1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
4 #include <linux/types.h>
5 #include <linux/module.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
14 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
15 char fm10k_driver_name[] = "fm10k";
16 static const char fm10k_driver_string[] = DRV_SUMMARY;
17 static const char fm10k_copyright[] =
18 "Copyright(c) 2013 - 2019 Intel Corporation.";
21 MODULE_DESCRIPTION(DRV_SUMMARY);
22 MODULE_LICENSE("GPL v2");
24 /* single workqueue for entire fm10k driver */
25 struct workqueue_struct *fm10k_workqueue;
28 * fm10k_init_module - Driver Registration Routine
30 * fm10k_init_module is the first routine called when the driver is
31 * loaded. All it does is register with the PCI subsystem.
33 static int __init fm10k_init_module(void)
35 pr_info("%s\n", fm10k_driver_string);
36 pr_info("%s\n", fm10k_copyright);
38 /* create driver workqueue */
39 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
46 return fm10k_register_pci_driver();
48 module_init(fm10k_init_module);
51 * fm10k_exit_module - Driver Exit Cleanup Routine
53 * fm10k_exit_module is called just before the driver is removed
56 static void __exit fm10k_exit_module(void)
58 fm10k_unregister_pci_driver();
62 /* destroy driver workqueue */
63 destroy_workqueue(fm10k_workqueue);
65 module_exit(fm10k_exit_module);
67 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
68 struct fm10k_rx_buffer *bi)
70 struct page *page = bi->page;
73 /* Only page will be NULL if buffer was consumed */
77 /* alloc new page for storage */
78 page = dev_alloc_page();
79 if (unlikely(!page)) {
80 rx_ring->rx_stats.alloc_failed++;
84 /* map page for use */
85 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
87 /* if mapping failed free memory back to system since
88 * there isn't much point in holding memory we can't use
90 if (dma_mapping_error(rx_ring->dev, dma)) {
93 rx_ring->rx_stats.alloc_failed++;
105 * fm10k_alloc_rx_buffers - Replace used receive buffers
106 * @rx_ring: ring to place buffers on
107 * @cleaned_count: number of buffers to replace
109 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
111 union fm10k_rx_desc *rx_desc;
112 struct fm10k_rx_buffer *bi;
113 u16 i = rx_ring->next_to_use;
119 rx_desc = FM10K_RX_DESC(rx_ring, i);
120 bi = &rx_ring->rx_buffer[i];
124 if (!fm10k_alloc_mapped_page(rx_ring, bi))
127 /* Refresh the desc even if buffer_addrs didn't change
128 * because each write-back erases this info.
130 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
136 rx_desc = FM10K_RX_DESC(rx_ring, 0);
137 bi = rx_ring->rx_buffer;
141 /* clear the status bits for the next_to_use descriptor */
142 rx_desc->d.staterr = 0;
145 } while (cleaned_count);
149 if (rx_ring->next_to_use != i) {
150 /* record the next descriptor to use */
151 rx_ring->next_to_use = i;
153 /* update next to alloc since we have filled the ring */
154 rx_ring->next_to_alloc = i;
156 /* Force memory writes to complete before letting h/w
157 * know there are new descriptors to fetch. (Only
158 * applicable for weak-ordered memory model archs,
163 /* notify hardware of new descriptors */
164 writel(i, rx_ring->tail);
169 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
170 * @rx_ring: rx descriptor ring to store buffers on
171 * @old_buff: donor buffer to have page reused
173 * Synchronizes page for reuse by the interface
175 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
176 struct fm10k_rx_buffer *old_buff)
178 struct fm10k_rx_buffer *new_buff;
179 u16 nta = rx_ring->next_to_alloc;
181 new_buff = &rx_ring->rx_buffer[nta];
183 /* update, and store next to alloc */
185 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
187 /* transfer page from old buffer to new buffer */
188 *new_buff = *old_buff;
190 /* sync the buffer for use by the device */
191 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
192 old_buff->page_offset,
197 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
199 unsigned int __maybe_unused truesize)
201 /* avoid re-using remote and pfmemalloc pages */
202 if (!dev_page_is_reusable(page))
205 #if (PAGE_SIZE < 8192)
206 /* if we are only owner of page we can reuse it */
207 if (unlikely(page_count(page) != 1))
210 /* flip page offset to other buffer */
211 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
213 /* move offset up to the next cache line */
214 rx_buffer->page_offset += truesize;
216 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
220 /* Even if we own the page, we are not allowed to use atomic_set()
221 * This would break get_page_unless_zero() users.
229 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
230 * @rx_buffer: buffer containing page to add
231 * @size: packet size from rx_desc
232 * @rx_desc: descriptor containing length of buffer written by hardware
233 * @skb: sk_buff to place the data into
235 * This function will add the data contained in rx_buffer->page to the skb.
236 * This is done either through a direct copy if the data in the buffer is
237 * less than the skb header size, otherwise it will just attach the page as
240 * The function will then update the page offset if necessary and return
241 * true if the buffer can be reused by the interface.
243 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
245 union fm10k_rx_desc *rx_desc,
248 struct page *page = rx_buffer->page;
249 unsigned char *va = page_address(page) + rx_buffer->page_offset;
250 #if (PAGE_SIZE < 8192)
251 unsigned int truesize = FM10K_RX_BUFSZ;
253 unsigned int truesize = ALIGN(size, 512);
255 unsigned int pull_len;
257 if (unlikely(skb_is_nonlinear(skb)))
260 if (likely(size <= FM10K_RX_HDR_LEN)) {
261 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
263 /* page is reusable, we can reuse buffer as-is */
264 if (dev_page_is_reusable(page))
267 /* this page cannot be reused so discard it */
272 /* we need the header to contain the greater of either ETH_HLEN or
273 * 60 bytes if the skb->len is less than 60 for skb_pad.
