]> Git Repo - linux.git/blob - mm/huge_memory.c
memcg: adjust to support new THP refcounting
[linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 enum scan_result {
35         SCAN_FAIL,
36         SCAN_SUCCEED,
37         SCAN_PMD_NULL,
38         SCAN_EXCEED_NONE_PTE,
39         SCAN_PTE_NON_PRESENT,
40         SCAN_PAGE_RO,
41         SCAN_NO_REFERENCED_PAGE,
42         SCAN_PAGE_NULL,
43         SCAN_SCAN_ABORT,
44         SCAN_PAGE_COUNT,
45         SCAN_PAGE_LRU,
46         SCAN_PAGE_LOCK,
47         SCAN_PAGE_ANON,
48         SCAN_ANY_PROCESS,
49         SCAN_VMA_NULL,
50         SCAN_VMA_CHECK,
51         SCAN_ADDRESS_RANGE,
52         SCAN_SWAP_CACHE_PAGE,
53         SCAN_DEL_PAGE_LRU,
54         SCAN_ALLOC_HUGE_PAGE_FAIL,
55         SCAN_CGROUP_CHARGE_FAIL
56 };
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/huge_memory.h>
60
61 /*
62  * By default transparent hugepage support is disabled in order that avoid
63  * to risk increase the memory footprint of applications without a guaranteed
64  * benefit. When transparent hugepage support is enabled, is for all mappings,
65  * and khugepaged scans all mappings.
66  * Defrag is invoked by khugepaged hugepage allocations and by page faults
67  * for all hugepage allocations.
68  */
69 unsigned long transparent_hugepage_flags __read_mostly =
70 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
71         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
72 #endif
73 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
74         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
75 #endif
76         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
77         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
78         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79
80 /* default scan 8*512 pte (or vmas) every 30 second */
81 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
82 static unsigned int khugepaged_pages_collapsed;
83 static unsigned int khugepaged_full_scans;
84 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
85 /* during fragmentation poll the hugepage allocator once every minute */
86 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
87 static struct task_struct *khugepaged_thread __read_mostly;
88 static DEFINE_MUTEX(khugepaged_mutex);
89 static DEFINE_SPINLOCK(khugepaged_mm_lock);
90 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
91 /*
92  * default collapse hugepages if there is at least one pte mapped like
93  * it would have happened if the vma was large enough during page
94  * fault.
95  */
96 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
97
98 static int khugepaged(void *none);
99 static int khugepaged_slab_init(void);
100 static void khugepaged_slab_exit(void);
101
102 #define MM_SLOTS_HASH_BITS 10
103 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
104
105 static struct kmem_cache *mm_slot_cache __read_mostly;
106
107 /**
108  * struct mm_slot - hash lookup from mm to mm_slot
109  * @hash: hash collision list
110  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
111  * @mm: the mm that this information is valid for
112  */
113 struct mm_slot {
114         struct hlist_node hash;
115         struct list_head mm_node;
116         struct mm_struct *mm;
117 };
118
119 /**
120  * struct khugepaged_scan - cursor for scanning
121  * @mm_head: the head of the mm list to scan
122  * @mm_slot: the current mm_slot we are scanning
123  * @address: the next address inside that to be scanned
124  *
125  * There is only the one khugepaged_scan instance of this cursor structure.
126  */
127 struct khugepaged_scan {
128         struct list_head mm_head;
129         struct mm_slot *mm_slot;
130         unsigned long address;
131 };
132 static struct khugepaged_scan khugepaged_scan = {
133         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135
136
137 static void set_recommended_min_free_kbytes(void)
138 {
139         struct zone *zone;
140         int nr_zones = 0;
141         unsigned long recommended_min;
142
143         for_each_populated_zone(zone)
144                 nr_zones++;
145
146         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
147         recommended_min = pageblock_nr_pages * nr_zones * 2;
148
149         /*
150          * Make sure that on average at least two pageblocks are almost free
151          * of another type, one for a migratetype to fall back to and a
152          * second to avoid subsequent fallbacks of other types There are 3
153          * MIGRATE_TYPES we care about.
154          */
155         recommended_min += pageblock_nr_pages * nr_zones *
156                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
157
158         /* don't ever allow to reserve more than 5% of the lowmem */
159         recommended_min = min(recommended_min,
160                               (unsigned long) nr_free_buffer_pages() / 20);
161         recommended_min <<= (PAGE_SHIFT-10);
162
163         if (recommended_min > min_free_kbytes) {
164                 if (user_min_free_kbytes >= 0)
165                         pr_info("raising min_free_kbytes from %d to %lu "
166                                 "to help transparent hugepage allocations\n",
167                                 min_free_kbytes, recommended_min);
168
169                 min_free_kbytes = recommended_min;
170         }
171         setup_per_zone_wmarks();
172 }
173
174 static int start_stop_khugepaged(void)
175 {
176         int err = 0;
177         if (khugepaged_enabled()) {
178                 if (!khugepaged_thread)
179                         khugepaged_thread = kthread_run(khugepaged, NULL,
180                                                         "khugepaged");
181                 if (IS_ERR(khugepaged_thread)) {
182                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
183                         err = PTR_ERR(khugepaged_thread);
184                         khugepaged_thread = NULL;
185                         goto fail;
186                 }
187
188                 if (!list_empty(&khugepaged_scan.mm_head))
189                         wake_up_interruptible(&khugepaged_wait);
190
191                 set_recommended_min_free_kbytes();
192         } else if (khugepaged_thread) {
193                 kthread_stop(khugepaged_thread);
194                 khugepaged_thread = NULL;
195         }
196 fail:
197         return err;
198 }
199
200 static atomic_t huge_zero_refcount;
201 struct page *huge_zero_page __read_mostly;
202
203 struct page *get_huge_zero_page(void)
204 {
205         struct page *zero_page;
206 retry:
207         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
208                 return READ_ONCE(huge_zero_page);
209
210         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
211                         HPAGE_PMD_ORDER);
212         if (!zero_page) {
213                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
214                 return NULL;
215         }
216         count_vm_event(THP_ZERO_PAGE_ALLOC);
217         preempt_disable();
218         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
219                 preempt_enable();
220                 __free_pages(zero_page, compound_order(zero_page));
221                 goto retry;
222         }
223
224         /* We take additional reference here. It will be put back by shrinker */
225         atomic_set(&huge_zero_refcount, 2);
226         preempt_enable();
227         return READ_ONCE(huge_zero_page);
228 }
229
230 static void put_huge_zero_page(void)
231 {
232         /*
233          * Counter should never go to zero here. Only shrinker can put
234          * last reference.
235          */
236         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
237 }
238
239 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
240                                         struct shrink_control *sc)
241 {
242         /* we can free zero page only if last reference remains */
243         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
244 }
245
246 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
247                                        struct shrink_control *sc)
248 {
249         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
250                 struct page *zero_page = xchg(&huge_zero_page, NULL);
251                 BUG_ON(zero_page == NULL);
252                 __free_pages(zero_page, compound_order(zero_page));
253                 return HPAGE_PMD_NR;
254         }
255
256         return 0;
257 }
258
259 static struct shrinker huge_zero_page_shrinker = {
260         .count_objects = shrink_huge_zero_page_count,
261         .scan_objects = shrink_huge_zero_page_scan,
262         .seeks = DEFAULT_SEEKS,
263 };
264
265 #ifdef CONFIG_SYSFS
266
267 static ssize_t double_flag_show(struct kobject *kobj,
268                                 struct kobj_attribute *attr, char *buf,
269                                 enum transparent_hugepage_flag enabled,
270                                 enum transparent_hugepage_flag req_madv)
271 {
272         if (test_bit(enabled, &transparent_hugepage_flags)) {
273                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
274                 return sprintf(buf, "[always] madvise never\n");
275         } else if (test_bit(req_madv, &transparent_hugepage_flags))
276                 return sprintf(buf, "always [madvise] never\n");
277         else
278                 return sprintf(buf, "always madvise [never]\n");
279 }
280 static ssize_t double_flag_store(struct kobject *kobj,
281                                  struct kobj_attribute *attr,
282                                  const char *buf, size_t count,
283                                  enum transparent_hugepage_flag enabled,
284                                  enum transparent_hugepage_flag req_madv)
285 {
286         if (!memcmp("always", buf,
287                     min(sizeof("always")-1, count))) {
288                 set_bit(enabled, &transparent_hugepage_flags);
289                 clear_bit(req_madv, &transparent_hugepage_flags);
290         } else if (!memcmp("madvise", buf,
291                            min(sizeof("madvise")-1, count))) {
292                 clear_bit(enabled, &transparent_hugepage_flags);
293                 set_bit(req_madv, &transparent_hugepage_flags);
294         } else if (!memcmp("never", buf,
295                            min(sizeof("never")-1, count))) {
296                 clear_bit(enabled, &transparent_hugepage_flags);
297                 clear_bit(req_madv, &transparent_hugepage_flags);
298         } else
299                 return -EINVAL;
300
301         return count;
302 }
303
304 static ssize_t enabled_show(struct kobject *kobj,
305                             struct kobj_attribute *attr, char *buf)
306 {
307         return double_flag_show(kobj, attr, buf,
308                                 TRANSPARENT_HUGEPAGE_FLAG,
309                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
310 }
311 static ssize_t enabled_store(struct kobject *kobj,
312                              struct kobj_attribute *attr,
313                              const char *buf, size_t count)
314 {
315         ssize_t ret;
316
317         ret = double_flag_store(kobj, attr, buf, count,
318                                 TRANSPARENT_HUGEPAGE_FLAG,
319                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
320
321         if (ret > 0) {
322                 int err;
323
324                 mutex_lock(&khugepaged_mutex);
325                 err = start_stop_khugepaged();
326                 mutex_unlock(&khugepaged_mutex);
327
328                 if (err)
329                         ret = err;
330         }
331
332         return ret;
333 }
334 static struct kobj_attribute enabled_attr =
335         __ATTR(enabled, 0644, enabled_show, enabled_store);
336
337 static ssize_t single_flag_show(struct kobject *kobj,
338                                 struct kobj_attribute *attr, char *buf,
339                                 enum transparent_hugepage_flag flag)
340 {
341         return sprintf(buf, "%d\n",
342                        !!test_bit(flag, &transparent_hugepage_flags));
343 }
344
345 static ssize_t single_flag_store(struct kobject *kobj,
346                                  struct kobj_attribute *attr,
347                                  const char *buf, size_t count,
348                                  enum transparent_hugepage_flag flag)
349 {
350         unsigned long value;
351         int ret;
352
353         ret = kstrtoul(buf, 10, &value);
354         if (ret < 0)
355                 return ret;
356         if (value > 1)
357                 return -EINVAL;
358
359         if (value)
360                 set_bit(flag, &transparent_hugepage_flags);
361         else
362                 clear_bit(flag, &transparent_hugepage_flags);
363
364         return count;
365 }
366
367 /*
368  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
369  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
370  * memory just to allocate one more hugepage.
