2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
67 module_param(use_spi_crc, bool, 0);
69 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
78 return queue_delayed_work(system_freezable_wq, work, delay);
81 #ifdef CONFIG_FAIL_MMC_REQUEST
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
87 static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
109 #else /* CONFIG_FAIL_MMC_REQUEST */
111 static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_complete_cmd(struct mmc_request *mrq)
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
126 if (!mrq->cap_cmd_during_tfr)
129 mmc_complete_cmd(mrq);
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
134 EXPORT_SYMBOL(mmc_command_done);
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
165 mmc_complete_cmd(mrq);
167 trace_mmc_request_done(host, mrq);
170 * We list various conditions for the command to be considered
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
198 pr_debug("%s: %d bytes transferred: %d\n",
200 mrq->data->bytes_xfered, mrq->data->error);
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
219 EXPORT_SYMBOL(mmc_request_done);
221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
242 while (host->ops->card_busy(host) && --tries)
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
258 reinit_completion(&mrq->cmd_completion);
261 trace_mmc_request_start(host, mrq);
263 host->ops->request(host, mrq);
266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq)
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
275 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg,
281 pr_debug("%s: blksz %d blocks %d flags %08x "
282 "tsac %d ms nsac %d\n",
283 mmc_hostname(host), mrq->data->blksz,
284 mrq->data->blocks, mrq->data->flags,
285 mrq->data->timeout_ns / 1000000,
286 mrq->data->timeout_clks);
290 pr_debug("%s: CMD%u arg %08x flags %08x\n",
291 mmc_hostname(host), mrq->stop->opcode,
292 mrq->stop->arg, mrq->stop->flags);
296 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 #ifdef CONFIG_MMC_DEBUG
300 struct scatterlist *sg;
306 mrq->cmd->data = mrq->data;
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 #ifdef CONFIG_MMC_DEBUG
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 if (sz != mrq->data->blocks * mrq->data->blksz)
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
336 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
340 mmc_retune_hold(host);
342 if (mmc_card_removed(host->card))
345 mmc_mrq_pr_debug(host, mrq);
347 WARN_ON(!host->claimed);
349 err = mmc_mrq_prep(host, mrq);
353 led_trigger_event(host->led, LED_FULL);
354 __mmc_start_request(host, mrq);
360 * mmc_wait_data_done() - done callback for data request
361 * @mrq: done data request
363 * Wakes up mmc context, passed as a callback to host controller driver
365 static void mmc_wait_data_done(struct mmc_request *mrq)
367 struct mmc_context_info *context_info = &mrq->host->context_info;
369 context_info->is_done_rcv = true;
370 wake_up_interruptible(&context_info->wait);
373 static void mmc_wait_done(struct mmc_request *mrq)
375 complete(&mrq->completion);
378 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
380 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
383 * If there is an ongoing transfer, wait for the command line to become
386 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
387 wait_for_completion(&ongoing_mrq->cmd_completion);
391 *__mmc_start_data_req() - starts data request
392 * @host: MMC host to start the request
393 * @mrq: data request to start
395 * Sets the done callback to be called when request is completed by the card.
396 * Starts data mmc request execution
397 * If an ongoing transfer is already in progress, wait for the command line
398 * to become available before sending another command.
400 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
404 mmc_wait_ongoing_tfr_cmd(host);
406 mrq->done = mmc_wait_data_done;
409 init_completion(&mrq->cmd_completion);
411 err = mmc_start_request(host, mrq);
413 mrq->cmd->error = err;
414 mmc_complete_cmd(mrq);
415 mmc_wait_data_done(mrq);
421 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
425 mmc_wait_ongoing_tfr_cmd(host);
427 init_completion(&mrq->completion);
428 mrq->done = mmc_wait_done;
430 init_completion(&mrq->cmd_completion);
432 err = mmc_start_request(host, mrq);
434 mrq->cmd->error = err;
435 mmc_complete_cmd(mrq);
436 complete(&mrq->completion);
442 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
444 struct mmc_command *cmd;
447 wait_for_completion(&mrq->completion);
452 * If host has timed out waiting for the sanitize
453 * to complete, card might be still in programming state
454 * so let's try to bring the card out of programming
457 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
458 if (!mmc_interrupt_hpi(host->card)) {
459 pr_warn("%s: %s: Interrupted sanitize\n",
460 mmc_hostname(host), __func__);
464 pr_err("%s: %s: Failed to interrupt sanitize\n",
465 mmc_hostname(host), __func__);
468 if (!cmd->error || !cmd->retries ||
469 mmc_card_removed(host->card))
472 mmc_retune_recheck(host);
474 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
475 mmc_hostname(host), cmd->opcode, cmd->error);
478 __mmc_start_request(host, mrq);
481 mmc_retune_release(host);
483 EXPORT_SYMBOL(mmc_wait_for_req_done);
486 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
490 * mmc_is_req_done() is used with requests that have
491 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
492 * starting a request and before waiting for it to complete. That is,
493 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
494 * and before mmc_wait_for_req_done(). If it is called at other times the
495 * result is not meaningful.
497 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
500 return host->context_info.is_done_rcv;
502 return completion_done(&mrq->completion);
504 EXPORT_SYMBOL(mmc_is_req_done);
507 * mmc_pre_req - Prepare for a new request
508 * @host: MMC host to prepare command
509 * @mrq: MMC request to prepare for
511 * mmc_pre_req() is called in prior to mmc_start_req() to let
512 * host prepare for the new request. Preparation of a request may be
513 * performed while another request is running on the host.
515 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
517 if (host->ops->pre_req)
518 host->ops->pre_req(host, mrq);
522 * mmc_post_req - Post process a completed request
523 * @host: MMC host to post process command
524 * @mrq: MMC request to post process for
525 * @err: Error, if non zero, clean up any resources made in pre_req
527 * Let the host post process a completed request. Post processing of
528 * a request may be performed while another reuqest is running.
530 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
533 if (host->ops->post_req)
534 host->ops->post_req(host, mrq, err);
538 * mmc_finalize_areq() - finalize an asynchronous request
539 * @host: MMC host to finalize any ongoing request on
541 * Returns the status of the ongoing asynchronous request, but
542 * MMC_BLK_SUCCESS if no request was going on.
544 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
546 struct mmc_context_info *context_info = &host->context_info;
547 enum mmc_blk_status status;
550 return MMC_BLK_SUCCESS;
553 wait_event_interruptible(context_info->wait,
554 (context_info->is_done_rcv ||
555 context_info->is_new_req));
557 if (context_info->is_done_rcv) {
558 struct mmc_command *cmd;
560 context_info->is_done_rcv = false;
561 cmd = host->areq->mrq->cmd;
563 if (!cmd->error || !cmd->retries ||
564 mmc_card_removed(host->card)) {
565 status = host->areq->err_check(host->card,
567 break; /* return status */
569 mmc_retune_recheck(host);
570 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
572 cmd->opcode, cmd->error);
575 __mmc_start_request(host, host->areq->mrq);
576 continue; /* wait for done/new event again */
580 return MMC_BLK_NEW_REQUEST;
583 mmc_retune_release(host);
586 * Check BKOPS urgency for each R1 response
588 if (host->card && mmc_card_mmc(host->card) &&
589 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
590 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
591 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
592 mmc_start_bkops(host->card, true);
599 * mmc_start_areq - start an asynchronous request
600 * @host: MMC host to start command
601 * @areq: asynchronous request to start
602 * @ret_stat: out parameter for status
604 * Start a new MMC custom command request for a host.
