1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
24 static struct kmem_cache *btrfs_ordered_extent_cache;
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
30 return entry->file_offset + entry->num_bytes;
33 /* returns NULL if the insertion worked, or it returns the node it did find
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
47 if (file_offset < entry->file_offset)
49 else if (file_offset >= entry_end(entry))
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
61 * look for a given offset in the tree, and if it can't be found return the
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 if (file_offset < entry->file_offset)
80 else if (file_offset >= entry_end(entry))
88 while (prev && file_offset >= entry_end(prev_entry)) {
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 if (file_offset < entry_end(prev_entry))
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
130 struct rb_node *prev = NULL;
132 struct btrfs_ordered_extent *entry;
134 if (inode->ordered_tree_last) {
135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
137 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 return inode->ordered_tree_last;
140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
144 inode->ordered_tree_last = ret;
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 u64 offset, unsigned long flags, int compress_type)
153 struct btrfs_ordered_extent *entry;
157 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158 /* For nocow write, we can release the qgroup rsv right now */
159 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
164 * The ordered extent has reserved qgroup space, release now
165 * and pass the reserved number for qgroup_record to free.
167 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
171 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 return ERR_PTR(-ENOMEM);
175 entry->file_offset = file_offset;
176 entry->num_bytes = num_bytes;
177 entry->ram_bytes = ram_bytes;
178 entry->disk_bytenr = disk_bytenr;
179 entry->disk_num_bytes = disk_num_bytes;
180 entry->offset = offset;
181 entry->bytes_left = num_bytes;
182 entry->inode = igrab(&inode->vfs_inode);
183 entry->compress_type = compress_type;
184 entry->truncated_len = (u64)-1;
185 entry->qgroup_rsv = ret;
186 entry->flags = flags;
187 refcount_set(&entry->refs, 1);
188 init_waitqueue_head(&entry->wait);
189 INIT_LIST_HEAD(&entry->list);
190 INIT_LIST_HEAD(&entry->log_list);
191 INIT_LIST_HEAD(&entry->root_extent_list);
192 INIT_LIST_HEAD(&entry->work_list);
193 INIT_LIST_HEAD(&entry->bioc_list);
194 init_completion(&entry->completion);
197 * We don't need the count_max_extents here, we can assume that all of
198 * that work has been done at higher layers, so this is truly the
199 * smallest the extent is going to get.
201 spin_lock(&inode->lock);
202 btrfs_mod_outstanding_extents(inode, 1);
203 spin_unlock(&inode->lock);
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 struct btrfs_root *root = inode->root;
212 struct btrfs_fs_info *fs_info = root->fs_info;
213 struct rb_node *node;
215 trace_btrfs_ordered_extent_add(inode, entry);
217 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218 fs_info->delalloc_batch);
220 /* One ref for the tree. */
221 refcount_inc(&entry->refs);
223 spin_lock_irq(&inode->ordered_tree_lock);
224 node = tree_insert(&inode->ordered_tree, entry->file_offset,
227 btrfs_panic(fs_info, -EEXIST,
228 "inconsistency in ordered tree at offset %llu",
230 spin_unlock_irq(&inode->ordered_tree_lock);
232 spin_lock(&root->ordered_extent_lock);
233 list_add_tail(&entry->root_extent_list,
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
237 spin_lock(&fs_info->ordered_root_lock);
238 BUG_ON(!list_empty(&root->ordered_root));
239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 spin_unlock(&fs_info->ordered_root_lock);
242 spin_unlock(&root->ordered_extent_lock);
246 * Add an ordered extent to the per-inode tree.
248 * @inode: Inode that this extent is for.
249 * @file_offset: Logical offset in file where the extent starts.
250 * @num_bytes: Logical length of extent in file.
251 * @ram_bytes: Full length of unencoded data.
252 * @disk_bytenr: Offset of extent on disk.
253 * @disk_num_bytes: Size of extent on disk.
254 * @offset: Offset into unencoded data where file data starts.
255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256 * @compress_type: Compression algorithm used for data.
258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259 * tree is given a single reference on the ordered extent that was inserted, and
260 * the returned pointer is given a second reference.
262 * Return: the new ordered extent or error pointer.