371  */
372 static ssize_t defrag_show(struct kobject *kobj,
373                            struct kobj_attribute *attr, char *buf)
374 {
375         return double_flag_show(kobj, attr, buf,
376                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
377                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
378 }
379 static ssize_t defrag_store(struct kobject *kobj,
380                             struct kobj_attribute *attr,
381                             const char *buf, size_t count)
382 {
383         return double_flag_store(kobj, attr, buf, count,
384                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
385                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
386 }
387 static struct kobj_attribute defrag_attr =
388         __ATTR(defrag, 0644, defrag_show, defrag_store);
389
390 static ssize_t use_zero_page_show(struct kobject *kobj,
391                 struct kobj_attribute *attr, char *buf)
392 {
393         return single_flag_show(kobj, attr, buf,
394                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
395 }
396 static ssize_t use_zero_page_store(struct kobject *kobj,
397                 struct kobj_attribute *attr, const char *buf, size_t count)
398 {
399         return single_flag_store(kobj, attr, buf, count,
400                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static struct kobj_attribute use_zero_page_attr =
403         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
404 #ifdef CONFIG_DEBUG_VM
405 static ssize_t debug_cow_show(struct kobject *kobj,
406                                 struct kobj_attribute *attr, char *buf)
407 {
408         return single_flag_show(kobj, attr, buf,
409                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
410 }
411 static ssize_t debug_cow_store(struct kobject *kobj,
412                                struct kobj_attribute *attr,
413                                const char *buf, size_t count)
414 {
415         return single_flag_store(kobj, attr, buf, count,
416                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
417 }
418 static struct kobj_attribute debug_cow_attr =
419         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
420 #endif /* CONFIG_DEBUG_VM */
421
422 static struct attribute *hugepage_attr[] = {
423         &enabled_attr.attr,
424         &defrag_attr.attr,
425         &use_zero_page_attr.attr,
426 #ifdef CONFIG_DEBUG_VM
427         &debug_cow_attr.attr,
428 #endif
429         NULL,
430 };
431
432 static struct attribute_group hugepage_attr_group = {
433         .attrs = hugepage_attr,
434 };
435
436 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
437                                          struct kobj_attribute *attr,
438                                          char *buf)
439 {
440         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
441 }
442
443 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
444                                           struct kobj_attribute *attr,
445                                           const char *buf, size_t count)
446 {
447         unsigned long msecs;
448         int err;
449
450         err = kstrtoul(buf, 10, &msecs);
451         if (err || msecs > UINT_MAX)
452                 return -EINVAL;
453
454         khugepaged_scan_sleep_millisecs = msecs;
455         wake_up_interruptible(&khugepaged_wait);
456
457         return count;
458 }
459 static struct kobj_attribute scan_sleep_millisecs_attr =
460         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
461                scan_sleep_millisecs_store);
462
463 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
464                                           struct kobj_attribute *attr,
465                                           char *buf)
466 {
467         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
468 }
469
470 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
471                                            struct kobj_attribute *attr,
472                                            const char *buf, size_t count)
473 {
474         unsigned long msecs;
475         int err;
476
477         err = kstrtoul(buf, 10, &msecs);
478         if (err || msecs > UINT_MAX)
479                 return -EINVAL;
480
481         khugepaged_alloc_sleep_millisecs = msecs;
482         wake_up_interruptible(&khugepaged_wait);
483
484         return count;
485 }
486 static struct kobj_attribute alloc_sleep_millisecs_attr =
487         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
488                alloc_sleep_millisecs_store);
489
490 static ssize_t pages_to_scan_show(struct kobject *kobj,
491                                   struct kobj_attribute *attr,
492                                   char *buf)
493 {
494         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
495 }
496 static ssize_t pages_to_scan_store(struct kobject *kobj,
497                                    struct kobj_attribute *attr,
498                                    const char *buf, size_t count)
499 {
500         int err;
501         unsigned long pages;
502
503         err = kstrtoul(buf, 10, &pages);
504         if (err || !pages || pages > UINT_MAX)
505                 return -EINVAL;
506
507         khugepaged_pages_to_scan = pages;
508
509         return count;
510 }
511 static struct kobj_attribute pages_to_scan_attr =
512         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
513                pages_to_scan_store);
514
515 static ssize_t pages_collapsed_show(struct kobject *kobj,
516                                     struct kobj_attribute *attr,
517                                     char *buf)
518 {
519         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
520 }
521 static struct kobj_attribute pages_collapsed_attr =
522         __ATTR_RO(pages_collapsed);
523
524 static ssize_t full_scans_show(struct kobject *kobj,
525                                struct kobj_attribute *attr,
526                                char *buf)
527 {
528         return sprintf(buf, "%u\n", khugepaged_full_scans);
529 }
530 static struct kobj_attribute full_scans_attr =
531         __ATTR_RO(full_scans);
532
533 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
534                                       struct kobj_attribute *attr, char *buf)
535 {
536         return single_flag_show(kobj, attr, buf,
537                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
538 }
539 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
540                                        struct kobj_attribute *attr,
541                                        const char *buf, size_t count)
542 {
543         return single_flag_store(kobj, attr, buf, count,
544                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
545 }
546 static struct kobj_attribute khugepaged_defrag_attr =
547         __ATTR(defrag, 0644, khugepaged_defrag_show,
548                khugepaged_defrag_store);
549
550 /*
551  * max_ptes_none controls if khugepaged should collapse hugepages over
552  * any unmapped ptes in turn potentially increasing the memory
553  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
554  * reduce the available free memory in the system as it
555  * runs. Increasing max_ptes_none will instead potentially reduce the
556  * free memory in the system during the khugepaged scan.
557  */
558 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
559                                              struct kobj_attribute *attr,
560                                              char *buf)
561 {
562         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
563 }
564 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
565                                               struct kobj_attribute *attr,
566                                               const char *buf, size_t count)
567 {
568         int err;
569         unsigned long max_ptes_none;
570
571         err = kstrtoul(buf, 10, &max_ptes_none);
572         if (err || max_ptes_none > HPAGE_PMD_NR-1)
573                 return -EINVAL;
574
575         khugepaged_max_ptes_none = max_ptes_none;
576
577         return count;
578 }
579 static struct kobj_attribute khugepaged_max_ptes_none_attr =
580         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
581                khugepaged_max_ptes_none_store);
582
583 static struct attribute *khugepaged_attr[] = {
584         &khugepaged_defrag_attr.attr,
585         &khugepaged_max_ptes_none_attr.attr,
586         &pages_to_scan_attr.attr,
587         &pages_collapsed_attr.attr,
588         &full_scans_attr.attr,
589         &scan_sleep_millisecs_attr.attr,
590         &alloc_sleep_millisecs_attr.attr,
591         NULL,
592 };
593
594 static struct attribute_group khugepaged_attr_group = {
595         .attrs = khugepaged_attr,
596         .name = "khugepaged",
597 };
598
599 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
600 {
601         int err;
602
603         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
604         if (unlikely(!*hugepage_kobj)) {
605                 pr_err("failed to create transparent hugepage kobject\n");
606                 return -ENOMEM;
607         }
608
609         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
610         if (err) {
611                 pr_err("failed to register transparent hugepage group\n");
612                 goto delete_obj;
613         }
614
615         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
616         if (err) {
617                 pr_err("failed to register transparent hugepage group\n");
618                 goto remove_hp_group;
619         }
620
621         return 0;
622
623 remove_hp_group:
624         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
625 delete_obj:
626         kobject_put(*hugepage_kobj);
627         return err;
628 }
629
630 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
631 {
632         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
633         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
634         kobject_put(hugepage_kobj);
635 }
636 #else
637 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
638 {
639         return 0;
640 }
641
642 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
643 {
644 }
645 #endif /* CONFIG_SYSFS */
646
647 static int __init hugepage_init(void)
648 {
649         int err;
650         struct kobject *hugepage_kobj;
651
652         if (!has_transparent_hugepage()) {
653                 transparent_hugepage_flags = 0;
654                 return -EINVAL;
655         }
656
657         err = hugepage_init_sysfs(&hugepage_kobj);
658         if (err)
659                 goto err_sysfs;
660
661         err = khugepaged_slab_init();
662         if (err)
663                 goto err_slab;
664
665         err = register_shrinker(&huge_zero_page_shrinker);
666         if (err)
667                 goto err_hzp_shrinker;
668
669         /*
670          * By default disable transparent hugepages on smaller systems,
671          * where the extra memory used could hurt more than TLB overhead
672          * is likely to save.  The admin can still enable it through /sys.
673          */
674         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
675                 transparent_hugepage_flags = 0;
676                 return 0;
677         }
678
679         err = start_stop_khugepaged();
680         if (err)
681                 goto err_khugepaged;
682
683         return 0;
684 err_khugepaged:
685         unregister_shrinker(&huge_zero_page_shrinker);
686 err_hzp_shrinker:
687         khugepaged_slab_exit();
688 err_slab:
689         hugepage_exit_sysfs(hugepage_kobj);
690 err_sysfs:
691         return err;
692 }
693 subsys_initcall(hugepage_init);
694
695 static int __init setup_transparent_hugepage(char *str)
696 {
697         int ret = 0;
698         if (!str)
699                 goto out;
700         if (!strcmp(str, "always")) {
701                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
702                         &transparent_hugepage_flags);
703                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
704                           &transparent_hugepage_flags);
705                 ret = 1;
706         } else if (!strcmp(str, "madvise")) {
707                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
708                           &transparent_hugepage_flags);
709                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
710                         &transparent_hugepage_flags);
711                 ret = 1;
712         } else if (!strcmp(str, "never")) {
713                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
714                           &transparent_hugepage_flags);
715                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
716                           &transparent_hugepage_flags);
717                 ret = 1;
718         }
719 out:
720         if (!ret)
721                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
722         return ret;
723 }
724 __setup("transparent_hugepage=", setup_transparent_hugepage);
725
726 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
727 {
728         if (likely(vma->vm_flags & VM_WRITE))
729                 pmd = pmd_mkwrite(pmd);
730         return pmd;
731 }
732
733 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
734 {
735         pmd_t entry;
736         entry = mk_pmd(page, prot);
737         entry = pmd_mkhuge(entry);
738         return entry;
739 }
740
741 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
742                                         struct vm_area_struct *vma,
743                                         unsigned long address, pmd_t *pmd,
744                                         struct page *page, gfp_t gfp,
745                                         unsigned int flags)
746 {
747         struct mem_cgroup *memcg;
748         pgtable_t pgtable;
749         spinlock_t *ptl;
750         unsigned long haddr = address & HPAGE_PMD_MASK;
751
752         VM_BUG_ON_PAGE(!PageCompound(page), page);
753
754         if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
755                 put_page(page);
756                 count_vm_event(THP_FAULT_FALLBACK);
757                 return VM_FAULT_FALLBACK;
758         }
759
760         pgtable = pte_alloc_one(mm, haddr);
761         if (unlikely(!pgtable)) {
762                 mem_cgroup_cancel_charge(page, memcg, true);
763                 put_page(page);
764                 return VM_FAULT_OOM;
765         }
766
767         clear_huge_page(page, haddr, HPAGE_PMD_NR);
768         /*
769          * The memory barrier inside __SetPageUptodate makes sure that
770          * clear_huge_page writes become visible before the set_pmd_at()
771          * write.
772          */
773         __SetPageUptodate(page);
774
775         ptl = pmd_lock(mm, pmd);
776         if (unlikely(!pmd_none(*pmd))) {
777                 spin_unlock(ptl);
778                 mem_cgroup_cancel_charge(page, memcg, true);
779                 put_page(page);
780                 pte_free(mm, pgtable);
781         } else {
782                 pmd_t entry;
783
784                 /* Deliver the page fault to userland */
785                 if (userfaultfd_missing(vma)) {
786                         int ret;
787
788                         spin_unlock(ptl);
789                         mem_cgroup_cancel_charge(page, memcg, true);
790                         put_page(page);
791                         pte_free(mm, pgtable);
792                         ret = handle_userfault(vma, address, flags,
793                                                VM_UFFD_MISSING);
794                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
795                         return ret;
796                 }
797
798                 entry = mk_huge_pmd(page, vma->vm_page_prot);
799                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
800                 page_add_new_anon_rmap(page, vma, haddr, true);
801                 mem_cgroup_commit_charge(page, memcg, false, true);
802                 lru_cache_add_active_or_unevictable(page, vma);
803                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
804                 set_pmd_at(mm, haddr, pmd, entry);
805                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
806                 atomic_long_inc(&mm->nr_ptes);
807                 spin_unlock(ptl);
808                 count_vm_event(THP_FAULT_ALLOC);
809         }
810
811         return 0;
812 }
813
814 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
815 {
816         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
817 }
818
819 /* Caller must hold page table lock. */
820 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
821                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
822                 struct page *zero_page)
823 {
824         pmd_t entry;
825         if (!pmd_none(*pmd))
826                 return false;
827         entry = mk_pmd(zero_page, vma->vm_page_prot);
828         entry = pmd_mkhuge(entry);
829         pgtable_trans_huge_deposit(mm, pmd, pgtable);
830         set_pmd_at(mm, haddr, pmd, entry);
831         atomic_long_inc(&mm->nr_ptes);
832         return true;
833 }
834
835 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
836                                unsigned long address, pmd_t *pmd,
837                                unsigned int flags)
838 {
839         gfp_t gfp;
840         struct page *page;
841         unsigned long haddr = address & HPAGE_PMD_MASK;
842
843         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
844                 return VM_FAULT_FALLBACK;
845         if (unlikely(anon_vma_prepare(vma)))
846                 return VM_FAULT_OOM;
847         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
848                 return VM_FAULT_OOM;
849         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
850                         transparent_hugepage_use_zero_page()) {
851                 spinlock_t *ptl;
852                 pgtable_t pgtable;
853                 struct page *zero_page;
854                 bool set;
855                 int ret;
856                 pgtable = pte_alloc_one(mm, haddr);
857                 if (unlikely(!pgtable))
858                         return VM_FAULT_OOM;
859                 zero_page = get_huge_zero_page();
860                 if (unlikely(!zero_page)) {
861                         pte_free(mm, pgtable);
862                         count_vm_event(THP_FAULT_FALLBACK);
863                         return VM_FAULT_FALLBACK;
864                 }
865                 ptl = pmd_lock(mm, pmd);
866                 ret = 0;
867                 set = false;
868                 if (pmd_none(*pmd)) {
869                         if (userfaultfd_missing(vma)) {
870                                 spin_unlock(ptl);
871                                 ret = handle_userfault(vma, address, flags,
872                                                        VM_UFFD_MISSING);
873                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
874                         } else {
875                                 set_huge_zero_page(pgtable, mm, vma,
876                                                    haddr, pmd,
877                                                    zero_page);
878                                 spin_unlock(ptl);
879                                 set = true;
880                         }
881                 } else
882                         spin_unlock(ptl);
883                 if (!set) {
884                         pte_free(mm, pgtable);
885                         put_huge_zero_page();
886                 }
887                 return ret;
888         }
889         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
890         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
891         if (unlikely(!page)) {
892                 count_vm_event(THP_FAULT_FALLBACK);
893                 return VM_FAULT_FALLBACK;
894         }
895         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
896                                             flags);
897 }
898
899 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
900                 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
901 {
902         struct mm_struct *mm = vma->vm_mm;
903         pmd_t entry;
904         spinlock_t *ptl;
905
906         ptl = pmd_lock(mm, pmd);
907         if (pmd_none(*pmd)) {
908                 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
909                 if (write) {
910                         entry = pmd_mkyoung(pmd_mkdirty(entry));
911                         entry = maybe_pmd_mkwrite(entry, vma);
912                 }
913                 set_pmd_at(mm, addr, pmd, entry);
914                 update_mmu_cache_pmd(vma, addr, pmd);
915         }
916         spin_unlock(ptl);
917 }
918
919 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
920                         pmd_t *pmd, unsigned long pfn, bool write)
921 {
922         pgprot_t pgprot = vma->vm_page_prot;
923         /*
924          * If we had pmd_special, we could avoid all these restrictions,
925          * but we need to be consistent with PTEs and architectures that
926          * can't support a 'special' bit.