605 * If there is on ongoing async request wait for completion
606 * of that request and start the new one and return.
607 * Does not wait for the new request to complete.
609 * Returns the completed request, NULL in case of none completed.
610 * Wait for the an ongoing request (previoulsy started) to complete and
611 * return the completed request. If there is no ongoing request, NULL
612 * is returned without waiting. NULL is not an error condition.
614 struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
615 struct mmc_async_req *areq,
616 enum mmc_blk_status *ret_stat)
618 enum mmc_blk_status status;
620 struct mmc_async_req *previous = host->areq;
622 /* Prepare a new request */
624 mmc_pre_req(host, areq->mrq);
626 /* Finalize previous request */
627 status = mmc_finalize_areq(host);
631 /* The previous request is still going on... */
632 if (status == MMC_BLK_NEW_REQUEST)
635 /* Fine so far, start the new request! */
636 if (status == MMC_BLK_SUCCESS && areq)
637 start_err = __mmc_start_data_req(host, areq->mrq);
639 /* Postprocess the old request at this point */
641 mmc_post_req(host, host->areq->mrq, 0);
643 /* Cancel a prepared request if it was not started. */
644 if ((status != MMC_BLK_SUCCESS || start_err) && areq)
645 mmc_post_req(host, areq->mrq, -EINVAL);
647 if (status != MMC_BLK_SUCCESS)
654 EXPORT_SYMBOL(mmc_start_areq);
657 * mmc_wait_for_req - start a request and wait for completion
658 * @host: MMC host to start command
659 * @mrq: MMC request to start
661 * Start a new MMC custom command request for a host, and wait
662 * for the command to complete. In the case of 'cap_cmd_during_tfr'
663 * requests, the transfer is ongoing and the caller can issue further
664 * commands that do not use the data lines, and then wait by calling
665 * mmc_wait_for_req_done().
666 * Does not attempt to parse the response.
668 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
670 __mmc_start_req(host, mrq);
672 if (!mrq->cap_cmd_during_tfr)
673 mmc_wait_for_req_done(host, mrq);
675 EXPORT_SYMBOL(mmc_wait_for_req);
678 * mmc_wait_for_cmd - start a command and wait for completion
679 * @host: MMC host to start command
680 * @cmd: MMC command to start
681 * @retries: maximum number of retries
683 * Start a new MMC command for a host, and wait for the command
684 * to complete. Return any error that occurred while the command
685 * was executing. Do not attempt to parse the response.
687 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
689 struct mmc_request mrq = {};
691 WARN_ON(!host->claimed);
693 memset(cmd->resp, 0, sizeof(cmd->resp));
694 cmd->retries = retries;
699 mmc_wait_for_req(host, &mrq);
704 EXPORT_SYMBOL(mmc_wait_for_cmd);
707 * mmc_set_data_timeout - set the timeout for a data command
708 * @data: data phase for command
709 * @card: the MMC card associated with the data transfer
711 * Computes the data timeout parameters according to the
712 * correct algorithm given the card type.
714 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
719 * SDIO cards only define an upper 1 s limit on access.
721 if (mmc_card_sdio(card)) {
722 data->timeout_ns = 1000000000;
723 data->timeout_clks = 0;
728 * SD cards use a 100 multiplier rather than 10
730 mult = mmc_card_sd(card) ? 100 : 10;
733 * Scale up the multiplier (and therefore the timeout) by
734 * the r2w factor for writes.
736 if (data->flags & MMC_DATA_WRITE)
737 mult <<= card->csd.r2w_factor;
739 data->timeout_ns = card->csd.tacc_ns * mult;
740 data->timeout_clks = card->csd.tacc_clks * mult;
743 * SD cards also have an upper limit on the timeout.
745 if (mmc_card_sd(card)) {
746 unsigned int timeout_us, limit_us;
748 timeout_us = data->timeout_ns / 1000;
749 if (card->host->ios.clock)
750 timeout_us += data->timeout_clks * 1000 /
751 (card->host->ios.clock / 1000);
753 if (data->flags & MMC_DATA_WRITE)
755 * The MMC spec "It is strongly recommended
756 * for hosts to implement more than 500ms
757 * timeout value even if the card indicates
758 * the 250ms maximum busy length." Even the
759 * previous value of 300ms is known to be
760 * insufficient for some cards.
767 * SDHC cards always use these fixed values.
769 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
770 data->timeout_ns = limit_us * 1000;
771 data->timeout_clks = 0;
774 /* assign limit value if invalid */
776 data->timeout_ns = limit_us * 1000;
780 * Some cards require longer data read timeout than indicated in CSD.
781 * Address this by setting the read timeout to a "reasonably high"
782 * value. For the cards tested, 600ms has proven enough. If necessary,
783 * this value can be increased if other problematic cards require this.
785 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
786 data->timeout_ns = 600000000;
787 data->timeout_clks = 0;
791 * Some cards need very high timeouts if driven in SPI mode.
792 * The worst observed timeout was 900ms after writing a
793 * continuous stream of data until the internal logic
796 if (mmc_host_is_spi(card->host)) {
797 if (data->flags & MMC_DATA_WRITE) {
798 if (data->timeout_ns < 1000000000)
799 data->timeout_ns = 1000000000; /* 1s */
801 if (data->timeout_ns < 100000000)
802 data->timeout_ns = 100000000; /* 100ms */
806 EXPORT_SYMBOL(mmc_set_data_timeout);
809 * mmc_align_data_size - pads a transfer size to a more optimal value
810 * @card: the MMC card associated with the data transfer
811 * @sz: original transfer size
813 * Pads the original data size with a number of extra bytes in
814 * order to avoid controller bugs and/or performance hits
815 * (e.g. some controllers revert to PIO for certain sizes).
817 * Returns the improved size, which might be unmodified.
819 * Note that this function is only relevant when issuing a
820 * single scatter gather entry.
822 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
825 * FIXME: We don't have a system for the controller to tell
826 * the core about its problems yet, so for now we just 32-bit
829 sz = ((sz + 3) / 4) * 4;
833 EXPORT_SYMBOL(mmc_align_data_size);
836 * __mmc_claim_host - exclusively claim a host
837 * @host: mmc host to claim
838 * @abort: whether or not the operation should be aborted
840 * Claim a host for a set of operations. If @abort is non null and
841 * dereference a non-zero value then this will return prematurely with
842 * that non-zero value without acquiring the lock. Returns zero
843 * with the lock held otherwise.
845 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
847 DECLARE_WAITQUEUE(wait, current);
854 add_wait_queue(&host->wq, &wait);
855 spin_lock_irqsave(&host->lock, flags);
857 set_current_state(TASK_UNINTERRUPTIBLE);
858 stop = abort ? atomic_read(abort) : 0;
859 if (stop || !host->claimed || host->claimer == current)
861 spin_unlock_irqrestore(&host->lock, flags);
863 spin_lock_irqsave(&host->lock, flags);
865 set_current_state(TASK_RUNNING);
868 host->claimer = current;
869 host->claim_cnt += 1;
870 if (host->claim_cnt == 1)
874 spin_unlock_irqrestore(&host->lock, flags);
875 remove_wait_queue(&host->wq, &wait);
878 pm_runtime_get_sync(mmc_dev(host));
882 EXPORT_SYMBOL(__mmc_claim_host);
885 * mmc_release_host - release a host
886 * @host: mmc host to release
888 * Release a MMC host, allowing others to claim the host
889 * for their operations.
