1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
20 struct kmem_cache *key_jar;
21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200; /* general key count quota */
30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
39 void __key_check(const struct key *key)
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key, key->magic, KEY_DEBUG_MAGIC);
48 * Get the key quota record for a user, allocating a new record if one doesn't
51 struct key_user *key_user_lookup(kuid_t uid)
53 struct key_user *candidate = NULL, *user;
54 struct rb_node *parent, **p;
58 p = &key_user_tree.rb_node;
59 spin_lock(&key_user_lock);
61 /* search the tree for a user record with a matching UID */
64 user = rb_entry(parent, struct key_user, node);
66 if (uid_lt(uid, user->uid))
68 else if (uid_gt(uid, user->uid))
74 /* if we get here, we failed to find a match in the tree */
76 /* allocate a candidate user record if we don't already have
78 spin_unlock(&key_user_lock);
81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 if (unlikely(!candidate))
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate->usage, 1);
94 atomic_set(&candidate->nkeys, 0);
95 atomic_set(&candidate->nikeys, 0);
97 candidate->qnkeys = 0;
98 candidate->qnbytes = 0;
99 spin_lock_init(&candidate->lock);
100 mutex_init(&candidate->cons_lock);
102 rb_link_node(&candidate->node, parent, p);
103 rb_insert_color(&candidate->node, &key_user_tree);
104 spin_unlock(&key_user_lock);
108 /* okay - we found a user record for this UID */
110 refcount_inc(&user->usage);
111 spin_unlock(&key_user_lock);
118 * Dispose of a user structure
120 void key_user_put(struct key_user *user)
122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 rb_erase(&user->node, &key_user_tree);
124 spin_unlock(&key_user_lock);
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
134 static inline void key_alloc_serial(struct key *key)
136 struct rb_node *parent, **p;
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
142 get_random_bytes(&key->serial, sizeof(key->serial));
144 key->serial >>= 1; /* negative numbers are not permitted */
145 } while (key->serial < 3);
147 spin_lock(&key_serial_lock);
151 p = &key_serial_tree.rb_node;
155 xkey = rb_entry(parent, struct key, serial_node);
157 if (key->serial < xkey->serial)
159 else if (key->serial > xkey->serial)
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key->serial_node, parent, p);
167 rb_insert_color(&key->serial_node, &key_serial_tree);
169 spin_unlock(&key_serial_lock);
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
177 if (key->serial < 3) {
179 goto attempt_insertion;
182 parent = rb_next(parent);
184 goto attempt_insertion;
186 xkey = rb_entry(parent, struct key, serial_node);
187 if (key->serial < xkey->serial)
188 goto attempt_insertion;
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
218 * Returns a pointer to the new key if successful and an error code otherwise.
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 struct key_restriction *restrict_link)
230 struct key_user *user = NULL;
232 size_t desclen, quotalen;
235 key = ERR_PTR(-EINVAL);
239 if (type->vet_description) {
240 ret = type->vet_description(desc);
247 desclen = strlen(desc);
248 quotalen = desclen + 1 + type->def_datalen;
250 /* get hold of the key tracking for this user */
251 user = key_user_lookup(uid);
255 /* check that the user's quota permits allocation of another key and
257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxkeys : key_quota_maxkeys;
260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxbytes : key_quota_maxbytes;
263 spin_lock(&user->lock);
264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 if (user->qnkeys + 1 > maxkeys ||
266 user->qnbytes + quotalen > maxbytes ||
267 user->qnbytes + quotalen < user->qnbytes)
272 user->qnbytes += quotalen;
273 spin_unlock(&user->lock);
276 /* allocate and initialise the key and its description */
277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 key->index_key.desc_len = desclen;
282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 if (!key->index_key.description)
285 key->index_key.type = type;
286 key_set_index_key(&key->index_key);
288 refcount_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
292 key->quotalen = quotalen;
293 key->datalen = type->def_datalen;
297 key->restrict_link = restrict_link;
298 key->last_used_at = ktime_get_real_seconds();
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
304 if (flags & KEY_ALLOC_UID_KEYRING)
305 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
308 key->magic = KEY_DEBUG_MAGIC;
311 /* let the security module know about the key */
312 ret = security_key_alloc(key, cred, flags);
316 /* publish the key by giving it a serial number */
317 refcount_inc(&key->domain_tag->usage);
318 atomic_inc(&user->nkeys);
319 key_alloc_serial(key);
325 kfree(key->description);
326 kmem_cache_free(key_jar, key);
327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 spin_lock(&user->lock);
330 user->qnbytes -= quotalen;
331 spin_unlock(&user->lock);
338 kmem_cache_free(key_jar, key);
340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 spin_lock(&user->lock);
343 user->qnbytes -= quotalen;
344 spin_unlock(&user->lock);
348 key = ERR_PTR(-ENOMEM);
352 spin_unlock(&user->lock);
354 key = ERR_PTR(-EDQUOT);
357 EXPORT_SYMBOL(key_alloc);
360 * key_payload_reserve - Adjust data quota reservation for the key's payload
361 * @key: The key to make the reservation for.
