2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
144 #include "net-sysfs.h"
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 static seqcount_t devnet_rename_seq;
193 static inline void dev_base_seq_inc(struct net *net)
195 while (++net->dev_base_seq == 0)
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 static inline void rps_lock(struct softnet_data *sd)
214 spin_lock(&sd->input_pkt_queue.lock);
218 static inline void rps_unlock(struct softnet_data *sd)
221 spin_unlock(&sd->input_pkt_queue.lock);
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
239 dev_base_seq_inc(net);
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
245 static void unlist_netdevice(struct net_device *dev)
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
256 dev_base_seq_inc(dev_net(dev));
263 static RAW_NOTIFIER_HEAD(netdev_chain);
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
273 #ifdef CONFIG_LOCKDEP
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
278 static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
295 static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
355 /*******************************************************************************
357 * Protocol management and registration routines
359 *******************************************************************************/
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
380 if (pt->type == htons(ETH_P_ALL))
381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
395 * This call does not sleep therefore it can not
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
400 void dev_add_pack(struct packet_type *pt)
402 struct list_head *head = ptype_head(pt);
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
408 EXPORT_SYMBOL(dev_add_pack);
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
423 void __dev_remove_pack(struct packet_type *pt)
425 struct list_head *head = ptype_head(pt);
426 struct packet_type *pt1;
428 spin_lock(&ptype_lock);
430 list_for_each_entry(pt1, head, list) {
432 list_del_rcu(&pt->list);
437 pr_warn("dev_remove_pack: %p not found\n", pt);
439 spin_unlock(&ptype_lock);
441 EXPORT_SYMBOL(__dev_remove_pack);
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
452 * This call sleeps to guarantee that no CPU is looking at the packet
455 void dev_remove_pack(struct packet_type *pt)
457 __dev_remove_pack(pt);
461 EXPORT_SYMBOL(dev_remove_pack);
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
476 void dev_add_offload(struct packet_offload *po)
478 struct packet_offload *elem;
480 spin_lock(&offload_lock);
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
485 list_add_rcu(&po->list, elem->list.prev);
486 spin_unlock(&offload_lock);
488 EXPORT_SYMBOL(dev_add_offload);
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
503 static void __dev_remove_offload(struct packet_offload *po)
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
508 spin_lock(&offload_lock);
510 list_for_each_entry(po1, head, list) {
512 list_del_rcu(&po->list);
517 pr_warn("dev_remove_offload: %p not found\n", po);
519 spin_unlock(&offload_lock);
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
531 * This call sleeps to guarantee that no CPU is looking at the packet
534 void dev_remove_offload(struct packet_offload *po)
536 __dev_remove_offload(po);
540 EXPORT_SYMBOL(dev_remove_offload);
542 /******************************************************************************
544 * Device Boot-time Settings Routines
546 ******************************************************************************/
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
562 struct netdev_boot_setup *s;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
569 strlcpy(s[i].name, name, IFNAMSIZ);
570 memcpy(&s[i].map, map, sizeof(s[i].map));
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
587 int netdev_boot_setup_check(struct net_device *dev)
589 struct netdev_boot_setup *s = dev_boot_setup;
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 !strcmp(dev->name, s[i].name)) {
595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
604 EXPORT_SYMBOL(netdev_boot_setup_check);
608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
617 unsigned long netdev_boot_base(const char *prefix, int unit)
619 const struct netdev_boot_setup *s = dev_boot_setup;
623 sprintf(name, "%s%d", prefix, unit);
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
629 if (__dev_get_by_name(&init_net, name))
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
639 * Saves at boot time configured settings for any netdevice.
641 int __init netdev_boot_setup(char *str)
646 str = get_options(str, ARRAY_SIZE(ints), ints);
651 memset(&map, 0, sizeof(map));
655 map.base_addr = ints[2];
657 map.mem_start = ints[3];
659 map.mem_end = ints[4];
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
665 __setup("netdev=", netdev_boot_setup);
667 /*******************************************************************************
669 * Device Interface Subroutines
671 *******************************************************************************/
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
681 int dev_get_iflink(const struct net_device *dev)
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
688 EXPORT_SYMBOL(dev_get_iflink);
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
701 struct ip_tunnel_info *info;
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
706 info = skb_tunnel_info_unclone(skb);
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717 * __dev_get_by_name - find a device by its name
718 * @net: the applicable net namespace
719 * @name: name to find
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
733 hlist_for_each_entry(dev, head, name_hlist)
734 if (!strncmp(dev->name, name, IFNAMSIZ))
739 EXPORT_SYMBOL(__dev_get_by_name);
742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
758 hlist_for_each_entry_rcu(dev, head, name_hlist)
759 if (!strncmp(dev->name, name, IFNAMSIZ))
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
767 * dev_get_by_name - find a device by its name
768 * @net: the applicable net namespace
769 * @name: name to find
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
780 struct net_device *dev;
783 dev = dev_get_by_name_rcu(net, name);
789 EXPORT_SYMBOL(dev_get_by_name);
792 * __dev_get_by_index - find a device by its ifindex
793 * @net: the applicable net namespace
794 * @ifindex: index of device
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
808 hlist_for_each_entry(dev, head, index_hlist)
809 if (dev->ifindex == ifindex)
814 EXPORT_SYMBOL(__dev_get_by_index);
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
832 hlist_for_each_entry_rcu(dev, head, index_hlist)
833 if (dev->ifindex == ifindex)
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
842 * dev_get_by_index - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
854 struct net_device *dev;
857 dev = dev_get_by_index_rcu(net, ifindex);
863 EXPORT_SYMBOL(dev_get_by_index);
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
875 int netdev_get_name(struct net *net, char *name, int ifindex)
877 struct net_device *dev;
881 seq = raw_seqcount_begin(&devnet_rename_seq);
883 dev = dev_get_by_index_rcu(net, ifindex);
889 strcpy(name, dev->name);
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
900 * dev_getbyhwaddr_rcu - find a device by its hardware address
901 * @net: the applicable net namespace
902 * @type: media type of device
903 * @ha: hardware address
905 * Search for an interface by MAC address. Returns NULL if the device
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
908 * The returned device has not had its ref count increased
909 * and the caller must therefore be careful about locking
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916 struct net_device *dev;
918 for_each_netdev_rcu(net, dev)
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
929 struct net_device *dev;
932 for_each_netdev(net, dev)
933 if (dev->type == type)
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
942 struct net_device *dev, *ret = NULL;
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 struct net_device *dev, *ret;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
983 EXPORT_SYMBOL(__dev_get_by_flags);
986 * dev_valid_name - check if name is okay for network device
989 * Network device names need to be valid file names to
990 * to allow sysfs to work. We also disallow any kind of
993 bool dev_valid_name(const char *name)
997 if (strlen(name) >= IFNAMSIZ)
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1003 if (*name == '/' || *name == ':' || isspace(*name))
1009 EXPORT_SYMBOL(dev_valid_name);
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1044 /* Use one page as a bit array of possible slots */
1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 for_each_netdev(net, d) {
1050 if (!sscanf(d->name, name, &i))
1052 if (i < 0 || i >= max_netdevices)
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf, IFNAMSIZ, name, i);
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1066 snprintf(buf, IFNAMSIZ, name, i);
1067 if (!__dev_get_by_name(net, buf))
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1078 * dev_alloc_name - allocate a name for a device
1080 * @name: name format string
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1097 BUG_ON(!dev_net(dev));
1099 ret = __dev_alloc_name(net, name, buf);
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1104 EXPORT_SYMBOL(dev_alloc_name);
1106 static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1113 ret = __dev_alloc_name(net, name, buf);
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1119 static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1125 if (!dev_valid_name(name))
1128 if (strchr(name, '%'))
1129 return dev_alloc_name_ns(net, dev, name);
1130 else if (__dev_get_by_name(net, name))
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
1139 * dev_change_name - change name of a device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1143 * Change name of a device, can pass format strings "eth%d".
1146 int dev_change_name(struct net_device *dev, const char *newname)
1148 unsigned char old_assign_type;
1149 char oldname[IFNAMSIZ];
1155 BUG_ON(!dev_net(dev));
1158 if (dev->flags & IFF_UP)
1161 write_seqcount_begin(&devnet_rename_seq);
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 write_seqcount_end(&devnet_rename_seq);
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1170 err = dev_get_valid_name(net, dev, newname);
1172 write_seqcount_end(&devnet_rename_seq);
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1183 ret = device_rename(&dev->dev, dev->name);
1185 memcpy(dev->name, oldname, IFNAMSIZ);
1186 dev->name_assign_type = old_assign_type;
1187 write_seqcount_end(&devnet_rename_seq);
1191 write_seqcount_end(&devnet_rename_seq);
1193 netdev_adjacent_rename_links(dev, oldname);
1195 write_lock_bh(&dev_base_lock);
1196 hlist_del_rcu(&dev->name_hlist);
1197 write_unlock_bh(&dev_base_lock);
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 write_unlock_bh(&dev_base_lock);
1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 ret = notifier_to_errno(ret);
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212 write_seqcount_begin(&devnet_rename_seq);
1213 memcpy(dev->name, oldname, IFNAMSIZ);
1214 memcpy(oldname, newname, IFNAMSIZ);
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
1219 pr_err("%s: name change rollback failed: %d\n",
1228 * dev_set_alias - change ifalias of a device
1230 * @alias: name up to IFALIASZ
1231 * @len: limit of bytes to copy from info
1233 * Set ifalias for a device,
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1241 if (len >= IFALIASZ)
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253 dev->ifalias = new_ifalias;
1255 strlcpy(dev->ifalias, alias, len+1);
1261 * netdev_features_change - device changes features
1262 * @dev: device to cause notification
1264 * Called to indicate a device has changed features.
1266 void netdev_features_change(struct net_device *dev)
1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1270 EXPORT_SYMBOL(netdev_features_change);
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1280 void netdev_state_change(struct net_device *dev)
1282 if (dev->flags & IFF_UP) {
1283 struct netdev_notifier_change_info change_info;
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1291 EXPORT_SYMBOL(netdev_state_change);
1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1303 void netdev_notify_peers(struct net_device *dev)
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1310 EXPORT_SYMBOL(netdev_notify_peers);
1312 static int __dev_open(struct net_device *dev)
1314 const struct net_device_ops *ops = dev->netdev_ops;
1319 if (!netif_device_present(dev))
1322 /* Block netpoll from trying to do any rx path servicing.
1323 * If we don't do this there is a chance ndo_poll_controller
1324 * or ndo_poll may be running while we open the device
1326 netpoll_poll_disable(dev);
1328 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1329 ret = notifier_to_errno(ret);
1333 set_bit(__LINK_STATE_START, &dev->state);
1335 if (ops->ndo_validate_addr)
1336 ret = ops->ndo_validate_addr(dev);
1338 if (!ret && ops->ndo_open)
1339 ret = ops->ndo_open(dev);
1341 netpoll_poll_enable(dev);
1344 clear_bit(__LINK_STATE_START, &dev->state);
1346 dev->flags |= IFF_UP;
1347 dev_set_rx_mode(dev);
1349 add_device_randomness(dev->dev_addr, dev->addr_len);
1356 * dev_open - prepare an interface for use.
1357 * @dev: device to open
1359 * Takes a device from down to up state. The device's private open
1360 * function is invoked and then the multicast lists are loaded. Finally
1361 * the device is moved into the up state and a %NETDEV_UP message is
1362 * sent to the netdev notifier chain.
1364 * Calling this function on an active interface is a nop. On a failure
1365 * a negative errno code is returned.
1367 int dev_open(struct net_device *dev)
1371 if (dev->flags & IFF_UP)
1374 ret = __dev_open(dev);
1378 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1379 call_netdevice_notifiers(NETDEV_UP, dev);
1383 EXPORT_SYMBOL(dev_open);
1385 static int __dev_close_many(struct list_head *head)
1387 struct net_device *dev;
1392 list_for_each_entry(dev, head, close_list) {
1393 /* Temporarily disable netpoll until the interface is down */
1394 netpoll_poll_disable(dev);
1396 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1398 clear_bit(__LINK_STATE_START, &dev->state);
1400 /* Synchronize to scheduled poll. We cannot touch poll list, it
1401 * can be even on different cpu. So just clear netif_running().
1403 * dev->stop() will invoke napi_disable() on all of it's
1404 * napi_struct instances on this device.
1406 smp_mb__after_atomic(); /* Commit netif_running(). */
1409 dev_deactivate_many(head);
1411 list_for_each_entry(dev, head, close_list) {
1412 const struct net_device_ops *ops = dev->netdev_ops;
1415 * Call the device specific close. This cannot fail.
1416 * Only if device is UP
1418 * We allow it to be called even after a DETACH hot-plug
1424 dev->flags &= ~IFF_UP;
1425 netpoll_poll_enable(dev);
1431 static int __dev_close(struct net_device *dev)
1436 list_add(&dev->close_list, &single);
1437 retval = __dev_close_many(&single);
1443 int dev_close_many(struct list_head *head, bool unlink)
1445 struct net_device *dev, *tmp;
1447 /* Remove the devices that don't need to be closed */
1448 list_for_each_entry_safe(dev, tmp, head, close_list)
1449 if (!(dev->flags & IFF_UP))
1450 list_del_init(&dev->close_list);
1452 __dev_close_many(head);
1454 list_for_each_entry_safe(dev, tmp, head, close_list) {
1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1456 call_netdevice_notifiers(NETDEV_DOWN, dev);
1458 list_del_init(&dev->close_list);
1463 EXPORT_SYMBOL(dev_close_many);
1466 * dev_close - shutdown an interface.
1467 * @dev: device to shutdown
1469 * This function moves an active device into down state. A
1470 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1471 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1474 int dev_close(struct net_device *dev)
1476 if (dev->flags & IFF_UP) {
1479 list_add(&dev->close_list, &single);
1480 dev_close_many(&single, true);
1485 EXPORT_SYMBOL(dev_close);
1489 * dev_disable_lro - disable Large Receive Offload on a device
1492 * Disable Large Receive Offload (LRO) on a net device. Must be
1493 * called under RTNL. This is needed if received packets may be
1494 * forwarded to another interface.
1496 void dev_disable_lro(struct net_device *dev)
1498 struct net_device *lower_dev;
1499 struct list_head *iter;
1501 dev->wanted_features &= ~NETIF_F_LRO;
1502 netdev_update_features(dev);
1504 if (unlikely(dev->features & NETIF_F_LRO))
1505 netdev_WARN(dev, "failed to disable LRO!\n");
1507 netdev_for_each_lower_dev(dev, lower_dev, iter)
1508 dev_disable_lro(lower_dev);
1510 EXPORT_SYMBOL(dev_disable_lro);
1512 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1513 struct net_device *dev)
1515 struct netdev_notifier_info info;
1517 netdev_notifier_info_init(&info, dev);
1518 return nb->notifier_call(nb, val, &info);
1521 static int dev_boot_phase = 1;
1524 * register_netdevice_notifier - register a network notifier block
1527 * Register a notifier to be called when network device events occur.
1528 * The notifier passed is linked into the kernel structures and must
1529 * not be reused until it has been unregistered. A negative errno code
1530 * is returned on a failure.
1532 * When registered all registration and up events are replayed
1533 * to the new notifier to allow device to have a race free
1534 * view of the network device list.
1537 int register_netdevice_notifier(struct notifier_block *nb)
1539 struct net_device *dev;
1540 struct net_device *last;
1545 err = raw_notifier_chain_register(&netdev_chain, nb);
1551 for_each_netdev(net, dev) {
1552 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1553 err = notifier_to_errno(err);
1557 if (!(dev->flags & IFF_UP))
1560 call_netdevice_notifier(nb, NETDEV_UP, dev);
1571 for_each_netdev(net, dev) {
1575 if (dev->flags & IFF_UP) {
1576 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1578 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1580 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1585 raw_notifier_chain_unregister(&netdev_chain, nb);
1588 EXPORT_SYMBOL(register_netdevice_notifier);
1591 * unregister_netdevice_notifier - unregister a network notifier block
1594 * Unregister a notifier previously registered by
1595 * register_netdevice_notifier(). The notifier is unlinked into the
1596 * kernel structures and may then be reused. A negative errno code
1597 * is returned on a failure.
1599 * After unregistering unregister and down device events are synthesized
1600 * for all devices on the device list to the removed notifier to remove
1601 * the need for special case cleanup code.
1604 int unregister_netdevice_notifier(struct notifier_block *nb)
1606 struct net_device *dev;
1611 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1616 for_each_netdev(net, dev) {
1617 if (dev->flags & IFF_UP) {
1618 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1620 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1622 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1629 EXPORT_SYMBOL(unregister_netdevice_notifier);
1632 * call_netdevice_notifiers_info - call all network notifier blocks
1633 * @val: value passed unmodified to notifier function
1634 * @dev: net_device pointer passed unmodified to notifier function
1635 * @info: notifier information data
1637 * Call all network notifier blocks. Parameters and return value
1638 * are as for raw_notifier_call_chain().
1641 static int call_netdevice_notifiers_info(unsigned long val,
1642 struct net_device *dev,
1643 struct netdev_notifier_info *info)
1646 netdev_notifier_info_init(info, dev);
1647 return raw_notifier_call_chain(&netdev_chain, val, info);
1651 * call_netdevice_notifiers - call all network notifier blocks
1652 * @val: value passed unmodified to notifier function
1653 * @dev: net_device pointer passed unmodified to notifier function
1655 * Call all network notifier blocks. Parameters and return value
1656 * are as for raw_notifier_call_chain().
1659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1661 struct netdev_notifier_info info;
1663 return call_netdevice_notifiers_info(val, dev, &info);
1665 EXPORT_SYMBOL(call_netdevice_notifiers);
1667 #ifdef CONFIG_NET_INGRESS
1668 static struct static_key ingress_needed __read_mostly;
1670 void net_inc_ingress_queue(void)
1672 static_key_slow_inc(&ingress_needed);
1674 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1676 void net_dec_ingress_queue(void)
1678 static_key_slow_dec(&ingress_needed);
1680 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1683 #ifdef CONFIG_NET_EGRESS
1684 static struct static_key egress_needed __read_mostly;
1686 void net_inc_egress_queue(void)
1688 static_key_slow_inc(&egress_needed);
1690 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1692 void net_dec_egress_queue(void)
1694 static_key_slow_dec(&egress_needed);
1696 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1699 static struct static_key netstamp_needed __read_mostly;
1700 #ifdef HAVE_JUMP_LABEL
1701 static atomic_t netstamp_needed_deferred;
1702 static atomic_t netstamp_wanted;
1703 static void netstamp_clear(struct work_struct *work)
1705 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708 wanted = atomic_add_return(deferred, &netstamp_wanted);
1710 static_key_enable(&netstamp_needed);
1712 static_key_disable(&netstamp_needed);
1714 static DECLARE_WORK(netstamp_work, netstamp_clear);
1717 void net_enable_timestamp(void)
1719 #ifdef HAVE_JUMP_LABEL
1723 wanted = atomic_read(&netstamp_wanted);
1726 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1729 atomic_inc(&netstamp_needed_deferred);
1730 schedule_work(&netstamp_work);
1732 static_key_slow_inc(&netstamp_needed);
1735 EXPORT_SYMBOL(net_enable_timestamp);
1737 void net_disable_timestamp(void)
1739 #ifdef HAVE_JUMP_LABEL
1743 wanted = atomic_read(&netstamp_wanted);
1746 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1749 atomic_dec(&netstamp_needed_deferred);
1750 schedule_work(&netstamp_work);
1752 static_key_slow_dec(&netstamp_needed);
1755 EXPORT_SYMBOL(net_disable_timestamp);
1757 static inline void net_timestamp_set(struct sk_buff *skb)
1760 if (static_key_false(&netstamp_needed))
1761 __net_timestamp(skb);
1764 #define net_timestamp_check(COND, SKB) \
1765 if (static_key_false(&netstamp_needed)) { \
1766 if ((COND) && !(SKB)->tstamp) \
1767 __net_timestamp(SKB); \
1770 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1774 if (!(dev->flags & IFF_UP))
1777 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1778 if (skb->len <= len)
1781 /* if TSO is enabled, we don't care about the length as the packet
1782 * could be forwarded without being segmented before
1784 if (skb_is_gso(skb))
1789 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1791 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1793 int ret = ____dev_forward_skb(dev, skb);
1796 skb->protocol = eth_type_trans(skb, dev);
1797 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1802 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1805 * dev_forward_skb - loopback an skb to another netif
1807 * @dev: destination network device
1808 * @skb: buffer to forward
1811 * NET_RX_SUCCESS (no congestion)
1812 * NET_RX_DROP (packet was dropped, but freed)
1814 * dev_forward_skb can be used for injecting an skb from the
1815 * start_xmit function of one device into the receive queue
1816 * of another device.