891 void mmc_release_host(struct mmc_host *host)
895 WARN_ON(!host->claimed);
897 spin_lock_irqsave(&host->lock, flags);
898 if (--host->claim_cnt) {
899 /* Release for nested claim */
900 spin_unlock_irqrestore(&host->lock, flags);
903 host->claimer = NULL;
904 spin_unlock_irqrestore(&host->lock, flags);
906 pm_runtime_mark_last_busy(mmc_dev(host));
907 pm_runtime_put_autosuspend(mmc_dev(host));
910 EXPORT_SYMBOL(mmc_release_host);
913 * This is a helper function, which fetches a runtime pm reference for the
914 * card device and also claims the host.
916 void mmc_get_card(struct mmc_card *card)
918 pm_runtime_get_sync(&card->dev);
919 mmc_claim_host(card->host);
921 EXPORT_SYMBOL(mmc_get_card);
924 * This is a helper function, which releases the host and drops the runtime
925 * pm reference for the card device.
927 void mmc_put_card(struct mmc_card *card)
929 mmc_release_host(card->host);
930 pm_runtime_mark_last_busy(&card->dev);
931 pm_runtime_put_autosuspend(&card->dev);
933 EXPORT_SYMBOL(mmc_put_card);
936 * Internal function that does the actual ios call to the host driver,
937 * optionally printing some debug output.
939 static inline void mmc_set_ios(struct mmc_host *host)
941 struct mmc_ios *ios = &host->ios;
943 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
944 "width %u timing %u\n",
945 mmc_hostname(host), ios->clock, ios->bus_mode,
946 ios->power_mode, ios->chip_select, ios->vdd,
947 1 << ios->bus_width, ios->timing);
949 host->ops->set_ios(host, ios);
953 * Control chip select pin on a host.
955 void mmc_set_chip_select(struct mmc_host *host, int mode)
957 host->ios.chip_select = mode;
962 * Sets the host clock to the highest possible frequency that
965 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
967 WARN_ON(hz && hz < host->f_min);
969 if (hz > host->f_max)
972 host->ios.clock = hz;
976 int mmc_execute_tuning(struct mmc_card *card)
978 struct mmc_host *host = card->host;
982 if (!host->ops->execute_tuning)
985 if (mmc_card_mmc(card))
986 opcode = MMC_SEND_TUNING_BLOCK_HS200;
988 opcode = MMC_SEND_TUNING_BLOCK;
990 err = host->ops->execute_tuning(host, opcode);
993 pr_err("%s: tuning execution failed: %d\n",
994 mmc_hostname(host), err);
996 mmc_retune_enable(host);
1002 * Change the bus mode (open drain/push-pull) of a host.
1004 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1006 host->ios.bus_mode = mode;
1011 * Change data bus width of a host.
1013 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1015 host->ios.bus_width = width;
1020 * Set initial state after a power cycle or a hw_reset.
1022 void mmc_set_initial_state(struct mmc_host *host)
1024 mmc_retune_disable(host);
1026 if (mmc_host_is_spi(host))
1027 host->ios.chip_select = MMC_CS_HIGH;
1029 host->ios.chip_select = MMC_CS_DONTCARE;
1030 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1031 host->ios.bus_width = MMC_BUS_WIDTH_1;
1032 host->ios.timing = MMC_TIMING_LEGACY;
1033 host->ios.drv_type = 0;
1034 host->ios.enhanced_strobe = false;
1037 * Make sure we are in non-enhanced strobe mode before we
1038 * actually enable it in ext_csd.
1040 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1041 host->ops->hs400_enhanced_strobe)
1042 host->ops->hs400_enhanced_strobe(host, &host->ios);
1048 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1049 * @vdd: voltage (mV)
1050 * @low_bits: prefer low bits in boundary cases
1052 * This function returns the OCR bit number according to the provided @vdd
1053 * value. If conversion is not possible a negative errno value returned.
1055 * Depending on the @low_bits flag the function prefers low or high OCR bits
1056 * on boundary voltages. For example,
1057 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1058 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1060 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1062 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1064 const int max_bit = ilog2(MMC_VDD_35_36);
1067 if (vdd < 1650 || vdd > 3600)
1070 if (vdd >= 1650 && vdd <= 1950)
1071 return ilog2(MMC_VDD_165_195);
1076 /* Base 2000 mV, step 100 mV, bit's base 8. */
1077 bit = (vdd - 2000) / 100 + 8;
1084 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1085 * @vdd_min: minimum voltage value (mV)
1086 * @vdd_max: maximum voltage value (mV)
1088 * This function returns the OCR mask bits according to the provided @vdd_min
1089 * and @vdd_max values. If conversion is not possible the function returns 0.
1091 * Notes wrt boundary cases:
1092 * This function sets the OCR bits for all boundary voltages, for example
1093 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1094 * MMC_VDD_34_35 mask.
1096 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1100 if (vdd_max < vdd_min)
1103 /* Prefer high bits for the boundary vdd_max values. */
1104 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1108 /* Prefer low bits for the boundary vdd_min values. */
1109 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1113 /* Fill the mask, from max bit to min bit. */
1114 while (vdd_max >= vdd_min)
1115 mask |= 1 << vdd_max--;
1119 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1124 * mmc_of_parse_voltage - return mask of supported voltages
1125 * @np: The device node need to be parsed.
1126 * @mask: mask of voltages available for MMC/SD/SDIO
1128 * Parse the "voltage-ranges" DT property, returning zero if it is not
1129 * found, negative errno if the voltage-range specification is invalid,
1130 * or one if the voltage-range is specified and successfully parsed.
1132 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1134 const u32 *voltage_ranges;
1137 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1138 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1139 if (!voltage_ranges) {
1140 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1144 pr_err("%s: voltage-ranges empty\n", np->full_name);
1148 for (i = 0; i < num_ranges; i++) {
1149 const int j = i * 2;
1152 ocr_mask = mmc_vddrange_to_ocrmask(
1153 be32_to_cpu(voltage_ranges[j]),
1154 be32_to_cpu(voltage_ranges[j + 1]));
1156 pr_err("%s: voltage-range #%d is invalid\n",
1165 EXPORT_SYMBOL(mmc_of_parse_voltage);
1167 #endif /* CONFIG_OF */
1169 static int mmc_of_get_func_num(struct device_node *node)
1174 ret = of_property_read_u32(node, "reg", ®);
1181 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1184 struct device_node *node;
1186 if (!host->parent || !host->parent->of_node)
1189 for_each_child_of_node(host->parent->of_node, node) {
1190 if (mmc_of_get_func_num(node) == func_num)
1197 #ifdef CONFIG_REGULATOR
1200 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1201 * @vdd_bit: OCR bit number
1202 * @min_uV: minimum voltage value (mV)
1203 * @max_uV: maximum voltage value (mV)
1205 * This function returns the voltage range according to the provided OCR
1206 * bit number. If conversion is not possible a negative errno value returned.