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 struct btrfs_inode *inode, u64 file_offset,
266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 u64 disk_num_bytes, u64 offset, unsigned long flags,
270 struct btrfs_ordered_extent *entry;
272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 disk_bytenr, disk_num_bytes, offset, flags,
278 insert_ordered_extent(entry);
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 struct btrfs_ordered_sum *sum)
290 struct btrfs_inode *inode = BTRFS_I(entry->inode);
292 spin_lock_irq(&inode->ordered_tree_lock);
293 list_add_tail(&sum->list, &entry->list);
294 spin_unlock_irq(&inode->ordered_tree_lock);
297 static void finish_ordered_fn(struct btrfs_work *work)
299 struct btrfs_ordered_extent *ordered_extent;
301 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
302 btrfs_finish_ordered_io(ordered_extent);
305 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
306 struct page *page, u64 file_offset,
307 u64 len, bool uptodate)
309 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
310 struct btrfs_fs_info *fs_info = inode->root->fs_info;
312 lockdep_assert_held(&inode->ordered_tree_lock);
315 ASSERT(page->mapping);
316 ASSERT(page_offset(page) <= file_offset);
317 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
320 * Ordered (Private2) bit indicates whether we still have
321 * pending io unfinished for the ordered extent.
323 * If there's no such bit, we need to skip to next range.
325 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
327 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
330 /* Now we're fine to update the accounting. */
331 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
334 inode->root->root_key.objectid, btrfs_ino(inode),
335 ordered->file_offset, ordered->num_bytes,
336 len, ordered->bytes_left);
337 ordered->bytes_left = 0;
339 ordered->bytes_left -= len;
343 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345 if (ordered->bytes_left)
349 * All the IO of the ordered extent is finished, we need to queue
350 * the finish_func to be executed.
352 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
353 cond_wake_up(&ordered->wait);
354 refcount_inc(&ordered->refs);
355 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
359 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
362 struct btrfs_fs_info *fs_info = inode->root->fs_info;
363 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
364 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
367 btrfs_queue_work(wq, &ordered->work);
370 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
371 struct page *page, u64 file_offset, u64 len,
374 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
378 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
381 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
382 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
385 btrfs_queue_ordered_fn(ordered);
390 * Mark all ordered extents io inside the specified range finished.
392 * @page: The involved page for the operation.
393 * For uncompressed buffered IO, the page status also needs to be
394 * updated to indicate whether the pending ordered io is finished.
395 * Can be NULL for direct IO and compressed write.
396 * For these cases, callers are ensured they won't execute the
397 * endio function twice.
399 * This function is called for endio, thus the range must have ordered
400 * extent(s) covering it.
402 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
403 struct page *page, u64 file_offset,
404 u64 num_bytes, bool uptodate)
406 struct rb_node *node;
407 struct btrfs_ordered_extent *entry = NULL;
409 u64 cur = file_offset;
411 trace_btrfs_writepage_end_io_hook(inode, file_offset,
412 file_offset + num_bytes - 1,
415 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
416 while (cur < file_offset + num_bytes) {
421 node = ordered_tree_search(inode, cur);
422 /* No ordered extents at all */
426 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
427 entry_end = entry->file_offset + entry->num_bytes;
433 if (cur >= entry_end) {
434 node = rb_next(node);
435 /* No more ordered extents, exit */
438 entry = rb_entry(node, struct btrfs_ordered_extent,
441 /* Go to next ordered extent and continue */
442 cur = entry->file_offset;
448 * Go to the start of OE.
450 if (cur < entry->file_offset) {
451 cur = entry->file_offset;
456 * Now we are definitely inside one ordered extent.
462 end = min(entry->file_offset + entry->num_bytes,
463 file_offset + num_bytes) - 1;
464 ASSERT(end + 1 - cur < U32_MAX);
467 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
468 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
469 btrfs_queue_ordered_fn(entry);
470 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
474 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
478 * Finish IO for one ordered extent across a given range. The range can only
479 * contain one ordered extent.
481 * @cached: The cached ordered extent. If not NULL, we can skip the tree
482 * search and use the ordered extent directly.
483 * Will be also used to store the finished ordered extent.
484 * @file_offset: File offset for the finished IO
485 * @io_size: Length of the finish IO range
487 * Return true if the ordered extent is finished in the range, and update
489 * Return false otherwise.
491 * NOTE: The range can NOT cross multiple ordered extents.
492 * Thus caller should ensure the range doesn't cross ordered extents.