1818 * The receiving device may be in another namespace, so
1819 * we have to clear all information in the skb that could
1820 * impact namespace isolation.
1822 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1824 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1826 EXPORT_SYMBOL_GPL(dev_forward_skb);
1828 static inline int deliver_skb(struct sk_buff *skb,
1829 struct packet_type *pt_prev,
1830 struct net_device *orig_dev)
1832 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1834 atomic_inc(&skb->users);
1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1838 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1839 struct packet_type **pt,
1840 struct net_device *orig_dev,
1842 struct list_head *ptype_list)
1844 struct packet_type *ptype, *pt_prev = *pt;
1846 list_for_each_entry_rcu(ptype, ptype_list, list) {
1847 if (ptype->type != type)
1850 deliver_skb(skb, pt_prev, orig_dev);
1856 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1858 if (!ptype->af_packet_priv || !skb->sk)
1861 if (ptype->id_match)
1862 return ptype->id_match(ptype, skb->sk);
1863 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1870 * Support routine. Sends outgoing frames to any network
1871 * taps currently in use.
1874 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1876 struct packet_type *ptype;
1877 struct sk_buff *skb2 = NULL;
1878 struct packet_type *pt_prev = NULL;
1879 struct list_head *ptype_list = &ptype_all;
1883 list_for_each_entry_rcu(ptype, ptype_list, list) {
1884 /* Never send packets back to the socket
1887 if (skb_loop_sk(ptype, skb))
1891 deliver_skb(skb2, pt_prev, skb->dev);
1896 /* need to clone skb, done only once */
1897 skb2 = skb_clone(skb, GFP_ATOMIC);
1901 net_timestamp_set(skb2);
1903 /* skb->nh should be correctly
1904 * set by sender, so that the second statement is
1905 * just protection against buggy protocols.
1907 skb_reset_mac_header(skb2);
1909 if (skb_network_header(skb2) < skb2->data ||
1910 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1911 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1912 ntohs(skb2->protocol),
1914 skb_reset_network_header(skb2);
1917 skb2->transport_header = skb2->network_header;
1918 skb2->pkt_type = PACKET_OUTGOING;
1922 if (ptype_list == &ptype_all) {
1923 ptype_list = &dev->ptype_all;
1928 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1931 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1934 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1935 * @dev: Network device
1936 * @txq: number of queues available
1938 * If real_num_tx_queues is changed the tc mappings may no longer be
1939 * valid. To resolve this verify the tc mapping remains valid and if
1940 * not NULL the mapping. With no priorities mapping to this
1941 * offset/count pair it will no longer be used. In the worst case TC0
1942 * is invalid nothing can be done so disable priority mappings. If is
1943 * expected that drivers will fix this mapping if they can before
1944 * calling netif_set_real_num_tx_queues.
1946 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1951 /* If TC0 is invalidated disable TC mapping */
1952 if (tc->offset + tc->count > txq) {
1953 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1958 /* Invalidated prio to tc mappings set to TC0 */
1959 for (i = 1; i < TC_BITMASK + 1; i++) {
1960 int q = netdev_get_prio_tc_map(dev, i);
1962 tc = &dev->tc_to_txq[q];
1963 if (tc->offset + tc->count > txq) {
1964 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1966 netdev_set_prio_tc_map(dev, i, 0);
1971 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1974 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1977 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1978 if ((txq - tc->offset) < tc->count)
1989 static DEFINE_MUTEX(xps_map_mutex);
1990 #define xmap_dereference(P) \
1991 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1993 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1996 struct xps_map *map = NULL;
2000 map = xmap_dereference(dev_maps->cpu_map[tci]);
2004 for (pos = map->len; pos--;) {
2005 if (map->queues[pos] != index)
2009 map->queues[pos] = map->queues[--map->len];
2013 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2014 kfree_rcu(map, rcu);
2021 static bool remove_xps_queue_cpu(struct net_device *dev,
2022 struct xps_dev_maps *dev_maps,
2023 int cpu, u16 offset, u16 count)
2025 int num_tc = dev->num_tc ? : 1;
2026 bool active = false;
2029 for (tci = cpu * num_tc; num_tc--; tci++) {
2032 for (i = count, j = offset; i--; j++) {
2033 if (!remove_xps_queue(dev_maps, cpu, j))
2043 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2046 struct xps_dev_maps *dev_maps;
2048 bool active = false;
2050 mutex_lock(&xps_map_mutex);
2051 dev_maps = xmap_dereference(dev->xps_maps);
2056 for_each_possible_cpu(cpu)
2057 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061 RCU_INIT_POINTER(dev->xps_maps, NULL);
2062 kfree_rcu(dev_maps, rcu);
2065 for (i = offset + (count - 1); count--; i--)
2066 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070 mutex_unlock(&xps_map_mutex);
2073 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2075 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2078 static struct xps_map *expand_xps_map(struct xps_map *map,
2081 struct xps_map *new_map;
2082 int alloc_len = XPS_MIN_MAP_ALLOC;
2085 for (pos = 0; map && pos < map->len; pos++) {
2086 if (map->queues[pos] != index)
2091 /* Need to add queue to this CPU's existing map */
2093 if (pos < map->alloc_len)
2096 alloc_len = map->alloc_len * 2;
2099 /* Need to allocate new map to store queue on this CPU's map */
2100 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2105 for (i = 0; i < pos; i++)
2106 new_map->queues[i] = map->queues[i];
2107 new_map->alloc_len = alloc_len;
2113 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2116 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2117 int i, cpu, tci, numa_node_id = -2;
2118 int maps_sz, num_tc = 1, tc = 0;
2119 struct xps_map *map, *new_map;
2120 bool active = false;
2123 num_tc = dev->num_tc;
2124 tc = netdev_txq_to_tc(dev, index);
2129 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2130 if (maps_sz < L1_CACHE_BYTES)
2131 maps_sz = L1_CACHE_BYTES;
2133 mutex_lock(&xps_map_mutex);
2135 dev_maps = xmap_dereference(dev->xps_maps);
2137 /* allocate memory for queue storage */
2138 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2140 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2141 if (!new_dev_maps) {
2142 mutex_unlock(&xps_map_mutex);
2146 tci = cpu * num_tc + tc;
2147 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2150 map = expand_xps_map(map, cpu, index);
2154 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2158 goto out_no_new_maps;
2160 for_each_possible_cpu(cpu) {
2161 /* copy maps belonging to foreign traffic classes */
2162 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2163 /* fill in the new device map from the old device map */
2164 map = xmap_dereference(dev_maps->cpu_map[tci]);
2165 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 /* We need to explicitly update tci as prevous loop
2169 * could break out early if dev_maps is NULL.
2171 tci = cpu * num_tc + tc;
2173 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2174 /* add queue to CPU maps */
2177 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2178 while ((pos < map->len) && (map->queues[pos] != index))
2181 if (pos == map->len)
2182 map->queues[map->len++] = index;
2184 if (numa_node_id == -2)
2185 numa_node_id = cpu_to_node(cpu);
2186 else if (numa_node_id != cpu_to_node(cpu))
2189 } else if (dev_maps) {
2190 /* fill in the new device map from the old device map */
2191 map = xmap_dereference(dev_maps->cpu_map[tci]);
2192 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2195 /* copy maps belonging to foreign traffic classes */
2196 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2197 /* fill in the new device map from the old device map */
2198 map = xmap_dereference(dev_maps->cpu_map[tci]);
2199 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2205 /* Cleanup old maps */
2207 goto out_no_old_maps;
2209 for_each_possible_cpu(cpu) {
2210 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2211 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2212 map = xmap_dereference(dev_maps->cpu_map[tci]);
2213 if (map && map != new_map)
2214 kfree_rcu(map, rcu);
2218 kfree_rcu(dev_maps, rcu);
2221 dev_maps = new_dev_maps;
2225 /* update Tx queue numa node */
2226 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2227 (numa_node_id >= 0) ? numa_node_id :
2233 /* removes queue from unused CPUs */
2234 for_each_possible_cpu(cpu) {
2235 for (i = tc, tci = cpu * num_tc; i--; tci++)
2236 active |= remove_xps_queue(dev_maps, tci, index);
2237 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2238 active |= remove_xps_queue(dev_maps, tci, index);
2239 for (i = num_tc - tc, tci++; --i; tci++)
2240 active |= remove_xps_queue(dev_maps, tci, index);
2243 /* free map if not active */
2245 RCU_INIT_POINTER(dev->xps_maps, NULL);
2246 kfree_rcu(dev_maps, rcu);
2250 mutex_unlock(&xps_map_mutex);
2254 /* remove any maps that we added */
2255 for_each_possible_cpu(cpu) {
2256 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2259 xmap_dereference(dev_maps->cpu_map[tci]) :
2261 if (new_map && new_map != map)
2266 mutex_unlock(&xps_map_mutex);
2268 kfree(new_dev_maps);
2271 EXPORT_SYMBOL(netif_set_xps_queue);
2274 void netdev_reset_tc(struct net_device *dev)
2277 netif_reset_xps_queues_gt(dev, 0);
2280 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2281 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2283 EXPORT_SYMBOL(netdev_reset_tc);
2285 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2287 if (tc >= dev->num_tc)
2291 netif_reset_xps_queues(dev, offset, count);
2293 dev->tc_to_txq[tc].count = count;
2294 dev->tc_to_txq[tc].offset = offset;
2297 EXPORT_SYMBOL(netdev_set_tc_queue);
2299 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2301 if (num_tc > TC_MAX_QUEUE)
2305 netif_reset_xps_queues_gt(dev, 0);
2307 dev->num_tc = num_tc;
2310 EXPORT_SYMBOL(netdev_set_num_tc);
2313 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2314 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2316 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2320 if (txq < 1 || txq > dev->num_tx_queues)
2323 if (dev->reg_state == NETREG_REGISTERED ||
2324 dev->reg_state == NETREG_UNREGISTERING) {
2327 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2333 netif_setup_tc(dev, txq);
2335 if (txq < dev->real_num_tx_queues) {
2336 qdisc_reset_all_tx_gt(dev, txq);
2338 netif_reset_xps_queues_gt(dev, txq);
2343 dev->real_num_tx_queues = txq;
2346 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2350 * netif_set_real_num_rx_queues - set actual number of RX queues used
2351 * @dev: Network device
2352 * @rxq: Actual number of RX queues
2354 * This must be called either with the rtnl_lock held or before
2355 * registration of the net device. Returns 0 on success, or a
2356 * negative error code. If called before registration, it always
2359 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363 if (rxq < 1 || rxq > dev->num_rx_queues)
2366 if (dev->reg_state == NETREG_REGISTERED) {
2369 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2375 dev->real_num_rx_queues = rxq;
2378 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382 * netif_get_num_default_rss_queues - default number of RSS queues
2384 * This routine should set an upper limit on the number of RSS queues
2385 * used by default by multiqueue devices.
2387 int netif_get_num_default_rss_queues(void)
2389 return is_kdump_kernel() ?
2390 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2392 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2394 static void __netif_reschedule(struct Qdisc *q)
2396 struct softnet_data *sd;
2397 unsigned long flags;
2399 local_irq_save(flags);
2400 sd = this_cpu_ptr(&softnet_data);
2401 q->next_sched = NULL;
2402 *sd->output_queue_tailp = q;
2403 sd->output_queue_tailp = &q->next_sched;
2404 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2405 local_irq_restore(flags);
2408 void __netif_schedule(struct Qdisc *q)
2410 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2411 __netif_reschedule(q);
2413 EXPORT_SYMBOL(__netif_schedule);
2415 struct dev_kfree_skb_cb {
2416 enum skb_free_reason reason;
2419 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2421 return (struct dev_kfree_skb_cb *)skb->cb;
2424 void netif_schedule_queue(struct netdev_queue *txq)
2427 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2428 struct Qdisc *q = rcu_dereference(txq->qdisc);
2430 __netif_schedule(q);
2434 EXPORT_SYMBOL(netif_schedule_queue);
2436 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2438 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442 q = rcu_dereference(dev_queue->qdisc);
2443 __netif_schedule(q);
2447 EXPORT_SYMBOL(netif_tx_wake_queue);
2449 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2451 unsigned long flags;
2453 if (likely(atomic_read(&skb->users) == 1)) {
2455 atomic_set(&skb->users, 0);
2456 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2459 get_kfree_skb_cb(skb)->reason = reason;
2460 local_irq_save(flags);
2461 skb->next = __this_cpu_read(softnet_data.completion_queue);
2462 __this_cpu_write(softnet_data.completion_queue, skb);
2463 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2464 local_irq_restore(flags);
2466 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2468 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2470 if (in_irq() || irqs_disabled())
2471 __dev_kfree_skb_irq(skb, reason);
2475 EXPORT_SYMBOL(__dev_kfree_skb_any);
2479 * netif_device_detach - mark device as removed
2480 * @dev: network device
2482 * Mark device as removed from system and therefore no longer available.
2484 void netif_device_detach(struct net_device *dev)
2486 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2487 netif_running(dev)) {
2488 netif_tx_stop_all_queues(dev);
2491 EXPORT_SYMBOL(netif_device_detach);
2494 * netif_device_attach - mark device as attached
2495 * @dev: network device
2497 * Mark device as attached from system and restart if needed.
2499 void netif_device_attach(struct net_device *dev)
2501 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2502 netif_running(dev)) {
2503 netif_tx_wake_all_queues(dev);
2504 __netdev_watchdog_up(dev);
2507 EXPORT_SYMBOL(netif_device_attach);
2510 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2511 * to be used as a distribution range.
2513 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2514 unsigned int num_tx_queues)
2518 u16 qcount = num_tx_queues;
2520 if (skb_rx_queue_recorded(skb)) {
2521 hash = skb_get_rx_queue(skb);
2522 while (unlikely(hash >= num_tx_queues))
2523 hash -= num_tx_queues;
2528 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2530 qoffset = dev->tc_to_txq[tc].offset;
2531 qcount = dev->tc_to_txq[tc].count;
2534 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2536 EXPORT_SYMBOL(__skb_tx_hash);
2538 static void skb_warn_bad_offload(const struct sk_buff *skb)
2540 static const netdev_features_t null_features;
2541 struct net_device *dev = skb->dev;
2542 const char *name = "";
2544 if (!net_ratelimit())
2548 if (dev->dev.parent)
2549 name = dev_driver_string(dev->dev.parent);
2551 name = netdev_name(dev);
2553 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2554 "gso_type=%d ip_summed=%d\n",
2555 name, dev ? &dev->features : &null_features,
2556 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2557 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2558 skb_shinfo(skb)->gso_type, skb->ip_summed);
2562 * Invalidate hardware checksum when packet is to be mangled, and
2563 * complete checksum manually on outgoing path.
2565 int skb_checksum_help(struct sk_buff *skb)
2568 int ret = 0, offset;
2570 if (skb->ip_summed == CHECKSUM_COMPLETE)
2571 goto out_set_summed;
2573 if (unlikely(skb_shinfo(skb)->gso_size)) {
2574 skb_warn_bad_offload(skb);
2578 /* Before computing a checksum, we should make sure no frag could
2579 * be modified by an external entity : checksum could be wrong.
2581 if (skb_has_shared_frag(skb)) {
2582 ret = __skb_linearize(skb);
2587 offset = skb_checksum_start_offset(skb);
2588 BUG_ON(offset >= skb_headlen(skb));
2589 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2591 offset += skb->csum_offset;
2592 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2594 if (skb_cloned(skb) &&
2595 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2596 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2601 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2603 skb->ip_summed = CHECKSUM_NONE;
2607 EXPORT_SYMBOL(skb_checksum_help);
2609 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2611 __be16 type = skb->protocol;
2613 /* Tunnel gso handlers can set protocol to ethernet. */
2614 if (type == htons(ETH_P_TEB)) {
2617 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2620 eth = (struct ethhdr *)skb_mac_header(skb);
2621 type = eth->h_proto;
2624 return __vlan_get_protocol(skb, type, depth);
2628 * skb_mac_gso_segment - mac layer segmentation handler.
2629 * @skb: buffer to segment
2630 * @features: features for the output path (see dev->features)
2632 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2633 netdev_features_t features)
2635 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2636 struct packet_offload *ptype;
2637 int vlan_depth = skb->mac_len;
2638 __be16 type = skb_network_protocol(skb, &vlan_depth);
2640 if (unlikely(!type))
2641 return ERR_PTR(-EINVAL);
2643 __skb_pull(skb, vlan_depth);
2646 list_for_each_entry_rcu(ptype, &offload_base, list) {
2647 if (ptype->type == type && ptype->callbacks.gso_segment) {
2648 segs = ptype->callbacks.gso_segment(skb, features);
2654 __skb_push(skb, skb->data - skb_mac_header(skb));
2658 EXPORT_SYMBOL(skb_mac_gso_segment);
2661 /* openvswitch calls this on rx path, so we need a different check.
2663 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2666 return skb->ip_summed != CHECKSUM_PARTIAL &&
2667 skb->ip_summed != CHECKSUM_NONE;
2669 return skb->ip_summed == CHECKSUM_NONE;
2673 * __skb_gso_segment - Perform segmentation on skb.
2674 * @skb: buffer to segment
2675 * @features: features for the output path (see dev->features)
2676 * @tx_path: whether it is called in TX path
2678 * This function segments the given skb and returns a list of segments.
2680 * It may return NULL if the skb requires no segmentation. This is
2681 * only possible when GSO is used for verifying header integrity.
2683 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2685 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2686 netdev_features_t features, bool tx_path)
2688 struct sk_buff *segs;
2690 if (unlikely(skb_needs_check(skb, tx_path))) {
2693 /* We're going to init ->check field in TCP or UDP header */
2694 err = skb_cow_head(skb, 0);
2696 return ERR_PTR(err);
2699 /* Only report GSO partial support if it will enable us to
2700 * support segmentation on this frame without needing additional
2703 if (features & NETIF_F_GSO_PARTIAL) {
2704 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2705 struct net_device *dev = skb->dev;
2707 partial_features |= dev->features & dev->gso_partial_features;
2708 if (!skb_gso_ok(skb, features | partial_features))
2709 features &= ~NETIF_F_GSO_PARTIAL;
2712 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2713 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2715 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2716 SKB_GSO_CB(skb)->encap_level = 0;
2718 skb_reset_mac_header(skb);
2719 skb_reset_mac_len(skb);
2721 segs = skb_mac_gso_segment(skb, features);
2723 if (unlikely(skb_needs_check(skb, tx_path)))
2724 skb_warn_bad_offload(skb);
2728 EXPORT_SYMBOL(__skb_gso_segment);
2730 /* Take action when hardware reception checksum errors are detected. */
2732 void netdev_rx_csum_fault(struct net_device *dev)
2734 if (net_ratelimit()) {
2735 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2739 EXPORT_SYMBOL(netdev_rx_csum_fault);
2742 /* Actually, we should eliminate this check as soon as we know, that:
2743 * 1. IOMMU is present and allows to map all the memory.