1208 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1216 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1217 * bits this regulator doesn't quite support ... don't
1218 * be too picky, most cards and regulators are OK with
1219 * a 0.1V range goof (it's a small error percentage).
1221 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1223 *min_uV = 1650 * 1000;
1224 *max_uV = 1950 * 1000;
1226 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1227 *max_uV = *min_uV + 100 * 1000;
1234 * mmc_regulator_get_ocrmask - return mask of supported voltages
1235 * @supply: regulator to use
1237 * This returns either a negative errno, or a mask of voltages that
1238 * can be provided to MMC/SD/SDIO devices using the specified voltage
1239 * regulator. This would normally be called before registering the
1242 int mmc_regulator_get_ocrmask(struct regulator *supply)
1250 count = regulator_count_voltages(supply);
1254 for (i = 0; i < count; i++) {
1255 vdd_uV = regulator_list_voltage(supply, i);
1259 vdd_mV = vdd_uV / 1000;
1260 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1264 vdd_uV = regulator_get_voltage(supply);
1268 vdd_mV = vdd_uV / 1000;
1269 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1274 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1277 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1278 * @mmc: the host to regulate
1279 * @supply: regulator to use
1280 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1282 * Returns zero on success, else negative errno.
1284 * MMC host drivers may use this to enable or disable a regulator using
1285 * a particular supply voltage. This would normally be called from the
1288 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1289 struct regulator *supply,
1290 unsigned short vdd_bit)
1296 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1298 result = regulator_set_voltage(supply, min_uV, max_uV);
1299 if (result == 0 && !mmc->regulator_enabled) {
1300 result = regulator_enable(supply);
1302 mmc->regulator_enabled = true;
1304 } else if (mmc->regulator_enabled) {
1305 result = regulator_disable(supply);
1307 mmc->regulator_enabled = false;
1311 dev_err(mmc_dev(mmc),
1312 "could not set regulator OCR (%d)\n", result);
1315 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1317 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1318 int min_uV, int target_uV,
1322 * Check if supported first to avoid errors since we may try several
1323 * signal levels during power up and don't want to show errors.
1325 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1328 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1333 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1335 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1336 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1337 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1338 * SD card spec also define VQMMC in terms of VMMC.
1339 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1341 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1342 * requested voltage. This is definitely a good idea for UHS where there's a
1343 * separate regulator on the card that's trying to make 1.8V and it's best if
1346 * This function is expected to be used by a controller's
1347 * start_signal_voltage_switch() function.
1349 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1351 struct device *dev = mmc_dev(mmc);
1352 int ret, volt, min_uV, max_uV;
1354 /* If no vqmmc supply then we can't change the voltage */
1355 if (IS_ERR(mmc->supply.vqmmc))
1358 switch (ios->signal_voltage) {
1359 case MMC_SIGNAL_VOLTAGE_120:
1360 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1361 1100000, 1200000, 1300000);
1362 case MMC_SIGNAL_VOLTAGE_180:
1363 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1364 1700000, 1800000, 1950000);
1365 case MMC_SIGNAL_VOLTAGE_330:
1366 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1370 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1371 __func__, volt, max_uV);
1373 min_uV = max(volt - 300000, 2700000);
1374 max_uV = min(max_uV + 200000, 3600000);
1377 * Due to a limitation in the current implementation of
1378 * regulator_set_voltage_triplet() which is taking the lowest
1379 * voltage possible if below the target, search for a suitable
1380 * voltage in two steps and try to stay close to vmmc
1381 * with a 0.3V tolerance at first.
1383 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 min_uV, volt, max_uV))
1387 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1388 2700000, volt, 3600000);
1393 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1395 #endif /* CONFIG_REGULATOR */
1397 int mmc_regulator_get_supply(struct mmc_host *mmc)
1399 struct device *dev = mmc_dev(mmc);
1402 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1403 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1405 if (IS_ERR(mmc->supply.vmmc)) {
1406 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1407 return -EPROBE_DEFER;
1408 dev_dbg(dev, "No vmmc regulator found\n");
1410 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1412 mmc->ocr_avail = ret;
1414 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1417 if (IS_ERR(mmc->supply.vqmmc)) {
1418 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1419 return -EPROBE_DEFER;
1420 dev_dbg(dev, "No vqmmc regulator found\n");
1425 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1428 * Mask off any voltages we don't support and select
1429 * the lowest voltage
1431 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1436 * Sanity check the voltages that the card claims to
1440 dev_warn(mmc_dev(host),
1441 "card claims to support voltages below defined range\n");
1445 ocr &= host->ocr_avail;
1447 dev_warn(mmc_dev(host), "no support for card's volts\n");
1451 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1454 mmc_power_cycle(host, ocr);
1458 if (bit != host->ios.vdd)
1459 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1465 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1468 int old_signal_voltage = host->ios.signal_voltage;
1470 host->ios.signal_voltage = signal_voltage;
1471 if (host->ops->start_signal_voltage_switch)
1472 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1475 host->ios.signal_voltage = old_signal_voltage;
1481 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1483 struct mmc_command cmd = {};
1488 * If we cannot switch voltages, return failure so the caller
1489 * can continue without UHS mode
1491 if (!host->ops->start_signal_voltage_switch)
1493 if (!host->ops->card_busy)
1494 pr_warn("%s: cannot verify signal voltage switch\n",
1495 mmc_hostname(host));
1497 cmd.opcode = SD_SWITCH_VOLTAGE;
1499 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1501 err = mmc_wait_for_cmd(host, &cmd, 0);
1505 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1509 * The card should drive cmd and dat[0:3] low immediately
1510 * after the response of cmd11, but wait 1 ms to be sure
1513 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1518 * During a signal voltage level switch, the clock must be gated
1519 * for 5 ms according to the SD spec
1521 clock = host->ios.clock;
1522 host->ios.clock = 0;
1525 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
1527 * Voltages may not have been switched, but we've already
1528 * sent CMD11, so a power cycle is required anyway
1534 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1536 host->ios.clock = clock;
1539 /* Wait for at least 1 ms according to spec */
1543 * Failure to switch is indicated by the card holding
1546 if (host->ops->card_busy && host->ops->card_busy(host))
1551 pr_debug("%s: Signal voltage switch failed, "
1552 "power cycling card\n", mmc_hostname(host));
1553 mmc_power_cycle(host, ocr);
1560 * Select timing parameters for host.
1562 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1564 host->ios.timing = timing;
1569 * Select appropriate driver type for host.
1571 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1573 host->ios.drv_type = drv_type;
1577 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1578 int card_drv_type, int *drv_type)
1580 struct mmc_host *host = card->host;
1581 int host_drv_type = SD_DRIVER_TYPE_B;
1585 if (!host->ops->select_drive_strength)
1588 /* Use SD definition of driver strength for hosts */
1589 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1590 host_drv_type |= SD_DRIVER_TYPE_A;
1592 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1593 host_drv_type |= SD_DRIVER_TYPE_C;
1595 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1596 host_drv_type |= SD_DRIVER_TYPE_D;
1599 * The drive strength that the hardware can support
1600 * depends on the board design. Pass the appropriate
1601 * information and let the hardware specific code
1602 * return what is possible given the options
1604 return host->ops->select_drive_strength(card, max_dtr,
1611 * Apply power to the MMC stack. This is a two-stage process.