275 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
277 /* align pull length to size of long to optimize memcpy performance */
278 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
280 /* update all of the pointers */
285 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
286 (unsigned long)va & ~PAGE_MASK, size, truesize);
288 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
291 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
292 union fm10k_rx_desc *rx_desc,
295 unsigned int size = le16_to_cpu(rx_desc->w.length);
296 struct fm10k_rx_buffer *rx_buffer;
299 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
300 page = rx_buffer->page;
304 void *page_addr = page_address(page) +
305 rx_buffer->page_offset;
307 /* prefetch first cache line of first page */
308 net_prefetch(page_addr);
310 /* allocate a skb to store the frags */
311 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
313 if (unlikely(!skb)) {
314 rx_ring->rx_stats.alloc_failed++;
318 /* we will be copying header into skb->data in
319 * pskb_may_pull so it is in our interest to prefetch
320 * it now to avoid a possible cache miss
322 prefetchw(skb->data);
325 /* we are reusing so sync this buffer for CPU use */
326 dma_sync_single_range_for_cpu(rx_ring->dev,
328 rx_buffer->page_offset,
332 /* pull page into skb */
333 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
334 /* hand second half of page back to the ring */
335 fm10k_reuse_rx_page(rx_ring, rx_buffer);
337 /* we are not reusing the buffer so unmap it */
338 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 PAGE_SIZE, DMA_FROM_DEVICE);
342 /* clear contents of rx_buffer */
343 rx_buffer->page = NULL;
348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 union fm10k_rx_desc *rx_desc,
352 skb_checksum_none_assert(skb);
354 /* Rx checksum disabled via ethtool */
355 if (!(ring->netdev->features & NETIF_F_RXCSUM))
358 /* TCP/UDP checksum error bit is set */
359 if (fm10k_test_staterr(rx_desc,
360 FM10K_RXD_STATUS_L4E |
361 FM10K_RXD_STATUS_L4E2 |
362 FM10K_RXD_STATUS_IPE |
363 FM10K_RXD_STATUS_IPE2)) {
364 ring->rx_stats.csum_err++;
368 /* It must be a TCP or UDP packet with a valid checksum */
369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 skb->encapsulation = true;
371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
374 skb->ip_summed = CHECKSUM_UNNECESSARY;
376 ring->rx_stats.csum_good++;
379 #define FM10K_RSS_L4_TYPES_MASK \
380 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
381 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
382 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
383 BIT(FM10K_RSSTYPE_IPV6_UDP))
385 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
386 union fm10k_rx_desc *rx_desc,
391 if (!(ring->netdev->features & NETIF_F_RXHASH))
394 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
398 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
399 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
400 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
403 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
404 union fm10k_rx_desc __maybe_unused *rx_desc,
407 struct net_device *dev = rx_ring->netdev;
408 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
410 /* check to see if DGLORT belongs to a MACVLAN */
412 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
414 idx -= l2_accel->dglort;
415 if (idx < l2_accel->size && l2_accel->macvlan[idx])
416 dev = l2_accel->macvlan[idx];
421 /* Record Rx queue, or update macvlan statistics */
423 skb_record_rx_queue(skb, rx_ring->queue_index);
425 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
428 skb->protocol = eth_type_trans(skb, dev);
432 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
433 * @rx_ring: rx descriptor ring packet is being transacted on
434 * @rx_desc: pointer to the EOP Rx descriptor
435 * @skb: pointer to current skb being populated
437 * This function checks the ring, descriptor, and packet information in
438 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
439 * other fields within the skb.
441 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
442 union fm10k_rx_desc *rx_desc,
445 unsigned int len = skb->len;
447 fm10k_rx_hash(rx_ring, rx_desc, skb);
449 fm10k_rx_checksum(rx_ring, rx_desc, skb);
451 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
453 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
455 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
457 if (rx_desc->w.vlan) {
458 u16 vid = le16_to_cpu(rx_desc->w.vlan);
460 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
461 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
462 else if (vid & VLAN_PRIO_MASK)
463 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
464 vid & VLAN_PRIO_MASK);
467 fm10k_type_trans(rx_ring, rx_desc, skb);
473 * fm10k_is_non_eop - process handling of non-EOP buffers
474 * @rx_ring: Rx ring being processed
475 * @rx_desc: Rx descriptor for current buffer
477 * This function updates next to clean. If the buffer is an EOP buffer
478 * this function exits returning false, otherwise it will place the
479 * sk_buff in the next buffer to be chained and return true indicating
480 * that this is in fact a non-EOP buffer.
482 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
483 union fm10k_rx_desc *rx_desc)
485 u32 ntc = rx_ring->next_to_clean + 1;
487 /* fetch, update, and store next to clean */
488 ntc = (ntc < rx_ring->count) ? ntc : 0;
489 rx_ring->next_to_clean = ntc;
491 prefetch(FM10K_RX_DESC(rx_ring, ntc));
493 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
500 * fm10k_cleanup_headers - Correct corrupted or empty headers
501 * @rx_ring: rx descriptor ring packet is being transacted on
502 * @rx_desc: pointer to the EOP Rx descriptor
503 * @skb: pointer to current skb being fixed
505 * Address the case where we are pulling data in on pages only
506 * and as such no data is present in the skb header.
508 * In addition if skb is not at least 60 bytes we need to pad it so that
509 * it is large enough to qualify as a valid Ethernet frame.
511 * Returns true if an error was encountered and skb was freed.
