2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
11 * Big-endian to little-endian byte-swapping/bitmaps by
15 #include <linux/time.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
27 #include "ext4_jbd2.h"
31 #include <trace/events/ext4.h>
34 * ialloc.c contains the inodes allocation and deallocation routines
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 if (start_bit >= end_bit)
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 /* Initializes an uninitialized inode bitmap */
67 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
68 struct buffer_head *bh,
69 ext4_group_t block_group,
70 struct ext4_group_desc *gdp)
72 struct ext4_group_info *grp;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
74 J_ASSERT_BH(bh, buffer_locked(bh));
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 ext4_error(sb, "Checksum bad for group %u", block_group);
80 grp = ext4_get_group_info(sb, block_group);
81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
82 percpu_counter_sub(&sbi->s_freeclusters_counter,
84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 count = ext4_free_inodes_count(sb, gdp);
88 percpu_counter_sub(&sbi->s_freeinodes_counter,
91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
99 EXT4_INODES_PER_GROUP(sb) / 8);
100 ext4_group_desc_csum_set(sb, block_group, gdp);
102 return EXT4_INODES_PER_GROUP(sb);
105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
108 set_buffer_uptodate(bh);
109 set_bitmap_uptodate(bh);
116 * Read the inode allocation bitmap for a given block_group, reading
117 * into the specified slot in the superblock's bitmap cache.
119 * Return buffer_head of bitmap on success or NULL.
121 static struct buffer_head *
122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
124 struct ext4_group_desc *desc;
125 struct buffer_head *bh = NULL;
126 ext4_fsblk_t bitmap_blk;
127 struct ext4_group_info *grp;
128 struct ext4_sb_info *sbi = EXT4_SB(sb);
130 desc = ext4_get_group_desc(sb, block_group, NULL);
134 bitmap_blk = ext4_inode_bitmap(sb, desc);
135 bh = sb_getblk(sb, bitmap_blk);
137 ext4_error(sb, "Cannot read inode bitmap - "
138 "block_group = %u, inode_bitmap = %llu",
139 block_group, bitmap_blk);
142 if (bitmap_uptodate(bh))
146 if (bitmap_uptodate(bh)) {
151 ext4_lock_group(sb, block_group);
152 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
153 ext4_init_inode_bitmap(sb, bh, block_group, desc);
154 set_bitmap_uptodate(bh);
155 set_buffer_uptodate(bh);
156 set_buffer_verified(bh);
157 ext4_unlock_group(sb, block_group);
161 ext4_unlock_group(sb, block_group);
163 if (buffer_uptodate(bh)) {
165 * if not uninit if bh is uptodate,
166 * bitmap is also uptodate
168 set_bitmap_uptodate(bh);
173 * submit the buffer_head for reading
175 trace_ext4_load_inode_bitmap(sb, block_group);
176 bh->b_end_io = ext4_end_bitmap_read;
178 submit_bh(READ | REQ_META | REQ_PRIO, bh);
180 if (!buffer_uptodate(bh)) {
182 ext4_error(sb, "Cannot read inode bitmap - "
183 "block_group = %u, inode_bitmap = %llu",
184 block_group, bitmap_blk);
189 ext4_lock_group(sb, block_group);
190 if (!buffer_verified(bh) &&
191 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
192 EXT4_INODES_PER_GROUP(sb) / 8)) {
193 ext4_unlock_group(sb, block_group);
195 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
196 "inode_bitmap = %llu", block_group, bitmap_blk);
197 grp = ext4_get_group_info(sb, block_group);
198 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
200 count = ext4_free_inodes_count(sb, desc);
201 percpu_counter_sub(&sbi->s_freeinodes_counter,
204 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
207 ext4_unlock_group(sb, block_group);
208 set_buffer_verified(bh);
213 * NOTE! When we get the inode, we're the only people
214 * that have access to it, and as such there are no
215 * race conditions we have to worry about. The inode
216 * is not on the hash-lists, and it cannot be reached
217 * through the filesystem because the directory entry
218 * has been deleted earlier.
220 * HOWEVER: we must make sure that we get no aliases,
221 * which means that we have to call "clear_inode()"
222 * _before_ we mark the inode not in use in the inode
223 * bitmaps. Otherwise a newly created file might use
224 * the same inode number (not actually the same pointer
225 * though), and then we'd have two inodes sharing the
226 * same inode number and space on the harddisk.