1612 * First, we enable power to the card without the clock running.
1613 * We then wait a bit for the power to stabilise. Finally,
1614 * enable the bus drivers and clock to the card.
1616 * We must _NOT_ enable the clock prior to power stablising.
1618 * If a host does all the power sequencing itself, ignore the
1619 * initial MMC_POWER_UP stage.
1621 void mmc_power_up(struct mmc_host *host, u32 ocr)
1623 if (host->ios.power_mode == MMC_POWER_ON)
1626 mmc_pwrseq_pre_power_on(host);
1628 host->ios.vdd = fls(ocr) - 1;
1629 host->ios.power_mode = MMC_POWER_UP;
1630 /* Set initial state and call mmc_set_ios */
1631 mmc_set_initial_state(host);
1633 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1634 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1635 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1636 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1637 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1638 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1639 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1642 * This delay should be sufficient to allow the power supply
1643 * to reach the minimum voltage.
1647 mmc_pwrseq_post_power_on(host);
1649 host->ios.clock = host->f_init;
1651 host->ios.power_mode = MMC_POWER_ON;
1655 * This delay must be at least 74 clock sizes, or 1 ms, or the
1656 * time required to reach a stable voltage.
1661 void mmc_power_off(struct mmc_host *host)
1663 if (host->ios.power_mode == MMC_POWER_OFF)
1666 mmc_pwrseq_power_off(host);
1668 host->ios.clock = 0;
1671 host->ios.power_mode = MMC_POWER_OFF;
1672 /* Set initial state and call mmc_set_ios */
1673 mmc_set_initial_state(host);
1676 * Some configurations, such as the 802.11 SDIO card in the OLPC
1677 * XO-1.5, require a short delay after poweroff before the card
1678 * can be successfully turned on again.
1683 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1685 mmc_power_off(host);
1686 /* Wait at least 1 ms according to SD spec */
1688 mmc_power_up(host, ocr);
1692 * Cleanup when the last reference to the bus operator is dropped.
1694 static void __mmc_release_bus(struct mmc_host *host)
1696 WARN_ON(!host->bus_dead);
1698 host->bus_ops = NULL;
1702 * Increase reference count of bus operator
1704 static inline void mmc_bus_get(struct mmc_host *host)
1706 unsigned long flags;
1708 spin_lock_irqsave(&host->lock, flags);
1710 spin_unlock_irqrestore(&host->lock, flags);
1714 * Decrease reference count of bus operator and free it if
1715 * it is the last reference.
1717 static inline void mmc_bus_put(struct mmc_host *host)
1719 unsigned long flags;
1721 spin_lock_irqsave(&host->lock, flags);
1723 if ((host->bus_refs == 0) && host->bus_ops)
1724 __mmc_release_bus(host);
1725 spin_unlock_irqrestore(&host->lock, flags);
1729 * Assign a mmc bus handler to a host. Only one bus handler may control a
1730 * host at any given time.
1732 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1734 unsigned long flags;
1736 WARN_ON(!host->claimed);
1738 spin_lock_irqsave(&host->lock, flags);
1740 WARN_ON(host->bus_ops);
1741 WARN_ON(host->bus_refs);
1743 host->bus_ops = ops;
1747 spin_unlock_irqrestore(&host->lock, flags);
1751 * Remove the current bus handler from a host.
1753 void mmc_detach_bus(struct mmc_host *host)
1755 unsigned long flags;
1757 WARN_ON(!host->claimed);
1758 WARN_ON(!host->bus_ops);
1760 spin_lock_irqsave(&host->lock, flags);
1764 spin_unlock_irqrestore(&host->lock, flags);
1769 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1772 #ifdef CONFIG_MMC_DEBUG
1773 unsigned long flags;
1774 spin_lock_irqsave(&host->lock, flags);
1775 WARN_ON(host->removed);
1776 spin_unlock_irqrestore(&host->lock, flags);
1780 * If the device is configured as wakeup, we prevent a new sleep for
1781 * 5 s to give provision for user space to consume the event.
1783 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1784 device_can_wakeup(mmc_dev(host)))
1785 pm_wakeup_event(mmc_dev(host), 5000);
1787 host->detect_change = 1;
1788 mmc_schedule_delayed_work(&host->detect, delay);
1792 * mmc_detect_change - process change of state on a MMC socket
1793 * @host: host which changed state.
1794 * @delay: optional delay to wait before detection (jiffies)
1796 * MMC drivers should call this when they detect a card has been
1797 * inserted or removed. The MMC layer will confirm that any
1798 * present card is still functional, and initialize any newly
1801 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1803 _mmc_detect_change(host, delay, true);
1805 EXPORT_SYMBOL(mmc_detect_change);
1807 void mmc_init_erase(struct mmc_card *card)
1811 if (is_power_of_2(card->erase_size))
1812 card->erase_shift = ffs(card->erase_size) - 1;
1814 card->erase_shift = 0;
1817 * It is possible to erase an arbitrarily large area of an SD or MMC
1818 * card. That is not desirable because it can take a long time
1819 * (minutes) potentially delaying more important I/O, and also the
1820 * timeout calculations become increasingly hugely over-estimated.
1821 * Consequently, 'pref_erase' is defined as a guide to limit erases
1822 * to that size and alignment.
1824 * For SD cards that define Allocation Unit size, limit erases to one
1825 * Allocation Unit at a time.
1826 * For MMC, have a stab at ai good value and for modern cards it will
1827 * end up being 4MiB. Note that if the value is too small, it can end
1828 * up taking longer to erase. Also note, erase_size is already set to
1829 * High Capacity Erase Size if available when this function is called.
1831 if (mmc_card_sd(card) && card->ssr.au) {
1832 card->pref_erase = card->ssr.au;
1833 card->erase_shift = ffs(card->ssr.au) - 1;
1834 } else if (card->erase_size) {
1835 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1837 card->pref_erase = 512 * 1024 / 512;
1839 card->pref_erase = 1024 * 1024 / 512;
1841 card->pref_erase = 2 * 1024 * 1024 / 512;
1843 card->pref_erase = 4 * 1024 * 1024 / 512;
1844 if (card->pref_erase < card->erase_size)
1845 card->pref_erase = card->erase_size;
1847 sz = card->pref_erase % card->erase_size;
1849 card->pref_erase += card->erase_size - sz;
1852 card->pref_erase = 0;
1855 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1856 unsigned int arg, unsigned int qty)
1858 unsigned int erase_timeout;
1860 if (arg == MMC_DISCARD_ARG ||
1861 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1862 erase_timeout = card->ext_csd.trim_timeout;
1863 } else if (card->ext_csd.erase_group_def & 1) {
1864 /* High Capacity Erase Group Size uses HC timeouts */
1865 if (arg == MMC_TRIM_ARG)
1866 erase_timeout = card->ext_csd.trim_timeout;
1868 erase_timeout = card->ext_csd.hc_erase_timeout;
1870 /* CSD Erase Group Size uses write timeout */
1871 unsigned int mult = (10 << card->csd.r2w_factor);
1872 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1873 unsigned int timeout_us;
1875 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1876 if (card->csd.tacc_ns < 1000000)
1877 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1879 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1882 * ios.clock is only a target. The real clock rate might be
1883 * less but not that much less, so fudge it by multiplying by 2.