513 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
514 union fm10k_rx_desc *rx_desc,
517 if (unlikely((fm10k_test_staterr(rx_desc,
518 FM10K_RXD_STATUS_RXE)))) {
519 #define FM10K_TEST_RXD_BIT(rxd, bit) \
520 ((rxd)->w.csum_err & cpu_to_le16(bit))
521 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
522 rx_ring->rx_stats.switch_errors++;
523 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
524 rx_ring->rx_stats.drops++;
525 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
526 rx_ring->rx_stats.pp_errors++;
527 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
528 rx_ring->rx_stats.link_errors++;
529 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
530 rx_ring->rx_stats.length_errors++;
531 dev_kfree_skb_any(skb);
532 rx_ring->rx_stats.errors++;
536 /* if eth_skb_pad returns an error the skb was freed */
537 if (eth_skb_pad(skb))
544 * fm10k_receive_skb - helper function to handle rx indications
545 * @q_vector: structure containing interrupt and ring information
546 * @skb: packet to send up
548 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
551 napi_gro_receive(&q_vector->napi, skb);
554 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
555 struct fm10k_ring *rx_ring,
558 struct sk_buff *skb = rx_ring->skb;
559 unsigned int total_bytes = 0, total_packets = 0;
560 u16 cleaned_count = fm10k_desc_unused(rx_ring);
562 while (likely(total_packets < budget)) {
563 union fm10k_rx_desc *rx_desc;
565 /* return some buffers to hardware, one at a time is too slow */
566 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
567 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
571 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
573 if (!rx_desc->d.staterr)
576 /* This memory barrier is needed to keep us from reading
577 * any other fields out of the rx_desc until we know the
578 * descriptor has been written back
582 /* retrieve a buffer from the ring */
583 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
585 /* exit if we failed to retrieve a buffer */
591 /* fetch next buffer in frame if non-eop */
592 if (fm10k_is_non_eop(rx_ring, rx_desc))
595 /* verify the packet layout is correct */
596 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
601 /* populate checksum, timestamp, VLAN, and protocol */
602 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
604 fm10k_receive_skb(q_vector, skb);
606 /* reset skb pointer */
609 /* update budget accounting */
613 /* place incomplete frames back on ring for completion */
616 u64_stats_update_begin(&rx_ring->syncp);
617 rx_ring->stats.packets += total_packets;
618 rx_ring->stats.bytes += total_bytes;
619 u64_stats_update_end(&rx_ring->syncp);
620 q_vector->rx.total_packets += total_packets;
621 q_vector->rx.total_bytes += total_bytes;
623 return total_packets;
626 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
627 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
629 struct fm10k_intfc *interface = netdev_priv(skb->dev);
631 if (interface->vxlan_port != udp_hdr(skb)->dest)
634 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
635 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
638 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
639 #define NVGRE_TNI htons(0x2000)
640 struct fm10k_nvgre_hdr {
646 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
648 struct fm10k_nvgre_hdr *nvgre_hdr;
649 int hlen = ip_hdrlen(skb);
651 /* currently only IPv4 is supported due to hlen above */
652 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
655 /* our transport header should be NVGRE */
656 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
658 /* verify all reserved flags are 0 */
659 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
662 /* report start of ethernet header */
663 if (nvgre_hdr->flags & NVGRE_TNI)
664 return (struct ethhdr *)(nvgre_hdr + 1);
666 return (struct ethhdr *)(&nvgre_hdr->tni);
669 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
671 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
672 struct ethhdr *eth_hdr;
674 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
675 skb->inner_protocol != htons(ETH_P_TEB))
678 switch (vlan_get_protocol(skb)) {
679 case htons(ETH_P_IP):
680 l4_hdr = ip_hdr(skb)->protocol;
682 case htons(ETH_P_IPV6):
683 l4_hdr = ipv6_hdr(skb)->nexthdr;
691 eth_hdr = fm10k_port_is_vxlan(skb);
694 eth_hdr = fm10k_gre_is_nvgre(skb);
703 switch (eth_hdr->h_proto) {
704 case htons(ETH_P_IP):
705 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
707 case htons(ETH_P_IPV6):
708 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
714 switch (inner_l4_hdr) {
716 inner_l4_hlen = inner_tcp_hdrlen(skb);
725 /* The hardware allows tunnel offloads only if the combined inner and
726 * outer header is 184 bytes or less
728 if (skb_inner_transport_header(skb) + inner_l4_hlen -
729 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
732 return eth_hdr->h_proto;
735 static int fm10k_tso(struct fm10k_ring *tx_ring,
736 struct fm10k_tx_buffer *first)
738 struct sk_buff *skb = first->skb;
739 struct fm10k_tx_desc *tx_desc;
743 if (skb->ip_summed != CHECKSUM_PARTIAL)
746 if (!skb_is_gso(skb))
749 /* compute header lengths */
750 if (skb->encapsulation) {
751 if (!fm10k_tx_encap_offload(skb))
753 th = skb_inner_transport_header(skb);
755 th = skb_transport_header(skb);
758 /* compute offset from SOF to transport header and add header len */
759 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
761 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
763 /* update gso size and bytecount with header size */