2744 * 2. No high memory really exists on this machine.
2747 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2749 #ifdef CONFIG_HIGHMEM
2752 if (!(dev->features & NETIF_F_HIGHDMA)) {
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756 if (PageHighMem(skb_frag_page(frag)))
2761 if (PCI_DMA_BUS_IS_PHYS) {
2762 struct device *pdev = dev->dev.parent;
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2770 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2778 /* If MPLS offload request, verify we are testing hardware MPLS features
2779 * instead of standard features for the netdev.
2781 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2782 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2783 netdev_features_t features,
2786 if (eth_p_mpls(type))
2787 features &= skb->dev->mpls_features;
2792 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2800 static netdev_features_t harmonize_features(struct sk_buff *skb,
2801 netdev_features_t features)
2806 type = skb_network_protocol(skb, &tmp);
2807 features = net_mpls_features(skb, features, type);
2809 if (skb->ip_summed != CHECKSUM_NONE &&
2810 !can_checksum_protocol(features, type)) {
2811 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2813 if (illegal_highdma(skb->dev, skb))
2814 features &= ~NETIF_F_SG;
2819 netdev_features_t passthru_features_check(struct sk_buff *skb,
2820 struct net_device *dev,
2821 netdev_features_t features)
2825 EXPORT_SYMBOL(passthru_features_check);
2827 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2831 return vlan_features_check(skb, features);
2834 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2838 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2840 if (gso_segs > dev->gso_max_segs)
2841 return features & ~NETIF_F_GSO_MASK;
2843 /* Support for GSO partial features requires software
2844 * intervention before we can actually process the packets
2845 * so we need to strip support for any partial features now
2846 * and we can pull them back in after we have partially
2847 * segmented the frame.
2849 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2850 features &= ~dev->gso_partial_features;
2852 /* Make sure to clear the IPv4 ID mangling feature if the
2853 * IPv4 header has the potential to be fragmented.
2855 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2856 struct iphdr *iph = skb->encapsulation ?
2857 inner_ip_hdr(skb) : ip_hdr(skb);
2859 if (!(iph->frag_off & htons(IP_DF)))
2860 features &= ~NETIF_F_TSO_MANGLEID;
2866 netdev_features_t netif_skb_features(struct sk_buff *skb)
2868 struct net_device *dev = skb->dev;
2869 netdev_features_t features = dev->features;
2871 if (skb_is_gso(skb))
2872 features = gso_features_check(skb, dev, features);
2874 /* If encapsulation offload request, verify we are testing
2875 * hardware encapsulation features instead of standard
2876 * features for the netdev
2878 if (skb->encapsulation)
2879 features &= dev->hw_enc_features;
2881 if (skb_vlan_tagged(skb))
2882 features = netdev_intersect_features(features,
2883 dev->vlan_features |
2884 NETIF_F_HW_VLAN_CTAG_TX |
2885 NETIF_F_HW_VLAN_STAG_TX);
2887 if (dev->netdev_ops->ndo_features_check)
2888 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2891 features &= dflt_features_check(skb, dev, features);
2893 return harmonize_features(skb, features);
2895 EXPORT_SYMBOL(netif_skb_features);
2897 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2898 struct netdev_queue *txq, bool more)
2903 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2904 dev_queue_xmit_nit(skb, dev);
2907 trace_net_dev_start_xmit(skb, dev);
2908 rc = netdev_start_xmit(skb, dev, txq, more);
2909 trace_net_dev_xmit(skb, rc, dev, len);
2914 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2915 struct netdev_queue *txq, int *ret)
2917 struct sk_buff *skb = first;
2918 int rc = NETDEV_TX_OK;
2921 struct sk_buff *next = skb->next;
2924 rc = xmit_one(skb, dev, txq, next != NULL);
2925 if (unlikely(!dev_xmit_complete(rc))) {
2931 if (netif_xmit_stopped(txq) && skb) {
2932 rc = NETDEV_TX_BUSY;
2942 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2943 netdev_features_t features)
2945 if (skb_vlan_tag_present(skb) &&
2946 !vlan_hw_offload_capable(features, skb->vlan_proto))
2947 skb = __vlan_hwaccel_push_inside(skb);
2951 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2953 netdev_features_t features;
2955 features = netif_skb_features(skb);
2956 skb = validate_xmit_vlan(skb, features);
2960 if (netif_needs_gso(skb, features)) {
2961 struct sk_buff *segs;
2963 segs = skb_gso_segment(skb, features);
2971 if (skb_needs_linearize(skb, features) &&
2972 __skb_linearize(skb))
2975 /* If packet is not checksummed and device does not
2976 * support checksumming for this protocol, complete
2977 * checksumming here.
2979 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2980 if (skb->encapsulation)
2981 skb_set_inner_transport_header(skb,
2982 skb_checksum_start_offset(skb));
2984 skb_set_transport_header(skb,
2985 skb_checksum_start_offset(skb));
2986 if (!(features & NETIF_F_CSUM_MASK) &&
2987 skb_checksum_help(skb))
2997 atomic_long_inc(&dev->tx_dropped);
3001 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3003 struct sk_buff *next, *head = NULL, *tail;
3005 for (; skb != NULL; skb = next) {
3009 /* in case skb wont be segmented, point to itself */
3012 skb = validate_xmit_skb(skb, dev);
3020 /* If skb was segmented, skb->prev points to
3021 * the last segment. If not, it still contains skb.
3027 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3029 static void qdisc_pkt_len_init(struct sk_buff *skb)
3031 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3033 qdisc_skb_cb(skb)->pkt_len = skb->len;
3035 /* To get more precise estimation of bytes sent on wire,
3036 * we add to pkt_len the headers size of all segments
3038 if (shinfo->gso_size) {
3039 unsigned int hdr_len;
3040 u16 gso_segs = shinfo->gso_segs;
3042 /* mac layer + network layer */
3043 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3045 /* + transport layer */
3046 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3047 hdr_len += tcp_hdrlen(skb);
3049 hdr_len += sizeof(struct udphdr);
3051 if (shinfo->gso_type & SKB_GSO_DODGY)
3052 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3055 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3059 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3060 struct net_device *dev,
3061 struct netdev_queue *txq)
3063 spinlock_t *root_lock = qdisc_lock(q);
3064 struct sk_buff *to_free = NULL;
3068 qdisc_calculate_pkt_len(skb, q);
3070 * Heuristic to force contended enqueues to serialize on a
3071 * separate lock before trying to get qdisc main lock.
3072 * This permits qdisc->running owner to get the lock more
3073 * often and dequeue packets faster.
3075 contended = qdisc_is_running(q);
3076 if (unlikely(contended))
3077 spin_lock(&q->busylock);
3079 spin_lock(root_lock);
3080 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3081 __qdisc_drop(skb, &to_free);
3083 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3084 qdisc_run_begin(q)) {
3086 * This is a work-conserving queue; there are no old skbs
3087 * waiting to be sent out; and the qdisc is not running -
3088 * xmit the skb directly.
3091 qdisc_bstats_update(q, skb);
3093 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3094 if (unlikely(contended)) {
3095 spin_unlock(&q->busylock);
3102 rc = NET_XMIT_SUCCESS;
3104 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3105 if (qdisc_run_begin(q)) {
3106 if (unlikely(contended)) {
3107 spin_unlock(&q->busylock);
3113 spin_unlock(root_lock);
3114 if (unlikely(to_free))
3115 kfree_skb_list(to_free);
3116 if (unlikely(contended))
3117 spin_unlock(&q->busylock);
3121 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3122 static void skb_update_prio(struct sk_buff *skb)
3124 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3126 if (!skb->priority && skb->sk && map) {
3127 unsigned int prioidx =
3128 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3130 if (prioidx < map->priomap_len)
3131 skb->priority = map->priomap[prioidx];
3135 #define skb_update_prio(skb)
3138 DEFINE_PER_CPU(int, xmit_recursion);
3139 EXPORT_SYMBOL(xmit_recursion);
3142 * dev_loopback_xmit - loop back @skb
3143 * @net: network namespace this loopback is happening in
3144 * @sk: sk needed to be a netfilter okfn
3145 * @skb: buffer to transmit
3147 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3149 skb_reset_mac_header(skb);
3150 __skb_pull(skb, skb_network_offset(skb));
3151 skb->pkt_type = PACKET_LOOPBACK;
3152 skb->ip_summed = CHECKSUM_UNNECESSARY;
3153 WARN_ON(!skb_dst(skb));
3158 EXPORT_SYMBOL(dev_loopback_xmit);
3160 #ifdef CONFIG_NET_EGRESS
3161 static struct sk_buff *
3162 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3164 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3165 struct tcf_result cl_res;
3170 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3171 qdisc_bstats_cpu_update(cl->q, skb);
3173 switch (tc_classify(skb, cl, &cl_res, false)) {
3175 case TC_ACT_RECLASSIFY:
3176 skb->tc_index = TC_H_MIN(cl_res.classid);
3179 qdisc_qstats_cpu_drop(cl->q);
3180 *ret = NET_XMIT_DROP;
3185 *ret = NET_XMIT_SUCCESS;
3188 case TC_ACT_REDIRECT:
3189 /* No need to push/pop skb's mac_header here on egress! */
3190 skb_do_redirect(skb);
3191 *ret = NET_XMIT_SUCCESS;
3199 #endif /* CONFIG_NET_EGRESS */
3201 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3204 struct xps_dev_maps *dev_maps;
3205 struct xps_map *map;
3206 int queue_index = -1;
3209 dev_maps = rcu_dereference(dev->xps_maps);
3211 unsigned int tci = skb->sender_cpu - 1;
3215 tci += netdev_get_prio_tc_map(dev, skb->priority);
3218 map = rcu_dereference(dev_maps->cpu_map[tci]);
3221 queue_index = map->queues[0];
3223 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3225 if (unlikely(queue_index >= dev->real_num_tx_queues))
3237 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3239 struct sock *sk = skb->sk;
3240 int queue_index = sk_tx_queue_get(sk);
3242 if (queue_index < 0 || skb->ooo_okay ||
3243 queue_index >= dev->real_num_tx_queues) {
3244 int new_index = get_xps_queue(dev, skb);
3247 new_index = skb_tx_hash(dev, skb);
3249 if (queue_index != new_index && sk &&
3251 rcu_access_pointer(sk->sk_dst_cache))
3252 sk_tx_queue_set(sk, new_index);
3254 queue_index = new_index;
3260 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 struct sk_buff *skb,
3264 int queue_index = 0;
3267 u32 sender_cpu = skb->sender_cpu - 1;
3269 if (sender_cpu >= (u32)NR_CPUS)
3270 skb->sender_cpu = raw_smp_processor_id() + 1;
3273 if (dev->real_num_tx_queues != 1) {
3274 const struct net_device_ops *ops = dev->netdev_ops;
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3280 queue_index = __netdev_pick_tx(dev, skb);
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3291 * __dev_queue_xmit - transmit a buffer
3292 * @skb: buffer to transmit
3293 * @accel_priv: private data used for L2 forwarding offload
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3318 struct net_device *dev = skb->dev;
3319 struct netdev_queue *txq;
3323 skb_reset_mac_header(skb);
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
3333 skb_update_prio(skb);
3335 qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_at_ingress = 0;
3338 # ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 txq = netdev_pick_tx(dev, skb, accel_priv);
3355 q = rcu_dereference_bh(txq->qdisc);
3357 trace_net_dev_queue(skb);
3359 rc = __dev_xmit_skb(skb, q, dev, txq);
3363 /* The device has no queue. Common case for software devices:
3364 * loopback, all the sorts of tunnels...
3366 * Really, it is unlikely that netif_tx_lock protection is necessary
3367 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3369 * However, it is possible, that they rely on protection
3372 * Check this and shot the lock. It is not prone from deadlocks.
3373 *Either shot noqueue qdisc, it is even simpler 8)
3375 if (dev->flags & IFF_UP) {
3376 int cpu = smp_processor_id(); /* ok because BHs are off */
3378 if (txq->xmit_lock_owner != cpu) {
3379 if (unlikely(__this_cpu_read(xmit_recursion) >
3380 XMIT_RECURSION_LIMIT))
3381 goto recursion_alert;
3383 skb = validate_xmit_skb(skb, dev);
3387 HARD_TX_LOCK(dev, txq, cpu);
3389 if (!netif_xmit_stopped(txq)) {
3390 __this_cpu_inc(xmit_recursion);
3391 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3392 __this_cpu_dec(xmit_recursion);
3393 if (dev_xmit_complete(rc)) {
3394 HARD_TX_UNLOCK(dev, txq);
3398 HARD_TX_UNLOCK(dev, txq);
3399 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3402 /* Recursion is detected! It is possible,
3406 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3412 rcu_read_unlock_bh();
3414 atomic_long_inc(&dev->tx_dropped);
3415 kfree_skb_list(skb);
3418 rcu_read_unlock_bh();
3422 int dev_queue_xmit(struct sk_buff *skb)
3424 return __dev_queue_xmit(skb, NULL);
3426 EXPORT_SYMBOL(dev_queue_xmit);
3428 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3430 return __dev_queue_xmit(skb, accel_priv);
3432 EXPORT_SYMBOL(dev_queue_xmit_accel);
3435 /*************************************************************************
3437 *************************************************************************/
3439 int netdev_max_backlog __read_mostly = 1000;
3440 EXPORT_SYMBOL(netdev_max_backlog);
3442 int netdev_tstamp_prequeue __read_mostly = 1;
3443 int netdev_budget __read_mostly = 300;
3444 int weight_p __read_mostly = 64; /* old backlog weight */
3445 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3446 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3447 int dev_rx_weight __read_mostly = 64;
3448 int dev_tx_weight __read_mostly = 64;
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468 struct static_key rfs_needed __read_mostly;
3469 EXPORT_SYMBOL(rfs_needed);
3471 static struct rps_dev_flow *
3472 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3473 struct rps_dev_flow *rflow, u16 next_cpu)
3475 if (next_cpu < nr_cpu_ids) {
3476 #ifdef CONFIG_RFS_ACCEL
3477 struct netdev_rx_queue *rxqueue;
3478 struct rps_dev_flow_table *flow_table;
3479 struct rps_dev_flow *old_rflow;
3484 /* Should we steer this flow to a different hardware queue? */
3485 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3486 !(dev->features & NETIF_F_NTUPLE))
3488 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3489 if (rxq_index == skb_get_rx_queue(skb))
3492 rxqueue = dev->_rx + rxq_index;
3493 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3496 flow_id = skb_get_hash(skb) & flow_table->mask;
3497 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3498 rxq_index, flow_id);
3502 rflow = &flow_table->flows[flow_id];
3504 if (old_rflow->filter == rflow->filter)
3505 old_rflow->filter = RPS_NO_FILTER;
3509 per_cpu(softnet_data, next_cpu).input_queue_head;
3512 rflow->cpu = next_cpu;
3517 * get_rps_cpu is called from netif_receive_skb and returns the target
3518 * CPU from the RPS map of the receiving queue for a given skb.
3519 * rcu_read_lock must be held on entry.
3521 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3522 struct rps_dev_flow **rflowp)
3524 const struct rps_sock_flow_table *sock_flow_table;
3525 struct netdev_rx_queue *rxqueue = dev->_rx;
3526 struct rps_dev_flow_table *flow_table;
3527 struct rps_map *map;
3532 if (skb_rx_queue_recorded(skb)) {
3533 u16 index = skb_get_rx_queue(skb);
3535 if (unlikely(index >= dev->real_num_rx_queues)) {
3536 WARN_ONCE(dev->real_num_rx_queues > 1,
3537 "%s received packet on queue %u, but number "
3538 "of RX queues is %u\n",
3539 dev->name, index, dev->real_num_rx_queues);
3545 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3547 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3548 map = rcu_dereference(rxqueue->rps_map);
3549 if (!flow_table && !map)
3552 skb_reset_network_header(skb);
3553 hash = skb_get_hash(skb);
3557 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3558 if (flow_table && sock_flow_table) {
3559 struct rps_dev_flow *rflow;
3563 /* First check into global flow table if there is a match */
3564 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3565 if ((ident ^ hash) & ~rps_cpu_mask)
3568 next_cpu = ident & rps_cpu_mask;
3570 /* OK, now we know there is a match,
3571 * we can look at the local (per receive queue) flow table
3573 rflow = &flow_table->flows[hash & flow_table->mask];
3577 * If the desired CPU (where last recvmsg was done) is
3578 * different from current CPU (one in the rx-queue flow
3579 * table entry), switch if one of the following holds:
3580 * - Current CPU is unset (>= nr_cpu_ids).
3581 * - Current CPU is offline.
3582 * - The current CPU's queue tail has advanced beyond the
3583 * last packet that was enqueued using this table entry.
3584 * This guarantees that all previous packets for the flow
3585 * have been dequeued, thus preserving in order delivery.
3587 if (unlikely(tcpu != next_cpu) &&
3588 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3589 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3590 rflow->last_qtail)) >= 0)) {
3592 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3595 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3605 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3606 if (cpu_online(tcpu)) {
3616 #ifdef CONFIG_RFS_ACCEL
3619 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3620 * @dev: Device on which the filter was set
3621 * @rxq_index: RX queue index
3622 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3623 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3625 * Drivers that implement ndo_rx_flow_steer() should periodically call
3626 * this function for each installed filter and remove the filters for
3627 * which it returns %true.
3629 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3630 u32 flow_id, u16 filter_id)
3632 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3633 struct rps_dev_flow_table *flow_table;
3634 struct rps_dev_flow *rflow;
3639 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3640 if (flow_table && flow_id <= flow_table->mask) {
3641 rflow = &flow_table->flows[flow_id];
3642 cpu = ACCESS_ONCE(rflow->cpu);
3643 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3644 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3645 rflow->last_qtail) <
3646 (int)(10 * flow_table->mask)))
3652 EXPORT_SYMBOL(rps_may_expire_flow);
3654 #endif /* CONFIG_RFS_ACCEL */
3656 /* Called from hardirq (IPI) context */
3657 static void rps_trigger_softirq(void *data)
3659 struct softnet_data *sd = data;
3661 ____napi_schedule(sd, &sd->backlog);
3665 #endif /* CONFIG_RPS */
3668 * Check if this softnet_data structure is another cpu one
3669 * If yes, queue it to our IPI list and return 1
3672 static int rps_ipi_queued(struct softnet_data *sd)
3675 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3678 sd->rps_ipi_next = mysd->rps_ipi_list;
3679 mysd->rps_ipi_list = sd;
3681 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3684 #endif /* CONFIG_RPS */
3688 #ifdef CONFIG_NET_FLOW_LIMIT
3689 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3692 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3694 #ifdef CONFIG_NET_FLOW_LIMIT
3695 struct sd_flow_limit *fl;
3696 struct softnet_data *sd;
3697 unsigned int old_flow, new_flow;
3699 if (qlen < (netdev_max_backlog >> 1))
3702 sd = this_cpu_ptr(&softnet_data);
3705 fl = rcu_dereference(sd->flow_limit);
3707 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3708 old_flow = fl->history[fl->history_head];
3709 fl->history[fl->history_head] = new_flow;
3712 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3714 if (likely(fl->buckets[old_flow]))
3715 fl->buckets[old_flow]--;
3717 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3729 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3730 * queue (may be a remote CPU queue).