927          */
928         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
929         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
930                                                 (VM_PFNMAP|VM_MIXEDMAP));
931         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
932         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
933
934         if (addr < vma->vm_start || addr >= vma->vm_end)
935                 return VM_FAULT_SIGBUS;
936         if (track_pfn_insert(vma, &pgprot, pfn))
937                 return VM_FAULT_SIGBUS;
938         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
939         return VM_FAULT_NOPAGE;
940 }
941
942 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
944                   struct vm_area_struct *vma)
945 {
946         spinlock_t *dst_ptl, *src_ptl;
947         struct page *src_page;
948         pmd_t pmd;
949         pgtable_t pgtable;
950         int ret;
951
952         ret = -ENOMEM;
953         pgtable = pte_alloc_one(dst_mm, addr);
954         if (unlikely(!pgtable))
955                 goto out;
956
957         dst_ptl = pmd_lock(dst_mm, dst_pmd);
958         src_ptl = pmd_lockptr(src_mm, src_pmd);
959         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
960
961         ret = -EAGAIN;
962         pmd = *src_pmd;
963         if (unlikely(!pmd_trans_huge(pmd))) {
964                 pte_free(dst_mm, pgtable);
965                 goto out_unlock;
966         }
967         /*
968          * When page table lock is held, the huge zero pmd should not be
969          * under splitting since we don't split the page itself, only pmd to
970          * a page table.
971          */
972         if (is_huge_zero_pmd(pmd)) {
973                 struct page *zero_page;
974                 /*
975                  * get_huge_zero_page() will never allocate a new page here,
976                  * since we already have a zero page to copy. It just takes a
977                  * reference.
978                  */
979                 zero_page = get_huge_zero_page();
980                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
981                                 zero_page);
982                 ret = 0;
983                 goto out_unlock;
984         }
985
986         if (unlikely(pmd_trans_splitting(pmd))) {
987                 /* split huge page running from under us */
988                 spin_unlock(src_ptl);
989                 spin_unlock(dst_ptl);
990                 pte_free(dst_mm, pgtable);
991
992                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
993                 goto out;
994         }
995         src_page = pmd_page(pmd);
996         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
997         get_page(src_page);
998         page_dup_rmap(src_page);
999         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1000
1001         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1002         pmd = pmd_mkold(pmd_wrprotect(pmd));
1003         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1004         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1005         atomic_long_inc(&dst_mm->nr_ptes);
1006
1007         ret = 0;
1008 out_unlock:
1009         spin_unlock(src_ptl);
1010         spin_unlock(dst_ptl);
1011 out:
1012         return ret;
1013 }
1014
1015 void huge_pmd_set_accessed(struct mm_struct *mm,
1016                            struct vm_area_struct *vma,
1017                            unsigned long address,
1018                            pmd_t *pmd, pmd_t orig_pmd,
1019                            int dirty)
1020 {
1021         spinlock_t *ptl;
1022         pmd_t entry;
1023         unsigned long haddr;
1024
1025         ptl = pmd_lock(mm, pmd);
1026         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1027                 goto unlock;
1028
1029         entry = pmd_mkyoung(orig_pmd);
1030         haddr = address & HPAGE_PMD_MASK;
1031         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1032                 update_mmu_cache_pmd(vma, address, pmd);
1033
1034 unlock:
1035         spin_unlock(ptl);
1036 }
1037
1038 /*
1039  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1040  * during copy_user_huge_page()'s copy_page_rep(): in the case when
1041  * the source page gets split and a tail freed before copy completes.
1042  * Called under pmd_lock of checked pmd, so safe from splitting itself.
1043  */
1044 static void get_user_huge_page(struct page *page)
1045 {
1046         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1047                 struct page *endpage = page + HPAGE_PMD_NR;
1048
1049                 atomic_add(HPAGE_PMD_NR, &page->_count);
1050                 while (++page < endpage)
1051                         get_huge_page_tail(page);
1052         } else {
1053                 get_page(page);
1054         }
1055 }
1056
1057 static void put_user_huge_page(struct page *page)
1058 {
1059         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1060                 struct page *endpage = page + HPAGE_PMD_NR;
1061
1062                 while (page < endpage)
1063                         put_page(page++);
1064         } else {
1065                 put_page(page);
1066         }
1067 }
1068
1069 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1070                                         struct vm_area_struct *vma,
1071                                         unsigned long address,
1072                                         pmd_t *pmd, pmd_t orig_pmd,
1073                                         struct page *page,
1074                                         unsigned long haddr)
1075 {
1076         struct mem_cgroup *memcg;
1077         spinlock_t *ptl;
1078         pgtable_t pgtable;
1079         pmd_t _pmd;
1080         int ret = 0, i;
1081         struct page **pages;
1082         unsigned long mmun_start;       /* For mmu_notifiers */
1083         unsigned long mmun_end;         /* For mmu_notifiers */
1084
1085         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1086                         GFP_KERNEL);
1087         if (unlikely(!pages)) {
1088                 ret |= VM_FAULT_OOM;
1089                 goto out;
1090         }
1091
1092         for (i = 0; i < HPAGE_PMD_NR; i++) {
1093                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1094                                                __GFP_OTHER_NODE,
1095                                                vma, address, page_to_nid(page));
1096                 if (unlikely(!pages[i] ||
1097                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1098                                                    &memcg, false))) {
1099                         if (pages[i])
1100                                 put_page(pages[i]);
1101                         while (--i >= 0) {
1102                                 memcg = (void *)page_private(pages[i]);
1103                                 set_page_private(pages[i], 0);
1104                                 mem_cgroup_cancel_charge(pages[i], memcg,
1105                                                 false);
1106                                 put_page(pages[i]);
1107                         }
1108                         kfree(pages);
1109                         ret |= VM_FAULT_OOM;
1110                         goto out;
1111                 }
1112                 set_page_private(pages[i], (unsigned long)memcg);
1113         }
1114
1115         for (i = 0; i < HPAGE_PMD_NR; i++) {
1116                 copy_user_highpage(pages[i], page + i,
1117                                    haddr + PAGE_SIZE * i, vma);
1118                 __SetPageUptodate(pages[i]);
1119                 cond_resched();
1120         }
1121
1122         mmun_start = haddr;
1123         mmun_end   = haddr + HPAGE_PMD_SIZE;
1124         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1125
1126         ptl = pmd_lock(mm, pmd);
1127         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1128                 goto out_free_pages;
1129         VM_BUG_ON_PAGE(!PageHead(page), page);
1130
1131         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1132         /* leave pmd empty until pte is filled */
1133
1134         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1135         pmd_populate(mm, &_pmd, pgtable);
1136
1137         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1138                 pte_t *pte, entry;
1139                 entry = mk_pte(pages[i], vma->vm_page_prot);
1140                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1141                 memcg = (void *)page_private(pages[i]);
1142                 set_page_private(pages[i], 0);
1143                 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1144                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1145                 lru_cache_add_active_or_unevictable(pages[i], vma);
1146                 pte = pte_offset_map(&_pmd, haddr);
1147                 VM_BUG_ON(!pte_none(*pte));
1148                 set_pte_at(mm, haddr, pte, entry);
1149                 pte_unmap(pte);
1150         }
1151         kfree(pages);
1152
1153         smp_wmb(); /* make pte visible before pmd */
1154         pmd_populate(mm, pmd, pgtable);
1155         page_remove_rmap(page, true);
1156         spin_unlock(ptl);
1157
1158         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1159
1160         ret |= VM_FAULT_WRITE;
1161         put_page(page);
1162
1163 out:
1164         return ret;
1165
1166 out_free_pages:
1167         spin_unlock(ptl);
1168         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1169         for (i = 0; i < HPAGE_PMD_NR; i++) {
1170                 memcg = (void *)page_private(pages[i]);
1171                 set_page_private(pages[i], 0);
1172                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1173                 put_page(pages[i]);
1174         }
1175         kfree(pages);
1176         goto out;
1177 }
1178
1179 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1180                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1181 {
1182         spinlock_t *ptl;
1183         int ret = 0;
1184         struct page *page = NULL, *new_page;
1185         struct mem_cgroup *memcg;
1186         unsigned long haddr;
1187         unsigned long mmun_start;       /* For mmu_notifiers */
1188         unsigned long mmun_end;         /* For mmu_notifiers */
1189         gfp_t huge_gfp;                 /* for allocation and charge */
1190
1191         ptl = pmd_lockptr(mm, pmd);
1192         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1193         haddr = address & HPAGE_PMD_MASK;
1194         if (is_huge_zero_pmd(orig_pmd))
1195                 goto alloc;
1196         spin_lock(ptl);
1197         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1198                 goto out_unlock;
1199
1200         page = pmd_page(orig_pmd);
1201         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1202         if (page_mapcount(page) == 1) {
1203                 pmd_t entry;
1204                 entry = pmd_mkyoung(orig_pmd);
1205                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1206                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1207                         update_mmu_cache_pmd(vma, address, pmd);
1208                 ret |= VM_FAULT_WRITE;
1209                 goto out_unlock;
1210         }
1211         get_user_huge_page(page);
1212         spin_unlock(ptl);
1213 alloc:
1214         if (transparent_hugepage_enabled(vma) &&
1215             !transparent_hugepage_debug_cow()) {
1216                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1217                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1218         } else
1219                 new_page = NULL;
1220
1221         if (unlikely(!new_page)) {
1222                 if (!page) {
1223                         split_huge_page_pmd(vma, address, pmd);
1224                         ret |= VM_FAULT_FALLBACK;
1225                 } else {
1226                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1227                                         pmd, orig_pmd, page, haddr);
1228                         if (ret & VM_FAULT_OOM) {
1229                                 split_huge_page(page);
1230                                 ret |= VM_FAULT_FALLBACK;
1231                         }
1232                         put_user_huge_page(page);
1233                 }
1234                 count_vm_event(THP_FAULT_FALLBACK);
1235                 goto out;
1236         }
1237
1238         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1239                                            true))) {
1240                 put_page(new_page);
1241                 if (page) {
1242                         split_huge_page(page);
1243                         put_user_huge_page(page);
1244                 } else
1245                         split_huge_page_pmd(vma, address, pmd);
1246                 ret |= VM_FAULT_FALLBACK;
1247                 count_vm_event(THP_FAULT_FALLBACK);
1248                 goto out;
1249         }
1250
1251         count_vm_event(THP_FAULT_ALLOC);
1252
1253         if (!page)
1254                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1255         else
1256                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1257         __SetPageUptodate(new_page);
1258
1259         mmun_start = haddr;
1260         mmun_end   = haddr + HPAGE_PMD_SIZE;
1261         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1262
1263         spin_lock(ptl);
1264         if (page)
1265                 put_user_huge_page(page);
1266         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1267                 spin_unlock(ptl);
1268                 mem_cgroup_cancel_charge(new_page, memcg, true);
1269                 put_page(new_page);
1270                 goto out_mn;
1271         } else {
1272                 pmd_t entry;
1273                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1274                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1275                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1276                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1277                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1278                 lru_cache_add_active_or_unevictable(new_page, vma);
1279                 set_pmd_at(mm, haddr, pmd, entry);
1280                 update_mmu_cache_pmd(vma, address, pmd);
1281                 if (!page) {
1282                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1283                         put_huge_zero_page();
1284                 } else {
1285                         VM_BUG_ON_PAGE(!PageHead(page), page);
1286                         page_remove_rmap(page, true);
1287                         put_page(page);
1288                 }
1289                 ret |= VM_FAULT_WRITE;
1290         }
1291         spin_unlock(ptl);
1292 out_mn:
1293         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1294 out:
1295         return ret;
1296 out_unlock:
1297         spin_unlock(ptl);
1298         return ret;
1299 }
1300
1301 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1302                                    unsigned long addr,
1303                                    pmd_t *pmd,
1304                                    unsigned int flags)
1305 {
1306         struct mm_struct *mm = vma->vm_mm;
1307         struct page *page = NULL;
1308
1309         assert_spin_locked(pmd_lockptr(mm, pmd));
1310
1311         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1312                 goto out;
1313
1314         /* Avoid dumping huge zero page */
1315         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1316                 return ERR_PTR(-EFAULT);
1317
1318         /* Full NUMA hinting faults to serialise migration in fault paths */
1319         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1320                 goto out;
1321
1322         page = pmd_page(*pmd);
1323         VM_BUG_ON_PAGE(!PageHead(page), page);
1324         if (flags & FOLL_TOUCH) {
1325                 pmd_t _pmd;
1326                 /*
1327                  * We should set the dirty bit only for FOLL_WRITE but
1328                  * for now the dirty bit in the pmd is meaningless.