764 first->gso_segs = skb_shinfo(skb)->gso_segs;
765 first->bytecount += (first->gso_segs - 1) * hdrlen;
767 /* populate Tx descriptor header size and mss */
768 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
769 tx_desc->hdrlen = hdrlen;
770 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
775 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
777 netdev_err(tx_ring->netdev,
778 "TSO requested for unsupported tunnel, disabling offload\n");
782 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
783 struct fm10k_tx_buffer *first)
785 struct sk_buff *skb = first->skb;
786 struct fm10k_tx_desc *tx_desc;
789 struct ipv6hdr *ipv6;
797 if (skb->ip_summed != CHECKSUM_PARTIAL)
800 if (skb->encapsulation) {
801 protocol = fm10k_tx_encap_offload(skb);
803 if (skb_checksum_help(skb)) {
804 dev_warn(tx_ring->dev,
805 "failed to offload encap csum!\n");
806 tx_ring->tx_stats.csum_err++;
810 network_hdr.raw = skb_inner_network_header(skb);
811 transport_hdr = skb_inner_transport_header(skb);
813 protocol = vlan_get_protocol(skb);
814 network_hdr.raw = skb_network_header(skb);
815 transport_hdr = skb_transport_header(skb);
819 case htons(ETH_P_IP):
820 l4_hdr = network_hdr.ipv4->protocol;
822 case htons(ETH_P_IPV6):
823 l4_hdr = network_hdr.ipv6->nexthdr;
824 if (likely((transport_hdr - network_hdr.raw) ==
825 sizeof(struct ipv6hdr)))
827 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
828 sizeof(struct ipv6hdr),
830 if (unlikely(frag_off))
831 l4_hdr = NEXTHDR_FRAGMENT;
842 if (skb->encapsulation)
846 if (unlikely(net_ratelimit())) {
847 dev_warn(tx_ring->dev,
848 "partial checksum, version=%d l4 proto=%x\n",
851 skb_checksum_help(skb);
852 tx_ring->tx_stats.csum_err++;
856 /* update TX checksum flag */
857 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
858 tx_ring->tx_stats.csum_good++;
861 /* populate Tx descriptor header size and mss */
862 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
867 #define FM10K_SET_FLAG(_input, _flag, _result) \
868 ((_flag <= _result) ? \
869 ((u32)(_input & _flag) * (_result / _flag)) : \
870 ((u32)(_input & _flag) / (_flag / _result)))
872 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
874 /* set type for advanced descriptor with frame checksum insertion */
877 /* set checksum offload bits */
878 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
879 FM10K_TXD_FLAG_CSUM);
884 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
885 struct fm10k_tx_desc *tx_desc, u16 i,
886 dma_addr_t dma, unsigned int size, u8 desc_flags)
888 /* set RS and INT for last frame in a cache line */
889 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
890 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
892 /* record values to descriptor */
893 tx_desc->buffer_addr = cpu_to_le64(dma);
894 tx_desc->flags = desc_flags;
895 tx_desc->buflen = cpu_to_le16(size);
897 /* return true if we just wrapped the ring */
898 return i == tx_ring->count;
901 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
903 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
905 /* Memory barrier before checking head and tail */
908 /* Check again in a case another CPU has just made room available */
909 if (likely(fm10k_desc_unused(tx_ring) < size))
912 /* A reprieve! - use start_queue because it doesn't call schedule */
913 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
914 ++tx_ring->tx_stats.restart_queue;
918 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
920 if (likely(fm10k_desc_unused(tx_ring) >= size))
922 return __fm10k_maybe_stop_tx(tx_ring, size);
925 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
926 struct fm10k_tx_buffer *first)
928 struct sk_buff *skb = first->skb;
929 struct fm10k_tx_buffer *tx_buffer;
930 struct fm10k_tx_desc *tx_desc;
934 unsigned int data_len, size;
935 u32 tx_flags = first->tx_flags;
936 u16 i = tx_ring->next_to_use;
937 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
939 tx_desc = FM10K_TX_DESC(tx_ring, i);
941 /* add HW VLAN tag */
942 if (skb_vlan_tag_present(skb))
943 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
947 size = skb_headlen(skb);
950 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
952 data_len = skb->data_len;
955 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
956 if (dma_mapping_error(tx_ring->dev, dma))
959 /* record length, and DMA address */
960 dma_unmap_len_set(tx_buffer, len, size);
961 dma_unmap_addr_set(tx_buffer, dma, dma);
963 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
964 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
965 FM10K_MAX_DATA_PER_TXD, flags)) {
966 tx_desc = FM10K_TX_DESC(tx_ring, 0);
970 dma += FM10K_MAX_DATA_PER_TXD;
971 size -= FM10K_MAX_DATA_PER_TXD;
974 if (likely(!data_len))
977 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
979 tx_desc = FM10K_TX_DESC(tx_ring, 0);
983 size = skb_frag_size(frag);
986 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
989 tx_buffer = &tx_ring->tx_buffer[i];
992 /* write last descriptor with LAST bit set */
993 flags |= FM10K_TXD_FLAG_LAST;
995 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
998 /* record bytecount for BQL */
999 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1001 /* record SW timestamp if HW timestamp is not available */
1002 skb_tx_timestamp(first->skb);
1004 /* Force memory writes to complete before letting h/w know there
1005 * are new descriptors to fetch. (Only applicable for weak-ordered
1006 * memory model archs, such as IA-64).
1008 * We also need this memory barrier to make certain all of the
1009 * status bits have been updated before next_to_watch is written.