3732 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3733 unsigned int *qtail)
3735 struct softnet_data *sd;
3736 unsigned long flags;
3739 sd = &per_cpu(softnet_data, cpu);
3741 local_irq_save(flags);
3744 if (!netif_running(skb->dev))
3746 qlen = skb_queue_len(&sd->input_pkt_queue);
3747 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3750 __skb_queue_tail(&sd->input_pkt_queue, skb);
3751 input_queue_tail_incr_save(sd, qtail);
3753 local_irq_restore(flags);
3754 return NET_RX_SUCCESS;
3757 /* Schedule NAPI for backlog device
3758 * We can use non atomic operation since we own the queue lock
3760 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3761 if (!rps_ipi_queued(sd))
3762 ____napi_schedule(sd, &sd->backlog);
3771 local_irq_restore(flags);
3773 atomic_long_inc(&skb->dev->rx_dropped);
3778 static int netif_rx_internal(struct sk_buff *skb)
3782 net_timestamp_check(netdev_tstamp_prequeue, skb);
3784 trace_netif_rx(skb);
3786 if (static_key_false(&rps_needed)) {
3787 struct rps_dev_flow voidflow, *rflow = &voidflow;
3793 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3795 cpu = smp_processor_id();
3797 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3813 * netif_rx - post buffer to the network code
3814 * @skb: buffer to post
3816 * This function receives a packet from a device driver and queues it for
3817 * the upper (protocol) levels to process. It always succeeds. The buffer
3818 * may be dropped during processing for congestion control or by the
3822 * NET_RX_SUCCESS (no congestion)
3823 * NET_RX_DROP (packet was dropped)
3827 int netif_rx(struct sk_buff *skb)
3829 trace_netif_rx_entry(skb);
3831 return netif_rx_internal(skb);
3833 EXPORT_SYMBOL(netif_rx);
3835 int netif_rx_ni(struct sk_buff *skb)
3839 trace_netif_rx_ni_entry(skb);
3842 err = netif_rx_internal(skb);
3843 if (local_softirq_pending())
3849 EXPORT_SYMBOL(netif_rx_ni);
3851 static __latent_entropy void net_tx_action(struct softirq_action *h)
3853 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3855 if (sd->completion_queue) {
3856 struct sk_buff *clist;
3858 local_irq_disable();
3859 clist = sd->completion_queue;
3860 sd->completion_queue = NULL;
3864 struct sk_buff *skb = clist;
3866 clist = clist->next;
3868 WARN_ON(atomic_read(&skb->users));
3869 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3870 trace_consume_skb(skb);
3872 trace_kfree_skb(skb, net_tx_action);
3874 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3877 __kfree_skb_defer(skb);
3880 __kfree_skb_flush();
3883 if (sd->output_queue) {
3886 local_irq_disable();
3887 head = sd->output_queue;
3888 sd->output_queue = NULL;
3889 sd->output_queue_tailp = &sd->output_queue;
3893 struct Qdisc *q = head;
3894 spinlock_t *root_lock;
3896 head = head->next_sched;
3898 root_lock = qdisc_lock(q);
3899 spin_lock(root_lock);
3900 /* We need to make sure head->next_sched is read
3901 * before clearing __QDISC_STATE_SCHED
3903 smp_mb__before_atomic();
3904 clear_bit(__QDISC_STATE_SCHED, &q->state);
3906 spin_unlock(root_lock);
3911 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3912 /* This hook is defined here for ATM LANE */
3913 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3914 unsigned char *addr) __read_mostly;
3915 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3918 static inline struct sk_buff *
3919 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3920 struct net_device *orig_dev)
3922 #ifdef CONFIG_NET_CLS_ACT
3923 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3924 struct tcf_result cl_res;
3926 /* If there's at least one ingress present somewhere (so
3927 * we get here via enabled static key), remaining devices
3928 * that are not configured with an ingress qdisc will bail
3934 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3938 qdisc_skb_cb(skb)->pkt_len = skb->len;
3939 skb->tc_at_ingress = 1;
3940 qdisc_bstats_cpu_update(cl->q, skb);
3942 switch (tc_classify(skb, cl, &cl_res, false)) {
3944 case TC_ACT_RECLASSIFY:
3945 skb->tc_index = TC_H_MIN(cl_res.classid);
3948 qdisc_qstats_cpu_drop(cl->q);
3955 case TC_ACT_REDIRECT:
3956 /* skb_mac_header check was done by cls/act_bpf, so
3957 * we can safely push the L2 header back before
3958 * redirecting to another netdev
3960 __skb_push(skb, skb->mac_len);
3961 skb_do_redirect(skb);
3966 #endif /* CONFIG_NET_CLS_ACT */
3971 * netdev_is_rx_handler_busy - check if receive handler is registered
3972 * @dev: device to check
3974 * Check if a receive handler is already registered for a given device.
3975 * Return true if there one.
3977 * The caller must hold the rtnl_mutex.
3979 bool netdev_is_rx_handler_busy(struct net_device *dev)
3982 return dev && rtnl_dereference(dev->rx_handler);
3984 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3987 * netdev_rx_handler_register - register receive handler
3988 * @dev: device to register a handler for
3989 * @rx_handler: receive handler to register
3990 * @rx_handler_data: data pointer that is used by rx handler
3992 * Register a receive handler for a device. This handler will then be
3993 * called from __netif_receive_skb. A negative errno code is returned
3996 * The caller must hold the rtnl_mutex.
3998 * For a general description of rx_handler, see enum rx_handler_result.
4000 int netdev_rx_handler_register(struct net_device *dev,
4001 rx_handler_func_t *rx_handler,
4002 void *rx_handler_data)
4004 if (netdev_is_rx_handler_busy(dev))
4007 /* Note: rx_handler_data must be set before rx_handler */
4008 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4009 rcu_assign_pointer(dev->rx_handler, rx_handler);
4013 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4016 * netdev_rx_handler_unregister - unregister receive handler
4017 * @dev: device to unregister a handler from
4019 * Unregister a receive handler from a device.
4021 * The caller must hold the rtnl_mutex.
4023 void netdev_rx_handler_unregister(struct net_device *dev)
4027 RCU_INIT_POINTER(dev->rx_handler, NULL);
4028 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4029 * section has a guarantee to see a non NULL rx_handler_data
4033 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4035 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4038 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4039 * the special handling of PFMEMALLOC skbs.
4041 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4043 switch (skb->protocol) {
4044 case htons(ETH_P_ARP):
4045 case htons(ETH_P_IP):
4046 case htons(ETH_P_IPV6):
4047 case htons(ETH_P_8021Q):
4048 case htons(ETH_P_8021AD):
4055 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4056 int *ret, struct net_device *orig_dev)
4058 #ifdef CONFIG_NETFILTER_INGRESS
4059 if (nf_hook_ingress_active(skb)) {
4063 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4068 ingress_retval = nf_hook_ingress(skb);
4070 return ingress_retval;
4072 #endif /* CONFIG_NETFILTER_INGRESS */
4076 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4078 struct packet_type *ptype, *pt_prev;
4079 rx_handler_func_t *rx_handler;
4080 struct net_device *orig_dev;
4081 bool deliver_exact = false;
4082 int ret = NET_RX_DROP;
4085 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4087 trace_netif_receive_skb(skb);
4089 orig_dev = skb->dev;
4091 skb_reset_network_header(skb);
4092 if (!skb_transport_header_was_set(skb))
4093 skb_reset_transport_header(skb);
4094 skb_reset_mac_len(skb);
4099 skb->skb_iif = skb->dev->ifindex;
4101 __this_cpu_inc(softnet_data.processed);
4103 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4104 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4105 skb = skb_vlan_untag(skb);
4110 if (skb_skip_tc_classify(skb))
4116 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4118 ret = deliver_skb(skb, pt_prev, orig_dev);
4122 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4124 ret = deliver_skb(skb, pt_prev, orig_dev);
4129 #ifdef CONFIG_NET_INGRESS
4130 if (static_key_false(&ingress_needed)) {
4131 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4135 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4141 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4144 if (skb_vlan_tag_present(skb)) {
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4149 if (vlan_do_receive(&skb))
4151 else if (unlikely(!skb))
4155 rx_handler = rcu_dereference(skb->dev->rx_handler);
4158 ret = deliver_skb(skb, pt_prev, orig_dev);
4161 switch (rx_handler(&skb)) {
4162 case RX_HANDLER_CONSUMED:
4163 ret = NET_RX_SUCCESS;
4165 case RX_HANDLER_ANOTHER:
4167 case RX_HANDLER_EXACT:
4168 deliver_exact = true;
4169 case RX_HANDLER_PASS:
4176 if (unlikely(skb_vlan_tag_present(skb))) {
4177 if (skb_vlan_tag_get_id(skb))
4178 skb->pkt_type = PACKET_OTHERHOST;
4179 /* Note: we might in the future use prio bits
4180 * and set skb->priority like in vlan_do_receive()
4181 * For the time being, just ignore Priority Code Point
4186 type = skb->protocol;
4188 /* deliver only exact match when indicated */
4189 if (likely(!deliver_exact)) {
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &ptype_base[ntohs(type) &
4195 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 &orig_dev->ptype_specific);
4198 if (unlikely(skb->dev != orig_dev)) {
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &skb->dev->ptype_specific);
4204 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4207 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4211 atomic_long_inc(&skb->dev->rx_dropped);
4213 atomic_long_inc(&skb->dev->rx_nohandler);
4215 /* Jamal, now you will not able to escape explaining
4216 * me how you were going to use this. :-)
4225 static int __netif_receive_skb(struct sk_buff *skb)
4229 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230 unsigned long pflags = current->flags;
4233 * PFMEMALLOC skbs are special, they should
4234 * - be delivered to SOCK_MEMALLOC sockets only
4235 * - stay away from userspace
4236 * - have bounded memory usage
4238 * Use PF_MEMALLOC as this saves us from propagating the allocation
4239 * context down to all allocation sites.
4241 current->flags |= PF_MEMALLOC;
4242 ret = __netif_receive_skb_core(skb, true);
4243 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4245 ret = __netif_receive_skb_core(skb, false);
4250 static int netif_receive_skb_internal(struct sk_buff *skb)
4254 net_timestamp_check(netdev_tstamp_prequeue, skb);
4256 if (skb_defer_rx_timestamp(skb))
4257 return NET_RX_SUCCESS;
4262 if (static_key_false(&rps_needed)) {
4263 struct rps_dev_flow voidflow, *rflow = &voidflow;
4264 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4267 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4273 ret = __netif_receive_skb(skb);
4279 * netif_receive_skb - process receive buffer from network
4280 * @skb: buffer to process
4282 * netif_receive_skb() is the main receive data processing function.
4283 * It always succeeds. The buffer may be dropped during processing
4284 * for congestion control or by the protocol layers.
4286 * This function may only be called from softirq context and interrupts
4287 * should be enabled.
4289 * Return values (usually ignored):
4290 * NET_RX_SUCCESS: no congestion
4291 * NET_RX_DROP: packet was dropped
4293 int netif_receive_skb(struct sk_buff *skb)
4295 trace_netif_receive_skb_entry(skb);
4297 return netif_receive_skb_internal(skb);
4299 EXPORT_SYMBOL(netif_receive_skb);
4301 DEFINE_PER_CPU(struct work_struct, flush_works);
4303 /* Network device is going away, flush any packets still pending */
4304 static void flush_backlog(struct work_struct *work)
4306 struct sk_buff *skb, *tmp;
4307 struct softnet_data *sd;
4310 sd = this_cpu_ptr(&softnet_data);
4312 local_irq_disable();
4314 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4315 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4316 __skb_unlink(skb, &sd->input_pkt_queue);
4318 input_queue_head_incr(sd);
4324 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4325 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4326 __skb_unlink(skb, &sd->process_queue);
4328 input_queue_head_incr(sd);
4334 static void flush_all_backlogs(void)
4340 for_each_online_cpu(cpu)
4341 queue_work_on(cpu, system_highpri_wq,
4342 per_cpu_ptr(&flush_works, cpu));
4344 for_each_online_cpu(cpu)
4345 flush_work(per_cpu_ptr(&flush_works, cpu));
4350 static int napi_gro_complete(struct sk_buff *skb)
4352 struct packet_offload *ptype;
4353 __be16 type = skb->protocol;
4354 struct list_head *head = &offload_base;
4357 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4359 if (NAPI_GRO_CB(skb)->count == 1) {
4360 skb_shinfo(skb)->gso_size = 0;
4365 list_for_each_entry_rcu(ptype, head, list) {
4366 if (ptype->type != type || !ptype->callbacks.gro_complete)
4369 err = ptype->callbacks.gro_complete(skb, 0);
4375 WARN_ON(&ptype->list == head);
4377 return NET_RX_SUCCESS;
4381 return netif_receive_skb_internal(skb);
4384 /* napi->gro_list contains packets ordered by age.
4385 * youngest packets at the head of it.
4386 * Complete skbs in reverse order to reduce latencies.
4388 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4390 struct sk_buff *skb, *prev = NULL;
4392 /* scan list and build reverse chain */
4393 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4398 for (skb = prev; skb; skb = prev) {
4401 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4405 napi_gro_complete(skb);
4409 napi->gro_list = NULL;
4411 EXPORT_SYMBOL(napi_gro_flush);
4413 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4416 unsigned int maclen = skb->dev->hard_header_len;
4417 u32 hash = skb_get_hash_raw(skb);
4419 for (p = napi->gro_list; p; p = p->next) {
4420 unsigned long diffs;
4422 NAPI_GRO_CB(p)->flush = 0;
4424 if (hash != skb_get_hash_raw(p)) {
4425 NAPI_GRO_CB(p)->same_flow = 0;
4429 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430 diffs |= p->vlan_tci ^ skb->vlan_tci;
4431 diffs |= skb_metadata_dst_cmp(p, skb);
4432 if (maclen == ETH_HLEN)
4433 diffs |= compare_ether_header(skb_mac_header(p),
4434 skb_mac_header(skb));
4436 diffs = memcmp(skb_mac_header(p),
4437 skb_mac_header(skb),
4439 NAPI_GRO_CB(p)->same_flow = !diffs;
4443 static void skb_gro_reset_offset(struct sk_buff *skb)
4445 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446 const skb_frag_t *frag0 = &pinfo->frags[0];
4448 NAPI_GRO_CB(skb)->data_offset = 0;
4449 NAPI_GRO_CB(skb)->frag0 = NULL;
4450 NAPI_GRO_CB(skb)->frag0_len = 0;
4452 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4454 !PageHighMem(skb_frag_page(frag0))) {
4455 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4457 skb_frag_size(frag0),
4458 skb->end - skb->tail);
4462 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4464 struct skb_shared_info *pinfo = skb_shinfo(skb);
4466 BUG_ON(skb->end - skb->tail < grow);
4468 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4470 skb->data_len -= grow;
4473 pinfo->frags[0].page_offset += grow;
4474 skb_frag_size_sub(&pinfo->frags[0], grow);
4476 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4477 skb_frag_unref(skb, 0);
4478 memmove(pinfo->frags, pinfo->frags + 1,
4479 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4483 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4485 struct sk_buff **pp = NULL;
4486 struct packet_offload *ptype;
4487 __be16 type = skb->protocol;
4488 struct list_head *head = &offload_base;
4490 enum gro_result ret;
4493 if (!(skb->dev->features & NETIF_F_GRO))
4499 gro_list_prepare(napi, skb);
4502 list_for_each_entry_rcu(ptype, head, list) {
4503 if (ptype->type != type || !ptype->callbacks.gro_receive)
4506 skb_set_network_header(skb, skb_gro_offset(skb));
4507 skb_reset_mac_len(skb);
4508 NAPI_GRO_CB(skb)->same_flow = 0;
4509 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4510 NAPI_GRO_CB(skb)->free = 0;
4511 NAPI_GRO_CB(skb)->encap_mark = 0;
4512 NAPI_GRO_CB(skb)->recursion_counter = 0;
4513 NAPI_GRO_CB(skb)->is_fou = 0;
4514 NAPI_GRO_CB(skb)->is_atomic = 1;
4515 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4517 /* Setup for GRO checksum validation */
4518 switch (skb->ip_summed) {
4519 case CHECKSUM_COMPLETE:
4520 NAPI_GRO_CB(skb)->csum = skb->csum;
4521 NAPI_GRO_CB(skb)->csum_valid = 1;
4522 NAPI_GRO_CB(skb)->csum_cnt = 0;
4524 case CHECKSUM_UNNECESSARY:
4525 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4526 NAPI_GRO_CB(skb)->csum_valid = 0;
4529 NAPI_GRO_CB(skb)->csum_cnt = 0;
4530 NAPI_GRO_CB(skb)->csum_valid = 0;
4533 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4538 if (&ptype->list == head)
4541 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4546 same_flow = NAPI_GRO_CB(skb)->same_flow;
4547 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4550 struct sk_buff *nskb = *pp;
4554 napi_gro_complete(nskb);
4561 if (NAPI_GRO_CB(skb)->flush)
4564 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4565 struct sk_buff *nskb = napi->gro_list;
4567 /* locate the end of the list to select the 'oldest' flow */
4568 while (nskb->next) {
4574 napi_gro_complete(nskb);
4578 NAPI_GRO_CB(skb)->count = 1;
4579 NAPI_GRO_CB(skb)->age = jiffies;
4580 NAPI_GRO_CB(skb)->last = skb;
4581 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4582 skb->next = napi->gro_list;
4583 napi->gro_list = skb;
4587 grow = skb_gro_offset(skb) - skb_headlen(skb);
4589 gro_pull_from_frag0(skb, grow);
4598 struct packet_offload *gro_find_receive_by_type(__be16 type)
4600 struct list_head *offload_head = &offload_base;
4601 struct packet_offload *ptype;
4603 list_for_each_entry_rcu(ptype, offload_head, list) {
4604 if (ptype->type != type || !ptype->callbacks.gro_receive)
4610 EXPORT_SYMBOL(gro_find_receive_by_type);
4612 struct packet_offload *gro_find_complete_by_type(__be16 type)
4614 struct list_head *offload_head = &offload_base;
4615 struct packet_offload *ptype;
4617 list_for_each_entry_rcu(ptype, offload_head, list) {
4618 if (ptype->type != type || !ptype->callbacks.gro_complete)
4624 EXPORT_SYMBOL(gro_find_complete_by_type);
4626 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4630 if (netif_receive_skb_internal(skb))
4638 case GRO_MERGED_FREE:
4639 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4642 kmem_cache_free(skbuff_head_cache, skb);
4657 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4659 skb_mark_napi_id(skb, napi);
4660 trace_napi_gro_receive_entry(skb);
4662 skb_gro_reset_offset(skb);
4664 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4666 EXPORT_SYMBOL(napi_gro_receive);
4668 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4670 if (unlikely(skb->pfmemalloc)) {
4674 __skb_pull(skb, skb_headlen(skb));
4675 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4676 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4678 skb->dev = napi->dev;
4680 skb->encapsulation = 0;
4681 skb_shinfo(skb)->gso_type = 0;
4682 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4688 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4690 struct sk_buff *skb = napi->skb;
4693 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4696 skb_mark_napi_id(skb, napi);
4701 EXPORT_SYMBOL(napi_get_frags);
4703 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4704 struct sk_buff *skb,
4710 __skb_push(skb, ETH_HLEN);
4711 skb->protocol = eth_type_trans(skb, skb->dev);
4712 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4717 case GRO_MERGED_FREE:
4718 napi_reuse_skb(napi, skb);
4729 /* Upper GRO stack assumes network header starts at gro_offset=0
4730 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4731 * We copy ethernet header into skb->data to have a common layout.