228 void ext4_free_inode(handle_t *handle, struct inode *inode)
230 struct super_block *sb = inode->i_sb;
233 struct buffer_head *bitmap_bh = NULL;
234 struct buffer_head *bh2;
235 ext4_group_t block_group;
237 struct ext4_group_desc *gdp;
238 struct ext4_super_block *es;
239 struct ext4_sb_info *sbi;
240 int fatal = 0, err, count, cleared;
241 struct ext4_group_info *grp;
244 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
245 "nonexistent device\n", __func__, __LINE__);
248 if (atomic_read(&inode->i_count) > 1) {
249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
250 __func__, __LINE__, inode->i_ino,
251 atomic_read(&inode->i_count));
254 if (inode->i_nlink) {
255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
256 __func__, __LINE__, inode->i_ino, inode->i_nlink);
262 ext4_debug("freeing inode %lu\n", ino);
263 trace_ext4_free_inode(inode);
266 * Note: we must free any quota before locking the superblock,
267 * as writing the quota to disk may need the lock as well.
269 dquot_initialize(inode);
270 ext4_xattr_delete_inode(handle, inode);
271 dquot_free_inode(inode);
274 is_directory = S_ISDIR(inode->i_mode);
276 /* Do this BEFORE marking the inode not in use or returning an error */
277 ext4_clear_inode(inode);
279 es = EXT4_SB(sb)->s_es;
280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 /* Don't bother if the inode bitmap is corrupt. */
288 grp = ext4_get_group_info(sb, block_group);
289 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
292 BUFFER_TRACE(bitmap_bh, "get_write_access");
293 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
298 gdp = ext4_get_group_desc(sb, block_group, &bh2);
300 BUFFER_TRACE(bh2, "get_write_access");
301 fatal = ext4_journal_get_write_access(handle, bh2);
303 ext4_lock_group(sb, block_group);
304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
305 if (fatal || !cleared) {
306 ext4_unlock_group(sb, block_group);
310 count = ext4_free_inodes_count(sb, gdp) + 1;
311 ext4_free_inodes_set(sb, gdp, count);
313 count = ext4_used_dirs_count(sb, gdp) - 1;
314 ext4_used_dirs_set(sb, gdp, count);
315 percpu_counter_dec(&sbi->s_dirs_counter);
317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
318 EXT4_INODES_PER_GROUP(sb) / 8);
319 ext4_group_desc_csum_set(sb, block_group, gdp);
320 ext4_unlock_group(sb, block_group);
322 percpu_counter_inc(&sbi->s_freeinodes_counter);
323 if (sbi->s_log_groups_per_flex) {
324 ext4_group_t f = ext4_flex_group(sbi, block_group);
326 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
328 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
339 ext4_error(sb, "bit already cleared for inode %lu", ino);
340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
342 count = ext4_free_inodes_count(sb, gdp);
343 percpu_counter_sub(&sbi->s_freeinodes_counter,
346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
351 ext4_std_error(sb, fatal);
361 * Helper function for Orlov's allocator; returns critical information
362 * for a particular block group or flex_bg. If flex_size is 1, then g
363 * is a block group number; otherwise it is flex_bg number.
365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
366 int flex_size, struct orlov_stats *stats)
368 struct ext4_group_desc *desc;
369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
378 desc = ext4_get_group_desc(sb, g, NULL);
380 stats->free_inodes = ext4_free_inodes_count(sb, desc);
381 stats->free_clusters = ext4_free_group_clusters(sb, desc);
382 stats->used_dirs = ext4_used_dirs_count(sb, desc);
384 stats->free_inodes = 0;
385 stats->free_clusters = 0;
386 stats->used_dirs = 0;
391 * Orlov's allocator for directories.
393 * We always try to spread first-level directories.
395 * If there are blockgroups with both free inodes and free blocks counts
396 * not worse than average we return one with smallest directory count.
397 * Otherwise we simply return a random group.
399 * For the rest rules look so:
401 * It's OK to put directory into a group unless
402 * it has too many directories already (max_dirs) or
403 * it has too few free inodes left (min_inodes) or
404 * it has too few free blocks left (min_blocks) or
405 * Parent's group is preferred, if it doesn't satisfy these
406 * conditions we search cyclically through the rest. If none
407 * of the groups look good we just look for a group with more
408 * free inodes than average (starting at parent's group).