1329                  * And if the dirty bit will become meaningful and
1330                  * we'll only set it with FOLL_WRITE, an atomic
1331                  * set_bit will be required on the pmd to set the
1332                  * young bit, instead of the current set_pmd_at.
1333                  */
1334                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1335                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1336                                           pmd, _pmd,  1))
1337                         update_mmu_cache_pmd(vma, addr, pmd);
1338         }
1339         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1340                 if (page->mapping && trylock_page(page)) {
1341                         lru_add_drain();
1342                         if (page->mapping)
1343                                 mlock_vma_page(page);
1344                         unlock_page(page);
1345                 }
1346         }
1347         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1348         VM_BUG_ON_PAGE(!PageCompound(page), page);
1349         if (flags & FOLL_GET)
1350                 get_page_foll(page);
1351
1352 out:
1353         return page;
1354 }
1355
1356 /* NUMA hinting page fault entry point for trans huge pmds */
1357 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1358                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1359 {
1360         spinlock_t *ptl;
1361         struct anon_vma *anon_vma = NULL;
1362         struct page *page;
1363         unsigned long haddr = addr & HPAGE_PMD_MASK;
1364         int page_nid = -1, this_nid = numa_node_id();
1365         int target_nid, last_cpupid = -1;
1366         bool page_locked;
1367         bool migrated = false;
1368         bool was_writable;
1369         int flags = 0;
1370
1371         /* A PROT_NONE fault should not end up here */
1372         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1373
1374         ptl = pmd_lock(mm, pmdp);
1375         if (unlikely(!pmd_same(pmd, *pmdp)))
1376                 goto out_unlock;
1377
1378         /*
1379          * If there are potential migrations, wait for completion and retry
1380          * without disrupting NUMA hinting information. Do not relock and
1381          * check_same as the page may no longer be mapped.
1382          */
1383         if (unlikely(pmd_trans_migrating(*pmdp))) {
1384                 page = pmd_page(*pmdp);
1385                 spin_unlock(ptl);
1386                 wait_on_page_locked(page);
1387                 goto out;
1388         }
1389
1390         page = pmd_page(pmd);
1391         BUG_ON(is_huge_zero_page(page));
1392         page_nid = page_to_nid(page);
1393         last_cpupid = page_cpupid_last(page);
1394         count_vm_numa_event(NUMA_HINT_FAULTS);
1395         if (page_nid == this_nid) {
1396                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1397                 flags |= TNF_FAULT_LOCAL;
1398         }
1399
1400         /* See similar comment in do_numa_page for explanation */
1401         if (!(vma->vm_flags & VM_WRITE))
1402                 flags |= TNF_NO_GROUP;
1403
1404         /*
1405          * Acquire the page lock to serialise THP migrations but avoid dropping
1406          * page_table_lock if at all possible
1407          */
1408         page_locked = trylock_page(page);
1409         target_nid = mpol_misplaced(page, vma, haddr);
1410         if (target_nid == -1) {
1411                 /* If the page was locked, there are no parallel migrations */
1412                 if (page_locked)
1413                         goto clear_pmdnuma;
1414         }
1415
1416         /* Migration could have started since the pmd_trans_migrating check */
1417         if (!page_locked) {
1418                 spin_unlock(ptl);
1419                 wait_on_page_locked(page);
1420                 page_nid = -1;
1421                 goto out;
1422         }
1423
1424         /*
1425          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1426          * to serialises splits
1427          */
1428         get_page(page);
1429         spin_unlock(ptl);
1430         anon_vma = page_lock_anon_vma_read(page);
1431
1432         /* Confirm the PMD did not change while page_table_lock was released */
1433         spin_lock(ptl);
1434         if (unlikely(!pmd_same(pmd, *pmdp))) {
1435                 unlock_page(page);
1436                 put_page(page);
1437                 page_nid = -1;
1438                 goto out_unlock;
1439         }
1440
1441         /* Bail if we fail to protect against THP splits for any reason */
1442         if (unlikely(!anon_vma)) {
1443                 put_page(page);
1444                 page_nid = -1;
1445                 goto clear_pmdnuma;
1446         }
1447
1448         /*
1449          * Migrate the THP to the requested node, returns with page unlocked
1450          * and access rights restored.
1451          */
1452         spin_unlock(ptl);
1453         migrated = migrate_misplaced_transhuge_page(mm, vma,
1454                                 pmdp, pmd, addr, page, target_nid);
1455         if (migrated) {
1456                 flags |= TNF_MIGRATED;
1457                 page_nid = target_nid;
1458         } else
1459                 flags |= TNF_MIGRATE_FAIL;
1460
1461         goto out;
1462 clear_pmdnuma:
1463         BUG_ON(!PageLocked(page));
1464         was_writable = pmd_write(pmd);
1465         pmd = pmd_modify(pmd, vma->vm_page_prot);
1466         pmd = pmd_mkyoung(pmd);
1467         if (was_writable)
1468                 pmd = pmd_mkwrite(pmd);
1469         set_pmd_at(mm, haddr, pmdp, pmd);
1470         update_mmu_cache_pmd(vma, addr, pmdp);
1471         unlock_page(page);
1472 out_unlock:
1473         spin_unlock(ptl);
1474
1475 out:
1476         if (anon_vma)
1477                 page_unlock_anon_vma_read(anon_vma);
1478
1479         if (page_nid != -1)
1480                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1481
1482         return 0;
1483 }
1484
1485 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1486                  pmd_t *pmd, unsigned long addr)
1487 {
1488         pmd_t orig_pmd;
1489         spinlock_t *ptl;
1490
1491         if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1492                 return 0;
1493         /*
1494          * For architectures like ppc64 we look at deposited pgtable
1495          * when calling pmdp_huge_get_and_clear. So do the
1496          * pgtable_trans_huge_withdraw after finishing pmdp related
1497          * operations.
1498          */
1499         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1500                         tlb->fullmm);
1501         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1502         if (vma_is_dax(vma)) {
1503                 spin_unlock(ptl);
1504                 if (is_huge_zero_pmd(orig_pmd))
1505                         put_huge_zero_page();
1506         } else if (is_huge_zero_pmd(orig_pmd)) {
1507                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1508                 atomic_long_dec(&tlb->mm->nr_ptes);
1509                 spin_unlock(ptl);
1510                 put_huge_zero_page();
1511         } else {
1512                 struct page *page = pmd_page(orig_pmd);
1513                 page_remove_rmap(page, true);
1514                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1515                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1516                 VM_BUG_ON_PAGE(!PageHead(page), page);
1517                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1518                 atomic_long_dec(&tlb->mm->nr_ptes);
1519                 spin_unlock(ptl);
1520                 tlb_remove_page(tlb, page);
1521         }
1522         return 1;
1523 }
1524
1525 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1526                   unsigned long old_addr,
1527                   unsigned long new_addr, unsigned long old_end,
1528                   pmd_t *old_pmd, pmd_t *new_pmd)
1529 {
1530         spinlock_t *old_ptl, *new_ptl;
1531         int ret = 0;
1532         pmd_t pmd;
1533
1534         struct mm_struct *mm = vma->vm_mm;
1535
1536         if ((old_addr & ~HPAGE_PMD_MASK) ||
1537             (new_addr & ~HPAGE_PMD_MASK) ||
1538             old_end - old_addr < HPAGE_PMD_SIZE ||
1539             (new_vma->vm_flags & VM_NOHUGEPAGE))
1540                 goto out;
1541
1542         /*
1543          * The destination pmd shouldn't be established, free_pgtables()
1544          * should have release it.
1545          */
1546         if (WARN_ON(!pmd_none(*new_pmd))) {
1547                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1548                 goto out;
1549         }
1550
1551         /*
1552          * We don't have to worry about the ordering of src and dst
1553          * ptlocks because exclusive mmap_sem prevents deadlock.
1554          */
1555         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1556         if (ret == 1) {
1557                 new_ptl = pmd_lockptr(mm, new_pmd);
1558                 if (new_ptl != old_ptl)
1559                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1560                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1561                 VM_BUG_ON(!pmd_none(*new_pmd));
1562
1563                 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1564                         pgtable_t pgtable;
1565                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1566                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1567                 }
1568                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1569                 if (new_ptl != old_ptl)
1570                         spin_unlock(new_ptl);
1571                 spin_unlock(old_ptl);
1572         }
1573 out:
1574         return ret;
1575 }
1576
1577 /*
1578  * Returns
1579  *  - 0 if PMD could not be locked
1580  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1581  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1582  */
1583 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1584                 unsigned long addr, pgprot_t newprot, int prot_numa)
1585 {
1586         struct mm_struct *mm = vma->vm_mm;
1587         spinlock_t *ptl;
1588         int ret = 0;
1589
1590         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1591                 pmd_t entry;
1592                 bool preserve_write = prot_numa && pmd_write(*pmd);
1593                 ret = 1;
1594
1595                 /*
1596                  * Avoid trapping faults against the zero page. The read-only
1597                  * data is likely to be read-cached on the local CPU and
1598                  * local/remote hits to the zero page are not interesting.
1599                  */
1600                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1601                         spin_unlock(ptl);
1602                         return ret;
1603                 }
1604
1605                 if (!prot_numa || !pmd_protnone(*pmd)) {
1606                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1607                         entry = pmd_modify(entry, newprot);
1608                         if (preserve_write)
1609                                 entry = pmd_mkwrite(entry);
1610                         ret = HPAGE_PMD_NR;
1611                         set_pmd_at(mm, addr, pmd, entry);
1612                         BUG_ON(!preserve_write && pmd_write(entry));
1613                 }
1614                 spin_unlock(ptl);
1615         }
1616
1617         return ret;
1618 }
1619
1620 /*
1621  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1622  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1623  *
1624  * Note that if it returns 1, this routine returns without unlocking page
1625  * table locks. So callers must unlock them.
1626  */
1627 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1628                 spinlock_t **ptl)
1629 {
1630         *ptl = pmd_lock(vma->vm_mm, pmd);
1631         if (likely(pmd_trans_huge(*pmd))) {
1632                 if (unlikely(pmd_trans_splitting(*pmd))) {
1633                         spin_unlock(*ptl);
1634                         wait_split_huge_page(vma->anon_vma, pmd);
1635                         return -1;
1636                 } else {
1637                         /* Thp mapped by 'pmd' is stable, so we can
1638                          * handle it as it is. */
1639                         return 1;
1640                 }
1641         }
1642         spin_unlock(*ptl);
1643         return 0;
1644 }
1645
1646 /*
1647  * This function returns whether a given @page is mapped onto the @address
1648  * in the virtual space of @mm.
1649  *
1650  * When it's true, this function returns *pmd with holding the page table lock
1651  * and passing it back to the caller via @ptl.