1886 timeout_us += (timeout_clks * 1000) /
1887 (card->host->ios.clock / 1000);
1889 erase_timeout = timeout_us / 1000;
1892 * Theoretically, the calculation could underflow so round up
1893 * to 1ms in that case.
1899 /* Multiplier for secure operations */
1900 if (arg & MMC_SECURE_ARGS) {
1901 if (arg == MMC_SECURE_ERASE_ARG)
1902 erase_timeout *= card->ext_csd.sec_erase_mult;
1904 erase_timeout *= card->ext_csd.sec_trim_mult;
1907 erase_timeout *= qty;
1910 * Ensure at least a 1 second timeout for SPI as per
1911 * 'mmc_set_data_timeout()'
1913 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1914 erase_timeout = 1000;
1916 return erase_timeout;
1919 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1923 unsigned int erase_timeout;
1925 if (card->ssr.erase_timeout) {
1926 /* Erase timeout specified in SD Status Register (SSR) */
1927 erase_timeout = card->ssr.erase_timeout * qty +
1928 card->ssr.erase_offset;
1931 * Erase timeout not specified in SD Status Register (SSR) so
1932 * use 250ms per write block.
1934 erase_timeout = 250 * qty;
1937 /* Must not be less than 1 second */
1938 if (erase_timeout < 1000)
1939 erase_timeout = 1000;
1941 return erase_timeout;
1944 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1948 if (mmc_card_sd(card))
1949 return mmc_sd_erase_timeout(card, arg, qty);
1951 return mmc_mmc_erase_timeout(card, arg, qty);
1954 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1955 unsigned int to, unsigned int arg)
1957 struct mmc_command cmd = {};
1958 unsigned int qty = 0, busy_timeout = 0;
1959 bool use_r1b_resp = false;
1960 unsigned long timeout;
1963 mmc_retune_hold(card->host);
1966 * qty is used to calculate the erase timeout which depends on how many
1967 * erase groups (or allocation units in SD terminology) are affected.
1968 * We count erasing part of an erase group as one erase group.
1969 * For SD, the allocation units are always a power of 2. For MMC, the
1970 * erase group size is almost certainly also power of 2, but it does not
1971 * seem to insist on that in the JEDEC standard, so we fall back to
1972 * division in that case. SD may not specify an allocation unit size,
1973 * in which case the timeout is based on the number of write blocks.
1975 * Note that the timeout for secure trim 2 will only be correct if the
1976 * number of erase groups specified is the same as the total of all
1977 * preceding secure trim 1 commands. Since the power may have been
1978 * lost since the secure trim 1 commands occurred, it is generally
1979 * impossible to calculate the secure trim 2 timeout correctly.
1981 if (card->erase_shift)
1982 qty += ((to >> card->erase_shift) -
1983 (from >> card->erase_shift)) + 1;
1984 else if (mmc_card_sd(card))
1985 qty += to - from + 1;
1987 qty += ((to / card->erase_size) -
1988 (from / card->erase_size)) + 1;
1990 if (!mmc_card_blockaddr(card)) {
1995 if (mmc_card_sd(card))
1996 cmd.opcode = SD_ERASE_WR_BLK_START;
1998 cmd.opcode = MMC_ERASE_GROUP_START;
2000 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2001 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2003 pr_err("mmc_erase: group start error %d, "
2004 "status %#x\n", err, cmd.resp[0]);
2009 memset(&cmd, 0, sizeof(struct mmc_command));
2010 if (mmc_card_sd(card))
2011 cmd.opcode = SD_ERASE_WR_BLK_END;
2013 cmd.opcode = MMC_ERASE_GROUP_END;
2015 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2016 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2018 pr_err("mmc_erase: group end error %d, status %#x\n",
2024 memset(&cmd, 0, sizeof(struct mmc_command));
2025 cmd.opcode = MMC_ERASE;
2027 busy_timeout = mmc_erase_timeout(card, arg, qty);
2029 * If the host controller supports busy signalling and the timeout for
2030 * the erase operation does not exceed the max_busy_timeout, we should
2031 * use R1B response. Or we need to prevent the host from doing hw busy
2032 * detection, which is done by converting to a R1 response instead.
2034 if (card->host->max_busy_timeout &&
2035 busy_timeout > card->host->max_busy_timeout) {
2036 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2038 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2039 cmd.busy_timeout = busy_timeout;
2040 use_r1b_resp = true;
2043 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2045 pr_err("mmc_erase: erase error %d, status %#x\n",
2051 if (mmc_host_is_spi(card->host))
2055 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2058 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2061 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2063 memset(&cmd, 0, sizeof(struct mmc_command));
2064 cmd.opcode = MMC_SEND_STATUS;
2065 cmd.arg = card->rca << 16;
2066 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2067 /* Do not retry else we can't see errors */
2068 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2069 if (err || (cmd.resp[0] & 0xFDF92000)) {
2070 pr_err("error %d requesting status %#x\n",
2076 /* Timeout if the device never becomes ready for data and
2077 * never leaves the program state.
2079 if (time_after(jiffies, timeout)) {
2080 pr_err("%s: Card stuck in programming state! %s\n",
2081 mmc_hostname(card->host), __func__);
2086 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2087 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2089 mmc_retune_release(card->host);
2093 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2098 unsigned int from_new = *from, nr_new = nr, rem;
2101 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2102 * to align the erase size efficiently.
2104 if (is_power_of_2(card->erase_size)) {
2105 unsigned int temp = from_new;
2107 from_new = round_up(temp, card->erase_size);
2108 rem = from_new - temp;
2115 nr_new = round_down(nr_new, card->erase_size);
2117 rem = from_new % card->erase_size;
2119 rem = card->erase_size - rem;
2127 rem = nr_new % card->erase_size;
2135 *to = from_new + nr_new;
2142 * mmc_erase - erase sectors.
2143 * @card: card to erase
2144 * @from: first sector to erase
2145 * @nr: number of sectors to erase
2146 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2148 * Caller must claim host before calling this function.
2150 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2153 unsigned int rem, to = from + nr;
2156 if (!(card->host->caps & MMC_CAP_ERASE) ||
2157 !(card->csd.cmdclass & CCC_ERASE))
2160 if (!card->erase_size)
2163 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2166 if ((arg & MMC_SECURE_ARGS) &&
2167 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2170 if ((arg & MMC_TRIM_ARGS) &&
2171 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2174 if (arg == MMC_SECURE_ERASE_ARG) {
2175 if (from % card->erase_size || nr % card->erase_size)
2179 if (arg == MMC_ERASE_ARG)
2180 nr = mmc_align_erase_size(card, &from, &to, nr);
2188 /* 'from' and 'to' are inclusive */
2192 * Special case where only one erase-group fits in the timeout budget:
2193 * If the region crosses an erase-group boundary on this particular
2194 * case, we will be trimming more than one erase-group which, does not
2195 * fit in the timeout budget of the controller, so we need to split it
2196 * and call mmc_do_erase() twice if necessary. This special case is
2197 * identified by the card->eg_boundary flag.
