]> Git Repo - linux.git/blob - fs/btrfs/ordered-data.c
btrfs: free qgroup reserve when ORDERED_IOERR is set
[linux.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128                                                   u64 file_offset)
129 {
130         struct rb_node *prev = NULL;
131         struct rb_node *ret;
132         struct btrfs_ordered_extent *entry;
133
134         if (inode->ordered_tree_last) {
135                 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136                                  rb_node);
137                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138                         return inode->ordered_tree_last;
139         }
140         ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141         if (!ret)
142                 ret = prev;
143         if (ret)
144                 inode->ordered_tree_last = ret;
145         return ret;
146 }
147
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151                         u64 offset, unsigned long flags, int compress_type)
152 {
153         struct btrfs_ordered_extent *entry;
154         int ret;
155
156         if (flags &
157             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158                 /* For nocow write, we can release the qgroup rsv right now */
159                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
160                 if (ret < 0)
161                         return ERR_PTR(ret);
162         } else {
163                 /*
164                  * The ordered extent has reserved qgroup space, release now
165                  * and pass the reserved number for qgroup_record to free.
166                  */
167                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
168                 if (ret < 0)
169                         return ERR_PTR(ret);
170         }
171         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172         if (!entry)
173                 return ERR_PTR(-ENOMEM);
174
175         entry->file_offset = file_offset;
176         entry->num_bytes = num_bytes;
177         entry->ram_bytes = ram_bytes;
178         entry->disk_bytenr = disk_bytenr;
179         entry->disk_num_bytes = disk_num_bytes;
180         entry->offset = offset;
181         entry->bytes_left = num_bytes;
182         entry->inode = igrab(&inode->vfs_inode);
183         entry->compress_type = compress_type;
184         entry->truncated_len = (u64)-1;
185         entry->qgroup_rsv = ret;
186         entry->flags = flags;
187         refcount_set(&entry->refs, 1);
188         init_waitqueue_head(&entry->wait);
189         INIT_LIST_HEAD(&entry->list);
190         INIT_LIST_HEAD(&entry->log_list);
191         INIT_LIST_HEAD(&entry->root_extent_list);
192         INIT_LIST_HEAD(&entry->work_list);
193         INIT_LIST_HEAD(&entry->bioc_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_root *root = inode->root;
212         struct btrfs_fs_info *fs_info = root->fs_info;
213         struct rb_node *node;
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218                                  fs_info->delalloc_batch);
219
220         /* One ref for the tree. */
221         refcount_inc(&entry->refs);
222
223         spin_lock_irq(&inode->ordered_tree_lock);
224         node = tree_insert(&inode->ordered_tree, entry->file_offset,
225                            &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&inode->ordered_tree_lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288                            struct btrfs_ordered_sum *sum)
289 {
290         struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292         spin_lock_irq(&inode->ordered_tree_lock);
293         list_add_tail(&sum->list, &entry->list);
294         spin_unlock_irq(&inode->ordered_tree_lock);
295 }
296
297 static void finish_ordered_fn(struct btrfs_work *work)
298 {
299         struct btrfs_ordered_extent *ordered_extent;
300
301         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
302         btrfs_finish_ordered_io(ordered_extent);
303 }
304
305 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
306                                       struct page *page, u64 file_offset,
307                                       u64 len, bool uptodate)
308 {
309         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
310         struct btrfs_fs_info *fs_info = inode->root->fs_info;
311
312         lockdep_assert_held(&inode->ordered_tree_lock);
313
314         if (page) {
315                 ASSERT(page->mapping);
316                 ASSERT(page_offset(page) <= file_offset);
317                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
318
319                 /*
320                  * Ordered (Private2) bit indicates whether we still have
321                  * pending io unfinished for the ordered extent.
322                  *
323                  * If there's no such bit, we need to skip to next range.