1013 /* set next_to_watch value indicating a packet is present */
1014 first->next_to_watch = tx_desc;
1016 tx_ring->next_to_use = i;
1018 /* Make sure there is space in the ring for the next send. */
1019 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1021 /* notify HW of packet */
1022 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1023 writel(i, tx_ring->tail);
1028 dev_err(tx_ring->dev, "TX DMA map failed\n");
1030 /* clear dma mappings for failed tx_buffer map */
1032 tx_buffer = &tx_ring->tx_buffer[i];
1033 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1034 if (tx_buffer == first)
1041 tx_ring->next_to_use = i;
1044 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1045 struct fm10k_ring *tx_ring)
1047 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1048 struct fm10k_tx_buffer *first;
1053 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1054 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1055 * + 2 desc gap to keep tail from touching head
1056 * otherwise try next time
1058 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1059 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1061 count += TXD_USE_COUNT(skb_frag_size(frag));
1064 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1065 tx_ring->tx_stats.tx_busy++;
1066 return NETDEV_TX_BUSY;
1069 /* record the location of the first descriptor for this packet */
1070 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1072 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1073 first->gso_segs = 1;
1075 /* record initial flags and protocol */
1076 first->tx_flags = tx_flags;
1078 tso = fm10k_tso(tx_ring, first);
1082 fm10k_tx_csum(tx_ring, first);
1084 fm10k_tx_map(tx_ring, first);
1086 return NETDEV_TX_OK;
1089 dev_kfree_skb_any(first->skb);
1092 return NETDEV_TX_OK;
1095 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1097 return ring->stats.packets;
1101 * fm10k_get_tx_pending - how many Tx descriptors not processed
1102 * @ring: the ring structure
1103 * @in_sw: is tx_pending being checked in SW or in HW?
1105 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1107 struct fm10k_intfc *interface = ring->q_vector->interface;
1108 struct fm10k_hw *hw = &interface->hw;
1111 if (likely(in_sw)) {
1112 head = ring->next_to_clean;
1113 tail = ring->next_to_use;
1115 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1116 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1119 return ((head <= tail) ? tail : tail + ring->count) - head;
1122 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1124 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1125 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1126 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1128 clear_check_for_tx_hang(tx_ring);
1130 /* Check for a hung queue, but be thorough. This verifies
1131 * that a transmit has been completed since the previous
1132 * check AND there is at least one packet pending. By
1133 * requiring this to fail twice we avoid races with
1134 * clearing the ARMED bit and conditions where we
1135 * run the check_tx_hang logic with a transmit completion
1136 * pending but without time to complete it yet.
1138 if (!tx_pending || (tx_done_old != tx_done)) {
1139 /* update completed stats and continue */
1140 tx_ring->tx_stats.tx_done_old = tx_done;
1141 /* reset the countdown */
1142 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1147 /* make sure it is true for two checks in a row */
1148 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1152 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1153 * @interface: driver private struct
1155 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1157 /* Do the reset outside of interrupt context */
1158 if (!test_bit(__FM10K_DOWN, interface->state)) {
1159 interface->tx_timeout_count++;
1160 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1161 fm10k_service_event_schedule(interface);
1166 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1167 * @q_vector: structure containing interrupt and ring information
1168 * @tx_ring: tx ring to clean
1169 * @napi_budget: Used to determine if we are in netpoll
1171 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1172 struct fm10k_ring *tx_ring, int napi_budget)
1174 struct fm10k_intfc *interface = q_vector->interface;
1175 struct fm10k_tx_buffer *tx_buffer;
1176 struct fm10k_tx_desc *tx_desc;
1177 unsigned int total_bytes = 0, total_packets = 0;
1178 unsigned int budget = q_vector->tx.work_limit;
1179 unsigned int i = tx_ring->next_to_clean;
1181 if (test_bit(__FM10K_DOWN, interface->state))
1184 tx_buffer = &tx_ring->tx_buffer[i];
1185 tx_desc = FM10K_TX_DESC(tx_ring, i);
1186 i -= tx_ring->count;
1189 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1191 /* if next_to_watch is not set then there is no work pending */
1195 /* prevent any other reads prior to eop_desc */
1198 /* if DD is not set pending work has not been completed */
1199 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1202 /* clear next_to_watch to prevent false hangs */
1203 tx_buffer->next_to_watch = NULL;
1205 /* update the statistics for this packet */
1206 total_bytes += tx_buffer->bytecount;
1207 total_packets += tx_buffer->gso_segs;
1210 napi_consume_skb(tx_buffer->skb, napi_budget);
1212 /* unmap skb header data */
1213 dma_unmap_single(tx_ring->dev,
1214 dma_unmap_addr(tx_buffer, dma),
1215 dma_unmap_len(tx_buffer, len),
1218 /* clear tx_buffer data */
1219 tx_buffer->skb = NULL;
1220 dma_unmap_len_set(tx_buffer, len, 0);
1222 /* unmap remaining buffers */
1223 while (tx_desc != eop_desc) {
1228 i -= tx_ring->count;
1229 tx_buffer = tx_ring->tx_buffer;
1230 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1233 /* unmap any remaining paged data */
1234 if (dma_unmap_len(tx_buffer, len)) {
1235 dma_unmap_page(tx_ring->dev,
1236 dma_unmap_addr(tx_buffer, dma),
1237 dma_unmap_len(tx_buffer, len),
1239 dma_unmap_len_set(tx_buffer, len, 0);
1243 /* move us one more past the eop_desc for start of next pkt */
1248 i -= tx_ring->count;
1249 tx_buffer = tx_ring->tx_buffer;
1250 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1253 /* issue prefetch for next Tx descriptor */
1256 /* update budget accounting */
1258 } while (likely(budget));
1260 i += tx_ring->count;
1261 tx_ring->next_to_clean = i;
1262 u64_stats_update_begin(&tx_ring->syncp);
1263 tx_ring->stats.bytes += total_bytes;
1264 tx_ring->stats.packets += total_packets;
1265 u64_stats_update_end(&tx_ring->syncp);
1266 q_vector->tx.total_bytes += total_bytes;
1267 q_vector->tx.total_packets += total_packets;
1269 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1270 /* schedule immediate reset if we believe we hung */
1271 struct fm10k_hw *hw = &interface->hw;
1273 netif_err(interface, drv, tx_ring->netdev,
1274 "Detected Tx Unit Hang\n"
1276 " TDH, TDT <%x>, <%x>\n"
1277 " next_to_use <%x>\n"
1278 " next_to_clean <%x>\n",
1279 tx_ring->queue_index,
1280 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1281 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1282 tx_ring->next_to_use, i);
1284 netif_stop_subqueue(tx_ring->netdev,
1285 tx_ring->queue_index);
1287 netif_info(interface, probe, tx_ring->netdev,
1288 "tx hang %d detected on queue %d, resetting interface\n",
1289 interface->tx_timeout_count + 1,
1290 tx_ring->queue_index);
1292 fm10k_tx_timeout_reset(interface);
1294 /* the netdev is about to reset, no point in enabling stuff */
1298 /* notify netdev of completed buffers */
1299 netdev_tx_completed_queue(txring_txq(tx_ring),
1300 total_packets, total_bytes);
1302 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1303 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1304 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1305 /* Make sure that anybody stopping the queue after this
1306 * sees the new next_to_clean.