362 * @datalen: The amount of data payload the caller now wants.
364 * Adjust the amount of the owning user's key data quota that a key reserves.
365 * If the amount is increased, then -EDQUOT may be returned if there isn't
366 * enough free quota available.
368 * If successful, 0 is returned.
370 int key_payload_reserve(struct key *key, size_t datalen)
372 int delta = (int)datalen - key->datalen;
377 /* contemplate the quota adjustment */
378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 key_quota_root_maxbytes : key_quota_maxbytes;
382 spin_lock(&key->user->lock);
385 (key->user->qnbytes + delta > maxbytes ||
386 key->user->qnbytes + delta < key->user->qnbytes)) {
390 key->user->qnbytes += delta;
391 key->quotalen += delta;
393 spin_unlock(&key->user->lock);
396 /* change the recorded data length if that didn't generate an error */
398 key->datalen = datalen;
402 EXPORT_SYMBOL(key_payload_reserve);
405 * Change the key state to being instantiated.
407 static void mark_key_instantiated(struct key *key, int reject_error)
409 /* Commit the payload before setting the state; barrier versus
412 smp_store_release(&key->state,
413 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
417 * Instantiate a key and link it into the target keyring atomically. Must be
418 * called with the target keyring's semaphore writelocked. The target key's
419 * semaphore need not be locked as instantiation is serialised by
420 * key_construction_mutex.
422 static int __key_instantiate_and_link(struct key *key,
423 struct key_preparsed_payload *prep,
426 struct assoc_array_edit **_edit)
436 mutex_lock(&key_construction_mutex);
438 /* can't instantiate twice */
439 if (key->state == KEY_IS_UNINSTANTIATED) {
440 /* instantiate the key */
441 ret = key->type->instantiate(key, prep);
444 /* mark the key as being instantiated */
445 atomic_inc(&key->user->nikeys);
446 mark_key_instantiated(key, 0);
447 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
449 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
452 /* and link it into the destination keyring */
454 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
455 set_bit(KEY_FLAG_KEEP, &key->flags);
457 __key_link(keyring, key, _edit);
460 /* disable the authorisation key */
462 key_invalidate(authkey);
464 if (prep->expiry != TIME64_MAX) {
465 key->expiry = prep->expiry;
466 key_schedule_gc(prep->expiry + key_gc_delay);
471 mutex_unlock(&key_construction_mutex);
473 /* wake up anyone waiting for a key to be constructed */
475 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482 * @key: The key to instantiate.
483 * @data: The data to use to instantiate the keyring.
484 * @datalen: The length of @data.
485 * @keyring: Keyring to create a link in on success (or NULL).
486 * @authkey: The authorisation token permitting instantiation.
488 * Instantiate a key that's in the uninstantiated state using the provided data
489 * and, if successful, link it in to the destination keyring if one is
492 * If successful, 0 is returned, the authorisation token is revoked and anyone
493 * waiting for the key is woken up. If the key was already instantiated,
494 * -EBUSY will be returned.