324                  */
325                 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
326                         return false;
327                 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
328         }
329
330         /* Now we're fine to update the accounting. */
331         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
332                 btrfs_crit(fs_info,
333 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
334                            inode->root->root_key.objectid, btrfs_ino(inode),
335                            ordered->file_offset, ordered->num_bytes,
336                            len, ordered->bytes_left);
337                 ordered->bytes_left = 0;
338         } else {
339                 ordered->bytes_left -= len;
340         }
341
342         if (!uptodate)
343                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
344
345         if (ordered->bytes_left)
346                 return false;
347
348         /*
349          * All the IO of the ordered extent is finished, we need to queue
350          * the finish_func to be executed.
351          */
352         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
353         cond_wake_up(&ordered->wait);
354         refcount_inc(&ordered->refs);
355         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
356         return true;
357 }
358
359 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
360 {
361         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
362         struct btrfs_fs_info *fs_info = inode->root->fs_info;
363         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
364                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
365
366         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
367         btrfs_queue_work(wq, &ordered->work);
368 }
369
370 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
371                                  struct page *page, u64 file_offset, u64 len,
372                                  bool uptodate)
373 {
374         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
375         unsigned long flags;
376         bool ret;
377
378         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
379
380         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
381         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
382         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
383
384         if (ret)
385                 btrfs_queue_ordered_fn(ordered);
386         return ret;
387 }
388
389 /*
390  * Mark all ordered extents io inside the specified range finished.
391  *
392  * @page:        The involved page for the operation.
393  *               For uncompressed buffered IO, the page status also needs to be
394  *               updated to indicate whether the pending ordered io is finished.
395  *               Can be NULL for direct IO and compressed write.
396  *               For these cases, callers are ensured they won't execute the
397  *               endio function twice.
398  *
399  * This function is called for endio, thus the range must have ordered
400  * extent(s) covering it.
401  */
402 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
403                                     struct page *page, u64 file_offset,
404                                     u64 num_bytes, bool uptodate)
405 {
406         struct rb_node *node;
407         struct btrfs_ordered_extent *entry = NULL;
408         unsigned long flags;
409         u64 cur = file_offset;
410
411         trace_btrfs_writepage_end_io_hook(inode, file_offset,
412                                           file_offset + num_bytes - 1,
413                                           uptodate);
414
415         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
416         while (cur < file_offset + num_bytes) {
417                 u64 entry_end;
418                 u64 end;
419                 u32 len;
420
421                 node = ordered_tree_search(inode, cur);
422                 /* No ordered extents at all */
423                 if (!node)
424                         break;
425
426                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
427                 entry_end = entry->file_offset + entry->num_bytes;
428                 /*
429                  * |<-- OE --->|  |
430                  *                cur
431                  * Go to next OE.
432                  */
433                 if (cur >= entry_end) {
434                         node = rb_next(node);
435                         /* No more ordered extents, exit */
436                         if (!node)
437                                 break;
438                         entry = rb_entry(node, struct btrfs_ordered_extent,
439                                          rb_node);
440
441                         /* Go to next ordered extent and continue */
442                         cur = entry->file_offset;
443                         continue;
444                 }
445                 /*
446                  * |    |<--- OE --->|
447                  * cur
448                  * Go to the start of OE.
449                  */
450                 if (cur < entry->file_offset) {
451                         cur = entry->file_offset;
452                         continue;
453                 }
454
455                 /*
456                  * Now we are definitely inside one ordered extent.
457                  *
458                  * |<--- OE --->|
459                  *      |
460                  *      cur
461                  */
462                 end = min(entry->file_offset + entry->num_bytes,
463                           file_offset + num_bytes) - 1;
464                 ASSERT(end + 1 - cur < U32_MAX);
465                 len = end + 1 - cur;
466
467                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
468                         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
469                         btrfs_queue_ordered_fn(entry);
470                         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
471                 }
472                 cur += len;
473         }
474         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
475 }
476
477 /*
478  * Finish IO for one ordered extent across a given range.  The range can only
479  * contain one ordered extent.
480  *
481  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
482  *               search and use the ordered extent directly.
483  *               Will be also used to store the finished ordered extent.