494 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
495 struct btrfs_ordered_extent **cached,
496 u64 file_offset, u64 io_size)
498 struct rb_node *node;
499 struct btrfs_ordered_extent *entry = NULL;
501 bool finished = false;
503 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
504 if (cached && *cached) {
509 node = ordered_tree_search(inode, file_offset);
513 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
515 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
518 if (io_size > entry->bytes_left)
519 btrfs_crit(inode->root->fs_info,
520 "bad ordered accounting left %llu size %llu",
521 entry->bytes_left, io_size);
523 entry->bytes_left -= io_size;
525 if (entry->bytes_left == 0) {
527 * Ensure only one caller can set the flag and finished_ret
530 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
531 /* test_and_set_bit implies a barrier */
532 cond_wake_up_nomb(&entry->wait);
535 if (finished && cached && entry) {
537 refcount_inc(&entry->refs);
538 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
540 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
545 * used to drop a reference on an ordered extent. This will free
546 * the extent if the last reference is dropped
548 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
550 struct list_head *cur;
551 struct btrfs_ordered_sum *sum;
553 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
555 if (refcount_dec_and_test(&entry->refs)) {
556 ASSERT(list_empty(&entry->root_extent_list));
557 ASSERT(list_empty(&entry->log_list));
558 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
560 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
561 while (!list_empty(&entry->list)) {
562 cur = entry->list.next;
563 sum = list_entry(cur, struct btrfs_ordered_sum, list);
564 list_del(&sum->list);
567 kmem_cache_free(btrfs_ordered_extent_cache, entry);
572 * remove an ordered extent from the tree. No references are dropped
573 * and waiters are woken up.
575 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
576 struct btrfs_ordered_extent *entry)
578 struct btrfs_root *root = btrfs_inode->root;
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 struct rb_node *node;
582 bool freespace_inode;
585 * If this is a free space inode the thread has not acquired the ordered
586 * extents lockdep map.
588 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
590 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
591 /* This is paired with btrfs_alloc_ordered_extent. */
592 spin_lock(&btrfs_inode->lock);
593 btrfs_mod_outstanding_extents(btrfs_inode, -1);
594 spin_unlock(&btrfs_inode->lock);
595 if (root != fs_info->tree_root) {
598 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
599 release = entry->disk_num_bytes;
601 release = entry->num_bytes;
602 btrfs_delalloc_release_metadata(btrfs_inode, release,
603 test_bit(BTRFS_ORDERED_IOERR,
607 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
608 fs_info->delalloc_batch);
610 spin_lock_irq(&btrfs_inode->ordered_tree_lock);
611 node = &entry->rb_node;
612 rb_erase(node, &btrfs_inode->ordered_tree);
614 if (btrfs_inode->ordered_tree_last == node)
615 btrfs_inode->ordered_tree_last = NULL;
616 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
617 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
618 spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
621 * The current running transaction is waiting on us, we need to let it
622 * know that we're complete and wake it up.
625 struct btrfs_transaction *trans;
628 * The checks for trans are just a formality, it should be set,
629 * but if it isn't we don't want to deref/assert under the spin
630 * lock, so be nice and check if trans is set, but ASSERT() so
631 * if it isn't set a developer will notice.
633 spin_lock(&fs_info->trans_lock);
634 trans = fs_info->running_transaction;
636 refcount_inc(&trans->use_count);
637 spin_unlock(&fs_info->trans_lock);
639 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
641 if (atomic_dec_and_test(&trans->pending_ordered))
642 wake_up(&trans->pending_wait);
643 btrfs_put_transaction(trans);
647 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
649 spin_lock(&root->ordered_extent_lock);
650 list_del_init(&entry->root_extent_list);
651 root->nr_ordered_extents--;
653 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
655 if (!root->nr_ordered_extents) {
656 spin_lock(&fs_info->ordered_root_lock);
657 BUG_ON(list_empty(&root->ordered_root));
658 list_del_init(&root->ordered_root);
659 spin_unlock(&fs_info->ordered_root_lock);
661 spin_unlock(&root->ordered_extent_lock);
662 wake_up(&entry->wait);
663 if (!freespace_inode)
664 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
667 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
669 struct btrfs_ordered_extent *ordered;
671 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
672 btrfs_start_ordered_extent(ordered);
673 complete(&ordered->completion);
677 * wait for all the ordered extents in a root. This is done when balancing
678 * space between drives.