496 int key_instantiate_and_link(struct key *key,
502 struct key_preparsed_payload prep;
503 struct assoc_array_edit *edit = NULL;
506 memset(&prep, 0, sizeof(prep));
508 prep.datalen = datalen;
509 prep.quotalen = key->type->def_datalen;
510 prep.expiry = TIME64_MAX;
511 if (key->type->preparse) {
512 ret = key->type->preparse(&prep);
518 ret = __key_link_lock(keyring, &key->index_key);
522 ret = __key_link_begin(keyring, &key->index_key, &edit);
526 if (keyring->restrict_link && keyring->restrict_link->check) {
527 struct key_restriction *keyres = keyring->restrict_link;
529 ret = keyres->check(keyring, key->type, &prep.payload,
536 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
540 __key_link_end(keyring, &key->index_key, edit);
543 if (key->type->preparse)
544 key->type->free_preparse(&prep);
548 EXPORT_SYMBOL(key_instantiate_and_link);
551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
552 * @key: The key to instantiate.
553 * @timeout: The timeout on the negative key.
554 * @error: The error to return when the key is hit.
555 * @keyring: Keyring to create a link in on success (or NULL).
556 * @authkey: The authorisation token permitting instantiation.
558 * Negatively instantiate a key that's in the uninstantiated state and, if
559 * successful, set its timeout and stored error and link it in to the
560 * destination keyring if one is supplied. The key and any links to the key
561 * will be automatically garbage collected after the timeout expires.
563 * Negative keys are used to rate limit repeated request_key() calls by causing
564 * them to return the stored error code (typically ENOKEY) until the negative
567 * If successful, 0 is returned, the authorisation token is revoked and anyone
568 * waiting for the key is woken up. If the key was already instantiated,
569 * -EBUSY will be returned.
571 int key_reject_and_link(struct key *key,
577 struct assoc_array_edit *edit = NULL;
578 int ret, awaken, link_ret = 0;
587 if (keyring->restrict_link)
590 link_ret = __key_link_lock(keyring, &key->index_key);
592 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
594 __key_link_end(keyring, &key->index_key, edit);
598 mutex_lock(&key_construction_mutex);
600 /* can't instantiate twice */
601 if (key->state == KEY_IS_UNINSTANTIATED) {
602 /* mark the key as being negatively instantiated */
603 atomic_inc(&key->user->nikeys);
604 mark_key_instantiated(key, -error);
605 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
606 key->expiry = ktime_get_real_seconds() + timeout;
607 key_schedule_gc(key->expiry + key_gc_delay);
609 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
614 /* and link it into the destination keyring */
615 if (keyring && link_ret == 0)
616 __key_link(keyring, key, &edit);
618 /* disable the authorisation key */
620 key_invalidate(authkey);
623 mutex_unlock(&key_construction_mutex);
625 if (keyring && link_ret == 0)
626 __key_link_end(keyring, &key->index_key, edit);
628 /* wake up anyone waiting for a key to be constructed */
630 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
632 return ret == 0 ? link_ret : ret;
634 EXPORT_SYMBOL(key_reject_and_link);
637 * key_put - Discard a reference to a key.
638 * @key: The key to discard a reference from.
640 * Discard a reference to a key, and when all the references are gone, we
641 * schedule the cleanup task to come and pull it out of the tree in process
642 * context at some later time.
644 void key_put(struct key *key)
649 if (refcount_dec_and_test(&key->usage))
650 schedule_work(&key_gc_work);
653 EXPORT_SYMBOL(key_put);
656 * Find a key by its serial number.
658 struct key *key_lookup(key_serial_t id)
663 spin_lock(&key_serial_lock);
665 /* search the tree for the specified key */
666 n = key_serial_tree.rb_node;
668 key = rb_entry(n, struct key, serial_node);
670 if (id < key->serial)
672 else if (id > key->serial)
679 key = ERR_PTR(-ENOKEY);
683 /* A key is allowed to be looked up only if someone still owns a
684 * reference to it - otherwise it's awaiting the gc.
686 if (!refcount_inc_not_zero(&key->usage))
690 spin_unlock(&key_serial_lock);
695 * Find and lock the specified key type against removal.
697 * We return with the sem read-locked if successful. If the type wasn't
698 * available -ENOKEY is returned instead.