4733 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4735 struct sk_buff *skb = napi->skb;
4736 const struct ethhdr *eth;
4737 unsigned int hlen = sizeof(*eth);
4741 skb_reset_mac_header(skb);
4742 skb_gro_reset_offset(skb);
4744 eth = skb_gro_header_fast(skb, 0);
4745 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4746 eth = skb_gro_header_slow(skb, hlen, 0);
4747 if (unlikely(!eth)) {
4748 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4749 __func__, napi->dev->name);
4750 napi_reuse_skb(napi, skb);
4754 gro_pull_from_frag0(skb, hlen);
4755 NAPI_GRO_CB(skb)->frag0 += hlen;
4756 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4758 __skb_pull(skb, hlen);
4761 * This works because the only protocols we care about don't require
4763 * We'll fix it up properly in napi_frags_finish()
4765 skb->protocol = eth->h_proto;
4770 gro_result_t napi_gro_frags(struct napi_struct *napi)
4772 struct sk_buff *skb = napi_frags_skb(napi);
4777 trace_napi_gro_frags_entry(skb);
4779 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4781 EXPORT_SYMBOL(napi_gro_frags);
4783 /* Compute the checksum from gro_offset and return the folded value
4784 * after adding in any pseudo checksum.
4786 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4791 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4793 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4794 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4796 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4797 !skb->csum_complete_sw)
4798 netdev_rx_csum_fault(skb->dev);
4801 NAPI_GRO_CB(skb)->csum = wsum;
4802 NAPI_GRO_CB(skb)->csum_valid = 1;
4806 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4809 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4810 * Note: called with local irq disabled, but exits with local irq enabled.
4812 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4815 struct softnet_data *remsd = sd->rps_ipi_list;
4818 sd->rps_ipi_list = NULL;
4822 /* Send pending IPI's to kick RPS processing on remote cpus. */
4824 struct softnet_data *next = remsd->rps_ipi_next;
4826 if (cpu_online(remsd->cpu))
4827 smp_call_function_single_async(remsd->cpu,
4836 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4839 return sd->rps_ipi_list != NULL;
4845 static int process_backlog(struct napi_struct *napi, int quota)
4847 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4851 /* Check if we have pending ipi, its better to send them now,
4852 * not waiting net_rx_action() end.
4854 if (sd_has_rps_ipi_waiting(sd)) {
4855 local_irq_disable();
4856 net_rps_action_and_irq_enable(sd);
4859 napi->weight = dev_rx_weight;
4861 struct sk_buff *skb;
4863 while ((skb = __skb_dequeue(&sd->process_queue))) {
4865 __netif_receive_skb(skb);
4867 input_queue_head_incr(sd);
4868 if (++work >= quota)
4873 local_irq_disable();
4875 if (skb_queue_empty(&sd->input_pkt_queue)) {
4877 * Inline a custom version of __napi_complete().
4878 * only current cpu owns and manipulates this napi,
4879 * and NAPI_STATE_SCHED is the only possible flag set
4881 * We can use a plain write instead of clear_bit(),
4882 * and we dont need an smp_mb() memory barrier.
4887 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4888 &sd->process_queue);
4898 * __napi_schedule - schedule for receive
4899 * @n: entry to schedule
4901 * The entry's receive function will be scheduled to run.
4902 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4904 void __napi_schedule(struct napi_struct *n)
4906 unsigned long flags;
4908 local_irq_save(flags);
4909 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910 local_irq_restore(flags);
4912 EXPORT_SYMBOL(__napi_schedule);
4915 * napi_schedule_prep - check if napi can be scheduled
4918 * Test if NAPI routine is already running, and if not mark
4919 * it as running. This is used as a condition variable
4920 * insure only one NAPI poll instance runs. We also make
4921 * sure there is no pending NAPI disable.
4923 bool napi_schedule_prep(struct napi_struct *n)
4925 unsigned long val, new;
4928 val = READ_ONCE(n->state);
4929 if (unlikely(val & NAPIF_STATE_DISABLE))
4931 new = val | NAPIF_STATE_SCHED;
4933 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4934 * This was suggested by Alexander Duyck, as compiler
4935 * emits better code than :
4936 * if (val & NAPIF_STATE_SCHED)
4937 * new |= NAPIF_STATE_MISSED;
4939 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4941 } while (cmpxchg(&n->state, val, new) != val);
4943 return !(val & NAPIF_STATE_SCHED);
4945 EXPORT_SYMBOL(napi_schedule_prep);
4948 * __napi_schedule_irqoff - schedule for receive
4949 * @n: entry to schedule
4951 * Variant of __napi_schedule() assuming hard irqs are masked
4953 void __napi_schedule_irqoff(struct napi_struct *n)
4955 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4957 EXPORT_SYMBOL(__napi_schedule_irqoff);
4959 bool napi_complete_done(struct napi_struct *n, int work_done)
4961 unsigned long flags, val, new;
4964 * 1) Don't let napi dequeue from the cpu poll list
4965 * just in case its running on a different cpu.
4966 * 2) If we are busy polling, do nothing here, we have
4967 * the guarantee we will be called later.
4969 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4970 NAPIF_STATE_IN_BUSY_POLL)))
4974 unsigned long timeout = 0;
4977 timeout = n->dev->gro_flush_timeout;
4980 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4981 HRTIMER_MODE_REL_PINNED);
4983 napi_gro_flush(n, false);
4985 if (unlikely(!list_empty(&n->poll_list))) {
4986 /* If n->poll_list is not empty, we need to mask irqs */
4987 local_irq_save(flags);
4988 list_del_init(&n->poll_list);
4989 local_irq_restore(flags);
4993 val = READ_ONCE(n->state);
4995 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4997 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4999 /* If STATE_MISSED was set, leave STATE_SCHED set,
5000 * because we will call napi->poll() one more time.
5001 * This C code was suggested by Alexander Duyck to help gcc.
5003 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5005 } while (cmpxchg(&n->state, val, new) != val);
5007 if (unlikely(val & NAPIF_STATE_MISSED)) {
5014 EXPORT_SYMBOL(napi_complete_done);
5016 /* must be called under rcu_read_lock(), as we dont take a reference */
5017 static struct napi_struct *napi_by_id(unsigned int napi_id)
5019 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5020 struct napi_struct *napi;
5022 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5023 if (napi->napi_id == napi_id)
5029 #if defined(CONFIG_NET_RX_BUSY_POLL)
5031 #define BUSY_POLL_BUDGET 8
5033 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5037 /* Busy polling means there is a high chance device driver hard irq
5038 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5039 * set in napi_schedule_prep().
5040 * Since we are about to call napi->poll() once more, we can safely
5041 * clear NAPI_STATE_MISSED.
5043 * Note: x86 could use a single "lock and ..." instruction
5044 * to perform these two clear_bit()
5046 clear_bit(NAPI_STATE_MISSED, &napi->state);
5047 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5051 /* All we really want here is to re-enable device interrupts.
5052 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5054 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5055 netpoll_poll_unlock(have_poll_lock);
5056 if (rc == BUSY_POLL_BUDGET)
5057 __napi_schedule(napi);
5059 if (local_softirq_pending())
5063 bool sk_busy_loop(struct sock *sk, int nonblock)
5065 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5066 int (*napi_poll)(struct napi_struct *napi, int budget);
5067 void *have_poll_lock = NULL;
5068 struct napi_struct *napi;
5077 napi = napi_by_id(sk->sk_napi_id);
5086 unsigned long val = READ_ONCE(napi->state);
5088 /* If multiple threads are competing for this napi,
5089 * we avoid dirtying napi->state as much as we can.
5091 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5092 NAPIF_STATE_IN_BUSY_POLL))
5094 if (cmpxchg(&napi->state, val,
5095 val | NAPIF_STATE_IN_BUSY_POLL |
5096 NAPIF_STATE_SCHED) != val)
5098 have_poll_lock = netpoll_poll_lock(napi);
5099 napi_poll = napi->poll;
5101 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5102 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5105 __NET_ADD_STATS(sock_net(sk),
5106 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5109 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5110 busy_loop_timeout(end_time))
5113 if (unlikely(need_resched())) {
5115 busy_poll_stop(napi, have_poll_lock);
5119 rc = !skb_queue_empty(&sk->sk_receive_queue);
5120 if (rc || busy_loop_timeout(end_time))
5127 busy_poll_stop(napi, have_poll_lock);
5129 rc = !skb_queue_empty(&sk->sk_receive_queue);
5134 EXPORT_SYMBOL(sk_busy_loop);
5136 #endif /* CONFIG_NET_RX_BUSY_POLL */
5138 static void napi_hash_add(struct napi_struct *napi)
5140 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5141 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5144 spin_lock(&napi_hash_lock);
5146 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5148 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5149 napi_gen_id = NR_CPUS + 1;
5150 } while (napi_by_id(napi_gen_id));
5151 napi->napi_id = napi_gen_id;
5153 hlist_add_head_rcu(&napi->napi_hash_node,
5154 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5156 spin_unlock(&napi_hash_lock);
5159 /* Warning : caller is responsible to make sure rcu grace period
5160 * is respected before freeing memory containing @napi
5162 bool napi_hash_del(struct napi_struct *napi)
5164 bool rcu_sync_needed = false;
5166 spin_lock(&napi_hash_lock);
5168 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5169 rcu_sync_needed = true;
5170 hlist_del_rcu(&napi->napi_hash_node);
5172 spin_unlock(&napi_hash_lock);
5173 return rcu_sync_needed;
5175 EXPORT_SYMBOL_GPL(napi_hash_del);
5177 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5179 struct napi_struct *napi;
5181 napi = container_of(timer, struct napi_struct, timer);
5183 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5184 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5186 if (napi->gro_list && !napi_disable_pending(napi) &&
5187 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5188 __napi_schedule_irqoff(napi);
5190 return HRTIMER_NORESTART;
5193 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5194 int (*poll)(struct napi_struct *, int), int weight)
5196 INIT_LIST_HEAD(&napi->poll_list);
5197 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5198 napi->timer.function = napi_watchdog;
5199 napi->gro_count = 0;
5200 napi->gro_list = NULL;
5203 if (weight > NAPI_POLL_WEIGHT)
5204 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5206 napi->weight = weight;
5207 list_add(&napi->dev_list, &dev->napi_list);
5209 #ifdef CONFIG_NETPOLL
5210 napi->poll_owner = -1;
5212 set_bit(NAPI_STATE_SCHED, &napi->state);
5213 napi_hash_add(napi);
5215 EXPORT_SYMBOL(netif_napi_add);
5217 void napi_disable(struct napi_struct *n)
5220 set_bit(NAPI_STATE_DISABLE, &n->state);
5222 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5224 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5227 hrtimer_cancel(&n->timer);
5229 clear_bit(NAPI_STATE_DISABLE, &n->state);
5231 EXPORT_SYMBOL(napi_disable);
5233 /* Must be called in process context */
5234 void netif_napi_del(struct napi_struct *napi)
5237 if (napi_hash_del(napi))
5239 list_del_init(&napi->dev_list);
5240 napi_free_frags(napi);
5242 kfree_skb_list(napi->gro_list);
5243 napi->gro_list = NULL;
5244 napi->gro_count = 0;
5246 EXPORT_SYMBOL(netif_napi_del);
5248 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5253 list_del_init(&n->poll_list);
5255 have = netpoll_poll_lock(n);
5259 /* This NAPI_STATE_SCHED test is for avoiding a race
5260 * with netpoll's poll_napi(). Only the entity which
5261 * obtains the lock and sees NAPI_STATE_SCHED set will
5262 * actually make the ->poll() call. Therefore we avoid
5263 * accidentally calling ->poll() when NAPI is not scheduled.
5266 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5267 work = n->poll(n, weight);
5268 trace_napi_poll(n, work, weight);
5271 WARN_ON_ONCE(work > weight);
5273 if (likely(work < weight))
5276 /* Drivers must not modify the NAPI state if they
5277 * consume the entire weight. In such cases this code
5278 * still "owns" the NAPI instance and therefore can
5279 * move the instance around on the list at-will.
5281 if (unlikely(napi_disable_pending(n))) {
5287 /* flush too old packets
5288 * If HZ < 1000, flush all packets.
5290 napi_gro_flush(n, HZ >= 1000);
5293 /* Some drivers may have called napi_schedule
5294 * prior to exhausting their budget.
5296 if (unlikely(!list_empty(&n->poll_list))) {
5297 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5298 n->dev ? n->dev->name : "backlog");
5302 list_add_tail(&n->poll_list, repoll);
5305 netpoll_poll_unlock(have);
5310 static __latent_entropy void net_rx_action(struct softirq_action *h)
5312 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5313 unsigned long time_limit = jiffies + 2;
5314 int budget = netdev_budget;
5318 local_irq_disable();
5319 list_splice_init(&sd->poll_list, &list);
5323 struct napi_struct *n;
5325 if (list_empty(&list)) {
5326 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5331 n = list_first_entry(&list, struct napi_struct, poll_list);
5332 budget -= napi_poll(n, &repoll);
5334 /* If softirq window is exhausted then punt.
5335 * Allow this to run for 2 jiffies since which will allow
5336 * an average latency of 1.5/HZ.
5338 if (unlikely(budget <= 0 ||
5339 time_after_eq(jiffies, time_limit))) {
5345 local_irq_disable();
5347 list_splice_tail_init(&sd->poll_list, &list);
5348 list_splice_tail(&repoll, &list);
5349 list_splice(&list, &sd->poll_list);
5350 if (!list_empty(&sd->poll_list))
5351 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5353 net_rps_action_and_irq_enable(sd);
5355 __kfree_skb_flush();
5358 struct netdev_adjacent {
5359 struct net_device *dev;
5361 /* upper master flag, there can only be one master device per list */
5364 /* counter for the number of times this device was added to us */
5367 /* private field for the users */
5370 struct list_head list;
5371 struct rcu_head rcu;
5374 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5375 struct list_head *adj_list)
5377 struct netdev_adjacent *adj;
5379 list_for_each_entry(adj, adj_list, list) {
5380 if (adj->dev == adj_dev)
5386 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5388 struct net_device *dev = data;
5390 return upper_dev == dev;
5394 * netdev_has_upper_dev - Check if device is linked to an upper device
5396 * @upper_dev: upper device to check
5398 * Find out if a device is linked to specified upper device and return true
5399 * in case it is. Note that this checks only immediate upper device,
5400 * not through a complete stack of devices. The caller must hold the RTNL lock.
5402 bool netdev_has_upper_dev(struct net_device *dev,
5403 struct net_device *upper_dev)
5407 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5410 EXPORT_SYMBOL(netdev_has_upper_dev);
5413 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5415 * @upper_dev: upper device to check
5417 * Find out if a device is linked to specified upper device and return true
5418 * in case it is. Note that this checks the entire upper device chain.
5419 * The caller must hold rcu lock.
5422 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5423 struct net_device *upper_dev)
5425 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5428 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5431 * netdev_has_any_upper_dev - Check if device is linked to some device
5434 * Find out if a device is linked to an upper device and return true in case
5435 * it is. The caller must hold the RTNL lock.
5437 static bool netdev_has_any_upper_dev(struct net_device *dev)
5441 return !list_empty(&dev->adj_list.upper);
5445 * netdev_master_upper_dev_get - Get master upper device
5448 * Find a master upper device and return pointer to it or NULL in case
5449 * it's not there. The caller must hold the RTNL lock.
5451 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5453 struct netdev_adjacent *upper;
5457 if (list_empty(&dev->adj_list.upper))
5460 upper = list_first_entry(&dev->adj_list.upper,
5461 struct netdev_adjacent, list);
5462 if (likely(upper->master))
5466 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5469 * netdev_has_any_lower_dev - Check if device is linked to some device
5472 * Find out if a device is linked to a lower device and return true in case
5473 * it is. The caller must hold the RTNL lock.
5475 static bool netdev_has_any_lower_dev(struct net_device *dev)
5479 return !list_empty(&dev->adj_list.lower);
5482 void *netdev_adjacent_get_private(struct list_head *adj_list)
5484 struct netdev_adjacent *adj;
5486 adj = list_entry(adj_list, struct netdev_adjacent, list);
5488 return adj->private;
5490 EXPORT_SYMBOL(netdev_adjacent_get_private);
5493 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5495 * @iter: list_head ** of the current position
5497 * Gets the next device from the dev's upper list, starting from iter
5498 * position. The caller must hold RCU read lock.
5500 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5501 struct list_head **iter)
5503 struct netdev_adjacent *upper;
5505 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5507 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5509 if (&upper->list == &dev->adj_list.upper)
5512 *iter = &upper->list;
5516 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5518 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5519 struct list_head **iter)
5521 struct netdev_adjacent *upper;
5523 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5525 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5527 if (&upper->list == &dev->adj_list.upper)
5530 *iter = &upper->list;
5535 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5536 int (*fn)(struct net_device *dev,
5540 struct net_device *udev;
5541 struct list_head *iter;
5544 for (iter = &dev->adj_list.upper,
5545 udev = netdev_next_upper_dev_rcu(dev, &iter);
5547 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5548 /* first is the upper device itself */
5549 ret = fn(udev, data);
5553 /* then look at all of its upper devices */
5554 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5561 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5564 * netdev_lower_get_next_private - Get the next ->private from the
5565 * lower neighbour list
5567 * @iter: list_head ** of the current position
5569 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5570 * list, starting from iter position. The caller must hold either hold the
5571 * RTNL lock or its own locking that guarantees that the neighbour lower
5572 * list will remain unchanged.
5574 void *netdev_lower_get_next_private(struct net_device *dev,
5575 struct list_head **iter)
5577 struct netdev_adjacent *lower;
5579 lower = list_entry(*iter, struct netdev_adjacent, list);
5581 if (&lower->list == &dev->adj_list.lower)
5584 *iter = lower->list.next;
5586 return lower->private;
5588 EXPORT_SYMBOL(netdev_lower_get_next_private);
5591 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5592 * lower neighbour list, RCU
5595 * @iter: list_head ** of the current position
5597 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5598 * list, starting from iter position. The caller must hold RCU read lock.
5600 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5601 struct list_head **iter)
5603 struct netdev_adjacent *lower;
5605 WARN_ON_ONCE(!rcu_read_lock_held());
5607 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5609 if (&lower->list == &dev->adj_list.lower)
5612 *iter = &lower->list;
5614 return lower->private;
5616 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5619 * netdev_lower_get_next - Get the next device from the lower neighbour
5622 * @iter: list_head ** of the current position
5624 * Gets the next netdev_adjacent from the dev's lower neighbour
5625 * list, starting from iter position. The caller must hold RTNL lock or
5626 * its own locking that guarantees that the neighbour lower
5627 * list will remain unchanged.
5629 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5631 struct netdev_adjacent *lower;
5633 lower = list_entry(*iter, struct netdev_adjacent, list);
5635 if (&lower->list == &dev->adj_list.lower)
5638 *iter = lower->list.next;
5642 EXPORT_SYMBOL(netdev_lower_get_next);
5644 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5645 struct list_head **iter)
5647 struct netdev_adjacent *lower;
5649 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5651 if (&lower->list == &dev->adj_list.lower)
5654 *iter = &lower->list;
5659 int netdev_walk_all_lower_dev(struct net_device *dev,
5660 int (*fn)(struct net_device *dev,
5664 struct net_device *ldev;
5665 struct list_head *iter;
5668 for (iter = &dev->adj_list.lower,
5669 ldev = netdev_next_lower_dev(dev, &iter);
5671 ldev = netdev_next_lower_dev(dev, &iter)) {
5672 /* first is the lower device itself */
5673 ret = fn(ldev, data);
5677 /* then look at all of its lower devices */
5678 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5685 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5687 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5688 struct list_head **iter)
5690 struct netdev_adjacent *lower;
5692 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5693 if (&lower->list == &dev->adj_list.lower)
5696 *iter = &lower->list;
5701 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5702 int (*fn)(struct net_device *dev,
5706 struct net_device *ldev;
5707 struct list_head *iter;
5710 for (iter = &dev->adj_list.lower,
5711 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5713 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5714 /* first is the lower device itself */
5715 ret = fn(ldev, data);
5719 /* then look at all of its lower devices */
5720 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5727 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5730 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5731 * lower neighbour list, RCU
5735 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5736 * list. The caller must hold RCU read lock.