484  * @file_offset: File offset for the finished IO
485  * @io_size:     Length of the finish IO range
486  *
487  * Return true if the ordered extent is finished in the range, and update
488  * @cached.
489  * Return false otherwise.
490  *
491  * NOTE: The range can NOT cross multiple ordered extents.
492  * Thus caller should ensure the range doesn't cross ordered extents.
493  */
494 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
495                                     struct btrfs_ordered_extent **cached,
496                                     u64 file_offset, u64 io_size)
497 {
498         struct rb_node *node;
499         struct btrfs_ordered_extent *entry = NULL;
500         unsigned long flags;
501         bool finished = false;
502
503         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
504         if (cached && *cached) {
505                 entry = *cached;
506                 goto have_entry;
507         }
508
509         node = ordered_tree_search(inode, file_offset);
510         if (!node)
511                 goto out;
512
513         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
514 have_entry:
515         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
516                 goto out;
517
518         if (io_size > entry->bytes_left)
519                 btrfs_crit(inode->root->fs_info,
520                            "bad ordered accounting left %llu size %llu",
521                        entry->bytes_left, io_size);
522
523         entry->bytes_left -= io_size;
524
525         if (entry->bytes_left == 0) {
526                 /*
527                  * Ensure only one caller can set the flag and finished_ret
528                  * accordingly
529                  */
530                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
531                 /* test_and_set_bit implies a barrier */
532                 cond_wake_up_nomb(&entry->wait);
533         }
534 out:
535         if (finished && cached && entry) {
536                 *cached = entry;
537                 refcount_inc(&entry->refs);
538                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
539         }
540         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
541         return finished;
542 }
543
544 /*
545  * used to drop a reference on an ordered extent.  This will free
546  * the extent if the last reference is dropped
547  */
548 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
549 {
550         struct list_head *cur;
551         struct btrfs_ordered_sum *sum;
552
553         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
554
555         if (refcount_dec_and_test(&entry->refs)) {
556                 ASSERT(list_empty(&entry->root_extent_list));
557                 ASSERT(list_empty(&entry->log_list));
558                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
559                 if (entry->inode)
560                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
561                 while (!list_empty(&entry->list)) {
562                         cur = entry->list.next;
563                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
564                         list_del(&sum->list);
565                         kvfree(sum);
566                 }
567                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
568         }
569 }
570
571 /*
572  * remove an ordered extent from the tree.  No references are dropped
573  * and waiters are woken up.
574  */
575 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
576                                  struct btrfs_ordered_extent *entry)
577 {
578         struct btrfs_root *root = btrfs_inode->root;
579         struct btrfs_fs_info *fs_info = root->fs_info;
580         struct rb_node *node;
581         bool pending;
582         bool freespace_inode;
583
584         /*
585          * If this is a free space inode the thread has not acquired the ordered
586          * extents lockdep map.
587          */
588         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
589
590         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
591         /* This is paired with btrfs_alloc_ordered_extent. */
592         spin_lock(&btrfs_inode->lock);
593         btrfs_mod_outstanding_extents(btrfs_inode, -1);
594         spin_unlock(&btrfs_inode->lock);
595         if (root != fs_info->tree_root) {
596                 u64 release;
597
598                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
599                         release = entry->disk_num_bytes;
600                 else
601                         release = entry->num_bytes;
602                 btrfs_delalloc_release_metadata(btrfs_inode, release,
603                                                 test_bit(BTRFS_ORDERED_IOERR,
604                                                          &entry->flags));
605         }
606
607         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
608                                  fs_info->delalloc_batch);
609
610         spin_lock_irq(&btrfs_inode->ordered_tree_lock);
611         node = &entry->rb_node;
612         rb_erase(node, &btrfs_inode->ordered_tree);
613         RB_CLEAR_NODE(node);
614         if (btrfs_inode->ordered_tree_last == node)
615                 btrfs_inode->ordered_tree_last = NULL;
616         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
617         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
618         spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
619
620         /*
621          * The current running transaction is waiting on us, we need to let it
622          * know that we're complete and wake it up.