1652  * If it's false, returns NULL without holding the page table lock.
1653  */
1654 pmd_t *page_check_address_pmd(struct page *page,
1655                               struct mm_struct *mm,
1656                               unsigned long address,
1657                               enum page_check_address_pmd_flag flag,
1658                               spinlock_t **ptl)
1659 {
1660         pgd_t *pgd;
1661         pud_t *pud;
1662         pmd_t *pmd;
1663
1664         if (address & ~HPAGE_PMD_MASK)
1665                 return NULL;
1666
1667         pgd = pgd_offset(mm, address);
1668         if (!pgd_present(*pgd))
1669                 return NULL;
1670         pud = pud_offset(pgd, address);
1671         if (!pud_present(*pud))
1672                 return NULL;
1673         pmd = pmd_offset(pud, address);
1674
1675         *ptl = pmd_lock(mm, pmd);
1676         if (!pmd_present(*pmd))
1677                 goto unlock;
1678         if (pmd_page(*pmd) != page)
1679                 goto unlock;
1680         /*
1681          * split_vma() may create temporary aliased mappings. There is
1682          * no risk as long as all huge pmd are found and have their
1683          * splitting bit set before __split_huge_page_refcount
1684          * runs. Finding the same huge pmd more than once during the
1685          * same rmap walk is not a problem.
1686          */
1687         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1688             pmd_trans_splitting(*pmd))
1689                 goto unlock;
1690         if (pmd_trans_huge(*pmd)) {
1691                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1692                           !pmd_trans_splitting(*pmd));
1693                 return pmd;
1694         }
1695 unlock:
1696         spin_unlock(*ptl);
1697         return NULL;
1698 }
1699
1700 static int __split_huge_page_splitting(struct page *page,
1701                                        struct vm_area_struct *vma,
1702                                        unsigned long address)
1703 {
1704         struct mm_struct *mm = vma->vm_mm;
1705         spinlock_t *ptl;
1706         pmd_t *pmd;
1707         int ret = 0;
1708         /* For mmu_notifiers */
1709         const unsigned long mmun_start = address;
1710         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1711
1712         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1713         pmd = page_check_address_pmd(page, mm, address,
1714                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1715         if (pmd) {
1716                 /*
1717                  * We can't temporarily set the pmd to null in order
1718                  * to split it, the pmd must remain marked huge at all
1719                  * times or the VM won't take the pmd_trans_huge paths
1720                  * and it won't wait on the anon_vma->root->rwsem to
1721                  * serialize against split_huge_page*.
1722                  */
1723                 pmdp_splitting_flush(vma, address, pmd);
1724
1725                 ret = 1;
1726                 spin_unlock(ptl);
1727         }
1728         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1729
1730         return ret;
1731 }
1732
1733 static void __split_huge_page_refcount(struct page *page,
1734                                        struct list_head *list)
1735 {
1736         int i;
1737         struct zone *zone = page_zone(page);
1738         struct lruvec *lruvec;
1739         int tail_count = 0;
1740
1741         /* prevent PageLRU to go away from under us, and freeze lru stats */
1742         spin_lock_irq(&zone->lru_lock);
1743         lruvec = mem_cgroup_page_lruvec(page, zone);
1744
1745         compound_lock(page);
1746         /* complete memcg works before add pages to LRU */
1747         mem_cgroup_split_huge_fixup(page);
1748
1749         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1750                 struct page *page_tail = page + i;
1751
1752                 /* tail_page->_mapcount cannot change */
1753                 BUG_ON(page_mapcount(page_tail) < 0);
1754                 tail_count += page_mapcount(page_tail);
1755                 /* check for overflow */
1756                 BUG_ON(tail_count < 0);
1757                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1758                 /*
1759                  * tail_page->_count is zero and not changing from
1760                  * under us. But get_page_unless_zero() may be running
1761                  * from under us on the tail_page. If we used
1762                  * atomic_set() below instead of atomic_add(), we
1763                  * would then run atomic_set() concurrently with
1764                  * get_page_unless_zero(), and atomic_set() is
1765                  * implemented in C not using locked ops. spin_unlock
1766                  * on x86 sometime uses locked ops because of PPro
1767                  * errata 66, 92, so unless somebody can guarantee
1768                  * atomic_set() here would be safe on all archs (and
1769                  * not only on x86), it's safer to use atomic_add().
1770                  */
1771                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1772                            &page_tail->_count);
1773
1774                 /* after clearing PageTail the gup refcount can be released */
1775                 smp_mb__after_atomic();
1776
1777                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1778                 page_tail->flags |= (page->flags &
1779                                      ((1L << PG_referenced) |
1780                                       (1L << PG_swapbacked) |
1781                                       (1L << PG_mlocked) |
1782                                       (1L << PG_uptodate) |
1783                                       (1L << PG_active) |
1784                                       (1L << PG_unevictable)));
1785                 page_tail->flags |= (1L << PG_dirty);
1786
1787                 clear_compound_head(page_tail);
1788
1789                 if (page_is_young(page))
1790                         set_page_young(page_tail);
1791                 if (page_is_idle(page))
1792                         set_page_idle(page_tail);
1793
1794                 /*
1795                  * __split_huge_page_splitting() already set the
1796                  * splitting bit in all pmd that could map this
1797                  * hugepage, that will ensure no CPU can alter the
1798                  * mapcount on the head page. The mapcount is only
1799                  * accounted in the head page and it has to be
1800                  * transferred to all tail pages in the below code. So
1801                  * for this code to be safe, the split the mapcount
1802                  * can't change. But that doesn't mean userland can't
1803                  * keep changing and reading the page contents while
1804                  * we transfer the mapcount, so the pmd splitting
1805                  * status is achieved setting a reserved bit in the
1806                  * pmd, not by clearing the present bit.
1807                 */
1808                 page_tail->_mapcount = page->_mapcount;
1809
1810                 BUG_ON(page_tail->mapping != TAIL_MAPPING);
1811                 page_tail->mapping = page->mapping;
1812
1813                 page_tail->index = page->index + i;
1814                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1815
1816                 BUG_ON(!PageAnon(page_tail));
1817                 BUG_ON(!PageUptodate(page_tail));
1818                 BUG_ON(!PageDirty(page_tail));
1819                 BUG_ON(!PageSwapBacked(page_tail));
1820
1821                 lru_add_page_tail(page, page_tail, lruvec, list);
1822         }
1823         atomic_sub(tail_count, &page->_count);
1824         BUG_ON(atomic_read(&page->_count) <= 0);
1825
1826         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1827
1828         ClearPageCompound(page);
1829         compound_unlock(page);
1830         spin_unlock_irq(&zone->lru_lock);
1831
1832         for (i = 1; i < HPAGE_PMD_NR; i++) {
1833                 struct page *page_tail = page + i;
1834                 BUG_ON(page_count(page_tail) <= 0);
1835                 /*
1836                  * Tail pages may be freed if there wasn't any mapping
1837                  * like if add_to_swap() is running on a lru page that
1838                  * had its mapping zapped. And freeing these pages
1839                  * requires taking the lru_lock so we do the put_page
1840                  * of the tail pages after the split is complete.
1841                  */
1842                 put_page(page_tail);
1843         }
1844
1845         /*
1846          * Only the head page (now become a regular page) is required
1847          * to be pinned by the caller.
1848          */
1849         BUG_ON(page_count(page) <= 0);
1850 }
1851
1852 static int __split_huge_page_map(struct page *page,
1853                                  struct vm_area_struct *vma,
1854                                  unsigned long address)
1855 {
1856         struct mm_struct *mm = vma->vm_mm;
1857         spinlock_t *ptl;
1858         pmd_t *pmd, _pmd;
1859         int ret = 0, i;
1860         pgtable_t pgtable;
1861         unsigned long haddr;
1862
1863         pmd = page_check_address_pmd(page, mm, address,
1864                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1865         if (pmd) {
1866                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1867                 pmd_populate(mm, &_pmd, pgtable);
1868                 if (pmd_write(*pmd))
1869                         BUG_ON(page_mapcount(page) != 1);
1870
1871                 haddr = address;
1872                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1873                         pte_t *pte, entry;
1874                         BUG_ON(PageCompound(page+i));
1875                         /*
1876                          * Note that NUMA hinting access restrictions are not
1877                          * transferred to avoid any possibility of altering
1878                          * permissions across VMAs.
1879                          */
1880                         entry = mk_pte(page + i, vma->vm_page_prot);
1881                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1882                         if (!pmd_write(*pmd))
1883                                 entry = pte_wrprotect(entry);
1884                         if (!pmd_young(*pmd))
1885                                 entry = pte_mkold(entry);
1886                         pte = pte_offset_map(&_pmd, haddr);
1887                         BUG_ON(!pte_none(*pte));
1888                         set_pte_at(mm, haddr, pte, entry);
1889                         pte_unmap(pte);
1890                 }
1891
1892                 smp_wmb(); /* make pte visible before pmd */
1893                 /*
1894                  * Up to this point the pmd is present and huge and
1895                  * userland has the whole access to the hugepage
1896                  * during the split (which happens in place). If we
1897                  * overwrite the pmd with the not-huge version
1898                  * pointing to the pte here (which of course we could
1899                  * if all CPUs were bug free), userland could trigger
1900                  * a small page size TLB miss on the small sized TLB
1901                  * while the hugepage TLB entry is still established
1902                  * in the huge TLB. Some CPU doesn't like that. See
1903                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1904                  * Erratum 383 on page 93. Intel should be safe but is
1905                  * also warns that it's only safe if the permission
1906                  * and cache attributes of the two entries loaded in
1907                  * the two TLB is identical (which should be the case
1908                  * here). But it is generally safer to never allow
1909                  * small and huge TLB entries for the same virtual
1910                  * address to be loaded simultaneously. So instead of
1911                  * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1912                  * mark the current pmd notpresent (atomically because
1913                  * here the pmd_trans_huge and pmd_trans_splitting
1914                  * must remain set at all times on the pmd until the
1915                  * split is complete for this pmd), then we flush the
1916                  * SMP TLB and finally we write the non-huge version
1917                  * of the pmd entry with pmd_populate.
1918                  */
1919                 pmdp_invalidate(vma, address, pmd);
1920                 pmd_populate(mm, pmd, pgtable);
1921                 ret = 1;
1922                 spin_unlock(ptl);
1923         }
1924
1925         return ret;
1926 }
1927
1928 /* must be called with anon_vma->root->rwsem held */
1929 static void __split_huge_page(struct page *page,
1930                               struct anon_vma *anon_vma,
1931                               struct list_head *list)
1932 {
1933         int mapcount, mapcount2;
1934         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1935         struct anon_vma_chain *avc;
1936
1937         BUG_ON(!PageHead(page));
1938         BUG_ON(PageTail(page));
1939
1940         mapcount = 0;
1941         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1942                 struct vm_area_struct *vma = avc->vma;
1943                 unsigned long addr = vma_address(page, vma);
1944                 BUG_ON(is_vma_temporary_stack(vma));
1945                 mapcount += __split_huge_page_splitting(page, vma, addr);
1946         }
1947         /*
1948          * It is critical that new vmas are added to the tail of the
1949          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1950          * and establishes a child pmd before
1951          * __split_huge_page_splitting() freezes the parent pmd (so if
1952          * we fail to prevent copy_huge_pmd() from running until the
1953          * whole __split_huge_page() is complete), we will still see
1954          * the newly established pmd of the child later during the
1955          * walk, to be able to set it as pmd_trans_splitting too.
1956          */
1957         if (mapcount != page_mapcount(page)) {
1958                 pr_err("mapcount %d page_mapcount %d\n",
1959                         mapcount, page_mapcount(page));
1960                 BUG();
1961         }
1962
1963         __split_huge_page_refcount(page, list);
1964
1965         mapcount2 = 0;
1966         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1967                 struct vm_area_struct *vma = avc->vma;
1968                 unsigned long addr = vma_address(page, vma);
1969                 BUG_ON(is_vma_temporary_stack(vma));
1970                 mapcount2 += __split_huge_page_map(page, vma, addr);
1971         }
1972         if (mapcount != mapcount2) {
1973                 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1974                         mapcount, mapcount2, page_mapcount(page));
1975                 BUG();
1976         }
1977 }
1978
1979 /*
1980  * Split a hugepage into normal pages. This doesn't change the position of head
1981  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1982  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1983  * from the hugepage.
1984  * Return 0 if the hugepage is split successfully otherwise return 1.