700 struct key_type *key_type_lookup(const char *type)
702 struct key_type *ktype;
704 down_read(&key_types_sem);
706 /* look up the key type to see if it's one of the registered kernel
708 list_for_each_entry(ktype, &key_types_list, link) {
709 if (strcmp(ktype->name, type) == 0)
710 goto found_kernel_type;
713 up_read(&key_types_sem);
714 ktype = ERR_PTR(-ENOKEY);
720 void key_set_timeout(struct key *key, unsigned timeout)
724 /* make the changes with the locks held to prevent races */
725 down_write(&key->sem);
728 expiry = ktime_get_real_seconds() + timeout;
730 key->expiry = expiry;
731 key_schedule_gc(key->expiry + key_gc_delay);
735 EXPORT_SYMBOL_GPL(key_set_timeout);
738 * Unlock a key type locked by key_type_lookup().
740 void key_type_put(struct key_type *ktype)
742 up_read(&key_types_sem);
746 * Attempt to update an existing key.
748 * The key is given to us with an incremented refcount that we need to discard
749 * if we get an error.
751 static inline key_ref_t __key_update(key_ref_t key_ref,
752 struct key_preparsed_payload *prep)
754 struct key *key = key_ref_to_ptr(key_ref);
757 /* need write permission on the key to update it */
758 ret = key_permission(key_ref, KEY_NEED_WRITE);
763 if (!key->type->update)
766 down_write(&key->sem);
768 ret = key->type->update(key, prep);
770 /* Updating a negative key positively instantiates it */
771 mark_key_instantiated(key, 0);
772 notify_key(key, NOTIFY_KEY_UPDATED, 0);
784 key_ref = ERR_PTR(ret);
789 * key_create_or_update - Update or create and instantiate a key.
790 * @keyring_ref: A pointer to the destination keyring with possession flag.
791 * @type: The type of key.
792 * @description: The searchable description for the key.
793 * @payload: The data to use to instantiate or update the key.
794 * @plen: The length of @payload.
795 * @perm: The permissions mask for a new key.
796 * @flags: The quota flags for a new key.
798 * Search the destination keyring for a key of the same description and if one
799 * is found, update it, otherwise create and instantiate a new one and create a
800 * link to it from that keyring.
802 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
805 * Returns a pointer to the new key if successful, -ENODEV if the key type
806 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
807 * caller isn't permitted to modify the keyring or the LSM did not permit
808 * creation of the key.
810 * On success, the possession flag from the keyring ref will be tacked on to
811 * the key ref before it is returned.
813 key_ref_t key_create_or_update(key_ref_t keyring_ref,
815 const char *description,
821 struct keyring_index_key index_key = {
822 .description = description,
824 struct key_preparsed_payload prep;
825 struct assoc_array_edit *edit = NULL;
826 const struct cred *cred = current_cred();
827 struct key *keyring, *key = NULL;
830 struct key_restriction *restrict_link = NULL;
832 /* look up the key type to see if it's one of the registered kernel
834 index_key.type = key_type_lookup(type);
835 if (IS_ERR(index_key.type)) {
836 key_ref = ERR_PTR(-ENODEV);
840 key_ref = ERR_PTR(-EINVAL);
841 if (!index_key.type->instantiate ||
842 (!index_key.description && !index_key.type->preparse))
845 keyring = key_ref_to_ptr(keyring_ref);
849 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
850 restrict_link = keyring->restrict_link;
852 key_ref = ERR_PTR(-ENOTDIR);
853 if (keyring->type != &key_type_keyring)
856 memset(&prep, 0, sizeof(prep));
859 prep.quotalen = index_key.type->def_datalen;
860 prep.expiry = TIME64_MAX;
861 if (index_key.type->preparse) {
862 ret = index_key.type->preparse(&prep);
864 key_ref = ERR_PTR(ret);
865 goto error_free_prep;
867 if (!index_key.description)
868 index_key.description = prep.description;
869 key_ref = ERR_PTR(-EINVAL);
870 if (!index_key.description)
871 goto error_free_prep;
873 index_key.desc_len = strlen(index_key.description);
874 key_set_index_key(&index_key);
876 ret = __key_link_lock(keyring, &index_key);
878 key_ref = ERR_PTR(ret);
879 goto error_free_prep;