623          */
624         if (pending) {
625                 struct btrfs_transaction *trans;
626
627                 /*
628                  * The checks for trans are just a formality, it should be set,
629                  * but if it isn't we don't want to deref/assert under the spin
630                  * lock, so be nice and check if trans is set, but ASSERT() so
631                  * if it isn't set a developer will notice.
632                  */
633                 spin_lock(&fs_info->trans_lock);
634                 trans = fs_info->running_transaction;
635                 if (trans)
636                         refcount_inc(&trans->use_count);
637                 spin_unlock(&fs_info->trans_lock);
638
639                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
640                 if (trans) {
641                         if (atomic_dec_and_test(&trans->pending_ordered))
642                                 wake_up(&trans->pending_wait);
643                         btrfs_put_transaction(trans);
644                 }
645         }
646
647         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
648
649         spin_lock(&root->ordered_extent_lock);
650         list_del_init(&entry->root_extent_list);
651         root->nr_ordered_extents--;
652
653         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
654
655         if (!root->nr_ordered_extents) {
656                 spin_lock(&fs_info->ordered_root_lock);
657                 BUG_ON(list_empty(&root->ordered_root));
658                 list_del_init(&root->ordered_root);
659                 spin_unlock(&fs_info->ordered_root_lock);
660         }
661         spin_unlock(&root->ordered_extent_lock);
662         wake_up(&entry->wait);
663         if (!freespace_inode)
664                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
665 }
666
667 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
668 {
669         struct btrfs_ordered_extent *ordered;
670
671         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
672         btrfs_start_ordered_extent(ordered);
673         complete(&ordered->completion);
674 }
675
676 /*
677  * wait for all the ordered extents in a root.  This is done when balancing
678  * space between drives.
679  */
680 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
681                                const u64 range_start, const u64 range_len)
682 {
683         struct btrfs_fs_info *fs_info = root->fs_info;
684         LIST_HEAD(splice);
685         LIST_HEAD(skipped);
686         LIST_HEAD(works);
687         struct btrfs_ordered_extent *ordered, *next;
688         u64 count = 0;
689         const u64 range_end = range_start + range_len;
690
691         mutex_lock(&root->ordered_extent_mutex);
692         spin_lock(&root->ordered_extent_lock);
693         list_splice_init(&root->ordered_extents, &splice);
694         while (!list_empty(&splice) && nr) {
695                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
696                                            root_extent_list);
697
698                 if (range_end <= ordered->disk_bytenr ||
699                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
700                         list_move_tail(&ordered->root_extent_list, &skipped);
701                         cond_resched_lock(&root->ordered_extent_lock);
702                         continue;
703                 }
704
705                 list_move_tail(&ordered->root_extent_list,
706                                &root->ordered_extents);
707                 refcount_inc(&ordered->refs);
708                 spin_unlock(&root->ordered_extent_lock);
709
710                 btrfs_init_work(&ordered->flush_work,
711                                 btrfs_run_ordered_extent_work, NULL);
712                 list_add_tail(&ordered->work_list, &works);
713                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
714
715                 cond_resched();
716                 spin_lock(&root->ordered_extent_lock);
717                 if (nr != U64_MAX)
718                         nr--;
719                 count++;
720         }
721         list_splice_tail(&skipped, &root->ordered_extents);
722         list_splice_tail(&splice, &root->ordered_extents);
723         spin_unlock(&root->ordered_extent_lock);
724
725         list_for_each_entry_safe(ordered, next, &works, work_list) {
726                 list_del_init(&ordered->work_list);
727                 wait_for_completion(&ordered->completion);
728                 btrfs_put_ordered_extent(ordered);
729                 cond_resched();
730         }
731         mutex_unlock(&root->ordered_extent_mutex);
732
733         return count;
734 }
735
736 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
737                              const u64 range_start, const u64 range_len)
738 {
739         struct btrfs_root *root;
740         LIST_HEAD(splice);
741         u64 done;
742
743         mutex_lock(&fs_info->ordered_operations_mutex);
744         spin_lock(&fs_info->ordered_root_lock);
745         list_splice_init(&fs_info->ordered_roots, &splice);
746         while (!list_empty(&splice) && nr) {
747                 root = list_first_entry(&splice, struct btrfs_root,
748                                         ordered_root);
749                 root = btrfs_grab_root(root);
750                 BUG_ON(!root);
751                 list_move_tail(&root->ordered_root,
752                                &fs_info->ordered_roots);
753                 spin_unlock(&fs_info->ordered_root_lock);
754
755                 done = btrfs_wait_ordered_extents(root, nr,
756                                                   range_start, range_len);
757                 btrfs_put_root(root);
758
759                 spin_lock(&fs_info->ordered_root_lock);
760                 if (nr != U64_MAX) {
761                         nr -= done;
762                 }
763         }
764         list_splice_tail(&splice, &fs_info->ordered_roots);
765         spin_unlock(&fs_info->ordered_root_lock);
766         mutex_unlock(&fs_info->ordered_operations_mutex);
767 }
768
769 /*
770  * Start IO and wait for a given ordered extent to finish.