411 static int find_group_orlov(struct super_block *sb, struct inode *parent,
412 ext4_group_t *group, umode_t mode,
413 const struct qstr *qstr)
415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
416 struct ext4_sb_info *sbi = EXT4_SB(sb);
417 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
419 unsigned int freei, avefreei, grp_free;
420 ext4_fsblk_t freeb, avefreec;
422 int max_dirs, min_inodes;
423 ext4_grpblk_t min_clusters;
424 ext4_group_t i, grp, g, ngroups;
425 struct ext4_group_desc *desc;
426 struct orlov_stats stats;
427 int flex_size = ext4_flex_bg_size(sbi);
428 struct dx_hash_info hinfo;
430 ngroups = real_ngroups;
432 ngroups = (real_ngroups + flex_size - 1) >>
433 sbi->s_log_groups_per_flex;
434 parent_group >>= sbi->s_log_groups_per_flex;
437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
438 avefreei = freei / ngroups;
439 freeb = EXT4_C2B(sbi,
440 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
442 do_div(avefreec, ngroups);
443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
446 ((parent == d_inode(sb->s_root)) ||
447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
448 int best_ndir = inodes_per_group;
452 hinfo.hash_version = DX_HASH_HALF_MD4;
453 hinfo.seed = sbi->s_hash_seed;
454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
458 parent_group = (unsigned)grp % ngroups;
459 for (i = 0; i < ngroups; i++) {
460 g = (parent_group + i) % ngroups;
461 get_orlov_stats(sb, g, flex_size, &stats);
462 if (!stats.free_inodes)
464 if (stats.used_dirs >= best_ndir)
466 if (stats.free_inodes < avefreei)
468 if (stats.free_clusters < avefreec)
472 best_ndir = stats.used_dirs;
477 if (flex_size == 1) {
483 * We pack inodes at the beginning of the flexgroup's
484 * inode tables. Block allocation decisions will do
485 * something similar, although regular files will
486 * start at 2nd block group of the flexgroup. See
487 * ext4_ext_find_goal() and ext4_find_near().
490 for (i = 0; i < flex_size; i++) {
491 if (grp+i >= real_ngroups)
493 desc = ext4_get_group_desc(sb, grp+i, NULL);
494 if (desc && ext4_free_inodes_count(sb, desc)) {
502 max_dirs = ndirs / ngroups + inodes_per_group / 16;
503 min_inodes = avefreei - inodes_per_group*flex_size / 4;
506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
509 * Start looking in the flex group where we last allocated an
510 * inode for this parent directory
512 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
513 parent_group = EXT4_I(parent)->i_last_alloc_group;
515 parent_group >>= sbi->s_log_groups_per_flex;
518 for (i = 0; i < ngroups; i++) {
519 grp = (parent_group + i) % ngroups;
520 get_orlov_stats(sb, grp, flex_size, &stats);
521 if (stats.used_dirs >= max_dirs)
523 if (stats.free_inodes < min_inodes)
525 if (stats.free_clusters < min_clusters)
531 ngroups = real_ngroups;
532 avefreei = freei / ngroups;
534 parent_group = EXT4_I(parent)->i_block_group;
535 for (i = 0; i < ngroups; i++) {
536 grp = (parent_group + i) % ngroups;
537 desc = ext4_get_group_desc(sb, grp, NULL);
539 grp_free = ext4_free_inodes_count(sb, desc);
540 if (grp_free && grp_free >= avefreei) {
549 * The free-inodes counter is approximate, and for really small
550 * filesystems the above test can fail to find any blockgroups
559 static int find_group_other(struct super_block *sb, struct inode *parent,
560 ext4_group_t *group, umode_t mode)
562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
564 struct ext4_group_desc *desc;
565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
568 * Try to place the inode is the same flex group as its
569 * parent. If we can't find space, use the Orlov algorithm to
570 * find another flex group, and store that information in the
571 * parent directory's inode information so that use that flex
572 * group for future allocations.