1985  */
1986 int split_huge_page_to_list(struct page *page, struct list_head *list)
1987 {
1988         struct anon_vma *anon_vma;
1989         int ret = 1;
1990
1991         BUG_ON(is_huge_zero_page(page));
1992         BUG_ON(!PageAnon(page));
1993
1994         /*
1995          * The caller does not necessarily hold an mmap_sem that would prevent
1996          * the anon_vma disappearing so we first we take a reference to it
1997          * and then lock the anon_vma for write. This is similar to
1998          * page_lock_anon_vma_read except the write lock is taken to serialise
1999          * against parallel split or collapse operations.
2000          */
2001         anon_vma = page_get_anon_vma(page);
2002         if (!anon_vma)
2003                 goto out;
2004         anon_vma_lock_write(anon_vma);
2005
2006         ret = 0;
2007         if (!PageCompound(page))
2008                 goto out_unlock;
2009
2010         BUG_ON(!PageSwapBacked(page));
2011         __split_huge_page(page, anon_vma, list);
2012         count_vm_event(THP_SPLIT);
2013
2014         BUG_ON(PageCompound(page));
2015 out_unlock:
2016         anon_vma_unlock_write(anon_vma);
2017         put_anon_vma(anon_vma);
2018 out:
2019         return ret;
2020 }
2021
2022 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2023
2024 int hugepage_madvise(struct vm_area_struct *vma,
2025                      unsigned long *vm_flags, int advice)
2026 {
2027         switch (advice) {
2028         case MADV_HUGEPAGE:
2029 #ifdef CONFIG_S390
2030                 /*
2031                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2032                  * can't handle this properly after s390_enable_sie, so we simply
2033                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
2034                  */
2035                 if (mm_has_pgste(vma->vm_mm))
2036                         return 0;
2037 #endif
2038                 /*
2039                  * Be somewhat over-protective like KSM for now!
2040                  */
2041                 if (*vm_flags & VM_NO_THP)
2042                         return -EINVAL;
2043                 *vm_flags &= ~VM_NOHUGEPAGE;
2044                 *vm_flags |= VM_HUGEPAGE;
2045                 /*
2046                  * If the vma become good for khugepaged to scan,
2047                  * register it here without waiting a page fault that
2048                  * may not happen any time soon.
2049                  */
2050                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2051                         return -ENOMEM;
2052                 break;
2053         case MADV_NOHUGEPAGE:
2054                 /*
2055                  * Be somewhat over-protective like KSM for now!
2056                  */
2057                 if (*vm_flags & VM_NO_THP)
2058                         return -EINVAL;
2059                 *vm_flags &= ~VM_HUGEPAGE;
2060                 *vm_flags |= VM_NOHUGEPAGE;
2061                 /*
2062                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2063                  * this vma even if we leave the mm registered in khugepaged if
2064                  * it got registered before VM_NOHUGEPAGE was set.
2065                  */
2066                 break;
2067         }
2068
2069         return 0;
2070 }
2071
2072 static int __init khugepaged_slab_init(void)
2073 {
2074         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2075                                           sizeof(struct mm_slot),
2076                                           __alignof__(struct mm_slot), 0, NULL);
2077         if (!mm_slot_cache)
2078                 return -ENOMEM;
2079
2080         return 0;
2081 }
2082
2083 static void __init khugepaged_slab_exit(void)
2084 {
2085         kmem_cache_destroy(mm_slot_cache);
2086 }
2087
2088 static inline struct mm_slot *alloc_mm_slot(void)
2089 {
2090         if (!mm_slot_cache)     /* initialization failed */
2091                 return NULL;
2092         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2093 }
2094
2095 static inline void free_mm_slot(struct mm_slot *mm_slot)
2096 {
2097         kmem_cache_free(mm_slot_cache, mm_slot);
2098 }
2099
2100 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2101 {
2102         struct mm_slot *mm_slot;
2103
2104         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2105                 if (mm == mm_slot->mm)
2106                         return mm_slot;
2107
2108         return NULL;
2109 }
2110
2111 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2112                                     struct mm_slot *mm_slot)
2113 {
2114         mm_slot->mm = mm;
2115         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2116 }
2117
2118 static inline int khugepaged_test_exit(struct mm_struct *mm)
2119 {
2120         return atomic_read(&mm->mm_users) == 0;
2121 }
2122
2123 int __khugepaged_enter(struct mm_struct *mm)
2124 {
2125         struct mm_slot *mm_slot;
2126         int wakeup;
2127
2128         mm_slot = alloc_mm_slot();
2129         if (!mm_slot)
2130                 return -ENOMEM;
2131
2132         /* __khugepaged_exit() must not run from under us */
2133         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2134         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2135                 free_mm_slot(mm_slot);
2136                 return 0;
2137         }
2138
2139         spin_lock(&khugepaged_mm_lock);
2140         insert_to_mm_slots_hash(mm, mm_slot);
2141         /*
2142          * Insert just behind the scanning cursor, to let the area settle
2143          * down a little.
2144          */
2145         wakeup = list_empty(&khugepaged_scan.mm_head);
2146         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2147         spin_unlock(&khugepaged_mm_lock);
2148
2149         atomic_inc(&mm->mm_count);
2150         if (wakeup)
2151                 wake_up_interruptible(&khugepaged_wait);
2152
2153         return 0;
2154 }
2155
2156 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2157                                unsigned long vm_flags)
2158 {
2159         unsigned long hstart, hend;
2160         if (!vma->anon_vma)
2161                 /*
2162                  * Not yet faulted in so we will register later in the
2163                  * page fault if needed.
2164                  */
2165                 return 0;
2166         if (vma->vm_ops)
2167                 /* khugepaged not yet working on file or special mappings */
2168                 return 0;
2169         VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2170         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2171         hend = vma->vm_end & HPAGE_PMD_MASK;
2172         if (hstart < hend)
2173                 return khugepaged_enter(vma, vm_flags);
2174         return 0;
2175 }
2176
2177 void __khugepaged_exit(struct mm_struct *mm)
2178 {
2179         struct mm_slot *mm_slot;
2180         int free = 0;
2181
2182         spin_lock(&khugepaged_mm_lock);
2183         mm_slot = get_mm_slot(mm);
2184         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2185                 hash_del(&mm_slot->hash);
2186                 list_del(&mm_slot->mm_node);
2187                 free = 1;
2188         }
2189         spin_unlock(&khugepaged_mm_lock);
2190
2191         if (free) {
2192                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2193                 free_mm_slot(mm_slot);
2194                 mmdrop(mm);
2195         } else if (mm_slot) {
2196                 /*
2197                  * This is required to serialize against
2198                  * khugepaged_test_exit() (which is guaranteed to run
2199                  * under mmap sem read mode). Stop here (after we
2200                  * return all pagetables will be destroyed) until
2201                  * khugepaged has finished working on the pagetables
2202                  * under the mmap_sem.
2203                  */
2204                 down_write(&mm->mmap_sem);
2205                 up_write(&mm->mmap_sem);
2206         }
2207 }
2208
2209 static void release_pte_page(struct page *page)
2210 {
2211         /* 0 stands for page_is_file_cache(page) == false */
2212         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2213         unlock_page(page);
2214         putback_lru_page(page);
2215 }
2216
2217 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2218 {
2219         while (--_pte >= pte) {
2220                 pte_t pteval = *_pte;
2221                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2222                         release_pte_page(pte_page(pteval));
2223         }
2224 }
2225
2226 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2227                                         unsigned long address,
2228                                         pte_t *pte)
2229 {
2230         struct page *page = NULL;
2231         pte_t *_pte;
2232         int none_or_zero = 0, result = 0;
2233         bool referenced = false, writable = false;
2234
2235         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2236              _pte++, address += PAGE_SIZE) {
2237                 pte_t pteval = *_pte;
2238                 if (pte_none(pteval) || (pte_present(pteval) &&
2239                                 is_zero_pfn(pte_pfn(pteval)))) {
2240                         if (!userfaultfd_armed(vma) &&
2241                             ++none_or_zero <= khugepaged_max_ptes_none) {
2242                                 continue;
2243                         } else {
2244                                 result = SCAN_EXCEED_NONE_PTE;
2245                                 goto out;
2246                         }
2247                 }
2248                 if (!pte_present(pteval)) {
2249                         result = SCAN_PTE_NON_PRESENT;
2250                         goto out;
2251                 }
2252                 page = vm_normal_page(vma, address, pteval);
2253                 if (unlikely(!page)) {
2254                         result = SCAN_PAGE_NULL;
2255                         goto out;
2256                 }
2257
2258                 VM_BUG_ON_PAGE(PageCompound(page), page);
2259                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2260                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2261
2262                 /*
2263                  * We can do it before isolate_lru_page because the
2264                  * page can't be freed from under us. NOTE: PG_lock
2265                  * is needed to serialize against split_huge_page
2266                  * when invoked from the VM.
2267                  */
2268                 if (!trylock_page(page)) {
2269                         result = SCAN_PAGE_LOCK;
2270                         goto out;
2271                 }
2272
2273                 /*
2274                  * cannot use mapcount: can't collapse if there's a gup pin.
2275                  * The page must only be referenced by the scanned process
2276                  * and page swap cache.
2277                  */
2278                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2279                         unlock_page(page);
2280                         result = SCAN_PAGE_COUNT;
2281                         goto out;
2282                 }
2283                 if (pte_write(pteval)) {
2284                         writable = true;
2285                 } else {
2286                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2287                                 unlock_page(page);
2288                                 result = SCAN_SWAP_CACHE_PAGE;
2289                                 goto out;
2290                         }
2291                         /*
2292                          * Page is not in the swap cache. It can be collapsed
2293                          * into a THP.
2294                          */
2295                 }
2296
2297                 /*
2298                  * Isolate the page to avoid collapsing an hugepage
2299                  * currently in use by the VM.
2300                  */
2301                 if (isolate_lru_page(page)) {
2302                         unlock_page(page);
2303                         result = SCAN_DEL_PAGE_LRU;
2304                         goto out;
2305                 }
2306                 /* 0 stands for page_is_file_cache(page) == false */
2307                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2308                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2309                 VM_BUG_ON_PAGE(PageLRU(page), page);
2310
2311                 /* If there is no mapped pte young don't collapse the page */
2312                 if (pte_young(pteval) ||
2313                     page_is_young(page) || PageReferenced(page) ||
2314                     mmu_notifier_test_young(vma->vm_mm, address))
2315                         referenced = true;
2316         }
2317         if (likely(writable)) {
2318                 if (likely(referenced)) {
2319                         result = SCAN_SUCCEED;
2320                         trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2321                                                             referenced, writable, result);
2322                         return 1;
2323                 }
2324         } else {
2325                 result = SCAN_PAGE_RO;
2326         }
2327
2328 out:
2329         release_pte_pages(pte, _pte);
2330         trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2331                                             referenced, writable, result);
2332         return 0;
2333 }
2334
2335 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2336                                       struct vm_area_struct *vma,
2337                                       unsigned long address,
2338                                       spinlock_t *ptl)
2339 {
2340         pte_t *_pte;
2341         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2342                 pte_t pteval = *_pte;
2343                 struct page *src_page;
2344
2345                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2346                         clear_user_highpage(page, address);
2347                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2348                         if (is_zero_pfn(pte_pfn(pteval))) {
2349                                 /*
2350                                  * ptl mostly unnecessary.
2351                                  */
2352                                 spin_lock(ptl);
2353                                 /*
2354                                  * paravirt calls inside pte_clear here are
2355                                  * superfluous.
2356                                  */
2357                                 pte_clear(vma->vm_mm, address, _pte);
2358                                 spin_unlock(ptl);
2359                         }
2360                 } else {
2361                         src_page = pte_page(pteval);
2362                         copy_user_highpage(page, src_page, address, vma);
2363                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2364                         release_pte_page(src_page);
2365                         /*
2366                          * ptl mostly unnecessary, but preempt has to
2367                          * be disabled to update the per-cpu stats
2368                          * inside page_remove_rmap().
2369                          */
2370                         spin_lock(ptl);
2371                         /*
2372                          * paravirt calls inside pte_clear here are
2373                          * superfluous.
2374                          */
2375                         pte_clear(vma->vm_mm, address, _pte);
2376                         page_remove_rmap(src_page, false);
2377                         spin_unlock(ptl);
2378                         free_page_and_swap_cache(src_page);
2379                 }
2380
2381                 address += PAGE_SIZE;
2382                 page++;
2383         }
2384 }
2385
2386 static void khugepaged_alloc_sleep(void)
2387 {
2388         DEFINE_WAIT(wait);
2389
2390         add_wait_queue(&khugepaged_wait, &wait);
2391         freezable_schedule_timeout_interruptible(
2392                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2393         remove_wait_queue(&khugepaged_wait, &wait);
2394 }
2395
2396 static int khugepaged_node_load[MAX_NUMNODES];
2397
2398 static bool khugepaged_scan_abort(int nid)
2399 {
2400         int i;
2401
2402         /*
2403          * If zone_reclaim_mode is disabled, then no extra effort is made to
2404          * allocate memory locally.
