pimap->n_mapped) {
5867 mutex_unlock(&kvm->lock);
5872 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5874 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5876 /* invalidate the entry (what to do on error from the above ?) */
5877 pimap->mapped[i].r_hwirq = 0;
5880 * We don't free this structure even when the count goes to
5881 * zero. The structure is freed when we destroy the VM.
5884 mutex_unlock(&kvm->lock);
5888 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5889 struct irq_bypass_producer *prod)
5892 struct kvm_kernel_irqfd *irqfd =
5893 container_of(cons, struct kvm_kernel_irqfd, consumer);
5895 irqfd->producer = prod;
5897 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5899 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5900 prod->irq, irqfd->gsi, ret);
5905 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5906 struct irq_bypass_producer *prod)
5909 struct kvm_kernel_irqfd *irqfd =
5910 container_of(cons, struct kvm_kernel_irqfd, consumer);
5912 irqfd->producer = NULL;
5915 * When producer of consumer is unregistered, we change back to
5916 * default external interrupt handling mode - KVM real mode
5917 * will switch back to host.
5919 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5921 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5922 prod->irq, irqfd->gsi, ret);
5926 static int kvm_arch_vm_ioctl_hv(struct file *filp,
5927 unsigned int ioctl, unsigned long arg)
5929 struct kvm *kvm __maybe_unused = filp->private_data;
5930 void __user *argp = (void __user *)arg;
5935 case KVM_PPC_ALLOCATE_HTAB: {
5938 /* If we're a nested hypervisor, we currently only support radix */
5939 if (kvmhv_on_pseries()) {
5945 if (get_user(htab_order, (u32 __user *)argp))
5947 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5954 case KVM_PPC_GET_HTAB_FD: {
5955 struct kvm_get_htab_fd ghf;
5958 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5960 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5964 case KVM_PPC_RESIZE_HPT_PREPARE: {
5965 struct kvm_ppc_resize_hpt rhpt;
5968 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5971 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5975 case KVM_PPC_RESIZE_HPT_COMMIT: {
5976 struct kvm_ppc_resize_hpt rhpt;
5979 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5982 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5994 * List of hcall numbers to enable by default.
5995 * For compatibility with old userspace, we enable by default
5996 * all hcalls that were implemented before the hcall-enabling
5997 * facility was added. Note this list should not include H_RTAS.
5999 static unsigned int default_hcall_list[] = {
6005 #ifdef CONFIG_SPAPR_TCE_IOMMU
6015 #ifdef CONFIG_KVM_XICS
6026 static void init_default_hcalls(void)
6031 for (i = 0; default_hcall_list[i]; ++i) {
6032 hcall = default_hcall_list[i];
6033 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6034 __set_bit(hcall / 4, default_enabled_hcalls);
6038 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6044 /* If not on a POWER9, reject it */
6045 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6048 /* If any unknown flags set, reject it */
6049 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6052 /* GR (guest radix) bit in process_table field must match */
6053 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6054 if (!!(cfg->process_table & PATB_GR) != radix)
6057 /* Process table size field must be reasonable, i.e. <= 24 */
6058 if ((cfg->process_table & PRTS_MASK) > 24)
6061 /* We can change a guest to/from radix now, if the host is radix */
6062 if (radix && !radix_enabled())
6065 /* If we're a nested hypervisor, we currently only support radix */
6066 if (kvmhv_on_pseries() && !radix)
6069 mutex_lock(&kvm->arch.mmu_setup_lock);
6070 if (radix != kvm_is_radix(kvm)) {
6071 if (kvm->arch.mmu_ready) {
6072 kvm->arch.mmu_ready = 0;
6073 /* order mmu_ready vs. vcpus_running */
6075 if (atomic_read(&kvm->arch.vcpus_running)) {
6076 kvm->arch.mmu_ready = 1;
6082 err = kvmppc_switch_mmu_to_radix(kvm);
6084 err = kvmppc_switch_mmu_to_hpt(kvm);
6089 kvm->arch.process_table = cfg->process_table;
6090 kvmppc_setup_partition_table(kvm);
6092 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6093 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6097 mutex_unlock(&kvm->arch.mmu_setup_lock);
6101 static int kvmhv_enable_nested(struct kvm *kvm)
6105 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6107 if (!radix_enabled())
6109 if (kvmhv_is_nestedv2())
6112 /* kvm == NULL means the caller is testing if the capability exists */
6114 kvm->arch.nested_enable = true;
6118 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6123 if (kvmhv_vcpu_is_radix(vcpu)) {
6124 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6130 /* For now quadrants are the only way to access nested guest memory */
6131 if (rc && vcpu->arch.nested)
6137 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6142 if (kvmhv_vcpu_is_radix(vcpu)) {
6143 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6149 /* For now quadrants are the only way to access nested guest memory */
6150 if (rc && vcpu->arch.nested)
6156 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6158 unpin_vpa(kvm, vpa);
6160 vpa->pinned_addr = NULL;
6162 vpa->update_pending = 0;
6166 * Enable a guest to become a secure VM, or test whether
6167 * that could be enabled.