882 ret = __key_link_begin(keyring, &index_key, &edit);
884 key_ref = ERR_PTR(ret);
888 if (restrict_link && restrict_link->check) {
889 ret = restrict_link->check(keyring, index_key.type,
890 &prep.payload, restrict_link->key);
892 key_ref = ERR_PTR(ret);
897 /* if we're going to allocate a new key, we're going to have
898 * to modify the keyring */
899 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
901 key_ref = ERR_PTR(ret);
905 /* if it's possible to update this type of key, search for an existing
906 * key of the same type and description in the destination keyring and
907 * update that instead if possible
909 if (index_key.type->update) {
910 key_ref = find_key_to_update(keyring_ref, &index_key);
912 goto found_matching_key;
915 /* if the client doesn't provide, decide on the permissions we want */
916 if (perm == KEY_PERM_UNDEF) {
917 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
918 perm |= KEY_USR_VIEW;
920 if (index_key.type->read)
921 perm |= KEY_POS_READ;
923 if (index_key.type == &key_type_keyring ||
924 index_key.type->update)
925 perm |= KEY_POS_WRITE;
928 /* allocate a new key */
929 key = key_alloc(index_key.type, index_key.description,
930 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
932 key_ref = ERR_CAST(key);
936 /* instantiate it and link it into the target keyring */
937 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
940 key_ref = ERR_PTR(ret);
944 ima_post_key_create_or_update(keyring, key, payload, plen,
947 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
950 __key_link_end(keyring, &index_key, edit);
952 if (index_key.type->preparse)
953 index_key.type->free_preparse(&prep);
955 key_type_put(index_key.type);
960 /* we found a matching key, so we're going to try to update it
961 * - we can drop the locks first as we have the key pinned
963 __key_link_end(keyring, &index_key, edit);
965 key = key_ref_to_ptr(key_ref);
966 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
967 ret = wait_for_key_construction(key, true);
969 key_ref_put(key_ref);
970 key_ref = ERR_PTR(ret);
971 goto error_free_prep;
975 key_ref = __key_update(key_ref, &prep);
977 if (!IS_ERR(key_ref))
978 ima_post_key_create_or_update(keyring, key,
982 goto error_free_prep;
984 EXPORT_SYMBOL(key_create_or_update);
987 * key_update - Update a key's contents.
988 * @key_ref: The pointer (plus possession flag) to the key.
989 * @payload: The data to be used to update the key.
990 * @plen: The length of @payload.
992 * Attempt to update the contents of a key with the given payload data. The
993 * caller must be granted Write permission on the key. Negative keys can be
994 * instantiated by this method.
996 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
997 * type does not support updating. The key type may return other errors.
999 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1001 struct key_preparsed_payload prep;
1002 struct key *key = key_ref_to_ptr(key_ref);
1007 /* the key must be writable */
1008 ret = key_permission(key_ref, KEY_NEED_WRITE);
1012 /* attempt to update it if supported */
1013 if (!key->type->update)
1016 memset(&prep, 0, sizeof(prep));
1017 prep.data = payload;
1018 prep.datalen = plen;
1019 prep.quotalen = key->type->def_datalen;
1020 prep.expiry = TIME64_MAX;
1021 if (key->type->preparse) {
1022 ret = key->type->preparse(&prep);
1027 down_write(&key->sem);
1029 ret = key->type->update(key, &prep);
1031 /* Updating a negative key positively instantiates it */
1032 mark_key_instantiated(key, 0);
1033 notify_key(key, NOTIFY_KEY_UPDATED, 0);
1036 up_write(&key->sem);
1039 if (key->type->preparse)
1040 key->type->free_preparse(&prep);
1043 EXPORT_SYMBOL(key_update);
1046 * key_revoke - Revoke a key.
1047 * @key: The key to be revoked.
1049 * Mark a key as being revoked and ask the type to free up its resources. The
1050 * revocation timeout is set and the key and all its links will be
1051 * automatically garbage collected after key_gc_delay amount of time if they
1052 * are not manually dealt with first.