680 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
681 const u64 range_start, const u64 range_len)
683 struct btrfs_fs_info *fs_info = root->fs_info;
687 struct btrfs_ordered_extent *ordered, *next;
689 const u64 range_end = range_start + range_len;
691 mutex_lock(&root->ordered_extent_mutex);
692 spin_lock(&root->ordered_extent_lock);
693 list_splice_init(&root->ordered_extents, &splice);
694 while (!list_empty(&splice) && nr) {
695 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
698 if (range_end <= ordered->disk_bytenr ||
699 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
700 list_move_tail(&ordered->root_extent_list, &skipped);
701 cond_resched_lock(&root->ordered_extent_lock);
705 list_move_tail(&ordered->root_extent_list,
706 &root->ordered_extents);
707 refcount_inc(&ordered->refs);
708 spin_unlock(&root->ordered_extent_lock);
710 btrfs_init_work(&ordered->flush_work,
711 btrfs_run_ordered_extent_work, NULL);
712 list_add_tail(&ordered->work_list, &works);
713 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
716 spin_lock(&root->ordered_extent_lock);
721 list_splice_tail(&skipped, &root->ordered_extents);
722 list_splice_tail(&splice, &root->ordered_extents);
723 spin_unlock(&root->ordered_extent_lock);
725 list_for_each_entry_safe(ordered, next, &works, work_list) {
726 list_del_init(&ordered->work_list);
727 wait_for_completion(&ordered->completion);
728 btrfs_put_ordered_extent(ordered);
731 mutex_unlock(&root->ordered_extent_mutex);
736 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
737 const u64 range_start, const u64 range_len)
739 struct btrfs_root *root;
743 mutex_lock(&fs_info->ordered_operations_mutex);
744 spin_lock(&fs_info->ordered_root_lock);
745 list_splice_init(&fs_info->ordered_roots, &splice);
746 while (!list_empty(&splice) && nr) {
747 root = list_first_entry(&splice, struct btrfs_root,
749 root = btrfs_grab_root(root);
751 list_move_tail(&root->ordered_root,
752 &fs_info->ordered_roots);
753 spin_unlock(&fs_info->ordered_root_lock);
755 done = btrfs_wait_ordered_extents(root, nr,
756 range_start, range_len);
757 btrfs_put_root(root);
759 spin_lock(&fs_info->ordered_root_lock);
764 list_splice_tail(&splice, &fs_info->ordered_roots);
765 spin_unlock(&fs_info->ordered_root_lock);
766 mutex_unlock(&fs_info->ordered_operations_mutex);
770 * Start IO and wait for a given ordered extent to finish.
772 * Wait on page writeback for all the pages in the extent and the IO completion
773 * code to insert metadata into the btree corresponding to the extent.
775 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
777 u64 start = entry->file_offset;
778 u64 end = start + entry->num_bytes - 1;
779 struct btrfs_inode *inode = BTRFS_I(entry->inode);
780 bool freespace_inode;
782 trace_btrfs_ordered_extent_start(inode, entry);
785 * If this is a free space inode do not take the ordered extents lockdep
788 freespace_inode = btrfs_is_free_space_inode(inode);
791 * pages in the range can be dirty, clean or writeback. We
792 * start IO on any dirty ones so the wait doesn't stall waiting
793 * for the flusher thread to find them
795 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
796 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
798 if (!freespace_inode)
799 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
800 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
804 * Used to wait on ordered extents across a large range of bytes.
806 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
812 struct btrfs_ordered_extent *ordered;
814 if (start + len < start) {
815 orig_end = OFFSET_MAX;
817 orig_end = start + len - 1;
818 if (orig_end > OFFSET_MAX)
819 orig_end = OFFSET_MAX;
822 /* start IO across the range first to instantiate any delalloc
825 ret = btrfs_fdatawrite_range(inode, start, orig_end);
830 * If we have a writeback error don't return immediately. Wait first
831 * for any ordered extents that haven't completed yet. This is to make
832 * sure no one can dirty the same page ranges and call writepages()
833 * before the ordered extents complete - to avoid failures (-EEXIST)
834 * when adding the new ordered extents to the ordered tree.
836 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
840 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
843 if (ordered->file_offset > orig_end) {
844 btrfs_put_ordered_extent(ordered);
847 if (ordered->file_offset + ordered->num_bytes <= start) {
848 btrfs_put_ordered_extent(ordered);
851 btrfs_start_ordered_extent(ordered);
852 end = ordered->file_offset;
854 * If the ordered extent had an error save the error but don't
855 * exit without waiting first for all other ordered extents in
856 * the range to complete.