2199 rem = card->erase_size - (from % card->erase_size);
2200 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2201 err = mmc_do_erase(card, from, from + rem - 1, arg);
2203 if ((err) || (to <= from))
2207 return mmc_do_erase(card, from, to, arg);
2209 EXPORT_SYMBOL(mmc_erase);
2211 int mmc_can_erase(struct mmc_card *card)
2213 if ((card->host->caps & MMC_CAP_ERASE) &&
2214 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2218 EXPORT_SYMBOL(mmc_can_erase);
2220 int mmc_can_trim(struct mmc_card *card)
2222 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2223 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2227 EXPORT_SYMBOL(mmc_can_trim);
2229 int mmc_can_discard(struct mmc_card *card)
2232 * As there's no way to detect the discard support bit at v4.5
2233 * use the s/w feature support filed.
2235 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2239 EXPORT_SYMBOL(mmc_can_discard);
2241 int mmc_can_sanitize(struct mmc_card *card)
2243 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2245 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2249 EXPORT_SYMBOL(mmc_can_sanitize);
2251 int mmc_can_secure_erase_trim(struct mmc_card *card)
2253 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2254 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2258 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2260 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2263 if (!card->erase_size)
2265 if (from % card->erase_size || nr % card->erase_size)
2269 EXPORT_SYMBOL(mmc_erase_group_aligned);
2271 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2274 struct mmc_host *host = card->host;
2275 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2276 unsigned int last_timeout = 0;
2277 unsigned int max_busy_timeout = host->max_busy_timeout ?
2278 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2280 if (card->erase_shift) {
2281 max_qty = UINT_MAX >> card->erase_shift;
2282 min_qty = card->pref_erase >> card->erase_shift;
2283 } else if (mmc_card_sd(card)) {
2285 min_qty = card->pref_erase;
2287 max_qty = UINT_MAX / card->erase_size;
2288 min_qty = card->pref_erase / card->erase_size;
2292 * We should not only use 'host->max_busy_timeout' as the limitation
2293 * when deciding the max discard sectors. We should set a balance value
2294 * to improve the erase speed, and it can not get too long timeout at
2297 * Here we set 'card->pref_erase' as the minimal discard sectors no
2298 * matter what size of 'host->max_busy_timeout', but if the
2299 * 'host->max_busy_timeout' is large enough for more discard sectors,
2300 * then we can continue to increase the max discard sectors until we
2301 * get a balance value. In cases when the 'host->max_busy_timeout'
2302 * isn't specified, use the default max erase timeout.
2306 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2307 timeout = mmc_erase_timeout(card, arg, qty + x);
2309 if (qty + x > min_qty && timeout > max_busy_timeout)
2312 if (timeout < last_timeout)
2314 last_timeout = timeout;
2324 * When specifying a sector range to trim, chances are we might cross
2325 * an erase-group boundary even if the amount of sectors is less than
2327 * If we can only fit one erase-group in the controller timeout budget,
2328 * we have to care that erase-group boundaries are not crossed by a
2329 * single trim operation. We flag that special case with "eg_boundary".
2330 * In all other cases we can just decrement qty and pretend that we
2331 * always touch (qty + 1) erase-groups as a simple optimization.
2334 card->eg_boundary = 1;
2338 /* Convert qty to sectors */
2339 if (card->erase_shift)
2340 max_discard = qty << card->erase_shift;
2341 else if (mmc_card_sd(card))
2342 max_discard = qty + 1;
2344 max_discard = qty * card->erase_size;
2349 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2351 struct mmc_host *host = card->host;
2352 unsigned int max_discard, max_trim;
2355 * Without erase_group_def set, MMC erase timeout depends on clock
2356 * frequence which can change. In that case, the best choice is
2357 * just the preferred erase size.
2359 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2360 return card->pref_erase;
2362 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2363 if (mmc_can_trim(card)) {
2364 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2365 if (max_trim < max_discard)
2366 max_discard = max_trim;
2367 } else if (max_discard < card->erase_size) {
2370 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2371 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2372 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2375 EXPORT_SYMBOL(mmc_calc_max_discard);
2377 bool mmc_card_is_blockaddr(struct mmc_card *card)
2379 return card ? mmc_card_blockaddr(card) : false;
2381 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2383 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2385 struct mmc_command cmd = {};
2387 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2388 mmc_card_hs400(card) || mmc_card_hs400es(card))
2391 cmd.opcode = MMC_SET_BLOCKLEN;
2393 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2394 return mmc_wait_for_cmd(card->host, &cmd, 5);
2396 EXPORT_SYMBOL(mmc_set_blocklen);
2398 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2401 struct mmc_command cmd = {};
2403 cmd.opcode = MMC_SET_BLOCK_COUNT;
2404 cmd.arg = blockcount & 0x0000FFFF;
2407 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2408 return mmc_wait_for_cmd(card->host, &cmd, 5);
2410 EXPORT_SYMBOL(mmc_set_blockcount);
2412 static void mmc_hw_reset_for_init(struct mmc_host *host)
2414 mmc_pwrseq_reset(host);
2416 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2418 host->ops->hw_reset(host);
2421 int mmc_hw_reset(struct mmc_host *host)
2429 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2434 ret = host->bus_ops->reset(host);
2438 pr_warn("%s: tried to reset card, got error %d\n",
2439 mmc_hostname(host), ret);
2443 EXPORT_SYMBOL(mmc_hw_reset);
2445 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2447 host->f_init = freq;
2449 #ifdef CONFIG_MMC_DEBUG
2450 pr_info("%s: %s: trying to init card at %u Hz\n",
2451 mmc_hostname(host), __func__, host->f_init);
2453 mmc_power_up(host, host->ocr_avail);
2456 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2457 * do a hardware reset if possible.
2459 mmc_hw_reset_for_init(host);
2462 * sdio_reset sends CMD52 to reset card. Since we do not know
2463 * if the card is being re-initialized, just send it. CMD52
2464 * should be ignored by SD/eMMC cards.
2465 * Skip it if we already know that we do not support SDIO commands
2467 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2472 if (!(host->caps2 & MMC_CAP2_NO_SD))
2473 mmc_send_if_cond(host, host->ocr_avail);
2475 /* Order's important: probe SDIO, then SD, then MMC */
2476 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2477 if (!mmc_attach_sdio(host))
2480 if (!(host->caps2 & MMC_CAP2_NO_SD))
2481 if (!mmc_attach_sd(host))
2484 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2485 if (!mmc_attach_mmc(host))
2488 mmc_power_off(host);
2492 int _mmc_detect_card_removed(struct mmc_host *host)
2496 if (!host->card || mmc_card_removed(host->card))
2499 ret = host->bus_ops->alive(host);
2502 * Card detect status and alive check may be out of sync if card is
2503 * removed slowly, when card detect switch changes while card/slot
2504 * pads are still contacted in hardware (refer to "SD Card Mechanical
2505 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2506 * detect work 200ms later for this case.