578 parent_group &= ~(flex_size-1);
579 last = parent_group + flex_size;
582 for (i = parent_group; i < last; i++) {
583 desc = ext4_get_group_desc(sb, i, NULL);
584 if (desc && ext4_free_inodes_count(sb, desc)) {
589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
591 parent_group = EXT4_I(parent)->i_last_alloc_group;
595 * If this didn't work, use the Orlov search algorithm
596 * to find a new flex group; we pass in the mode to
597 * avoid the topdir algorithms.
599 *group = parent_group + flex_size;
600 if (*group > ngroups)
602 return find_group_orlov(sb, parent, group, mode, NULL);
606 * Try to place the inode in its parent directory
608 *group = parent_group;
609 desc = ext4_get_group_desc(sb, *group, NULL);
610 if (desc && ext4_free_inodes_count(sb, desc) &&
611 ext4_free_group_clusters(sb, desc))
615 * We're going to place this inode in a different blockgroup from its
616 * parent. We want to cause files in a common directory to all land in
617 * the same blockgroup. But we want files which are in a different
618 * directory which shares a blockgroup with our parent to land in a
619 * different blockgroup.
621 * So add our directory's i_ino into the starting point for the hash.
623 *group = (*group + parent->i_ino) % ngroups;
626 * Use a quadratic hash to find a group with a free inode and some free
629 for (i = 1; i < ngroups; i <<= 1) {
631 if (*group >= ngroups)
633 desc = ext4_get_group_desc(sb, *group, NULL);
634 if (desc && ext4_free_inodes_count(sb, desc) &&
635 ext4_free_group_clusters(sb, desc))
640 * That failed: try linear search for a free inode, even if that group
641 * has no free blocks.
643 *group = parent_group;
644 for (i = 0; i < ngroups; i++) {
645 if (++*group >= ngroups)
647 desc = ext4_get_group_desc(sb, *group, NULL);
648 if (desc && ext4_free_inodes_count(sb, desc))
656 * In no journal mode, if an inode has recently been deleted, we want
657 * to avoid reusing it until we're reasonably sure the inode table
658 * block has been written back to disk. (Yes, these values are
659 * somewhat arbitrary...)
661 #define RECENTCY_MIN 5
662 #define RECENTCY_DIRTY 30
664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
666 struct ext4_group_desc *gdp;
667 struct ext4_inode *raw_inode;
668 struct buffer_head *bh;
669 unsigned long dtime, now;
670 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
671 int offset, ret = 0, recentcy = RECENTCY_MIN;
673 gdp = ext4_get_group_desc(sb, group, NULL);
677 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
678 (ino / inodes_per_block));
679 if (unlikely(!bh) || !buffer_uptodate(bh))
681 * If the block is not in the buffer cache, then it
682 * must have been written out.
686 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
687 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
688 dtime = le32_to_cpu(raw_inode->i_dtime);
690 if (buffer_dirty(bh))
691 recentcy += RECENTCY_DIRTY;
693 if (dtime && (dtime < now) && (now < dtime + recentcy))
701 * There are two policies for allocating an inode. If the new inode is
702 * a directory, then a forward search is made for a block group with both
703 * free space and a low directory-to-inode ratio; if that fails, then of
704 * the groups with above-average free space, that group with the fewest
705 * directories already is chosen.
707 * For other inodes, search forward from the parent directory's block
708 * group to find a free inode.
710 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
711 umode_t mode, const struct qstr *qstr,
712 __u32 goal, uid_t *owner, int handle_type,
713 unsigned int line_no, int nblocks)
715 struct super_block *sb;
716 struct buffer_head *inode_bitmap_bh = NULL;
717 struct buffer_head *group_desc_bh;
718 ext4_group_t ngroups, group = 0;
719 unsigned long ino = 0;
721 struct ext4_group_desc *gdp = NULL;
722 struct ext4_inode_info *ei;
723 struct ext4_sb_info *sbi;
727 ext4_group_t flex_group;
728 struct ext4_group_info *grp;
730 /* Cannot create files in a deleted directory */
731 if (!dir || !dir->i_nlink)
732 return ERR_PTR(-EPERM);
735 ngroups = ext4_get_groups_count(sb);
736 trace_ext4_request_inode(dir, mode);
737 inode = new_inode(sb);
739 return ERR_PTR(-ENOMEM);
744 * Initalize owners and quota early so that we don't have to account
745 * for quota initialization worst case in standard inode creating
749 inode->i_mode = mode;
750 i_uid_write(inode, owner[0]);
751 i_gid_write(inode, owner[1]);
752 } else if (test_opt(sb, GRPID)) {
753 inode->i_mode = mode;
754 inode->i_uid = current_fsuid();
755 inode->i_gid = dir->i_gid;
757 inode_init_owner(inode, dir, mode);
758 dquot_initialize(inode);
761 goal = sbi->s_inode_goal;
763 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
764 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
765 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
771 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
773 ret2 = find_group_other(sb, dir, &group, mode);
776 EXT4_I(dir)->i_last_alloc_group = group;
782 * Normally we will only go through one pass of this loop,
783 * unless we get unlucky and it turns out the group we selected
784 * had its last inode grabbed by someone else.