771  *
772  * Wait on page writeback for all the pages in the extent and the IO completion
773  * code to insert metadata into the btree corresponding to the extent.
774  */
775 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
776 {
777         u64 start = entry->file_offset;
778         u64 end = start + entry->num_bytes - 1;
779         struct btrfs_inode *inode = BTRFS_I(entry->inode);
780         bool freespace_inode;
781
782         trace_btrfs_ordered_extent_start(inode, entry);
783
784         /*
785          * If this is a free space inode do not take the ordered extents lockdep
786          * map.
787          */
788         freespace_inode = btrfs_is_free_space_inode(inode);
789
790         /*
791          * pages in the range can be dirty, clean or writeback.  We
792          * start IO on any dirty ones so the wait doesn't stall waiting
793          * for the flusher thread to find them
794          */
795         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
796                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
797
798         if (!freespace_inode)
799                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
800         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
801 }
802
803 /*
804  * Used to wait on ordered extents across a large range of bytes.
805  */
806 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
807 {
808         int ret = 0;
809         int ret_wb = 0;
810         u64 end;
811         u64 orig_end;
812         struct btrfs_ordered_extent *ordered;
813
814         if (start + len < start) {
815                 orig_end = OFFSET_MAX;
816         } else {
817                 orig_end = start + len - 1;
818                 if (orig_end > OFFSET_MAX)
819                         orig_end = OFFSET_MAX;
820         }
821
822         /* start IO across the range first to instantiate any delalloc
823          * extents
824          */
825         ret = btrfs_fdatawrite_range(inode, start, orig_end);
826         if (ret)
827                 return ret;
828
829         /*
830          * If we have a writeback error don't return immediately. Wait first
831          * for any ordered extents that haven't completed yet. This is to make
832          * sure no one can dirty the same page ranges and call writepages()
833          * before the ordered extents complete - to avoid failures (-EEXIST)
834          * when adding the new ordered extents to the ordered tree.
835          */
836         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
837
838         end = orig_end;
839         while (1) {
840                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
841                 if (!ordered)
842                         break;
843                 if (ordered->file_offset > orig_end) {
844                         btrfs_put_ordered_extent(ordered);
845                         break;
846                 }
847                 if (ordered->file_offset + ordered->num_bytes <= start) {
848                         btrfs_put_ordered_extent(ordered);
849                         break;
850                 }
851                 btrfs_start_ordered_extent(ordered);
852                 end = ordered->file_offset;
853                 /*
854                  * If the ordered extent had an error save the error but don't
855                  * exit without waiting first for all other ordered extents in
856                  * the range to complete.