6168 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6169 * tested (kvm == NULL) or enabled (kvm != NULL).
6171 static int kvmhv_enable_svm(struct kvm *kvm)
6173 if (!kvmppc_uvmem_available())
6176 kvm->arch.svm_enabled = 1;
6181 * IOCTL handler to turn off secure mode of guest
6183 * - Release all device pages
6184 * - Issue ucall to terminate the guest on the UV side
6185 * - Unpin the VPA pages.
6186 * - Reinit the partition scoped page tables
6188 static int kvmhv_svm_off(struct kvm *kvm)
6190 struct kvm_vcpu *vcpu;
6196 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6199 mutex_lock(&kvm->arch.mmu_setup_lock);
6200 mmu_was_ready = kvm->arch.mmu_ready;
6201 if (kvm->arch.mmu_ready) {
6202 kvm->arch.mmu_ready = 0;
6203 /* order mmu_ready vs. vcpus_running */
6205 if (atomic_read(&kvm->arch.vcpus_running)) {
6206 kvm->arch.mmu_ready = 1;
6212 srcu_idx = srcu_read_lock(&kvm->srcu);
6213 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6214 struct kvm_memory_slot *memslot;
6215 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6221 kvm_for_each_memslot(memslot, bkt, slots) {
6222 kvmppc_uvmem_drop_pages(memslot, kvm, true);
6223 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6226 srcu_read_unlock(&kvm->srcu, srcu_idx);
6228 ret = uv_svm_terminate(kvm->arch.lpid);
6229 if (ret != U_SUCCESS) {
6235 * When secure guest is reset, all the guest pages are sent
6236 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6237 * chance to run and unpin their VPA pages. Unpinning of all
6238 * VPA pages is done here explicitly so that VPA pages
6239 * can be migrated to the secure side.
6241 * This is required to for the secure SMP guest to reboot
6244 kvm_for_each_vcpu(i, vcpu, kvm) {
6245 spin_lock(&vcpu->arch.vpa_update_lock);
6246 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6247 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6248 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6249 spin_unlock(&vcpu->arch.vpa_update_lock);
6252 kvmppc_setup_partition_table(kvm);
6253 kvm->arch.secure_guest = 0;
6254 kvm->arch.mmu_ready = mmu_was_ready;
6256 mutex_unlock(&kvm->arch.mmu_setup_lock);
6260 static int kvmhv_enable_dawr1(struct kvm *kvm)
6262 if (!cpu_has_feature(CPU_FTR_DAWR1))
6265 /* kvm == NULL means the caller is testing if the capability exists */
6267 kvm->arch.dawr1_enabled = true;
6271 static bool kvmppc_hash_v3_possible(void)
6273 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6276 if (!cpu_has_feature(CPU_FTR_HVMODE))
6280 * POWER9 chips before version 2.02 can't have some threads in
6281 * HPT mode and some in radix mode on the same core.