5738 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5740 struct netdev_adjacent *lower;
5742 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5743 struct netdev_adjacent, list);
5745 return lower->private;
5748 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5751 * netdev_master_upper_dev_get_rcu - Get master upper device
5754 * Find a master upper device and return pointer to it or NULL in case
5755 * it's not there. The caller must hold the RCU read lock.
5757 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5759 struct netdev_adjacent *upper;
5761 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5762 struct netdev_adjacent, list);
5763 if (upper && likely(upper->master))
5767 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5769 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5770 struct net_device *adj_dev,
5771 struct list_head *dev_list)
5773 char linkname[IFNAMSIZ+7];
5775 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5776 "upper_%s" : "lower_%s", adj_dev->name);
5777 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5780 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5782 struct list_head *dev_list)
5784 char linkname[IFNAMSIZ+7];
5786 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5787 "upper_%s" : "lower_%s", name);
5788 sysfs_remove_link(&(dev->dev.kobj), linkname);
5791 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5792 struct net_device *adj_dev,
5793 struct list_head *dev_list)
5795 return (dev_list == &dev->adj_list.upper ||
5796 dev_list == &dev->adj_list.lower) &&
5797 net_eq(dev_net(dev), dev_net(adj_dev));
5800 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5801 struct net_device *adj_dev,
5802 struct list_head *dev_list,
5803 void *private, bool master)
5805 struct netdev_adjacent *adj;
5808 adj = __netdev_find_adj(adj_dev, dev_list);
5812 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5813 dev->name, adj_dev->name, adj->ref_nr);
5818 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5823 adj->master = master;
5825 adj->private = private;
5828 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5829 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5831 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5832 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5837 /* Ensure that master link is always the first item in list. */
5839 ret = sysfs_create_link(&(dev->dev.kobj),
5840 &(adj_dev->dev.kobj), "master");
5842 goto remove_symlinks;
5844 list_add_rcu(&adj->list, dev_list);
5846 list_add_tail_rcu(&adj->list, dev_list);
5852 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5853 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5861 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5862 struct net_device *adj_dev,
5864 struct list_head *dev_list)
5866 struct netdev_adjacent *adj;
5868 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5869 dev->name, adj_dev->name, ref_nr);
5871 adj = __netdev_find_adj(adj_dev, dev_list);
5874 pr_err("Adjacency does not exist for device %s from %s\n",
5875 dev->name, adj_dev->name);
5880 if (adj->ref_nr > ref_nr) {
5881 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5882 dev->name, adj_dev->name, ref_nr,
5883 adj->ref_nr - ref_nr);
5884 adj->ref_nr -= ref_nr;
5889 sysfs_remove_link(&(dev->dev.kobj), "master");
5891 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5892 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5894 list_del_rcu(&adj->list);
5895 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5896 adj_dev->name, dev->name, adj_dev->name);
5898 kfree_rcu(adj, rcu);
5901 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5902 struct net_device *upper_dev,
5903 struct list_head *up_list,
5904 struct list_head *down_list,
5905 void *private, bool master)
5909 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5914 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5917 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5924 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5925 struct net_device *upper_dev,
5927 struct list_head *up_list,
5928 struct list_head *down_list)
5930 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5931 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5934 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5935 struct net_device *upper_dev,
5936 void *private, bool master)
5938 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5939 &dev->adj_list.upper,
5940 &upper_dev->adj_list.lower,
5944 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5945 struct net_device *upper_dev)
5947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5948 &dev->adj_list.upper,
5949 &upper_dev->adj_list.lower);
5952 static int __netdev_upper_dev_link(struct net_device *dev,
5953 struct net_device *upper_dev, bool master,
5954 void *upper_priv, void *upper_info)
5956 struct netdev_notifier_changeupper_info changeupper_info;
5961 if (dev == upper_dev)
5964 /* To prevent loops, check if dev is not upper device to upper_dev. */
5965 if (netdev_has_upper_dev(upper_dev, dev))
5968 if (netdev_has_upper_dev(dev, upper_dev))
5971 if (master && netdev_master_upper_dev_get(dev))
5974 changeupper_info.upper_dev = upper_dev;
5975 changeupper_info.master = master;
5976 changeupper_info.linking = true;
5977 changeupper_info.upper_info = upper_info;
5979 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5980 &changeupper_info.info);
5981 ret = notifier_to_errno(ret);
5985 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5990 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5991 &changeupper_info.info);
5992 ret = notifier_to_errno(ret);
5999 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6005 * netdev_upper_dev_link - Add a link to the upper device
6007 * @upper_dev: new upper device
6009 * Adds a link to device which is upper to this one. The caller must hold
6010 * the RTNL lock. On a failure a negative errno code is returned.
6011 * On success the reference counts are adjusted and the function
6014 int netdev_upper_dev_link(struct net_device *dev,
6015 struct net_device *upper_dev)
6017 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6019 EXPORT_SYMBOL(netdev_upper_dev_link);
6022 * netdev_master_upper_dev_link - Add a master link to the upper device
6024 * @upper_dev: new upper device
6025 * @upper_priv: upper device private
6026 * @upper_info: upper info to be passed down via notifier
6028 * Adds a link to device which is upper to this one. In this case, only
6029 * one master upper device can be linked, although other non-master devices
6030 * might be linked as well. The caller must hold the RTNL lock.
6031 * On a failure a negative errno code is returned. On success the reference
6032 * counts are adjusted and the function returns zero.
6034 int netdev_master_upper_dev_link(struct net_device *dev,
6035 struct net_device *upper_dev,
6036 void *upper_priv, void *upper_info)
6038 return __netdev_upper_dev_link(dev, upper_dev, true,
6039 upper_priv, upper_info);
6041 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6044 * netdev_upper_dev_unlink - Removes a link to upper device
6046 * @upper_dev: new upper device
6048 * Removes a link to device which is upper to this one. The caller must hold
6051 void netdev_upper_dev_unlink(struct net_device *dev,
6052 struct net_device *upper_dev)
6054 struct netdev_notifier_changeupper_info changeupper_info;
6058 changeupper_info.upper_dev = upper_dev;
6059 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6060 changeupper_info.linking = false;
6062 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6063 &changeupper_info.info);
6065 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6067 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6068 &changeupper_info.info);
6070 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6073 * netdev_bonding_info_change - Dispatch event about slave change
6075 * @bonding_info: info to dispatch
6077 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6078 * The caller must hold the RTNL lock.
6080 void netdev_bonding_info_change(struct net_device *dev,
6081 struct netdev_bonding_info *bonding_info)
6083 struct netdev_notifier_bonding_info info;
6085 memcpy(&info.bonding_info, bonding_info,
6086 sizeof(struct netdev_bonding_info));
6087 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6090 EXPORT_SYMBOL(netdev_bonding_info_change);
6092 static void netdev_adjacent_add_links(struct net_device *dev)
6094 struct netdev_adjacent *iter;
6096 struct net *net = dev_net(dev);
6098 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6099 if (!net_eq(net, dev_net(iter->dev)))
6101 netdev_adjacent_sysfs_add(iter->dev, dev,
6102 &iter->dev->adj_list.lower);
6103 netdev_adjacent_sysfs_add(dev, iter->dev,
6104 &dev->adj_list.upper);
6107 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6108 if (!net_eq(net, dev_net(iter->dev)))
6110 netdev_adjacent_sysfs_add(iter->dev, dev,
6111 &iter->dev->adj_list.upper);
6112 netdev_adjacent_sysfs_add(dev, iter->dev,
6113 &dev->adj_list.lower);
6117 static void netdev_adjacent_del_links(struct net_device *dev)
6119 struct netdev_adjacent *iter;
6121 struct net *net = dev_net(dev);
6123 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6124 if (!net_eq(net, dev_net(iter->dev)))
6126 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6127 &iter->dev->adj_list.lower);
6128 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6129 &dev->adj_list.upper);
6132 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6133 if (!net_eq(net, dev_net(iter->dev)))
6135 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6136 &iter->dev->adj_list.upper);
6137 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6138 &dev->adj_list.lower);
6142 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6144 struct netdev_adjacent *iter;
6146 struct net *net = dev_net(dev);
6148 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6149 if (!net_eq(net, dev_net(iter->dev)))
6151 netdev_adjacent_sysfs_del(iter->dev, oldname,
6152 &iter->dev->adj_list.lower);
6153 netdev_adjacent_sysfs_add(iter->dev, dev,
6154 &iter->dev->adj_list.lower);
6157 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6158 if (!net_eq(net, dev_net(iter->dev)))
6160 netdev_adjacent_sysfs_del(iter->dev, oldname,
6161 &iter->dev->adj_list.upper);
6162 netdev_adjacent_sysfs_add(iter->dev, dev,
6163 &iter->dev->adj_list.upper);
6167 void *netdev_lower_dev_get_private(struct net_device *dev,
6168 struct net_device *lower_dev)
6170 struct netdev_adjacent *lower;
6174 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6178 return lower->private;
6180 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6183 int dev_get_nest_level(struct net_device *dev)
6185 struct net_device *lower = NULL;
6186 struct list_head *iter;
6192 netdev_for_each_lower_dev(dev, lower, iter) {
6193 nest = dev_get_nest_level(lower);
6194 if (max_nest < nest)
6198 return max_nest + 1;
6200 EXPORT_SYMBOL(dev_get_nest_level);
6203 * netdev_lower_change - Dispatch event about lower device state change
6204 * @lower_dev: device
6205 * @lower_state_info: state to dispatch
6207 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6208 * The caller must hold the RTNL lock.
6210 void netdev_lower_state_changed(struct net_device *lower_dev,
6211 void *lower_state_info)
6213 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6216 changelowerstate_info.lower_state_info = lower_state_info;
6217 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6218 &changelowerstate_info.info);
6220 EXPORT_SYMBOL(netdev_lower_state_changed);
6222 static void dev_change_rx_flags(struct net_device *dev, int flags)
6224 const struct net_device_ops *ops = dev->netdev_ops;
6226 if (ops->ndo_change_rx_flags)
6227 ops->ndo_change_rx_flags(dev, flags);
6230 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6232 unsigned int old_flags = dev->flags;
6238 dev->flags |= IFF_PROMISC;
6239 dev->promiscuity += inc;
6240 if (dev->promiscuity == 0) {
6243 * If inc causes overflow, untouch promisc and return error.
6246 dev->flags &= ~IFF_PROMISC;
6248 dev->promiscuity -= inc;
6249 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6254 if (dev->flags != old_flags) {
6255 pr_info("device %s %s promiscuous mode\n",
6257 dev->flags & IFF_PROMISC ? "entered" : "left");
6258 if (audit_enabled) {
6259 current_uid_gid(&uid, &gid);
6260 audit_log(current->audit_context, GFP_ATOMIC,
6261 AUDIT_ANOM_PROMISCUOUS,
6262 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6263 dev->name, (dev->flags & IFF_PROMISC),
6264 (old_flags & IFF_PROMISC),
6265 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6266 from_kuid(&init_user_ns, uid),
6267 from_kgid(&init_user_ns, gid),
6268 audit_get_sessionid(current));
6271 dev_change_rx_flags(dev, IFF_PROMISC);
6274 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6279 * dev_set_promiscuity - update promiscuity count on a device
6283 * Add or remove promiscuity from a device. While the count in the device
6284 * remains above zero the interface remains promiscuous. Once it hits zero
6285 * the device reverts back to normal filtering operation. A negative inc
6286 * value is used to drop promiscuity on the device.
6287 * Return 0 if successful or a negative errno code on error.
6289 int dev_set_promiscuity(struct net_device *dev, int inc)
6291 unsigned int old_flags = dev->flags;
6294 err = __dev_set_promiscuity(dev, inc, true);
6297 if (dev->flags != old_flags)
6298 dev_set_rx_mode(dev);
6301 EXPORT_SYMBOL(dev_set_promiscuity);
6303 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6305 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6309 dev->flags |= IFF_ALLMULTI;
6310 dev->allmulti += inc;
6311 if (dev->allmulti == 0) {
6314 * If inc causes overflow, untouch allmulti and return error.
6317 dev->flags &= ~IFF_ALLMULTI;
6319 dev->allmulti -= inc;
6320 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6325 if (dev->flags ^ old_flags) {
6326 dev_change_rx_flags(dev, IFF_ALLMULTI);
6327 dev_set_rx_mode(dev);
6329 __dev_notify_flags(dev, old_flags,
6330 dev->gflags ^ old_gflags);
6336 * dev_set_allmulti - update allmulti count on a device
6340 * Add or remove reception of all multicast frames to a device. While the
6341 * count in the device remains above zero the interface remains listening
6342 * to all interfaces. Once it hits zero the device reverts back to normal
6343 * filtering operation. A negative @inc value is used to drop the counter
6344 * when releasing a resource needing all multicasts.
6345 * Return 0 if successful or a negative errno code on error.
6348 int dev_set_allmulti(struct net_device *dev, int inc)
6350 return __dev_set_allmulti(dev, inc, true);
6352 EXPORT_SYMBOL(dev_set_allmulti);
6355 * Upload unicast and multicast address lists to device and
6356 * configure RX filtering. When the device doesn't support unicast
6357 * filtering it is put in promiscuous mode while unicast addresses
6360 void __dev_set_rx_mode(struct net_device *dev)
6362 const struct net_device_ops *ops = dev->netdev_ops;
6364 /* dev_open will call this function so the list will stay sane. */
6365 if (!(dev->flags&IFF_UP))
6368 if (!netif_device_present(dev))
6371 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6372 /* Unicast addresses changes may only happen under the rtnl,
6373 * therefore calling __dev_set_promiscuity here is safe.
6375 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6376 __dev_set_promiscuity(dev, 1, false);
6377 dev->uc_promisc = true;
6378 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6379 __dev_set_promiscuity(dev, -1, false);
6380 dev->uc_promisc = false;
6384 if (ops->ndo_set_rx_mode)
6385 ops->ndo_set_rx_mode(dev);
6388 void dev_set_rx_mode(struct net_device *dev)
6390 netif_addr_lock_bh(dev);
6391 __dev_set_rx_mode(dev);
6392 netif_addr_unlock_bh(dev);
6396 * dev_get_flags - get flags reported to userspace
6399 * Get the combination of flag bits exported through APIs to userspace.
6401 unsigned int dev_get_flags(const struct net_device *dev)
6405 flags = (dev->flags & ~(IFF_PROMISC |
6410 (dev->gflags & (IFF_PROMISC |
6413 if (netif_running(dev)) {
6414 if (netif_oper_up(dev))
6415 flags |= IFF_RUNNING;
6416 if (netif_carrier_ok(dev))
6417 flags |= IFF_LOWER_UP;
6418 if (netif_dormant(dev))
6419 flags |= IFF_DORMANT;
6424 EXPORT_SYMBOL(dev_get_flags);
6426 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6428 unsigned int old_flags = dev->flags;
6434 * Set the flags on our device.
6437 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6438 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6440 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6444 * Load in the correct multicast list now the flags have changed.
6447 if ((old_flags ^ flags) & IFF_MULTICAST)
6448 dev_change_rx_flags(dev, IFF_MULTICAST);
6450 dev_set_rx_mode(dev);
6453 * Have we downed the interface. We handle IFF_UP ourselves
6454 * according to user attempts to set it, rather than blindly
6459 if ((old_flags ^ flags) & IFF_UP)
6460 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6462 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6463 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6464 unsigned int old_flags = dev->flags;
6466 dev->gflags ^= IFF_PROMISC;
6468 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6469 if (dev->flags != old_flags)
6470 dev_set_rx_mode(dev);
6473 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6474 * is important. Some (broken) drivers set IFF_PROMISC, when
6475 * IFF_ALLMULTI is requested not asking us and not reporting.
6477 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6478 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6480 dev->gflags ^= IFF_ALLMULTI;
6481 __dev_set_allmulti(dev, inc, false);
6487 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6488 unsigned int gchanges)
6490 unsigned int changes = dev->flags ^ old_flags;
6493 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6495 if (changes & IFF_UP) {
6496 if (dev->flags & IFF_UP)
6497 call_netdevice_notifiers(NETDEV_UP, dev);
6499 call_netdevice_notifiers(NETDEV_DOWN, dev);
6502 if (dev->flags & IFF_UP &&
6503 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6504 struct netdev_notifier_change_info change_info;
6506 change_info.flags_changed = changes;
6507 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6513 * dev_change_flags - change device settings
6515 * @flags: device state flags
6517 * Change settings on device based state flags. The flags are
6518 * in the userspace exported format.
6520 int dev_change_flags(struct net_device *dev, unsigned int flags)
6523 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6525 ret = __dev_change_flags(dev, flags);
6529 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6530 __dev_notify_flags(dev, old_flags, changes);
6533 EXPORT_SYMBOL(dev_change_flags);
6535 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6537 const struct net_device_ops *ops = dev->netdev_ops;
6539 if (ops->ndo_change_mtu)
6540 return ops->ndo_change_mtu(dev, new_mtu);
6547 * dev_set_mtu - Change maximum transfer unit
6549 * @new_mtu: new transfer unit
6551 * Change the maximum transfer size of the network device.
6553 int dev_set_mtu(struct net_device *dev, int new_mtu)
6557 if (new_mtu == dev->mtu)
6560 /* MTU must be positive, and in range */
6561 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6562 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6563 dev->name, new_mtu, dev->min_mtu);
6567 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6568 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6569 dev->name, new_mtu, dev->max_mtu);
6573 if (!netif_device_present(dev))
6576 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6577 err = notifier_to_errno(err);
6581 orig_mtu = dev->mtu;
6582 err = __dev_set_mtu(dev, new_mtu);
6585 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6586 err = notifier_to_errno(err);
6588 /* setting mtu back and notifying everyone again,
6589 * so that they have a chance to revert changes.
6591 __dev_set_mtu(dev, orig_mtu);
6592 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6597 EXPORT_SYMBOL(dev_set_mtu);
6600 * dev_set_group - Change group this device belongs to
6602 * @new_group: group this device should belong to
6604 void dev_set_group(struct net_device *dev, int new_group)
6606 dev->group = new_group;
6608 EXPORT_SYMBOL(dev_set_group);
6611 * dev_set_mac_address - Change Media Access Control Address
6615 * Change the hardware (MAC) address of the device
6617 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6619 const struct net_device_ops *ops = dev->netdev_ops;
6622 if (!ops->ndo_set_mac_address)
6624 if (sa->sa_family != dev->type)
6626 if (!netif_device_present(dev))
6628 err = ops->ndo_set_mac_address(dev, sa);
6631 dev->addr_assign_type = NET_ADDR_SET;
6632 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6633 add_device_randomness(dev->dev_addr, dev->addr_len);
6636 EXPORT_SYMBOL(dev_set_mac_address);
6639 * dev_change_carrier - Change device carrier
6641 * @new_carrier: new value
6643 * Change device carrier
6645 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6647 const struct net_device_ops *ops = dev->netdev_ops;
6649 if (!ops->ndo_change_carrier)
6651 if (!netif_device_present(dev))
6653 return ops->ndo_change_carrier(dev, new_carrier);
6655 EXPORT_SYMBOL(dev_change_carrier);
6658 * dev_get_phys_port_id - Get device physical port ID
6662 * Get device physical port ID
6664 int dev_get_phys_port_id(struct net_device *dev,
6665 struct netdev_phys_item_id *ppid)
6667 const struct net_device_ops *ops = dev->netdev_ops;
6669 if (!ops->ndo_get_phys_port_id)
6671 return ops->ndo_get_phys_port_id(dev, ppid);
6673 EXPORT_SYMBOL(dev_get_phys_port_id);
6676 * dev_get_phys_port_name - Get device physical port name
6679 * @len: limit of bytes to copy to name
6681 * Get device physical port name
6683 int dev_get_phys_port_name(struct net_device *dev,
6684 char *name, size_t len)
6686 const struct net_device_ops *ops = dev->netdev_ops;
6688 if (!ops->ndo_get_phys_port_name)
6690 return ops->ndo_get_phys_port_name(dev, name, len);
6692 EXPORT_SYMBOL(dev_get_phys_port_name);
6695 * dev_change_proto_down - update protocol port state information
6697 * @proto_down: new value
6699 * This info can be used by switch drivers to set the phys state of the
6702 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6704 const struct net_device_ops *ops = dev->netdev_ops;
6706 if (!ops->ndo_change_proto_down)
6708 if (!netif_device_present(dev))
6710 return ops->ndo_change_proto_down(dev, proto_down);
6712 EXPORT_SYMBOL(dev_change_proto_down);
6715 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6717 * @fd: new program fd or negative value to clear
6718 * @flags: xdp-related flags
6720 * Set or clear a bpf program for a device
6722 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6724 const struct net_device_ops *ops = dev->netdev_ops;
6725 struct bpf_prog *prog = NULL;
6726 struct netdev_xdp xdp;
6734 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6735 memset(&xdp, 0, sizeof(xdp));
6736 xdp.command = XDP_QUERY_PROG;
6738 err = ops->ndo_xdp(dev, &xdp);
6741 if (xdp.prog_attached)
6745 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6747 return PTR_ERR(prog);
6750 memset(&xdp, 0, sizeof(xdp));
6751 xdp.command = XDP_SETUP_PROG;
6754 err = ops->ndo_xdp(dev, &xdp);
6755 if (err < 0 && prog)
6760 EXPORT_SYMBOL(dev_change_xdp_fd);
6763 * dev_new_index - allocate an ifindex
6764 * @net: the applicable net namespace
6766 * Returns a suitable unique value for a new device interface
6767 * number. The caller must hold the rtnl semaphore or the
6768 * dev_base_lock to be sure it remains unique.