857                  */
858                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
859                         ret = -EIO;
860                 btrfs_put_ordered_extent(ordered);
861                 if (end == 0 || end == start)
862                         break;
863                 end--;
864         }
865         return ret_wb ? ret_wb : ret;
866 }
867
868 /*
869  * find an ordered extent corresponding to file_offset.  return NULL if
870  * nothing is found, otherwise take a reference on the extent and return it
871  */
872 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
873                                                          u64 file_offset)
874 {
875         struct rb_node *node;
876         struct btrfs_ordered_extent *entry = NULL;
877         unsigned long flags;
878
879         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
880         node = ordered_tree_search(inode, file_offset);
881         if (!node)
882                 goto out;
883
884         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
885         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
886                 entry = NULL;
887         if (entry) {
888                 refcount_inc(&entry->refs);
889                 trace_btrfs_ordered_extent_lookup(inode, entry);
890         }
891 out:
892         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
893         return entry;
894 }
895
896 /* Since the DIO code tries to lock a wide area we need to look for any ordered
897  * extents that exist in the range, rather than just the start of the range.
898  */
899 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
900                 struct btrfs_inode *inode, u64 file_offset, u64 len)
901 {
902         struct rb_node *node;
903         struct btrfs_ordered_extent *entry = NULL;
904
905         spin_lock_irq(&inode->ordered_tree_lock);
906         node = ordered_tree_search(inode, file_offset);
907         if (!node) {
908                 node = ordered_tree_search(inode, file_offset + len);
909                 if (!node)
910                         goto out;
911         }
912
913         while (1) {
914                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
915                 if (range_overlaps(entry, file_offset, len))
916                         break;
917
918                 if (entry->file_offset >= file_offset + len) {
919                         entry = NULL;
920                         break;
921                 }
922                 entry = NULL;
923                 node = rb_next(node);
924                 if (!node)
925                         break;
926         }
927 out:
928         if (entry) {
929                 refcount_inc(&entry->refs);
930                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
931         }
932         spin_unlock_irq(&inode->ordered_tree_lock);
933         return entry;
934 }
935
936 /*
937  * Adds all ordered extents to the given list. The list ends up sorted by the
938  * file_offset of the ordered extents.
939  */
940 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
941                                            struct list_head *list)
942 {
943         struct rb_node *n;
944
945         ASSERT(inode_is_locked(&inode->vfs_inode));
946
947         spin_lock_irq(&inode->ordered_tree_lock);
948         for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
949                 struct btrfs_ordered_extent *ordered;
950
951                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
952
953                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
954                         continue;
955
956                 ASSERT(list_empty(&ordered->log_list));
957                 list_add_tail(&ordered->log_list, list);
958                 refcount_inc(&ordered->refs);
959                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
960         }
961         spin_unlock_irq(&inode->ordered_tree_lock);
962 }
963
964 /*
965  * lookup and return any extent before 'file_offset'.  NULL is returned
966  * if none is found
967  */
968 struct btrfs_ordered_extent *
969 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
970 {
971         struct rb_node *node;
972         struct btrfs_ordered_extent *entry = NULL;
973
974         spin_lock_irq(&inode->ordered_tree_lock);
975         node = ordered_tree_search(inode, file_offset);
976         if (!node)
977                 goto out;
978
979         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
980         refcount_inc(&entry->refs);
981         trace_btrfs_ordered_extent_lookup_first(inode, entry);
982 out:
983         spin_unlock_irq(&inode->ordered_tree_lock);
984         return entry;
985 }
986
987 /*
988  * Lookup the first ordered extent that overlaps the range
989  * [@file_offset, @file_offset + @len).
990  *
991  * The difference between this and btrfs_lookup_first_ordered_extent() is
992  * that this one won't return any ordered extent that does not overlap the range.
993  * And the difference against btrfs_lookup_ordered_extent() is, this function
994  * ensures the first ordered extent gets returned.
995  */
996 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
997                         struct btrfs_inode *inode, u64 file_offset, u64 len)
998 {
999         struct rb_node *node;
1000         struct rb_node *cur;
1001         struct rb_node *prev;
1002         struct rb_node *next;
1003         struct btrfs_ordered_extent *entry = NULL;
1004
1005         spin_lock_irq(&inode->ordered_tree_lock);
1006         node = inode->ordered_tree.rb_node;
1007         /*
1008          * Here we don't want to use tree_search() which will use tree->last
1009          * and screw up the search order.