1309 if (__netif_subqueue_stopped(tx_ring->netdev,
1310 tx_ring->queue_index) &&
1311 !test_bit(__FM10K_DOWN, interface->state)) {
1312 netif_wake_subqueue(tx_ring->netdev,
1313 tx_ring->queue_index);
1314 ++tx_ring->tx_stats.restart_queue;
1322 * fm10k_update_itr - update the dynamic ITR value based on packet size
1324 * Stores a new ITR value based on strictly on packet size. The
1325 * divisors and thresholds used by this function were determined based
1326 * on theoretical maximum wire speed and testing data, in order to
1327 * minimize response time while increasing bulk throughput.
1329 * @ring_container: Container for rings to have ITR updated
1331 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1333 unsigned int avg_wire_size, packets, itr_round;
1335 /* Only update ITR if we are using adaptive setting */
1336 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1339 packets = ring_container->total_packets;
1343 avg_wire_size = ring_container->total_bytes / packets;
1345 /* The following is a crude approximation of:
1346 * wmem_default / (size + overhead) = desired_pkts_per_int
1347 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1348 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1350 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1351 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1354 * (34 * (size + 24)) / (size + 640) = ITR
1356 * We first do some math on the packet size and then finally bitshift
1357 * by 8 after rounding up. We also have to account for PCIe link speed
1358 * difference as ITR scales based on this.
1360 if (avg_wire_size <= 360) {
1361 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1363 avg_wire_size += 376;
1364 } else if (avg_wire_size <= 1152) {
1365 /* 77K ints/sec to 45K ints/sec */
1367 avg_wire_size += 2176;
1368 } else if (avg_wire_size <= 1920) {
1369 /* 45K ints/sec to 38K ints/sec */
1370 avg_wire_size += 4480;
1372 /* plateau at a limit of 38K ints/sec */
1373 avg_wire_size = 6656;
1376 /* Perform final bitshift for division after rounding up to ensure
1377 * that the calculation will never get below a 1. The bit shift
1378 * accounts for changes in the ITR due to PCIe link speed.
1380 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1381 avg_wire_size += BIT(itr_round) - 1;
1382 avg_wire_size >>= itr_round;
1384 /* write back value and retain adaptive flag */
1385 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1388 ring_container->total_bytes = 0;
1389 ring_container->total_packets = 0;
1392 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1394 /* Enable auto-mask and clear the current mask */
1395 u32 itr = FM10K_ITR_ENABLE;
1398 fm10k_update_itr(&q_vector->tx);
1401 fm10k_update_itr(&q_vector->rx);
1403 /* Store Tx itr in timer slot 0 */
1404 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1406 /* Shift Rx itr to timer slot 1 */
1407 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1409 /* Write the final value to the ITR register */
1410 writel(itr, q_vector->itr);
1413 static int fm10k_poll(struct napi_struct *napi, int budget)
1415 struct fm10k_q_vector *q_vector =
1416 container_of(napi, struct fm10k_q_vector, napi);
1417 struct fm10k_ring *ring;
1418 int per_ring_budget, work_done = 0;
1419 bool clean_complete = true;
1421 fm10k_for_each_ring(ring, q_vector->tx) {
1422 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1423 clean_complete = false;
1426 /* Handle case where we are called by netpoll with a budget of 0 */
1430 /* attempt to distribute budget to each queue fairly, but don't
1431 * allow the budget to go below 1 because we'll exit polling
1433 if (q_vector->rx.count > 1)
1434 per_ring_budget = max(budget / q_vector->rx.count, 1);
1436 per_ring_budget = budget;
1438 fm10k_for_each_ring(ring, q_vector->rx) {
1439 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1442 if (work >= per_ring_budget)
1443 clean_complete = false;
1446 /* If all work not completed, return budget and keep polling */
1447 if (!clean_complete)
1450 /* Exit the polling mode, but don't re-enable interrupts if stack might
1451 * poll us due to busy-polling
1453 if (likely(napi_complete_done(napi, work_done)))
1454 fm10k_qv_enable(q_vector);
1456 return min(work_done, budget - 1);
1460 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1461 * @interface: board private structure to initialize
1463 * When QoS (Quality of Service) is enabled, allocate queues for
1464 * each traffic class. If multiqueue isn't available,then abort QoS
1467 * This function handles all combinations of Qos and RSS.