858 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
860 btrfs_put_ordered_extent(ordered);
861 if (end == 0 || end == start)
865 return ret_wb ? ret_wb : ret;
869 * find an ordered extent corresponding to file_offset. return NULL if
870 * nothing is found, otherwise take a reference on the extent and return it
872 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
875 struct rb_node *node;
876 struct btrfs_ordered_extent *entry = NULL;
879 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
880 node = ordered_tree_search(inode, file_offset);
884 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
885 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
888 refcount_inc(&entry->refs);
889 trace_btrfs_ordered_extent_lookup(inode, entry);
892 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
896 /* Since the DIO code tries to lock a wide area we need to look for any ordered
897 * extents that exist in the range, rather than just the start of the range.
899 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
900 struct btrfs_inode *inode, u64 file_offset, u64 len)
902 struct rb_node *node;
903 struct btrfs_ordered_extent *entry = NULL;
905 spin_lock_irq(&inode->ordered_tree_lock);
906 node = ordered_tree_search(inode, file_offset);
908 node = ordered_tree_search(inode, file_offset + len);
914 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
915 if (range_overlaps(entry, file_offset, len))
918 if (entry->file_offset >= file_offset + len) {
923 node = rb_next(node);
929 refcount_inc(&entry->refs);
930 trace_btrfs_ordered_extent_lookup_range(inode, entry);
932 spin_unlock_irq(&inode->ordered_tree_lock);
937 * Adds all ordered extents to the given list. The list ends up sorted by the
938 * file_offset of the ordered extents.
940 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
941 struct list_head *list)
945 ASSERT(inode_is_locked(&inode->vfs_inode));
947 spin_lock_irq(&inode->ordered_tree_lock);
948 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
949 struct btrfs_ordered_extent *ordered;
951 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
953 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
956 ASSERT(list_empty(&ordered->log_list));
957 list_add_tail(&ordered->log_list, list);
958 refcount_inc(&ordered->refs);
959 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
961 spin_unlock_irq(&inode->ordered_tree_lock);
965 * lookup and return any extent before 'file_offset'. NULL is returned
968 struct btrfs_ordered_extent *
969 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
971 struct rb_node *node;
972 struct btrfs_ordered_extent *entry = NULL;
974 spin_lock_irq(&inode->ordered_tree_lock);
975 node = ordered_tree_search(inode, file_offset);
979 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
980 refcount_inc(&entry->refs);
981 trace_btrfs_ordered_extent_lookup_first(inode, entry);
983 spin_unlock_irq(&inode->ordered_tree_lock);
988 * Lookup the first ordered extent that overlaps the range
989 * [@file_offset, @file_offset + @len).
991 * The difference between this and btrfs_lookup_first_ordered_extent() is
992 * that this one won't return any ordered extent that does not overlap the range.
993 * And the difference against btrfs_lookup_ordered_extent() is, this function
994 * ensures the first ordered extent gets returned.
996 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
997 struct btrfs_inode *inode, u64 file_offset, u64 len)
999 struct rb_node *node;
1000 struct rb_node *cur;
1001 struct rb_node *prev;
1002 struct rb_node *next;
1003 struct btrfs_ordered_extent *entry = NULL;
1005 spin_lock_irq(&inode->ordered_tree_lock);
1006 node = inode->ordered_tree.rb_node;
1008 * Here we don't want to use tree_search() which will use tree->last
1009 * and screw up the search order.
1010 * And __tree_search() can't return the adjacent ordered extents
1011 * either, thus here we do our own search.
1014 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1016 if (file_offset < entry->file_offset) {
1017 node = node->rb_left;
1018 } else if (file_offset >= entry_end(entry)) {
1019 node = node->rb_right;
1022 * Direct hit, got an ordered extent that starts at
1033 cur = &entry->rb_node;
1034 /* We got an entry around @file_offset, check adjacent entries */
1035 if (entry->file_offset < file_offset) {
1037 next = rb_next(cur);
1039 prev = rb_prev(cur);
1043 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1044 if (range_overlaps(entry, file_offset, len))
1048 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1049 if (range_overlaps(entry, file_offset, len))
1052 /* No ordered extent in the range */
1056 refcount_inc(&entry->refs);
1057 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1060 spin_unlock_irq(&inode->ordered_tree_lock);
1065 * Lock the passed range and ensures all pending ordered extents in it are run
1068 * @inode: Inode whose ordered tree is to be searched
1069 * @start: Beginning of range to flush
1070 * @end: Last byte of range to lock
1071 * @cached_state: If passed, will return the extent state responsible for the
1072 * locked range. It's the caller's responsibility to free the
1075 * Always return with the given range locked, ensuring after it's called no
1076 * order extent can be pending.