1010          * And __tree_search() can't return the adjacent ordered extents
1011          * either, thus here we do our own search.
1012          */
1013         while (node) {
1014                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1015
1016                 if (file_offset < entry->file_offset) {
1017                         node = node->rb_left;
1018                 } else if (file_offset >= entry_end(entry)) {
1019                         node = node->rb_right;
1020                 } else {
1021                         /*
1022                          * Direct hit, got an ordered extent that starts at
1023                          * @file_offset
1024                          */
1025                         goto out;
1026                 }
1027         }
1028         if (!entry) {
1029                 /* Empty tree */
1030                 goto out;
1031         }
1032
1033         cur = &entry->rb_node;
1034         /* We got an entry around @file_offset, check adjacent entries */
1035         if (entry->file_offset < file_offset) {
1036                 prev = cur;
1037                 next = rb_next(cur);
1038         } else {
1039                 prev = rb_prev(cur);
1040                 next = cur;
1041         }
1042         if (prev) {
1043                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1044                 if (range_overlaps(entry, file_offset, len))
1045                         goto out;
1046         }
1047         if (next) {
1048                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1049                 if (range_overlaps(entry, file_offset, len))
1050                         goto out;
1051         }
1052         /* No ordered extent in the range */
1053         entry = NULL;
1054 out:
1055         if (entry) {
1056                 refcount_inc(&entry->refs);
1057                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1058         }
1059
1060         spin_unlock_irq(&inode->ordered_tree_lock);
1061         return entry;
1062 }
1063
1064 /*
1065  * Lock the passed range and ensures all pending ordered extents in it are run
1066  * to completion.
1067  *
1068  * @inode:        Inode whose ordered tree is to be searched
1069  * @start:        Beginning of range to flush
1070  * @end:          Last byte of range to lock
1071  * @cached_state: If passed, will return the extent state responsible for the
1072  *                locked range. It's the caller's responsibility to free the
1073  *                cached state.
1074  *
1075  * Always return with the given range locked, ensuring after it's called no
1076  * order extent can be pending.
1077  */
1078 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1079                                         u64 end,
1080                                         struct extent_state **cached_state)
1081 {
1082         struct btrfs_ordered_extent *ordered;
1083         struct extent_state *cache = NULL;
1084         struct extent_state **cachedp = &cache;
1085
1086         if (cached_state)
1087                 cachedp = cached_state;
1088
1089         while (1) {
1090                 lock_extent(&inode->io_tree, start, end, cachedp);
1091                 ordered = btrfs_lookup_ordered_range(inode, start,
1092                                                      end - start + 1);
1093                 if (!ordered) {
1094                         /*
1095                          * If no external cached_state has been passed then
1096                          * decrement the extra ref taken for cachedp since we
1097                          * aren't exposing it outside of this function
1098                          */
1099                         if (!cached_state)
1100                                 refcount_dec(&cache->refs);
1101                         break;
1102                 }
1103                 unlock_extent(&inode->io_tree, start, end, cachedp);
1104                 btrfs_start_ordered_extent(ordered);
1105                 btrfs_put_ordered_extent(ordered);
1106         }
1107 }
1108
1109 /*
1110  * Lock the passed range and ensure all pending ordered extents in it are run
1111  * to completion in nowait mode.
1112  *
1113  * Return true if btrfs_lock_ordered_range does not return any extents,
1114  * otherwise false.