1470 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1472 struct net_device *dev = interface->netdev;
1473 struct fm10k_ring_feature *f;
1477 /* Map queue offset and counts onto allocated tx queues */
1478 pcs = netdev_get_num_tc(dev);
1483 /* set QoS mask and indices */
1484 f = &interface->ring_feature[RING_F_QOS];
1486 f->mask = BIT(fls(pcs - 1)) - 1;
1488 /* determine the upper limit for our current DCB mode */
1489 rss_i = interface->hw.mac.max_queues / pcs;
1490 rss_i = BIT(fls(rss_i) - 1);
1492 /* set RSS mask and indices */
1493 f = &interface->ring_feature[RING_F_RSS];
1494 rss_i = min_t(u16, rss_i, f->limit);
1496 f->mask = BIT(fls(rss_i - 1)) - 1;
1498 /* configure pause class to queue mapping */
1499 for (i = 0; i < pcs; i++)
1500 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1502 interface->num_rx_queues = rss_i * pcs;
1503 interface->num_tx_queues = rss_i * pcs;
1509 * fm10k_set_rss_queues: Allocate queues for RSS
1510 * @interface: board private structure to initialize
1512 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1513 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1516 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1518 struct fm10k_ring_feature *f;
1521 f = &interface->ring_feature[RING_F_RSS];
1522 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1524 /* record indices and power of 2 mask for RSS */
1526 f->mask = BIT(fls(rss_i - 1)) - 1;
1528 interface->num_rx_queues = rss_i;
1529 interface->num_tx_queues = rss_i;
1535 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1536 * @interface: board private structure to initialize
1538 * This is the top level queue allocation routine. The order here is very
1539 * important, starting with the "most" number of features turned on at once,
1540 * and ending with the smallest set of features. This way large combinations
1541 * can be allocated if they're turned on, and smaller combinations are the
1542 * fall through conditions.
1545 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1547 /* Attempt to setup QoS and RSS first */
1548 if (fm10k_set_qos_queues(interface))
1551 /* If we don't have QoS, just fallback to only RSS. */
1552 fm10k_set_rss_queues(interface);
1556 * fm10k_reset_num_queues - Reset the number of queues to zero
1557 * @interface: board private structure
1559 * This function should be called whenever we need to reset the number of
1560 * queues after an error condition.
1562 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1564 interface->num_tx_queues = 0;
1565 interface->num_rx_queues = 0;
1566 interface->num_q_vectors = 0;
1570 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1571 * @interface: board private structure to initialize
1572 * @v_count: q_vectors allocated on interface, used for ring interleaving
1573 * @v_idx: index of vector in interface struct
1574 * @txr_count: total number of Tx rings to allocate
1575 * @txr_idx: index of first Tx ring to allocate
1576 * @rxr_count: total number of Rx rings to allocate
1577 * @rxr_idx: index of first Rx ring to allocate
1579 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1581 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1582 unsigned int v_count, unsigned int v_idx,
1583 unsigned int txr_count, unsigned int txr_idx,
1584 unsigned int rxr_count, unsigned int rxr_idx)
1586 struct fm10k_q_vector *q_vector;
1587 struct fm10k_ring *ring;
1590 ring_count = txr_count + rxr_count;
1592 /* allocate q_vector and rings */
1593 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1597 /* initialize NAPI */
1598 netif_napi_add(interface->netdev, &q_vector->napi,
1599 fm10k_poll, NAPI_POLL_WEIGHT);
1601 /* tie q_vector and interface together */
1602 interface->q_vector[v_idx] = q_vector;
1603 q_vector->interface = interface;
1604 q_vector->v_idx = v_idx;
1606 /* initialize pointer to rings */
1607 ring = q_vector->ring;
1609 /* save Tx ring container info */
1610 q_vector->tx.ring = ring;
1611 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612 q_vector->tx.itr = interface->tx_itr;
1613 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1614 q_vector->tx.count = txr_count;
1617 /* assign generic ring traits */
1618 ring->dev = &interface->pdev->dev;
1619 ring->netdev = interface->netdev;
1621 /* configure backlink on ring */
1622 ring->q_vector = q_vector;
1624 /* apply Tx specific ring traits */
1625 ring->count = interface->tx_ring_count;
1626 ring->queue_index = txr_idx;
1628 /* assign ring to interface */
1629 interface->tx_ring[txr_idx] = ring;
1631 /* update count and index */
1635 /* push pointer to next ring */
1639 /* save Rx ring container info */
1640 q_vector->rx.ring = ring;
1641 q_vector->rx.itr = interface->rx_itr;
1642 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1643 q_vector->rx.count = rxr_count;
1646 /* assign generic ring traits */
1647 ring->dev = &interface->pdev->dev;
1648 ring->netdev = interface->netdev;
1649 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1651 /* configure backlink on ring */
1652 ring->q_vector = q_vector;
1654 /* apply Rx specific ring traits */
1655 ring->count = interface->rx_ring_count;
1656 ring->queue_index = rxr_idx;
1658 /* assign ring to interface */
1659 interface->rx_ring[rxr_idx] = ring;
1661 /* update count and index */
1665 /* push pointer to next ring */
1669 fm10k_dbg_q_vector_init(q_vector);
1675 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1676 * @interface: board private structure to initialize
1677 * @v_idx: Index of vector to be freed
1679 * This function frees the memory allocated to the q_vector. In addition if
1680 * NAPI is enabled it will delete any references to the NAPI struct prior
1681 * to freeing the q_vector.