6770 static int dev_new_index(struct net *net)
6772 int ifindex = net->ifindex;
6777 if (!__dev_get_by_index(net, ifindex))
6778 return net->ifindex = ifindex;
6782 /* Delayed registration/unregisteration */
6783 static LIST_HEAD(net_todo_list);
6784 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6786 static void net_set_todo(struct net_device *dev)
6788 list_add_tail(&dev->todo_list, &net_todo_list);
6789 dev_net(dev)->dev_unreg_count++;
6792 static void rollback_registered_many(struct list_head *head)
6794 struct net_device *dev, *tmp;
6795 LIST_HEAD(close_head);
6797 BUG_ON(dev_boot_phase);
6800 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6801 /* Some devices call without registering
6802 * for initialization unwind. Remove those
6803 * devices and proceed with the remaining.
6805 if (dev->reg_state == NETREG_UNINITIALIZED) {
6806 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6810 list_del(&dev->unreg_list);
6813 dev->dismantle = true;
6814 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6817 /* If device is running, close it first. */
6818 list_for_each_entry(dev, head, unreg_list)
6819 list_add_tail(&dev->close_list, &close_head);
6820 dev_close_many(&close_head, true);
6822 list_for_each_entry(dev, head, unreg_list) {
6823 /* And unlink it from device chain. */
6824 unlist_netdevice(dev);
6826 dev->reg_state = NETREG_UNREGISTERING;
6828 flush_all_backlogs();
6832 list_for_each_entry(dev, head, unreg_list) {
6833 struct sk_buff *skb = NULL;
6835 /* Shutdown queueing discipline. */
6839 /* Notify protocols, that we are about to destroy
6840 * this device. They should clean all the things.
6842 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6844 if (!dev->rtnl_link_ops ||
6845 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6846 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6850 * Flush the unicast and multicast chains
6855 if (dev->netdev_ops->ndo_uninit)
6856 dev->netdev_ops->ndo_uninit(dev);
6859 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6861 /* Notifier chain MUST detach us all upper devices. */
6862 WARN_ON(netdev_has_any_upper_dev(dev));
6863 WARN_ON(netdev_has_any_lower_dev(dev));
6865 /* Remove entries from kobject tree */
6866 netdev_unregister_kobject(dev);
6868 /* Remove XPS queueing entries */
6869 netif_reset_xps_queues_gt(dev, 0);
6875 list_for_each_entry(dev, head, unreg_list)
6879 static void rollback_registered(struct net_device *dev)
6883 list_add(&dev->unreg_list, &single);
6884 rollback_registered_many(&single);
6888 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6889 struct net_device *upper, netdev_features_t features)
6891 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6892 netdev_features_t feature;
6895 for_each_netdev_feature(&upper_disables, feature_bit) {
6896 feature = __NETIF_F_BIT(feature_bit);
6897 if (!(upper->wanted_features & feature)
6898 && (features & feature)) {
6899 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6900 &feature, upper->name);
6901 features &= ~feature;
6908 static void netdev_sync_lower_features(struct net_device *upper,
6909 struct net_device *lower, netdev_features_t features)
6911 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6912 netdev_features_t feature;
6915 for_each_netdev_feature(&upper_disables, feature_bit) {
6916 feature = __NETIF_F_BIT(feature_bit);
6917 if (!(features & feature) && (lower->features & feature)) {
6918 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6919 &feature, lower->name);
6920 lower->wanted_features &= ~feature;
6921 netdev_update_features(lower);
6923 if (unlikely(lower->features & feature))
6924 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6925 &feature, lower->name);
6930 static netdev_features_t netdev_fix_features(struct net_device *dev,
6931 netdev_features_t features)
6933 /* Fix illegal checksum combinations */
6934 if ((features & NETIF_F_HW_CSUM) &&
6935 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6936 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6937 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6940 /* TSO requires that SG is present as well. */
6941 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6942 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6943 features &= ~NETIF_F_ALL_TSO;
6946 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6947 !(features & NETIF_F_IP_CSUM)) {
6948 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6949 features &= ~NETIF_F_TSO;
6950 features &= ~NETIF_F_TSO_ECN;
6953 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6954 !(features & NETIF_F_IPV6_CSUM)) {
6955 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6956 features &= ~NETIF_F_TSO6;
6959 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6960 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6961 features &= ~NETIF_F_TSO_MANGLEID;
6963 /* TSO ECN requires that TSO is present as well. */
6964 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6965 features &= ~NETIF_F_TSO_ECN;
6967 /* Software GSO depends on SG. */
6968 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6969 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6970 features &= ~NETIF_F_GSO;
6973 /* UFO needs SG and checksumming */
6974 if (features & NETIF_F_UFO) {
6975 /* maybe split UFO into V4 and V6? */
6976 if (!(features & NETIF_F_HW_CSUM) &&
6977 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6978 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6980 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6981 features &= ~NETIF_F_UFO;
6984 if (!(features & NETIF_F_SG)) {
6986 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6987 features &= ~NETIF_F_UFO;
6991 /* GSO partial features require GSO partial be set */
6992 if ((features & dev->gso_partial_features) &&
6993 !(features & NETIF_F_GSO_PARTIAL)) {
6995 "Dropping partially supported GSO features since no GSO partial.\n");
6996 features &= ~dev->gso_partial_features;
7002 int __netdev_update_features(struct net_device *dev)
7004 struct net_device *upper, *lower;
7005 netdev_features_t features;
7006 struct list_head *iter;
7011 features = netdev_get_wanted_features(dev);
7013 if (dev->netdev_ops->ndo_fix_features)
7014 features = dev->netdev_ops->ndo_fix_features(dev, features);
7016 /* driver might be less strict about feature dependencies */
7017 features = netdev_fix_features(dev, features);
7019 /* some features can't be enabled if they're off an an upper device */
7020 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7021 features = netdev_sync_upper_features(dev, upper, features);
7023 if (dev->features == features)
7026 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7027 &dev->features, &features);
7029 if (dev->netdev_ops->ndo_set_features)
7030 err = dev->netdev_ops->ndo_set_features(dev, features);
7034 if (unlikely(err < 0)) {
7036 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7037 err, &features, &dev->features);
7038 /* return non-0 since some features might have changed and
7039 * it's better to fire a spurious notification than miss it
7045 /* some features must be disabled on lower devices when disabled
7046 * on an upper device (think: bonding master or bridge)
7048 netdev_for_each_lower_dev(dev, lower, iter)
7049 netdev_sync_lower_features(dev, lower, features);
7052 dev->features = features;
7054 return err < 0 ? 0 : 1;
7058 * netdev_update_features - recalculate device features
7059 * @dev: the device to check
7061 * Recalculate dev->features set and send notifications if it
7062 * has changed. Should be called after driver or hardware dependent
7063 * conditions might have changed that influence the features.
7065 void netdev_update_features(struct net_device *dev)
7067 if (__netdev_update_features(dev))
7068 netdev_features_change(dev);
7070 EXPORT_SYMBOL(netdev_update_features);
7073 * netdev_change_features - recalculate device features
7074 * @dev: the device to check
7076 * Recalculate dev->features set and send notifications even
7077 * if they have not changed. Should be called instead of
7078 * netdev_update_features() if also dev->vlan_features might
7079 * have changed to allow the changes to be propagated to stacked
7082 void netdev_change_features(struct net_device *dev)
7084 __netdev_update_features(dev);
7085 netdev_features_change(dev);
7087 EXPORT_SYMBOL(netdev_change_features);
7090 * netif_stacked_transfer_operstate - transfer operstate
7091 * @rootdev: the root or lower level device to transfer state from
7092 * @dev: the device to transfer operstate to
7094 * Transfer operational state from root to device. This is normally
7095 * called when a stacking relationship exists between the root
7096 * device and the device(a leaf device).
7098 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7099 struct net_device *dev)
7101 if (rootdev->operstate == IF_OPER_DORMANT)
7102 netif_dormant_on(dev);
7104 netif_dormant_off(dev);
7106 if (netif_carrier_ok(rootdev)) {
7107 if (!netif_carrier_ok(dev))
7108 netif_carrier_on(dev);
7110 if (netif_carrier_ok(dev))
7111 netif_carrier_off(dev);
7114 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7117 static int netif_alloc_rx_queues(struct net_device *dev)
7119 unsigned int i, count = dev->num_rx_queues;
7120 struct netdev_rx_queue *rx;
7121 size_t sz = count * sizeof(*rx);
7125 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7133 for (i = 0; i < count; i++)
7139 static void netdev_init_one_queue(struct net_device *dev,
7140 struct netdev_queue *queue, void *_unused)
7142 /* Initialize queue lock */
7143 spin_lock_init(&queue->_xmit_lock);
7144 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7145 queue->xmit_lock_owner = -1;
7146 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7149 dql_init(&queue->dql, HZ);
7153 static void netif_free_tx_queues(struct net_device *dev)
7158 static int netif_alloc_netdev_queues(struct net_device *dev)
7160 unsigned int count = dev->num_tx_queues;
7161 struct netdev_queue *tx;
7162 size_t sz = count * sizeof(*tx);
7164 if (count < 1 || count > 0xffff)
7167 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7175 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7176 spin_lock_init(&dev->tx_global_lock);
7181 void netif_tx_stop_all_queues(struct net_device *dev)
7185 for (i = 0; i < dev->num_tx_queues; i++) {
7186 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7188 netif_tx_stop_queue(txq);
7191 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7194 * register_netdevice - register a network device
7195 * @dev: device to register
7197 * Take a completed network device structure and add it to the kernel
7198 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7199 * chain. 0 is returned on success. A negative errno code is returned
7200 * on a failure to set up the device, or if the name is a duplicate.
7202 * Callers must hold the rtnl semaphore. You may want
7203 * register_netdev() instead of this.
7206 * The locking appears insufficient to guarantee two parallel registers
7207 * will not get the same name.
7210 int register_netdevice(struct net_device *dev)
7213 struct net *net = dev_net(dev);
7215 BUG_ON(dev_boot_phase);
7220 /* When net_device's are persistent, this will be fatal. */
7221 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7224 spin_lock_init(&dev->addr_list_lock);
7225 netdev_set_addr_lockdep_class(dev);
7227 ret = dev_get_valid_name(net, dev, dev->name);
7231 /* Init, if this function is available */
7232 if (dev->netdev_ops->ndo_init) {
7233 ret = dev->netdev_ops->ndo_init(dev);
7241 if (((dev->hw_features | dev->features) &
7242 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7243 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7244 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7245 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7252 dev->ifindex = dev_new_index(net);
7253 else if (__dev_get_by_index(net, dev->ifindex))
7256 /* Transfer changeable features to wanted_features and enable
7257 * software offloads (GSO and GRO).
7259 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7260 dev->features |= NETIF_F_SOFT_FEATURES;
7261 dev->wanted_features = dev->features & dev->hw_features;
7263 if (!(dev->flags & IFF_LOOPBACK))
7264 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7266 /* If IPv4 TCP segmentation offload is supported we should also
7267 * allow the device to enable segmenting the frame with the option
7268 * of ignoring a static IP ID value. This doesn't enable the
7269 * feature itself but allows the user to enable it later.
7271 if (dev->hw_features & NETIF_F_TSO)
7272 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7273 if (dev->vlan_features & NETIF_F_TSO)
7274 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7275 if (dev->mpls_features & NETIF_F_TSO)
7276 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7277 if (dev->hw_enc_features & NETIF_F_TSO)
7278 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7280 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7282 dev->vlan_features |= NETIF_F_HIGHDMA;
7284 /* Make NETIF_F_SG inheritable to tunnel devices.
7286 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7288 /* Make NETIF_F_SG inheritable to MPLS.
7290 dev->mpls_features |= NETIF_F_SG;
7292 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7293 ret = notifier_to_errno(ret);
7297 ret = netdev_register_kobject(dev);
7300 dev->reg_state = NETREG_REGISTERED;
7302 __netdev_update_features(dev);
7305 * Default initial state at registry is that the
7306 * device is present.
7309 set_bit(__LINK_STATE_PRESENT, &dev->state);
7311 linkwatch_init_dev(dev);
7313 dev_init_scheduler(dev);
7315 list_netdevice(dev);
7316 add_device_randomness(dev->dev_addr, dev->addr_len);
7318 /* If the device has permanent device address, driver should
7319 * set dev_addr and also addr_assign_type should be set to
7320 * NET_ADDR_PERM (default value).
7322 if (dev->addr_assign_type == NET_ADDR_PERM)
7323 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7325 /* Notify protocols, that a new device appeared. */
7326 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7327 ret = notifier_to_errno(ret);
7329 rollback_registered(dev);
7330 dev->reg_state = NETREG_UNREGISTERED;
7333 * Prevent userspace races by waiting until the network
7334 * device is fully setup before sending notifications.
7336 if (!dev->rtnl_link_ops ||
7337 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7338 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7344 if (dev->netdev_ops->ndo_uninit)
7345 dev->netdev_ops->ndo_uninit(dev);
7348 EXPORT_SYMBOL(register_netdevice);
7351 * init_dummy_netdev - init a dummy network device for NAPI
7352 * @dev: device to init
7354 * This takes a network device structure and initialize the minimum
7355 * amount of fields so it can be used to schedule NAPI polls without
7356 * registering a full blown interface. This is to be used by drivers
7357 * that need to tie several hardware interfaces to a single NAPI
7358 * poll scheduler due to HW limitations.
7360 int init_dummy_netdev(struct net_device *dev)
7362 /* Clear everything. Note we don't initialize spinlocks
7363 * are they aren't supposed to be taken by any of the
7364 * NAPI code and this dummy netdev is supposed to be
7365 * only ever used for NAPI polls
7367 memset(dev, 0, sizeof(struct net_device));
7369 /* make sure we BUG if trying to hit standard
7370 * register/unregister code path
7372 dev->reg_state = NETREG_DUMMY;
7374 /* NAPI wants this */
7375 INIT_LIST_HEAD(&dev->napi_list);
7377 /* a dummy interface is started by default */
7378 set_bit(__LINK_STATE_PRESENT, &dev->state);
7379 set_bit(__LINK_STATE_START, &dev->state);
7381 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7382 * because users of this 'device' dont need to change
7388 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7392 * register_netdev - register a network device
7393 * @dev: device to register
7395 * Take a completed network device structure and add it to the kernel
7396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7397 * chain. 0 is returned on success. A negative errno code is returned
7398 * on a failure to set up the device, or if the name is a duplicate.
7400 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7401 * and expands the device name if you passed a format string to
7404 int register_netdev(struct net_device *dev)
7409 err = register_netdevice(dev);
7413 EXPORT_SYMBOL(register_netdev);
7415 int netdev_refcnt_read(const struct net_device *dev)
7419 for_each_possible_cpu(i)
7420 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7423 EXPORT_SYMBOL(netdev_refcnt_read);
7426 * netdev_wait_allrefs - wait until all references are gone.
7427 * @dev: target net_device
7429 * This is called when unregistering network devices.
7431 * Any protocol or device that holds a reference should register
7432 * for netdevice notification, and cleanup and put back the
7433 * reference if they receive an UNREGISTER event.
7434 * We can get stuck here if buggy protocols don't correctly
7437 static void netdev_wait_allrefs(struct net_device *dev)
7439 unsigned long rebroadcast_time, warning_time;
7442 linkwatch_forget_dev(dev);
7444 rebroadcast_time = warning_time = jiffies;
7445 refcnt = netdev_refcnt_read(dev);
7447 while (refcnt != 0) {
7448 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7451 /* Rebroadcast unregister notification */
7452 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7458 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7459 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7461 /* We must not have linkwatch events
7462 * pending on unregister. If this
7463 * happens, we simply run the queue
7464 * unscheduled, resulting in a noop
7467 linkwatch_run_queue();
7472 rebroadcast_time = jiffies;
7477 refcnt = netdev_refcnt_read(dev);
7479 if (time_after(jiffies, warning_time + 10 * HZ)) {
7480 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7482 warning_time = jiffies;
7491 * register_netdevice(x1);
7492 * register_netdevice(x2);
7494 * unregister_netdevice(y1);
7495 * unregister_netdevice(y2);
7501 * We are invoked by rtnl_unlock().
7502 * This allows us to deal with problems:
7503 * 1) We can delete sysfs objects which invoke hotplug
7504 * without deadlocking with linkwatch via keventd.
7505 * 2) Since we run with the RTNL semaphore not held, we can sleep
7506 * safely in order to wait for the netdev refcnt to drop to zero.
7508 * We must not return until all unregister events added during
7509 * the interval the lock was held have been completed.
7511 void netdev_run_todo(void)
7513 struct list_head list;
7515 /* Snapshot list, allow later requests */
7516 list_replace_init(&net_todo_list, &list);
7521 /* Wait for rcu callbacks to finish before next phase */
7522 if (!list_empty(&list))
7525 while (!list_empty(&list)) {
7526 struct net_device *dev
7527 = list_first_entry(&list, struct net_device, todo_list);
7528 list_del(&dev->todo_list);
7531 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7534 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7535 pr_err("network todo '%s' but state %d\n",
7536 dev->name, dev->reg_state);
7541 dev->reg_state = NETREG_UNREGISTERED;
7543 netdev_wait_allrefs(dev);
7546 BUG_ON(netdev_refcnt_read(dev));
7547 BUG_ON(!list_empty(&dev->ptype_all));
7548 BUG_ON(!list_empty(&dev->ptype_specific));
7549 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7550 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7551 WARN_ON(dev->dn_ptr);
7553 if (dev->destructor)
7554 dev->destructor(dev);
7556 /* Report a network device has been unregistered */
7558 dev_net(dev)->dev_unreg_count--;
7560 wake_up(&netdev_unregistering_wq);
7562 /* Free network device */
7563 kobject_put(&dev->dev.kobj);
7567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7568 * all the same fields in the same order as net_device_stats, with only
7569 * the type differing, but rtnl_link_stats64 may have additional fields
7570 * at the end for newer counters.