1115  */
1116 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1117                                   struct extent_state **cached_state)
1118 {
1119         struct btrfs_ordered_extent *ordered;
1120
1121         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1122                 return false;
1123
1124         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1125         if (!ordered)
1126                 return true;
1127
1128         btrfs_put_ordered_extent(ordered);
1129         unlock_extent(&inode->io_tree, start, end, cached_state);
1130
1131         return false;
1132 }
1133
1134 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1135 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1136                         struct btrfs_ordered_extent *ordered, u64 len)
1137 {
1138         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1139         struct btrfs_root *root = inode->root;
1140         struct btrfs_fs_info *fs_info = root->fs_info;
1141         u64 file_offset = ordered->file_offset;
1142         u64 disk_bytenr = ordered->disk_bytenr;
1143         unsigned long flags = ordered->flags;
1144         struct btrfs_ordered_sum *sum, *tmpsum;
1145         struct btrfs_ordered_extent *new;
1146         struct rb_node *node;
1147         u64 offset = 0;
1148
1149         trace_btrfs_ordered_extent_split(inode, ordered);
1150
1151         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1152
1153         /*
1154          * The entire bio must be covered by the ordered extent, but we can't
1155          * reduce the original extent to a zero length either.
1156          */
1157         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1158                 return ERR_PTR(-EINVAL);
1159         /* We cannot split partially completed ordered extents. */
1160         if (ordered->bytes_left) {
1161                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1162                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1163                         return ERR_PTR(-EINVAL);
1164         }
1165         /* We cannot split a compressed ordered extent. */
1166         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1167                 return ERR_PTR(-EINVAL);
1168
1169         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1170                                    len, 0, flags, ordered->compress_type);
1171         if (IS_ERR(new))
1172                 return new;
1173
1174         /* One ref for the tree. */
1175         refcount_inc(&new->refs);
1176
1177         spin_lock_irq(&root->ordered_extent_lock);
1178         spin_lock(&inode->ordered_tree_lock);
1179         /* Remove from tree once */
1180         node = &ordered->rb_node;
1181         rb_erase(node, &inode->ordered_tree);
1182         RB_CLEAR_NODE(node);
1183         if (inode->ordered_tree_last == node)
1184                 inode->ordered_tree_last = NULL;
1185
1186         ordered->file_offset += len;
1187         ordered->disk_bytenr += len;
1188         ordered->num_bytes -= len;
1189         ordered->disk_num_bytes -= len;
1190
1191         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1192                 ASSERT(ordered->bytes_left == 0);
1193                 new->bytes_left = 0;
1194         } else {
1195                 ordered->bytes_left -= len;
1196         }
1197
1198         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1199                 if (ordered->truncated_len > len) {
1200                         ordered->truncated_len -= len;
1201                 } else {
1202                         new->truncated_len = ordered->truncated_len;
1203                         ordered->truncated_len = 0;
1204                 }
1205         }
1206
1207         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1208                 if (offset == len)
1209                         break;
1210                 list_move_tail(&sum->list, &new->list);
1211                 offset += sum->len;
1212         }
1213
1214         /* Re-insert the node */
1215         node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1216                            &ordered->rb_node);
1217         if (node)
1218                 btrfs_panic(fs_info, -EEXIST,
1219                         "zoned: inconsistency in ordered tree at offset %llu",
1220                         ordered->file_offset);
1221
1222         node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1223         if (node)
1224                 btrfs_panic(fs_info, -EEXIST,
1225                         "zoned: inconsistency in ordered tree at offset %llu",
1226                         new->file_offset);
1227         spin_unlock(&inode->ordered_tree_lock);
1228
1229         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1230         root->nr_ordered_extents++;
1231         spin_unlock_irq(&root->ordered_extent_lock);
1232         return new;
1233 }
1234
1235 int __init ordered_data_init(void)
1236 {
1237         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1238                                      sizeof(struct btrfs_ordered_extent), 0,
1239                                      SLAB_MEM_SPREAD,
1240                                      NULL);
1241         if (!btrfs_ordered_extent_cache)
1242                 return -ENOMEM;
1243
1244         return 0;
1245 }
1246
1247 void __cold ordered_data_exit(void)
1248 {
1249         kmem_cache_destroy(btrfs_ordered_extent_cache);
1250 }
This page took 0.113842 seconds and 4 git commands to generate.