786 for (i = 0; i < ngroups; i++, ino = 0) {
789 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
794 * Check free inodes count before loading bitmap.
796 if (ext4_free_inodes_count(sb, gdp) == 0) {
797 if (++group == ngroups)
802 grp = ext4_get_group_info(sb, group);
803 /* Skip groups with already-known suspicious inode tables */
804 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
805 if (++group == ngroups)
810 brelse(inode_bitmap_bh);
811 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
812 /* Skip groups with suspicious inode tables */
813 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
814 if (++group == ngroups)
819 repeat_in_this_group:
820 ino = ext4_find_next_zero_bit((unsigned long *)
821 inode_bitmap_bh->b_data,
822 EXT4_INODES_PER_GROUP(sb), ino);
823 if (ino >= EXT4_INODES_PER_GROUP(sb))
825 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
826 ext4_error(sb, "reserved inode found cleared - "
827 "inode=%lu", ino + 1);
830 if ((EXT4_SB(sb)->s_journal == NULL) &&
831 recently_deleted(sb, group, ino)) {
836 BUG_ON(nblocks <= 0);
837 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
838 handle_type, nblocks,
840 if (IS_ERR(handle)) {
841 err = PTR_ERR(handle);
842 ext4_std_error(sb, err);
846 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
847 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
849 ext4_std_error(sb, err);
852 ext4_lock_group(sb, group);
853 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
854 ext4_unlock_group(sb, group);
855 ino++; /* the inode bitmap is zero-based */
857 goto got; /* we grabbed the inode! */
859 if (ino < EXT4_INODES_PER_GROUP(sb))
860 goto repeat_in_this_group;
862 if (++group == ngroups)
869 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
872 ext4_std_error(sb, err);
876 BUFFER_TRACE(group_desc_bh, "get_write_access");
877 err = ext4_journal_get_write_access(handle, group_desc_bh);
879 ext4_std_error(sb, err);
883 /* We may have to initialize the block bitmap if it isn't already */
884 if (ext4_has_group_desc_csum(sb) &&
885 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
886 struct buffer_head *block_bitmap_bh;
888 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
889 if (!block_bitmap_bh) {
893 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
894 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
896 brelse(block_bitmap_bh);
897 ext4_std_error(sb, err);
901 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
902 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
904 /* recheck and clear flag under lock if we still need to */
905 ext4_lock_group(sb, group);
906 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
907 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
908 ext4_free_group_clusters_set(sb, gdp,
909 ext4_free_clusters_after_init(sb, group, gdp));
910 ext4_block_bitmap_csum_set(sb, group, gdp,
912 ext4_group_desc_csum_set(sb, group, gdp);
914 ext4_unlock_group(sb, group);
915 brelse(block_bitmap_bh);
918 ext4_std_error(sb, err);
923 /* Update the relevant bg descriptor fields */
924 if (ext4_has_group_desc_csum(sb)) {
926 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
928 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
929 ext4_lock_group(sb, group); /* while we modify the bg desc */
930 free = EXT4_INODES_PER_GROUP(sb) -
931 ext4_itable_unused_count(sb, gdp);
932 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
933 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
937 * Check the relative inode number against the last used
938 * relative inode number in this group. if it is greater
939 * we need to update the bg_itable_unused count
942 ext4_itable_unused_set(sb, gdp,
943 (EXT4_INODES_PER_GROUP(sb) - ino));
944 up_read(&grp->alloc_sem);
946 ext4_lock_group(sb, group);
949 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
951 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
952 if (sbi->s_log_groups_per_flex) {
953 ext4_group_t f = ext4_flex_group(sbi, group);
955 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
958 if (ext4_has_group_desc_csum(sb)) {
959 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
960 EXT4_INODES_PER_GROUP(sb) / 8);
961 ext4_group_desc_csum_set(sb, group, gdp);
963 ext4_unlock_group(sb, group);