7572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7573 const struct net_device_stats *netdev_stats)
7575 #if BITS_PER_LONG == 64
7576 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7577 memcpy(stats64, netdev_stats, sizeof(*stats64));
7578 /* zero out counters that only exist in rtnl_link_stats64 */
7579 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7580 sizeof(*stats64) - sizeof(*netdev_stats));
7582 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7583 const unsigned long *src = (const unsigned long *)netdev_stats;
7584 u64 *dst = (u64 *)stats64;
7586 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7587 for (i = 0; i < n; i++)
7589 /* zero out counters that only exist in rtnl_link_stats64 */
7590 memset((char *)stats64 + n * sizeof(u64), 0,
7591 sizeof(*stats64) - n * sizeof(u64));
7594 EXPORT_SYMBOL(netdev_stats_to_stats64);
7597 * dev_get_stats - get network device statistics
7598 * @dev: device to get statistics from
7599 * @storage: place to store stats
7601 * Get network statistics from device. Return @storage.
7602 * The device driver may provide its own method by setting
7603 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7604 * otherwise the internal statistics structure is used.
7606 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7607 struct rtnl_link_stats64 *storage)
7609 const struct net_device_ops *ops = dev->netdev_ops;
7611 if (ops->ndo_get_stats64) {
7612 memset(storage, 0, sizeof(*storage));
7613 ops->ndo_get_stats64(dev, storage);
7614 } else if (ops->ndo_get_stats) {
7615 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7617 netdev_stats_to_stats64(storage, &dev->stats);
7619 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7620 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7621 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7624 EXPORT_SYMBOL(dev_get_stats);
7626 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7628 struct netdev_queue *queue = dev_ingress_queue(dev);
7630 #ifdef CONFIG_NET_CLS_ACT
7633 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7636 netdev_init_one_queue(dev, queue, NULL);
7637 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7638 queue->qdisc_sleeping = &noop_qdisc;
7639 rcu_assign_pointer(dev->ingress_queue, queue);
7644 static const struct ethtool_ops default_ethtool_ops;
7646 void netdev_set_default_ethtool_ops(struct net_device *dev,
7647 const struct ethtool_ops *ops)
7649 if (dev->ethtool_ops == &default_ethtool_ops)
7650 dev->ethtool_ops = ops;
7652 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7654 void netdev_freemem(struct net_device *dev)
7656 char *addr = (char *)dev - dev->padded;
7662 * alloc_netdev_mqs - allocate network device
7663 * @sizeof_priv: size of private data to allocate space for
7664 * @name: device name format string
7665 * @name_assign_type: origin of device name
7666 * @setup: callback to initialize device
7667 * @txqs: the number of TX subqueues to allocate
7668 * @rxqs: the number of RX subqueues to allocate
7670 * Allocates a struct net_device with private data area for driver use
7671 * and performs basic initialization. Also allocates subqueue structs
7672 * for each queue on the device.
7674 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7675 unsigned char name_assign_type,
7676 void (*setup)(struct net_device *),
7677 unsigned int txqs, unsigned int rxqs)
7679 struct net_device *dev;
7681 struct net_device *p;
7683 BUG_ON(strlen(name) >= sizeof(dev->name));
7686 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7692 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7697 alloc_size = sizeof(struct net_device);
7699 /* ensure 32-byte alignment of private area */
7700 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7701 alloc_size += sizeof_priv;
7703 /* ensure 32-byte alignment of whole construct */
7704 alloc_size += NETDEV_ALIGN - 1;
7706 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7708 p = vzalloc(alloc_size);
7712 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7713 dev->padded = (char *)dev - (char *)p;
7715 dev->pcpu_refcnt = alloc_percpu(int);
7716 if (!dev->pcpu_refcnt)
7719 if (dev_addr_init(dev))
7725 dev_net_set(dev, &init_net);
7727 dev->gso_max_size = GSO_MAX_SIZE;
7728 dev->gso_max_segs = GSO_MAX_SEGS;
7730 INIT_LIST_HEAD(&dev->napi_list);
7731 INIT_LIST_HEAD(&dev->unreg_list);
7732 INIT_LIST_HEAD(&dev->close_list);
7733 INIT_LIST_HEAD(&dev->link_watch_list);
7734 INIT_LIST_HEAD(&dev->adj_list.upper);
7735 INIT_LIST_HEAD(&dev->adj_list.lower);
7736 INIT_LIST_HEAD(&dev->ptype_all);
7737 INIT_LIST_HEAD(&dev->ptype_specific);
7738 #ifdef CONFIG_NET_SCHED
7739 hash_init(dev->qdisc_hash);
7741 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7744 if (!dev->tx_queue_len) {
7745 dev->priv_flags |= IFF_NO_QUEUE;
7746 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7749 dev->num_tx_queues = txqs;
7750 dev->real_num_tx_queues = txqs;
7751 if (netif_alloc_netdev_queues(dev))
7755 dev->num_rx_queues = rxqs;
7756 dev->real_num_rx_queues = rxqs;
7757 if (netif_alloc_rx_queues(dev))
7761 strcpy(dev->name, name);
7762 dev->name_assign_type = name_assign_type;
7763 dev->group = INIT_NETDEV_GROUP;
7764 if (!dev->ethtool_ops)
7765 dev->ethtool_ops = &default_ethtool_ops;
7767 nf_hook_ingress_init(dev);
7776 free_percpu(dev->pcpu_refcnt);
7778 netdev_freemem(dev);
7781 EXPORT_SYMBOL(alloc_netdev_mqs);
7784 * free_netdev - free network device
7787 * This function does the last stage of destroying an allocated device
7788 * interface. The reference to the device object is released. If this
7789 * is the last reference then it will be freed.Must be called in process
7792 void free_netdev(struct net_device *dev)
7794 struct napi_struct *p, *n;
7797 netif_free_tx_queues(dev);
7802 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7804 /* Flush device addresses */
7805 dev_addr_flush(dev);
7807 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7810 free_percpu(dev->pcpu_refcnt);
7811 dev->pcpu_refcnt = NULL;
7813 /* Compatibility with error handling in drivers */
7814 if (dev->reg_state == NETREG_UNINITIALIZED) {
7815 netdev_freemem(dev);
7819 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7820 dev->reg_state = NETREG_RELEASED;
7822 /* will free via device release */
7823 put_device(&dev->dev);
7825 EXPORT_SYMBOL(free_netdev);
7828 * synchronize_net - Synchronize with packet receive processing
7830 * Wait for packets currently being received to be done.
7831 * Does not block later packets from starting.
7833 void synchronize_net(void)
7836 if (rtnl_is_locked())
7837 synchronize_rcu_expedited();
7841 EXPORT_SYMBOL(synchronize_net);
7844 * unregister_netdevice_queue - remove device from the kernel
7848 * This function shuts down a device interface and removes it
7849 * from the kernel tables.
7850 * If head not NULL, device is queued to be unregistered later.
7852 * Callers must hold the rtnl semaphore. You may want
7853 * unregister_netdev() instead of this.
7856 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7861 list_move_tail(&dev->unreg_list, head);
7863 rollback_registered(dev);
7864 /* Finish processing unregister after unlock */
7868 EXPORT_SYMBOL(unregister_netdevice_queue);
7871 * unregister_netdevice_many - unregister many devices
7872 * @head: list of devices
7874 * Note: As most callers use a stack allocated list_head,
7875 * we force a list_del() to make sure stack wont be corrupted later.
7877 void unregister_netdevice_many(struct list_head *head)
7879 struct net_device *dev;
7881 if (!list_empty(head)) {
7882 rollback_registered_many(head);
7883 list_for_each_entry(dev, head, unreg_list)
7888 EXPORT_SYMBOL(unregister_netdevice_many);
7891 * unregister_netdev - remove device from the kernel
7894 * This function shuts down a device interface and removes it
7895 * from the kernel tables.
7897 * This is just a wrapper for unregister_netdevice that takes
7898 * the rtnl semaphore. In general you want to use this and not
7899 * unregister_netdevice.
7901 void unregister_netdev(struct net_device *dev)
7904 unregister_netdevice(dev);
7907 EXPORT_SYMBOL(unregister_netdev);
7910 * dev_change_net_namespace - move device to different nethost namespace
7912 * @net: network namespace
7913 * @pat: If not NULL name pattern to try if the current device name
7914 * is already taken in the destination network namespace.
7916 * This function shuts down a device interface and moves it
7917 * to a new network namespace. On success 0 is returned, on
7918 * a failure a netagive errno code is returned.
7920 * Callers must hold the rtnl semaphore.
7923 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7929 /* Don't allow namespace local devices to be moved. */
7931 if (dev->features & NETIF_F_NETNS_LOCAL)
7934 /* Ensure the device has been registrered */
7935 if (dev->reg_state != NETREG_REGISTERED)
7938 /* Get out if there is nothing todo */
7940 if (net_eq(dev_net(dev), net))
7943 /* Pick the destination device name, and ensure
7944 * we can use it in the destination network namespace.
7947 if (__dev_get_by_name(net, dev->name)) {
7948 /* We get here if we can't use the current device name */
7951 if (dev_get_valid_name(net, dev, pat) < 0)
7956 * And now a mini version of register_netdevice unregister_netdevice.
7959 /* If device is running close it first. */
7962 /* And unlink it from device chain */
7964 unlist_netdevice(dev);
7968 /* Shutdown queueing discipline. */
7971 /* Notify protocols, that we are about to destroy
7972 * this device. They should clean all the things.
7974 * Note that dev->reg_state stays at NETREG_REGISTERED.
7975 * This is wanted because this way 8021q and macvlan know
7976 * the device is just moving and can keep their slaves up.
7978 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7980 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7981 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7984 * Flush the unicast and multicast chains
7989 /* Send a netdev-removed uevent to the old namespace */
7990 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7991 netdev_adjacent_del_links(dev);
7993 /* Actually switch the network namespace */
7994 dev_net_set(dev, net);
7996 /* If there is an ifindex conflict assign a new one */
7997 if (__dev_get_by_index(net, dev->ifindex))
7998 dev->ifindex = dev_new_index(net);
8000 /* Send a netdev-add uevent to the new namespace */
8001 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8002 netdev_adjacent_add_links(dev);
8004 /* Fixup kobjects */
8005 err = device_rename(&dev->dev, dev->name);
8008 /* Add the device back in the hashes */
8009 list_netdevice(dev);
8011 /* Notify protocols, that a new device appeared. */
8012 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8015 * Prevent userspace races by waiting until the network
8016 * device is fully setup before sending notifications.
8018 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8025 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8027 static int dev_cpu_dead(unsigned int oldcpu)
8029 struct sk_buff **list_skb;
8030 struct sk_buff *skb;
8032 struct softnet_data *sd, *oldsd;
8034 local_irq_disable();
8035 cpu = smp_processor_id();
8036 sd = &per_cpu(softnet_data, cpu);
8037 oldsd = &per_cpu(softnet_data, oldcpu);
8039 /* Find end of our completion_queue. */
8040 list_skb = &sd->completion_queue;
8042 list_skb = &(*list_skb)->next;
8043 /* Append completion queue from offline CPU. */
8044 *list_skb = oldsd->completion_queue;
8045 oldsd->completion_queue = NULL;
8047 /* Append output queue from offline CPU. */
8048 if (oldsd->output_queue) {
8049 *sd->output_queue_tailp = oldsd->output_queue;
8050 sd->output_queue_tailp = oldsd->output_queue_tailp;
8051 oldsd->output_queue = NULL;
8052 oldsd->output_queue_tailp = &oldsd->output_queue;
8054 /* Append NAPI poll list from offline CPU, with one exception :
8055 * process_backlog() must be called by cpu owning percpu backlog.
8056 * We properly handle process_queue & input_pkt_queue later.
8058 while (!list_empty(&oldsd->poll_list)) {
8059 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8063 list_del_init(&napi->poll_list);
8064 if (napi->poll == process_backlog)
8067 ____napi_schedule(sd, napi);
8070 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8073 /* Process offline CPU's input_pkt_queue */
8074 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8076 input_queue_head_incr(oldsd);
8078 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8080 input_queue_head_incr(oldsd);
8087 * netdev_increment_features - increment feature set by one
8088 * @all: current feature set
8089 * @one: new feature set
8090 * @mask: mask feature set
8092 * Computes a new feature set after adding a device with feature set
8093 * @one to the master device with current feature set @all. Will not
8094 * enable anything that is off in @mask. Returns the new feature set.
8096 netdev_features_t netdev_increment_features(netdev_features_t all,
8097 netdev_features_t one, netdev_features_t mask)
8099 if (mask & NETIF_F_HW_CSUM)
8100 mask |= NETIF_F_CSUM_MASK;
8101 mask |= NETIF_F_VLAN_CHALLENGED;
8103 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8104 all &= one | ~NETIF_F_ALL_FOR_ALL;
8106 /* If one device supports hw checksumming, set for all. */
8107 if (all & NETIF_F_HW_CSUM)
8108 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8112 EXPORT_SYMBOL(netdev_increment_features);
8114 static struct hlist_head * __net_init netdev_create_hash(void)
8117 struct hlist_head *hash;
8119 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8121 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8122 INIT_HLIST_HEAD(&hash[i]);
8127 /* Initialize per network namespace state */
8128 static int __net_init netdev_init(struct net *net)
8130 if (net != &init_net)
8131 INIT_LIST_HEAD(&net->dev_base_head);
8133 net->dev_name_head = netdev_create_hash();
8134 if (net->dev_name_head == NULL)
8137 net->dev_index_head = netdev_create_hash();
8138 if (net->dev_index_head == NULL)
8144 kfree(net->dev_name_head);
8150 * netdev_drivername - network driver for the device
8151 * @dev: network device
8153 * Determine network driver for device.
8155 const char *netdev_drivername(const struct net_device *dev)
8157 const struct device_driver *driver;
8158 const struct device *parent;
8159 const char *empty = "";
8161 parent = dev->dev.parent;
8165 driver = parent->driver;
8166 if (driver && driver->name)
8167 return driver->name;
8171 static void __netdev_printk(const char *level, const struct net_device *dev,
8172 struct va_format *vaf)
8174 if (dev && dev->dev.parent) {
8175 dev_printk_emit(level[1] - '0',
8178 dev_driver_string(dev->dev.parent),
8179 dev_name(dev->dev.parent),
8180 netdev_name(dev), netdev_reg_state(dev),
8183 printk("%s%s%s: %pV",
8184 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8186 printk("%s(NULL net_device): %pV", level, vaf);
8190 void netdev_printk(const char *level, const struct net_device *dev,
8191 const char *format, ...)
8193 struct va_format vaf;
8196 va_start(args, format);
8201 __netdev_printk(level, dev, &vaf);
8205 EXPORT_SYMBOL(netdev_printk);
8207 #define define_netdev_printk_level(func, level) \
8208 void func(const struct net_device *dev, const char *fmt, ...) \
8210 struct va_format vaf; \
8213 va_start(args, fmt); \
8218 __netdev_printk(level, dev, &vaf); \
8222 EXPORT_SYMBOL(func);
8224 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8225 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8226 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8227 define_netdev_printk_level(netdev_err, KERN_ERR);
8228 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8229 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8230 define_netdev_printk_level(netdev_info, KERN_INFO);
8232 static void __net_exit netdev_exit(struct net *net)
8234 kfree(net->dev_name_head);
8235 kfree(net->dev_index_head);
8238 static struct pernet_operations __net_initdata netdev_net_ops = {
8239 .init = netdev_init,
8240 .exit = netdev_exit,
8243 static void __net_exit default_device_exit(struct net *net)
8245 struct net_device *dev, *aux;
8247 * Push all migratable network devices back to the
8248 * initial network namespace
8251 for_each_netdev_safe(net, dev, aux) {
8253 char fb_name[IFNAMSIZ];
8255 /* Ignore unmoveable devices (i.e. loopback) */
8256 if (dev->features & NETIF_F_NETNS_LOCAL)
8259 /* Leave virtual devices for the generic cleanup */
8260 if (dev->rtnl_link_ops)
8263 /* Push remaining network devices to init_net */
8264 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8265 err = dev_change_net_namespace(dev, &init_net, fb_name);
8267 pr_emerg("%s: failed to move %s to init_net: %d\n",
8268 __func__, dev->name, err);
8275 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8277 /* Return with the rtnl_lock held when there are no network
8278 * devices unregistering in any network namespace in net_list.
8282 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8284 add_wait_queue(&netdev_unregistering_wq, &wait);
8286 unregistering = false;
8288 list_for_each_entry(net, net_list, exit_list) {
8289 if (net->dev_unreg_count > 0) {
8290 unregistering = true;
8298 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8300 remove_wait_queue(&netdev_unregistering_wq, &wait);
8303 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8305 /* At exit all network devices most be removed from a network
8306 * namespace. Do this in the reverse order of registration.
8307 * Do this across as many network namespaces as possible to
8308 * improve batching efficiency.
8310 struct net_device *dev;
8312 LIST_HEAD(dev_kill_list);
8314 /* To prevent network device cleanup code from dereferencing
8315 * loopback devices or network devices that have been freed
8316 * wait here for all pending unregistrations to complete,
8317 * before unregistring the loopback device and allowing the
8318 * network namespace be freed.
8320 * The netdev todo list containing all network devices
8321 * unregistrations that happen in default_device_exit_batch
8322 * will run in the rtnl_unlock() at the end of
8323 * default_device_exit_batch.
8325 rtnl_lock_unregistering(net_list);
8326 list_for_each_entry(net, net_list, exit_list) {
8327 for_each_netdev_reverse(net, dev) {
8328 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8329 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8331 unregister_netdevice_queue(dev, &dev_kill_list);
8334 unregister_netdevice_many(&dev_kill_list);
8338 static struct pernet_operations __net_initdata default_device_ops = {
8339 .exit = default_device_exit,
8340 .exit_batch = default_device_exit_batch,
8344 * Initialize the DEV module. At boot time this walks the device list and
8345 * unhooks any devices that fail to initialise (normally hardware not
8346 * present) and leaves us with a valid list of present and active devices.
8351 * This is called single threaded during boot, so no need
8352 * to take the rtnl semaphore.
8354 static int __init net_dev_init(void)
8356 int i, rc = -ENOMEM;
8358 BUG_ON(!dev_boot_phase);
8360 if (dev_proc_init())
8363 if (netdev_kobject_init())
8366 INIT_LIST_HEAD(&ptype_all);
8367 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8368 INIT_LIST_HEAD(&ptype_base[i]);
8370 INIT_LIST_HEAD(&offload_base);
8372 if (register_pernet_subsys(&netdev_net_ops))
8376 * Initialise the packet receive queues.
8379 for_each_possible_cpu(i) {
8380 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8381 struct softnet_data *sd = &per_cpu(softnet_data, i);
8383 INIT_WORK(flush, flush_backlog);
8385 skb_queue_head_init(&sd->input_pkt_queue);
8386 skb_queue_head_init(&sd->process_queue);
8387 INIT_LIST_HEAD(&sd->poll_list);
8388 sd->output_queue_tailp = &sd->output_queue;
8390 sd->csd.func = rps_trigger_softirq;
8395 sd->backlog.poll = process_backlog;
8396 sd->backlog.weight = weight_p;
8401 /* The loopback device is special if any other network devices
8402 * is present in a network namespace the loopback device must
8403 * be present. Since we now dynamically allocate and free the
8404 * loopback device ensure this invariant is maintained by
8405 * keeping the loopback device as the first device on the
8406 * list of network devices. Ensuring the loopback devices
8407 * is the first device that appears and the last network device
8410 if (register_pernet_device(&loopback_net_ops))
8413 if (register_pernet_device(&default_device_ops))
8416 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8417 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8419 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8420 NULL, dev_cpu_dead);
8428 subsys_initcall(net_dev_init);