1078 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1080 struct extent_state **cached_state)
1082 struct btrfs_ordered_extent *ordered;
1083 struct extent_state *cache = NULL;
1084 struct extent_state **cachedp = &cache;
1087 cachedp = cached_state;
1090 lock_extent(&inode->io_tree, start, end, cachedp);
1091 ordered = btrfs_lookup_ordered_range(inode, start,
1095 * If no external cached_state has been passed then
1096 * decrement the extra ref taken for cachedp since we
1097 * aren't exposing it outside of this function
1100 refcount_dec(&cache->refs);
1103 unlock_extent(&inode->io_tree, start, end, cachedp);
1104 btrfs_start_ordered_extent(ordered);
1105 btrfs_put_ordered_extent(ordered);
1110 * Lock the passed range and ensure all pending ordered extents in it are run
1111 * to completion in nowait mode.
1113 * Return true if btrfs_lock_ordered_range does not return any extents,
1116 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1117 struct extent_state **cached_state)
1119 struct btrfs_ordered_extent *ordered;
1121 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1124 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1128 btrfs_put_ordered_extent(ordered);
1129 unlock_extent(&inode->io_tree, start, end, cached_state);
1134 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1135 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1136 struct btrfs_ordered_extent *ordered, u64 len)
1138 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1139 struct btrfs_root *root = inode->root;
1140 struct btrfs_fs_info *fs_info = root->fs_info;
1141 u64 file_offset = ordered->file_offset;
1142 u64 disk_bytenr = ordered->disk_bytenr;
1143 unsigned long flags = ordered->flags;
1144 struct btrfs_ordered_sum *sum, *tmpsum;
1145 struct btrfs_ordered_extent *new;
1146 struct rb_node *node;
1149 trace_btrfs_ordered_extent_split(inode, ordered);
1151 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1154 * The entire bio must be covered by the ordered extent, but we can't
1155 * reduce the original extent to a zero length either.
1157 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1158 return ERR_PTR(-EINVAL);
1159 /* We cannot split partially completed ordered extents. */
1160 if (ordered->bytes_left) {
1161 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1162 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1163 return ERR_PTR(-EINVAL);
1165 /* We cannot split a compressed ordered extent. */
1166 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1167 return ERR_PTR(-EINVAL);
1169 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1170 len, 0, flags, ordered->compress_type);
1174 /* One ref for the tree. */
1175 refcount_inc(&new->refs);
1177 spin_lock_irq(&root->ordered_extent_lock);
1178 spin_lock(&inode->ordered_tree_lock);
1179 /* Remove from tree once */
1180 node = &ordered->rb_node;
1181 rb_erase(node, &inode->ordered_tree);
1182 RB_CLEAR_NODE(node);
1183 if (inode->ordered_tree_last == node)
1184 inode->ordered_tree_last = NULL;
1186 ordered->file_offset += len;
1187 ordered->disk_bytenr += len;
1188 ordered->num_bytes -= len;
1189 ordered->disk_num_bytes -= len;
1191 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1192 ASSERT(ordered->bytes_left == 0);
1193 new->bytes_left = 0;
1195 ordered->bytes_left -= len;
1198 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1199 if (ordered->truncated_len > len) {
1200 ordered->truncated_len -= len;
1202 new->truncated_len = ordered->truncated_len;
1203 ordered->truncated_len = 0;
1207 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210 list_move_tail(&sum->list, &new->list);
1214 /* Re-insert the node */
1215 node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218 btrfs_panic(fs_info, -EEXIST,
1219 "zoned: inconsistency in ordered tree at offset %llu",
1220 ordered->file_offset);
1222 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1224 btrfs_panic(fs_info, -EEXIST,
1225 "zoned: inconsistency in ordered tree at offset %llu",
1227 spin_unlock(&inode->ordered_tree_lock);
1229 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1230 root->nr_ordered_extents++;
1231 spin_unlock_irq(&root->ordered_extent_lock);
1235 int __init ordered_data_init(void)
1237 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1238 sizeof(struct btrfs_ordered_extent), 0,
1241 if (!btrfs_ordered_extent_cache)
1247 void __cold ordered_data_exit(void)
1249 kmem_cache_destroy(btrfs_ordered_extent_cache);