1054 void key_revoke(struct key *key)
1060 /* make sure no one's trying to change or use the key when we mark it
1061 * - we tell lockdep that we might nest because we might be revoking an
1062 * authorisation key whilst holding the sem on a key we've just
1065 down_write_nested(&key->sem, 1);
1066 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1067 notify_key(key, NOTIFY_KEY_REVOKED, 0);
1068 if (key->type->revoke)
1069 key->type->revoke(key);
1071 /* set the death time to no more than the expiry time */
1072 time = ktime_get_real_seconds();
1073 if (key->revoked_at == 0 || key->revoked_at > time) {
1074 key->revoked_at = time;
1075 key_schedule_gc(key->revoked_at + key_gc_delay);
1079 up_write(&key->sem);
1081 EXPORT_SYMBOL(key_revoke);
1084 * key_invalidate - Invalidate a key.
1085 * @key: The key to be invalidated.
1087 * Mark a key as being invalidated and have it cleaned up immediately. The key
1088 * is ignored by all searches and other operations from this point.
1090 void key_invalidate(struct key *key)
1092 kenter("%d", key_serial(key));
1096 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1097 down_write_nested(&key->sem, 1);
1098 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099 notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1100 key_schedule_gc_links();
1102 up_write(&key->sem);
1105 EXPORT_SYMBOL(key_invalidate);
1108 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1109 * @key: The key to be instantiated
1110 * @prep: The preparsed data to load.
1112 * Instantiate a key from preparsed data. We assume we can just copy the data
1113 * in directly and clear the old pointers.
1115 * This can be pointed to directly by the key type instantiate op pointer.
1117 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1121 pr_devel("==>%s()\n", __func__);
1123 ret = key_payload_reserve(key, prep->quotalen);
1125 rcu_assign_keypointer(key, prep->payload.data[0]);
1126 key->payload.data[1] = prep->payload.data[1];
1127 key->payload.data[2] = prep->payload.data[2];
1128 key->payload.data[3] = prep->payload.data[3];
1129 prep->payload.data[0] = NULL;
1130 prep->payload.data[1] = NULL;
1131 prep->payload.data[2] = NULL;
1132 prep->payload.data[3] = NULL;
1134 pr_devel("<==%s() = %d\n", __func__, ret);
1137 EXPORT_SYMBOL(generic_key_instantiate);
1140 * register_key_type - Register a type of key.
1141 * @ktype: The new key type.
1143 * Register a new key type.
1145 * Returns 0 on success or -EEXIST if a type of this name already exists.
1147 int register_key_type(struct key_type *ktype)
1152 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1155 down_write(&key_types_sem);
1157 /* disallow key types with the same name */
1158 list_for_each_entry(p, &key_types_list, link) {
1159 if (strcmp(p->name, ktype->name) == 0)
1163 /* store the type */
1164 list_add(&ktype->link, &key_types_list);
1166 pr_notice("Key type %s registered\n", ktype->name);
1170 up_write(&key_types_sem);
1173 EXPORT_SYMBOL(register_key_type);
1176 * unregister_key_type - Unregister a type of key.
1177 * @ktype: The key type.
1179 * Unregister a key type and mark all the extant keys of this type as dead.
1180 * Those keys of this type are then destroyed to get rid of their payloads and
1181 * they and their links will be garbage collected as soon as possible.
1183 void unregister_key_type(struct key_type *ktype)
1185 down_write(&key_types_sem);
1186 list_del_init(&ktype->link);
1187 downgrade_write(&key_types_sem);
1188 key_gc_keytype(ktype);
1189 pr_notice("Key type %s unregistered\n", ktype->name);
1190 up_read(&key_types_sem);
1192 EXPORT_SYMBOL(unregister_key_type);
1195 * Initialise the key management state.
1197 void __init key_init(void)
1199 /* allocate a slab in which we can store keys */
1200 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1201 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1203 /* add the special key types */
1204 list_add_tail(&key_type_keyring.link, &key_types_list);
1205 list_add_tail(&key_type_dead.link, &key_types_list);
1206 list_add_tail(&key_type_user.link, &key_types_list);
1207 list_add_tail(&key_type_logon.link, &key_types_list);
1209 /* record the root user tracking */
1210 rb_link_node(&root_key_user.node,
1212 &key_user_tree.rb_node);
1214 rb_insert_color(&root_key_user.node,