965 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
966 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
968 ext4_std_error(sb, err);
972 percpu_counter_dec(&sbi->s_freeinodes_counter);
974 percpu_counter_inc(&sbi->s_dirs_counter);
976 if (sbi->s_log_groups_per_flex) {
977 flex_group = ext4_flex_group(sbi, group);
978 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
981 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
982 /* This is the optimal IO size (for stat), not the fs block size */
984 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
985 ext4_current_time(inode);
987 memset(ei->i_data, 0, sizeof(ei->i_data));
988 ei->i_dir_start_lookup = 0;
991 /* Don't inherit extent flag from directory, amongst others. */
993 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
996 ei->i_block_group = group;
997 ei->i_last_alloc_group = ~0;
999 /* If the directory encrypted, then we should encrypt the inode. */
1000 if ((S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) &&
1001 (ext4_encrypted_inode(dir) ||
1002 DUMMY_ENCRYPTION_ENABLED(sbi)))
1003 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1005 ext4_set_inode_flags(inode);
1006 if (IS_DIRSYNC(inode))
1007 ext4_handle_sync(handle);
1008 if (insert_inode_locked(inode) < 0) {
1010 * Likely a bitmap corruption causing inode to be allocated
1014 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1018 spin_lock(&sbi->s_next_gen_lock);
1019 inode->i_generation = sbi->s_next_generation++;
1020 spin_unlock(&sbi->s_next_gen_lock);
1022 /* Precompute checksum seed for inode metadata */
1023 if (ext4_has_metadata_csum(sb)) {
1025 __le32 inum = cpu_to_le32(inode->i_ino);
1026 __le32 gen = cpu_to_le32(inode->i_generation);
1027 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1029 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1033 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1034 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1036 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1037 ei->i_inline_off = 0;
1038 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1039 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1041 err = dquot_alloc_inode(inode);
1045 err = ext4_init_acl(handle, inode, dir);
1047 goto fail_free_drop;
1049 err = ext4_init_security(handle, inode, dir, qstr);
1051 goto fail_free_drop;
1053 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1054 /* set extent flag only for directory, file and normal symlink*/
1055 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1056 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1057 ext4_ext_tree_init(handle, inode);
1061 if (ext4_handle_valid(handle)) {
1062 ei->i_sync_tid = handle->h_transaction->t_tid;
1063 ei->i_datasync_tid = handle->h_transaction->t_tid;
1066 err = ext4_mark_inode_dirty(handle, inode);
1068 ext4_std_error(sb, err);
1069 goto fail_free_drop;
1072 ext4_debug("allocating inode %lu\n", inode->i_ino);
1073 trace_ext4_allocate_inode(inode, dir, mode);
1074 brelse(inode_bitmap_bh);
1078 dquot_free_inode(inode);
1081 unlock_new_inode(inode);
1084 inode->i_flags |= S_NOQUOTA;
1086 brelse(inode_bitmap_bh);
1087 return ERR_PTR(err);
1090 /* Verify that we are loading a valid orphan from disk */
1091 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1093 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1094 ext4_group_t block_group;
1096 struct buffer_head *bitmap_bh;
1097 struct inode *inode = NULL;
1100 /* Error cases - e2fsck has already cleaned up for us */
1101 if (ino > max_ino) {
1102 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1106 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1107 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1108 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1110 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1114 /* Having the inode bit set should be a 100% indicator that this
1115 * is a valid orphan (no e2fsck run on fs). Orphans also include
1116 * inodes that were being truncated, so we can't check i_nlink==0.
1118 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1121 inode = ext4_iget(sb, ino);
1126 * If the orphans has i_nlinks > 0 then it should be able to be
1127 * truncated, otherwise it won't be removed from the orphan list
1128 * during processing and an infinite loop will result.