2405          */
2406         if (!zone_reclaim_mode)
2407                 return false;
2408
2409         /* If there is a count for this node already, it must be acceptable */
2410         if (khugepaged_node_load[nid])
2411                 return false;
2412
2413         for (i = 0; i < MAX_NUMNODES; i++) {
2414                 if (!khugepaged_node_load[i])
2415                         continue;
2416                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2417                         return true;
2418         }
2419         return false;
2420 }
2421
2422 #ifdef CONFIG_NUMA
2423 static int khugepaged_find_target_node(void)
2424 {
2425         static int last_khugepaged_target_node = NUMA_NO_NODE;
2426         int nid, target_node = 0, max_value = 0;
2427
2428         /* find first node with max normal pages hit */
2429         for (nid = 0; nid < MAX_NUMNODES; nid++)
2430                 if (khugepaged_node_load[nid] > max_value) {
2431                         max_value = khugepaged_node_load[nid];
2432                         target_node = nid;
2433                 }
2434
2435         /* do some balance if several nodes have the same hit record */
2436         if (target_node <= last_khugepaged_target_node)
2437                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2438                                 nid++)
2439                         if (max_value == khugepaged_node_load[nid]) {
2440                                 target_node = nid;
2441                                 break;
2442                         }
2443
2444         last_khugepaged_target_node = target_node;
2445         return target_node;
2446 }
2447
2448 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2449 {
2450         if (IS_ERR(*hpage)) {
2451                 if (!*wait)
2452                         return false;
2453
2454                 *wait = false;
2455                 *hpage = NULL;
2456                 khugepaged_alloc_sleep();
2457         } else if (*hpage) {
2458                 put_page(*hpage);
2459                 *hpage = NULL;
2460         }
2461
2462         return true;
2463 }
2464
2465 static struct page *
2466 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2467                        unsigned long address, int node)
2468 {
2469         VM_BUG_ON_PAGE(*hpage, *hpage);
2470
2471         /*
2472          * Before allocating the hugepage, release the mmap_sem read lock.
2473          * The allocation can take potentially a long time if it involves
2474          * sync compaction, and we do not need to hold the mmap_sem during
2475          * that. We will recheck the vma after taking it again in write mode.
2476          */
2477         up_read(&mm->mmap_sem);
2478
2479         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2480         if (unlikely(!*hpage)) {
2481                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2482                 *hpage = ERR_PTR(-ENOMEM);
2483                 return NULL;
2484         }
2485
2486         count_vm_event(THP_COLLAPSE_ALLOC);
2487         return *hpage;
2488 }
2489 #else
2490 static int khugepaged_find_target_node(void)
2491 {
2492         return 0;
2493 }
2494
2495 static inline struct page *alloc_hugepage(int defrag)
2496 {
2497         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2498                            HPAGE_PMD_ORDER);
2499 }
2500
2501 static struct page *khugepaged_alloc_hugepage(bool *wait)
2502 {
2503         struct page *hpage;
2504
2505         do {
2506                 hpage = alloc_hugepage(khugepaged_defrag());
2507                 if (!hpage) {
2508                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2509                         if (!*wait)
2510                                 return NULL;
2511
2512                         *wait = false;
2513                         khugepaged_alloc_sleep();
2514                 } else
2515                         count_vm_event(THP_COLLAPSE_ALLOC);
2516         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2517
2518         return hpage;
2519 }
2520
2521 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2522 {
2523         if (!*hpage)
2524                 *hpage = khugepaged_alloc_hugepage(wait);
2525
2526         if (unlikely(!*hpage))
2527                 return false;
2528
2529         return true;
2530 }
2531
2532 static struct page *
2533 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2534                        unsigned long address, int node)
2535 {
2536         up_read(&mm->mmap_sem);
2537         VM_BUG_ON(!*hpage);
2538
2539         return  *hpage;
2540 }
2541 #endif
2542
2543 static bool hugepage_vma_check(struct vm_area_struct *vma)
2544 {
2545         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2546             (vma->vm_flags & VM_NOHUGEPAGE))
2547                 return false;
2548
2549         if (!vma->anon_vma || vma->vm_ops)
2550                 return false;
2551         if (is_vma_temporary_stack(vma))
2552                 return false;
2553         VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2554         return true;
2555 }
2556
2557 static void collapse_huge_page(struct mm_struct *mm,
2558                                    unsigned long address,
2559                                    struct page **hpage,
2560                                    struct vm_area_struct *vma,
2561                                    int node)
2562 {
2563         pmd_t *pmd, _pmd;
2564         pte_t *pte;
2565         pgtable_t pgtable;
2566         struct page *new_page;
2567         spinlock_t *pmd_ptl, *pte_ptl;
2568         int isolated, result = 0;
2569         unsigned long hstart, hend;
2570         struct mem_cgroup *memcg;
2571         unsigned long mmun_start;       /* For mmu_notifiers */
2572         unsigned long mmun_end;         /* For mmu_notifiers */
2573         gfp_t gfp;
2574
2575         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2576
2577         /* Only allocate from the target node */
2578         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2579                 __GFP_THISNODE;
2580
2581         /* release the mmap_sem read lock. */
2582         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2583         if (!new_page) {
2584                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2585                 goto out_nolock;
2586         }
2587
2588         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2589                 result = SCAN_CGROUP_CHARGE_FAIL;
2590                 goto out_nolock;
2591         }
2592
2593         /*
2594          * Prevent all access to pagetables with the exception of
2595          * gup_fast later hanlded by the ptep_clear_flush and the VM
2596          * handled by the anon_vma lock + PG_lock.
2597          */
2598         down_write(&mm->mmap_sem);
2599         if (unlikely(khugepaged_test_exit(mm))) {
2600                 result = SCAN_ANY_PROCESS;
2601                 goto out;
2602         }
2603
2604         vma = find_vma(mm, address);
2605         if (!vma) {
2606                 result = SCAN_VMA_NULL;
2607                 goto out;
2608         }
2609         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2610         hend = vma->vm_end & HPAGE_PMD_MASK;
2611         if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2612                 result = SCAN_ADDRESS_RANGE;
2613                 goto out;
2614         }
2615         if (!hugepage_vma_check(vma)) {
2616                 result = SCAN_VMA_CHECK;
2617                 goto out;
2618         }
2619         pmd = mm_find_pmd(mm, address);
2620         if (!pmd) {
2621                 result = SCAN_PMD_NULL;
2622                 goto out;
2623         }
2624
2625         anon_vma_lock_write(vma->anon_vma);
2626
2627         pte = pte_offset_map(pmd, address);
2628         pte_ptl = pte_lockptr(mm, pmd);
2629
2630         mmun_start = address;
2631         mmun_end   = address + HPAGE_PMD_SIZE;
2632         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2633         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2634         /*
2635          * After this gup_fast can't run anymore. This also removes
2636          * any huge TLB entry from the CPU so we won't allow
2637          * huge and small TLB entries for the same virtual address
2638          * to avoid the risk of CPU bugs in that area.
2639          */
2640         _pmd = pmdp_collapse_flush(vma, address, pmd);
2641         spin_unlock(pmd_ptl);
2642         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2643
2644         spin_lock(pte_ptl);
2645         isolated = __collapse_huge_page_isolate(vma, address, pte);
2646         spin_unlock(pte_ptl);
2647
2648         if (unlikely(!isolated)) {
2649                 pte_unmap(pte);
2650                 spin_lock(pmd_ptl);
2651                 BUG_ON(!pmd_none(*pmd));
2652                 /*
2653                  * We can only use set_pmd_at when establishing
2654                  * hugepmds and never for establishing regular pmds that
2655                  * points to regular pagetables. Use pmd_populate for that
2656                  */
2657                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2658                 spin_unlock(pmd_ptl);
2659                 anon_vma_unlock_write(vma->anon_vma);
2660                 result = SCAN_FAIL;
2661                 goto out;
2662         }
2663
2664         /*
2665          * All pages are isolated and locked so anon_vma rmap
2666          * can't run anymore.
2667          */
2668         anon_vma_unlock_write(vma->anon_vma);
2669
2670         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2671         pte_unmap(pte);
2672         __SetPageUptodate(new_page);
2673         pgtable = pmd_pgtable(_pmd);
2674
2675         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2676         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2677
2678         /*
2679          * spin_lock() below is not the equivalent of smp_wmb(), so
2680          * this is needed to avoid the copy_huge_page writes to become
2681          * visible after the set_pmd_at() write.
2682          */
2683         smp_wmb();
2684
2685         spin_lock(pmd_ptl);
2686         BUG_ON(!pmd_none(*pmd));
2687         page_add_new_anon_rmap(new_page, vma, address, true);
2688         mem_cgroup_commit_charge(new_page, memcg, false, true);
2689         lru_cache_add_active_or_unevictable(new_page, vma);
2690         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2691         set_pmd_at(mm, address, pmd, _pmd);
2692         update_mmu_cache_pmd(vma, address, pmd);
2693         spin_unlock(pmd_ptl);
2694
2695         *hpage = NULL;
2696
2697         khugepaged_pages_collapsed++;
2698         result = SCAN_SUCCEED;
2699 out_up_write:
2700         up_write(&mm->mmap_sem);
2701         trace_mm_collapse_huge_page(mm, isolated, result);
2702         return;
2703
2704 out_nolock:
2705         trace_mm_collapse_huge_page(mm, isolated, result);
2706         return;
2707 out:
2708         mem_cgroup_cancel_charge(new_page, memcg, true);
2709         goto out_up_write;
2710 }
2711
2712 static int khugepaged_scan_pmd(struct mm_struct *mm,
2713                                struct vm_area_struct *vma,
2714                                unsigned long address,
2715                                struct page **hpage)
2716 {
2717         pmd_t *pmd;
2718         pte_t *pte, *_pte;
2719         int ret = 0, none_or_zero = 0, result = 0;
2720         struct page *page = NULL;
2721         unsigned long _address;
2722         spinlock_t *ptl;
2723         int node = NUMA_NO_NODE;
2724         bool writable = false, referenced = false;
2725
2726         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2727
2728         pmd = mm_find_pmd(mm, address);
2729         if (!pmd) {
2730                 result = SCAN_PMD_NULL;
2731                 goto out;
2732         }
2733
2734         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2735         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2736         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2737              _pte++, _address += PAGE_SIZE) {
2738                 pte_t pteval = *_pte;
2739                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2740                         if (!userfaultfd_armed(vma) &&
2741                             ++none_or_zero <= khugepaged_max_ptes_none) {
2742                                 continue;
2743                         } else {
2744                                 result = SCAN_EXCEED_NONE_PTE;
2745                                 goto out_unmap;
2746                         }
2747                 }
2748                 if (!pte_present(pteval)) {
2749                         result = SCAN_PTE_NON_PRESENT;
2750                         goto out_unmap;
2751                 }
2752                 if (pte_write(pteval))
2753                         writable = true;
2754
2755                 page = vm_normal_page(vma, _address, pteval);
2756                 if (unlikely(!page)) {
2757                         result = SCAN_PAGE_NULL;
2758                         goto out_unmap;
2759                 }
2760                 /*
2761                  * Record which node the original page is from and save this
2762                  * information to khugepaged_node_load[].
2763                  * Khupaged will allocate hugepage from the node has the max
2764                  * hit record.
2765                  */
2766                 node = page_to_nid(page);
2767                 if (khugepaged_scan_abort(node)) {
2768                         result = SCAN_SCAN_ABORT;
2769                         goto out_unmap;
2770                 }
2771                 khugepaged_node_load[node]++;
2772                 VM_BUG_ON_PAGE(PageCompound(page), page);
2773                 if (!PageLRU(page)) {
2774                         result = SCAN_SCAN_ABORT;
2775                         goto out_unmap;
2776                 }
2777                 if (PageLocked(page)) {
2778                         result = SCAN_PAGE_LOCK;
2779                         goto out_unmap;
2780                 }
2781                 if (!PageAnon(page)) {
2782                         result = SCAN_PAGE_ANON;
2783                         goto out_unmap;
2784                 }
2785
2786                 /*
2787                  * cannot use mapcount: can't collapse if there's a gup pin.
2788                  * The page must only be referenced by the scanned process
2789                  * and page swap cache.