6283 if (radix_enabled()) {
6284 unsigned int pvr = mfspr(SPRN_PVR);
6285 if ((pvr >> 16) == PVR_POWER9 &&
6286 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6287 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6294 static struct kvmppc_ops kvm_ops_hv = {
6295 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6296 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6297 .get_one_reg = kvmppc_get_one_reg_hv,
6298 .set_one_reg = kvmppc_set_one_reg_hv,
6299 .vcpu_load = kvmppc_core_vcpu_load_hv,
6300 .vcpu_put = kvmppc_core_vcpu_put_hv,
6301 .inject_interrupt = kvmppc_inject_interrupt_hv,
6302 .set_msr = kvmppc_set_msr_hv,
6303 .vcpu_run = kvmppc_vcpu_run_hv,
6304 .vcpu_create = kvmppc_core_vcpu_create_hv,
6305 .vcpu_free = kvmppc_core_vcpu_free_hv,
6306 .check_requests = kvmppc_core_check_requests_hv,
6307 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
6308 .flush_memslot = kvmppc_core_flush_memslot_hv,
6309 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6310 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
6311 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6312 .age_gfn = kvm_age_gfn_hv,
6313 .test_age_gfn = kvm_test_age_gfn_hv,
6314 .set_spte_gfn = kvm_set_spte_gfn_hv,
6315 .free_memslot = kvmppc_core_free_memslot_hv,
6316 .init_vm = kvmppc_core_init_vm_hv,
6317 .destroy_vm = kvmppc_core_destroy_vm_hv,
6318 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6319 .emulate_op = kvmppc_core_emulate_op_hv,
6320 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6321 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6322 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6323 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
6324 .hcall_implemented = kvmppc_hcall_impl_hv,
6325 #ifdef CONFIG_KVM_XICS
6326 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6327 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6329 .configure_mmu = kvmhv_configure_mmu,
6330 .get_rmmu_info = kvmhv_get_rmmu_info,
6331 .set_smt_mode = kvmhv_set_smt_mode,
6332 .enable_nested = kvmhv_enable_nested,
6333 .load_from_eaddr = kvmhv_load_from_eaddr,
6334 .store_to_eaddr = kvmhv_store_to_eaddr,
6335 .enable_svm = kvmhv_enable_svm,
6336 .svm_off = kvmhv_svm_off,
6337 .enable_dawr1 = kvmhv_enable_dawr1,
6338 .hash_v3_possible = kvmppc_hash_v3_possible,
6339 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6340 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6343 static int kvm_init_subcore_bitmap(void)
6346 int nr_cores = cpu_nr_cores();
6347 struct sibling_subcore_state *sibling_subcore_state;
6349 for (i = 0; i < nr_cores; i++) {
6350 int first_cpu = i * threads_per_core;
6351 int node = cpu_to_node(first_cpu);
6353 /* Ignore if it is already allocated. */
6354 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6357 sibling_subcore_state =
6358 kzalloc_node(sizeof(struct sibling_subcore_state),
6360 if (!sibling_subcore_state)
6364 for (j = 0; j < threads_per_core; j++) {
6365 int cpu = first_cpu + j;
6367 paca_ptrs[cpu]->sibling_subcore_state =
6368 sibling_subcore_state;
6374 static int kvmppc_radix_possible(void)
6376 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6379 static int kvmppc_book3s_init_hv(void)
6383 if (!tlbie_capable) {
6384 pr_err("KVM-HV: Host does not support TLBIE\n");
6389 * FIXME!! Do we need to check on all cpus ?
6391 r = kvmppc_core_check_processor_compat_hv();
6395 r = kvmhv_nested_init();
6399 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6400 r = kvm_init_subcore_bitmap();
6406 * We need a way of accessing the XICS interrupt controller,
6407 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6408 * indirectly, via OPAL.
6411 if (!xics_on_xive() && !kvmhv_on_pseries() &&
6412 !local_paca->kvm_hstate.xics_phys) {
6413 struct device_node *np;
6415 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6417 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6421 /* presence of intc confirmed - node can be dropped again */
6426 init_default_hcalls();
6430 r = kvmppc_mmu_hv_init();
6434 if (kvmppc_radix_possible()) {
6435 r = kvmppc_radix_init();
6440 r = kvmppc_uvmem_init();
6442 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6446 kvm_ops_hv.owner = THIS_MODULE;
6447 kvmppc_hv_ops = &kvm_ops_hv;
6452 kvmhv_nested_exit();
6453 kvmppc_radix_exit();
6458 static void kvmppc_book3s_exit_hv(void)
6460 kvmppc_uvmem_free();
6461 kvmppc_free_host_rm_ops();
6462 if (kvmppc_radix_possible())
6463 kvmppc_radix_exit();
6464 kvmppc_hv_ops = NULL;
6465 kvmhv_nested_exit();
6468 module_init(kvmppc_book3s_init_hv);
6469 module_exit(kvmppc_book3s_exit_hv);
6470 MODULE_LICENSE("GPL");
6471 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6472 MODULE_ALIAS("devname:kvm");