2508 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2509 mmc_detect_change(host, msecs_to_jiffies(200));
2510 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2514 mmc_card_set_removed(host->card);
2515 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2521 int mmc_detect_card_removed(struct mmc_host *host)
2523 struct mmc_card *card = host->card;
2526 WARN_ON(!host->claimed);
2531 if (!mmc_card_is_removable(host))
2534 ret = mmc_card_removed(card);
2536 * The card will be considered unchanged unless we have been asked to
2537 * detect a change or host requires polling to provide card detection.
2539 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2542 host->detect_change = 0;
2544 ret = _mmc_detect_card_removed(host);
2545 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2547 * Schedule a detect work as soon as possible to let a
2548 * rescan handle the card removal.
2550 cancel_delayed_work(&host->detect);
2551 _mmc_detect_change(host, 0, false);
2557 EXPORT_SYMBOL(mmc_detect_card_removed);
2559 void mmc_rescan(struct work_struct *work)
2561 struct mmc_host *host =
2562 container_of(work, struct mmc_host, detect.work);
2565 if (host->rescan_disable)
2568 /* If there is a non-removable card registered, only scan once */
2569 if (!mmc_card_is_removable(host) && host->rescan_entered)
2571 host->rescan_entered = 1;
2573 if (host->trigger_card_event && host->ops->card_event) {
2574 mmc_claim_host(host);
2575 host->ops->card_event(host);
2576 mmc_release_host(host);
2577 host->trigger_card_event = false;
2583 * if there is a _removable_ card registered, check whether it is
2586 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2587 host->bus_ops->detect(host);
2589 host->detect_change = 0;
2592 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2593 * the card is no longer present.
2598 /* if there still is a card present, stop here */
2599 if (host->bus_ops != NULL) {
2605 * Only we can add a new handler, so it's safe to
2606 * release the lock here.
2610 mmc_claim_host(host);
2611 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2612 host->ops->get_cd(host) == 0) {
2613 mmc_power_off(host);
2614 mmc_release_host(host);
2618 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2619 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2621 if (freqs[i] <= host->f_min)
2624 mmc_release_host(host);
2627 if (host->caps & MMC_CAP_NEEDS_POLL)
2628 mmc_schedule_delayed_work(&host->detect, HZ);
2631 void mmc_start_host(struct mmc_host *host)
2633 host->f_init = max(freqs[0], host->f_min);
2634 host->rescan_disable = 0;
2635 host->ios.power_mode = MMC_POWER_UNDEFINED;
2637 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2638 mmc_claim_host(host);
2639 mmc_power_up(host, host->ocr_avail);
2640 mmc_release_host(host);
2643 mmc_gpiod_request_cd_irq(host);
2644 _mmc_detect_change(host, 0, false);
2647 void mmc_stop_host(struct mmc_host *host)
2649 #ifdef CONFIG_MMC_DEBUG
2650 unsigned long flags;
2651 spin_lock_irqsave(&host->lock, flags);
2653 spin_unlock_irqrestore(&host->lock, flags);
2655 if (host->slot.cd_irq >= 0) {
2656 if (host->slot.cd_wake_enabled)
2657 disable_irq_wake(host->slot.cd_irq);
2658 disable_irq(host->slot.cd_irq);
2661 host->rescan_disable = 1;
2662 cancel_delayed_work_sync(&host->detect);
2664 /* clear pm flags now and let card drivers set them as needed */
2668 if (host->bus_ops && !host->bus_dead) {
2669 /* Calling bus_ops->remove() with a claimed host can deadlock */
2670 host->bus_ops->remove(host);
2671 mmc_claim_host(host);
2672 mmc_detach_bus(host);
2673 mmc_power_off(host);
2674 mmc_release_host(host);
2680 mmc_claim_host(host);
2681 mmc_power_off(host);
2682 mmc_release_host(host);
2685 int mmc_power_save_host(struct mmc_host *host)
2689 #ifdef CONFIG_MMC_DEBUG
2690 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2695 if (!host->bus_ops || host->bus_dead) {
2700 if (host->bus_ops->power_save)
2701 ret = host->bus_ops->power_save(host);
2705 mmc_power_off(host);
2709 EXPORT_SYMBOL(mmc_power_save_host);
2711 int mmc_power_restore_host(struct mmc_host *host)
2715 #ifdef CONFIG_MMC_DEBUG
2716 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2721 if (!host->bus_ops || host->bus_dead) {
2726 mmc_power_up(host, host->card->ocr);
2727 ret = host->bus_ops->power_restore(host);
2733 EXPORT_SYMBOL(mmc_power_restore_host);
2735 #ifdef CONFIG_PM_SLEEP
2736 /* Do the card removal on suspend if card is assumed removeable
2737 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2740 static int mmc_pm_notify(struct notifier_block *notify_block,
2741 unsigned long mode, void *unused)
2743 struct mmc_host *host = container_of(
2744 notify_block, struct mmc_host, pm_notify);
2745 unsigned long flags;
2749 case PM_HIBERNATION_PREPARE:
2750 case PM_SUSPEND_PREPARE:
2751 case PM_RESTORE_PREPARE:
2752 spin_lock_irqsave(&host->lock, flags);
2753 host->rescan_disable = 1;
2754 spin_unlock_irqrestore(&host->lock, flags);
2755 cancel_delayed_work_sync(&host->detect);
2760 /* Validate prerequisites for suspend */
2761 if (host->bus_ops->pre_suspend)
2762 err = host->bus_ops->pre_suspend(host);
2766 /* Calling bus_ops->remove() with a claimed host can deadlock */
2767 host->bus_ops->remove(host);
2768 mmc_claim_host(host);
2769 mmc_detach_bus(host);
2770 mmc_power_off(host);
2771 mmc_release_host(host);
2775 case PM_POST_SUSPEND:
2776 case PM_POST_HIBERNATION:
2777 case PM_POST_RESTORE:
2779 spin_lock_irqsave(&host->lock, flags);
2780 host->rescan_disable = 0;
2781 spin_unlock_irqrestore(&host->lock, flags);
2782 _mmc_detect_change(host, 0, false);
2789 void mmc_register_pm_notifier(struct mmc_host *host)
2791 host->pm_notify.notifier_call = mmc_pm_notify;
2792 register_pm_notifier(&host->pm_notify);
2795 void mmc_unregister_pm_notifier(struct mmc_host *host)
2797 unregister_pm_notifier(&host->pm_notify);
2802 * mmc_init_context_info() - init synchronization context
2805 * Init struct context_info needed to implement asynchronous
2806 * request mechanism, used by mmc core, host driver and mmc requests
2809 void mmc_init_context_info(struct mmc_host *host)
2811 host->context_info.is_new_req = false;
2812 host->context_info.is_done_rcv = false;
2813 host->context_info.is_waiting_last_req = false;
2814 init_waitqueue_head(&host->context_info.wait);
2817 static int __init mmc_init(void)
2821 ret = mmc_register_bus();
2825 ret = mmc_register_host_class();
2827 goto unregister_bus;
2829 ret = sdio_register_bus();
2831 goto unregister_host_class;
2835 unregister_host_class:
2836 mmc_unregister_host_class();
2838 mmc_unregister_bus();
2842 static void __exit mmc_exit(void)
2844 sdio_unregister_bus();
2845 mmc_unregister_host_class();
2846 mmc_unregister_bus();
2849 subsys_initcall(mmc_init);
2850 module_exit(mmc_exit);
2852 MODULE_LICENSE("GPL");