2790                  */
2791                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2792                         result = SCAN_PAGE_COUNT;
2793                         goto out_unmap;
2794                 }
2795                 if (pte_young(pteval) ||
2796                     page_is_young(page) || PageReferenced(page) ||
2797                     mmu_notifier_test_young(vma->vm_mm, address))
2798                         referenced = true;
2799         }
2800         if (writable) {
2801                 if (referenced) {
2802                         result = SCAN_SUCCEED;
2803                         ret = 1;
2804                 } else {
2805                         result = SCAN_NO_REFERENCED_PAGE;
2806                 }
2807         } else {
2808                 result = SCAN_PAGE_RO;
2809         }
2810 out_unmap:
2811         pte_unmap_unlock(pte, ptl);
2812         if (ret) {
2813                 node = khugepaged_find_target_node();
2814                 /* collapse_huge_page will return with the mmap_sem released */
2815                 collapse_huge_page(mm, address, hpage, vma, node);
2816         }
2817 out:
2818         trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2819                                      none_or_zero, result);
2820         return ret;
2821 }
2822
2823 static void collect_mm_slot(struct mm_slot *mm_slot)
2824 {
2825         struct mm_struct *mm = mm_slot->mm;
2826
2827         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2828
2829         if (khugepaged_test_exit(mm)) {
2830                 /* free mm_slot */
2831                 hash_del(&mm_slot->hash);
2832                 list_del(&mm_slot->mm_node);
2833
2834                 /*
2835                  * Not strictly needed because the mm exited already.
2836                  *
2837                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2838                  */
2839
2840                 /* khugepaged_mm_lock actually not necessary for the below */
2841                 free_mm_slot(mm_slot);
2842                 mmdrop(mm);
2843         }
2844 }
2845
2846 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2847                                             struct page **hpage)
2848         __releases(&khugepaged_mm_lock)
2849         __acquires(&khugepaged_mm_lock)
2850 {
2851         struct mm_slot *mm_slot;
2852         struct mm_struct *mm;
2853         struct vm_area_struct *vma;
2854         int progress = 0;
2855
2856         VM_BUG_ON(!pages);
2857         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2858
2859         if (khugepaged_scan.mm_slot)
2860                 mm_slot = khugepaged_scan.mm_slot;
2861         else {
2862                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2863                                      struct mm_slot, mm_node);
2864                 khugepaged_scan.address = 0;
2865                 khugepaged_scan.mm_slot = mm_slot;
2866         }
2867         spin_unlock(&khugepaged_mm_lock);
2868
2869         mm = mm_slot->mm;
2870         down_read(&mm->mmap_sem);
2871         if (unlikely(khugepaged_test_exit(mm)))
2872                 vma = NULL;
2873         else
2874                 vma = find_vma(mm, khugepaged_scan.address);
2875
2876         progress++;
2877         for (; vma; vma = vma->vm_next) {
2878                 unsigned long hstart, hend;
2879
2880                 cond_resched();
2881                 if (unlikely(khugepaged_test_exit(mm))) {
2882                         progress++;
2883                         break;
2884                 }
2885                 if (!hugepage_vma_check(vma)) {
2886 skip:
2887                         progress++;
2888                         continue;
2889                 }
2890                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2891                 hend = vma->vm_end & HPAGE_PMD_MASK;
2892                 if (hstart >= hend)
2893                         goto skip;
2894                 if (khugepaged_scan.address > hend)
2895                         goto skip;
2896                 if (khugepaged_scan.address < hstart)
2897                         khugepaged_scan.address = hstart;
2898                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2899
2900                 while (khugepaged_scan.address < hend) {
2901                         int ret;
2902                         cond_resched();
2903                         if (unlikely(khugepaged_test_exit(mm)))
2904                                 goto breakouterloop;
2905
2906                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2907                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2908                                   hend);
2909                         ret = khugepaged_scan_pmd(mm, vma,
2910                                                   khugepaged_scan.address,
2911                                                   hpage);
2912                         /* move to next address */
2913                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2914                         progress += HPAGE_PMD_NR;
2915                         if (ret)
2916                                 /* we released mmap_sem so break loop */
2917                                 goto breakouterloop_mmap_sem;
2918                         if (progress >= pages)
2919                                 goto breakouterloop;
2920                 }
2921         }
2922 breakouterloop:
2923         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2924 breakouterloop_mmap_sem:
2925
2926         spin_lock(&khugepaged_mm_lock);
2927         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2928         /*
2929          * Release the current mm_slot if this mm is about to die, or
2930          * if we scanned all vmas of this mm.
2931          */
2932         if (khugepaged_test_exit(mm) || !vma) {
2933                 /*
2934                  * Make sure that if mm_users is reaching zero while
2935                  * khugepaged runs here, khugepaged_exit will find
2936                  * mm_slot not pointing to the exiting mm.
2937                  */
2938                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2939                         khugepaged_scan.mm_slot = list_entry(
2940                                 mm_slot->mm_node.next,
2941                                 struct mm_slot, mm_node);
2942                         khugepaged_scan.address = 0;
2943                 } else {
2944                         khugepaged_scan.mm_slot = NULL;
2945                         khugepaged_full_scans++;
2946                 }
2947
2948                 collect_mm_slot(mm_slot);
2949         }
2950
2951         return progress;
2952 }
2953
2954 static int khugepaged_has_work(void)
2955 {
2956         return !list_empty(&khugepaged_scan.mm_head) &&
2957                 khugepaged_enabled();
2958 }
2959
2960 static int khugepaged_wait_event(void)
2961 {
2962         return !list_empty(&khugepaged_scan.mm_head) ||
2963                 kthread_should_stop();
2964 }
2965
2966 static void khugepaged_do_scan(void)
2967 {
2968         struct page *hpage = NULL;
2969         unsigned int progress = 0, pass_through_head = 0;
2970         unsigned int pages = khugepaged_pages_to_scan;
2971         bool wait = true;
2972
2973         barrier(); /* write khugepaged_pages_to_scan to local stack */
2974
2975         while (progress < pages) {
2976                 if (!khugepaged_prealloc_page(&hpage, &wait))
2977                         break;
2978
2979                 cond_resched();
2980
2981                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2982                         break;
2983
2984                 spin_lock(&khugepaged_mm_lock);
2985                 if (!khugepaged_scan.mm_slot)
2986                         pass_through_head++;
2987                 if (khugepaged_has_work() &&
2988                     pass_through_head < 2)
2989                         progress += khugepaged_scan_mm_slot(pages - progress,
2990                                                             &hpage);
2991                 else
2992                         progress = pages;
2993                 spin_unlock(&khugepaged_mm_lock);
2994         }
2995
2996         if (!IS_ERR_OR_NULL(hpage))
2997                 put_page(hpage);
2998 }
2999
3000 static void khugepaged_wait_work(void)
3001 {
3002         if (khugepaged_has_work()) {
3003                 if (!khugepaged_scan_sleep_millisecs)
3004                         return;
3005
3006                 wait_event_freezable_timeout(khugepaged_wait,
3007                                              kthread_should_stop(),
3008                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
3009                 return;
3010         }
3011
3012         if (khugepaged_enabled())
3013                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
3014 }
3015
3016 static int khugepaged(void *none)
3017 {
3018         struct mm_slot *mm_slot;
3019
3020         set_freezable();
3021         set_user_nice(current, MAX_NICE);
3022
3023         while (!kthread_should_stop()) {
3024                 khugepaged_do_scan();
3025                 khugepaged_wait_work();
3026         }
3027
3028         spin_lock(&khugepaged_mm_lock);
3029         mm_slot = khugepaged_scan.mm_slot;
3030         khugepaged_scan.mm_slot = NULL;
3031         if (mm_slot)
3032                 collect_mm_slot(mm_slot);
3033         spin_unlock(&khugepaged_mm_lock);
3034         return 0;
3035 }
3036
3037 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
3038                 unsigned long haddr, pmd_t *pmd)
3039 {
3040         struct mm_struct *mm = vma->vm_mm;
3041         pgtable_t pgtable;
3042         pmd_t _pmd;
3043         int i;
3044
3045         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3046         /* leave pmd empty until pte is filled */
3047
3048         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3049         pmd_populate(mm, &_pmd, pgtable);
3050
3051         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3052                 pte_t *pte, entry;
3053                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
3054                 entry = pte_mkspecial(entry);
3055                 pte = pte_offset_map(&_pmd, haddr);
3056                 VM_BUG_ON(!pte_none(*pte));
3057                 set_pte_at(mm, haddr, pte, entry);
3058                 pte_unmap(pte);
3059         }
3060         smp_wmb(); /* make pte visible before pmd */
3061         pmd_populate(mm, pmd, pgtable);
3062         put_huge_zero_page();
3063 }
3064
3065 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3066                 pmd_t *pmd)
3067 {
3068         spinlock_t *ptl;
3069         struct page *page = NULL;
3070         struct mm_struct *mm = vma->vm_mm;
3071         unsigned long haddr = address & HPAGE_PMD_MASK;
3072         unsigned long mmun_start;       /* For mmu_notifiers */
3073         unsigned long mmun_end;         /* For mmu_notifiers */
3074
3075         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
3076
3077         mmun_start = haddr;
3078         mmun_end   = haddr + HPAGE_PMD_SIZE;
3079 again:
3080         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3081         ptl = pmd_lock(mm, pmd);
3082         if (unlikely(!pmd_trans_huge(*pmd)))
3083                 goto unlock;
3084         if (vma_is_dax(vma)) {
3085                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3086                 if (is_huge_zero_pmd(_pmd))
3087                         put_huge_zero_page();
3088         } else if (is_huge_zero_pmd(*pmd)) {
3089                 __split_huge_zero_page_pmd(vma, haddr, pmd);
3090         } else {
3091                 page = pmd_page(*pmd);
3092                 VM_BUG_ON_PAGE(!page_count(page), page);
3093                 get_page(page);
3094         }
3095  unlock:
3096         spin_unlock(ptl);
3097         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3098
3099         if (!page)
3100                 return;
3101
3102         split_huge_page(page);
3103         put_page(page);
3104
3105         /*
3106          * We don't always have down_write of mmap_sem here: a racing
3107          * do_huge_pmd_wp_page() might have copied-on-write to another
3108          * huge page before our split_huge_page() got the anon_vma lock.
3109          */
3110         if (unlikely(pmd_trans_huge(*pmd)))
3111                 goto again;
3112 }
3113
3114 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3115                 pmd_t *pmd)
3116 {
3117         struct vm_area_struct *vma;
3118
3119         vma = find_vma(mm, address);
3120         BUG_ON(vma == NULL);
3121         split_huge_page_pmd(vma, address, pmd);
3122 }
3123
3124 static void split_huge_page_address(struct mm_struct *mm,
3125                                     unsigned long address)
3126 {
3127         pgd_t *pgd;
3128         pud_t *pud;
3129         pmd_t *pmd;
3130
3131         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3132
3133         pgd = pgd_offset(mm, address);
3134         if (!pgd_present(*pgd))
3135                 return;
3136
3137         pud = pud_offset(pgd, address);
3138         if (!pud_present(*pud))
3139                 return;
3140
3141         pmd = pmd_offset(pud, address);
3142         if (!pmd_present(*pmd))
3143                 return;
3144         /*
3145          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3146          * materialize from under us.
3147          */
3148         split_huge_page_pmd_mm(mm, address, pmd);
3149 }
3150
3151 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3152                              unsigned long start,
3153                              unsigned long end,
3154                              long adjust_next)
3155 {
3156         /*
3157          * If the new start address isn't hpage aligned and it could
3158          * previously contain an hugepage: check if we need to split
3159          * an huge pmd.
3160          */
3161         if (start & ~HPAGE_PMD_MASK &&
3162             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3163             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3164                 split_huge_page_address(vma->vm_mm, start);
3165
3166         /*
3167          * If the new end address isn't hpage aligned and it could
3168          * previously contain an hugepage: check if we need to split
3169          * an huge pmd.
3170          */
3171         if (end & ~HPAGE_PMD_MASK &&
3172             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3173             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3174                 split_huge_page_address(vma->vm_mm, end);
3175
3176         /*
3177          * If we're also updating the vma->vm_next->vm_start, if the new
3178          * vm_next->vm_start isn't page aligned and it could previously
3179          * contain an hugepage: check if we need to split an huge pmd.
3180          */
3181         if (adjust_next > 0) {
3182                 struct vm_area_struct *next = vma->vm_next;
3183                 unsigned long nstart = next->vm_start;
3184                 nstart += adjust_next << PAGE_SHIFT;
3185                 if (nstart & ~HPAGE_PMD_MASK &&
3186                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3187                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3188                         split_huge_page_address(next->vm_mm, nstart);
3189         }
3190 }
This page took 0.220865 seconds and 4 git commands to generate.