1130 if (inode->i_nlink && !ext4_can_truncate(inode))
1133 if (NEXT_ORPHAN(inode) > max_ino)
1139 err = PTR_ERR(inode);
1142 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1143 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1144 bit, (unsigned long long)bitmap_bh->b_blocknr,
1145 ext4_test_bit(bit, bitmap_bh->b_data));
1146 printk(KERN_WARNING "inode=%p\n", inode);
1148 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1149 is_bad_inode(inode));
1150 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1151 NEXT_ORPHAN(inode));
1152 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1153 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1154 /* Avoid freeing blocks if we got a bad deleted inode */
1155 if (inode->i_nlink == 0)
1156 inode->i_blocks = 0;
1161 return ERR_PTR(err);
1164 unsigned long ext4_count_free_inodes(struct super_block *sb)
1166 unsigned long desc_count;
1167 struct ext4_group_desc *gdp;
1168 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1170 struct ext4_super_block *es;
1171 unsigned long bitmap_count, x;
1172 struct buffer_head *bitmap_bh = NULL;
1174 es = EXT4_SB(sb)->s_es;
1178 for (i = 0; i < ngroups; i++) {
1179 gdp = ext4_get_group_desc(sb, i, NULL);
1182 desc_count += ext4_free_inodes_count(sb, gdp);
1184 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1188 x = ext4_count_free(bitmap_bh->b_data,
1189 EXT4_INODES_PER_GROUP(sb) / 8);
1190 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1191 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1195 printk(KERN_DEBUG "ext4_count_free_inodes: "
1196 "stored = %u, computed = %lu, %lu\n",
1197 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1201 for (i = 0; i < ngroups; i++) {
1202 gdp = ext4_get_group_desc(sb, i, NULL);
1205 desc_count += ext4_free_inodes_count(sb, gdp);
1212 /* Called at mount-time, super-block is locked */
1213 unsigned long ext4_count_dirs(struct super_block * sb)
1215 unsigned long count = 0;
1216 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1218 for (i = 0; i < ngroups; i++) {
1219 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1222 count += ext4_used_dirs_count(sb, gdp);
1228 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1229 * inode table. Must be called without any spinlock held. The only place
1230 * where it is called from on active part of filesystem is ext4lazyinit
1231 * thread, so we do not need any special locks, however we have to prevent
1232 * inode allocation from the current group, so we take alloc_sem lock, to
1233 * block ext4_new_inode() until we are finished.
1235 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1238 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1239 struct ext4_sb_info *sbi = EXT4_SB(sb);
1240 struct ext4_group_desc *gdp = NULL;
1241 struct buffer_head *group_desc_bh;
1244 int num, ret = 0, used_blks = 0;
1246 /* This should not happen, but just to be sure check this */
1247 if (sb->s_flags & MS_RDONLY) {
1252 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1257 * We do not need to lock this, because we are the only one
1258 * handling this flag.
1260 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1263 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1264 if (IS_ERR(handle)) {
1265 ret = PTR_ERR(handle);
1269 down_write(&grp->alloc_sem);
1271 * If inode bitmap was already initialized there may be some
1272 * used inodes so we need to skip blocks with used inodes in
1275 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1276 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1277 ext4_itable_unused_count(sb, gdp)),
1278 sbi->s_inodes_per_block);
1280 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1281 ext4_error(sb, "Something is wrong with group %u: "
1282 "used itable blocks: %d; "
1283 "itable unused count: %u",
1285 ext4_itable_unused_count(sb, gdp));
1290 blk = ext4_inode_table(sb, gdp) + used_blks;
1291 num = sbi->s_itb_per_group - used_blks;
1293 BUFFER_TRACE(group_desc_bh, "get_write_access");
1294 ret = ext4_journal_get_write_access(handle,
1300 * Skip zeroout if the inode table is full. But we set the ZEROED
1301 * flag anyway, because obviously, when it is full it does not need
1304 if (unlikely(num == 0))
1307 ext4_debug("going to zero out inode table in group %d\n",
1309 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1313 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1316 ext4_lock_group(sb, group);
1317 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1318 ext4_group_desc_csum_set(sb, group, gdp);
1319 ext4_unlock_group(sb, group);
1321 BUFFER_TRACE(group_desc_bh,
1322 "call ext4_handle_dirty_metadata");
1323 ret = ext4_handle_dirty_metadata(handle, NULL,
1327 up_write(&grp->alloc_sem);
1328 ext4_journal_stop(handle);