1683 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1685 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1686 struct fm10k_ring *ring;
1688 fm10k_dbg_q_vector_exit(q_vector);
1690 fm10k_for_each_ring(ring, q_vector->tx)
1691 interface->tx_ring[ring->queue_index] = NULL;
1693 fm10k_for_each_ring(ring, q_vector->rx)
1694 interface->rx_ring[ring->queue_index] = NULL;
1696 interface->q_vector[v_idx] = NULL;
1697 netif_napi_del(&q_vector->napi);
1698 kfree_rcu(q_vector, rcu);
1702 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1703 * @interface: board private structure to initialize
1705 * We allocate one q_vector per queue interrupt. If allocation fails we
1708 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1710 unsigned int q_vectors = interface->num_q_vectors;
1711 unsigned int rxr_remaining = interface->num_rx_queues;
1712 unsigned int txr_remaining = interface->num_tx_queues;
1713 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1716 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1717 for (; rxr_remaining; v_idx++) {
1718 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1723 /* update counts and index */
1729 for (; v_idx < q_vectors; v_idx++) {
1730 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1731 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1733 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1740 /* update counts and index */
1741 rxr_remaining -= rqpv;
1742 txr_remaining -= tqpv;
1750 fm10k_reset_num_queues(interface);
1753 fm10k_free_q_vector(interface, v_idx);
1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1760 * @interface: board private structure to initialize
1762 * This function frees the memory allocated to the q_vectors. In addition if
1763 * NAPI is enabled it will delete any references to the NAPI struct prior
1764 * to freeing the q_vector.
1766 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1768 int v_idx = interface->num_q_vectors;
1770 fm10k_reset_num_queues(interface);
1773 fm10k_free_q_vector(interface, v_idx);
1777 * fm10k_reset_msix_capability - reset MSI-X capability
1778 * @interface: board private structure to initialize
1780 * Reset the MSI-X capability back to its starting state
1782 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1784 pci_disable_msix(interface->pdev);
1785 kfree(interface->msix_entries);
1786 interface->msix_entries = NULL;
1790 * fm10k_init_msix_capability - configure MSI-X capability
1791 * @interface: board private structure to initialize
1793 * Attempt to configure the interrupts using the best available
1794 * capabilities of the hardware and the kernel.
1796 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1798 struct fm10k_hw *hw = &interface->hw;
1799 int v_budget, vector;
1801 /* It's easy to be greedy for MSI-X vectors, but it really
1802 * doesn't do us much good if we have a lot more vectors
1803 * than CPU's. So let's be conservative and only ask for
1804 * (roughly) the same number of vectors as there are CPU's.
1805 * the default is to use pairs of vectors
1807 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1808 v_budget = min_t(u16, v_budget, num_online_cpus());
1810 /* account for vectors not related to queues */
1811 v_budget += NON_Q_VECTORS;
1813 /* At the same time, hardware can only support a maximum of
1814 * hw.mac->max_msix_vectors vectors. With features
1815 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1816 * descriptor queues supported by our device. Thus, we cap it off in
1817 * those rare cases where the cpu count also exceeds our vector limit.
1819 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1821 /* A failure in MSI-X entry allocation is fatal. */
1822 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1824 if (!interface->msix_entries)
1827 /* populate entry values */
1828 for (vector = 0; vector < v_budget; vector++)
1829 interface->msix_entries[vector].entry = vector;
1831 /* Attempt to enable MSI-X with requested value */
1832 v_budget = pci_enable_msix_range(interface->pdev,
1833 interface->msix_entries,
1837 kfree(interface->msix_entries);
1838 interface->msix_entries = NULL;
1842 /* record the number of queues available for q_vectors */
1843 interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1849 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1850 * @interface: Interface structure continaining rings and devices
1852 * Cache the descriptor ring offsets for Qos
1854 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1856 struct net_device *dev = interface->netdev;
1857 int pc, offset, rss_i, i;
1858 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1859 u8 num_pcs = netdev_get_num_tc(dev);
1864 rss_i = interface->ring_feature[RING_F_RSS].indices;
1866 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1869 for (i = 0; i < rss_i; i++) {
1870 interface->tx_ring[offset + i]->reg_idx = q_idx;
1871 interface->tx_ring[offset + i]->qos_pc = pc;
1872 interface->rx_ring[offset + i]->reg_idx = q_idx;
1873 interface->rx_ring[offset + i]->qos_pc = pc;
1882 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1883 * @interface: Interface structure continaining rings and devices
1885 * Cache the descriptor ring offsets for RSS
1887 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1891 for (i = 0; i < interface->num_rx_queues; i++)
1892 interface->rx_ring[i]->reg_idx = i;
1894 for (i = 0; i < interface->num_tx_queues; i++)
1895 interface->tx_ring[i]->reg_idx = i;
1899 * fm10k_assign_rings - Map rings to network devices
1900 * @interface: Interface structure containing rings and devices
1902 * This function is meant to go though and configure both the network
1903 * devices so that they contain rings, and configure the rings so that
1904 * they function with their network devices.
1906 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1908 if (fm10k_cache_ring_qos(interface))
1911 fm10k_cache_ring_rss(interface);
1914 static void fm10k_init_reta(struct fm10k_intfc *interface)
1916 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1919 /* If the Rx flow indirection table has been configured manually, we
1920 * need to maintain it when possible.
1922 if (netif_is_rxfh_configured(interface->netdev)) {
1923 for (i = FM10K_RETA_SIZE; i--;) {
1924 reta = interface->reta[i];
1925 if ((((reta << 24) >> 24) < rss_i) &&
1926 (((reta << 16) >> 24) < rss_i) &&
1927 (((reta << 8) >> 24) < rss_i) &&
1928 (((reta) >> 24) < rss_i))
1931 /* this should never happen */
1932 dev_err(&interface->pdev->dev,
1933 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1934 goto repopulate_reta;
1937 /* do nothing if all of the elements are in bounds */
1942 fm10k_write_reta(interface, NULL);
1946 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1947 * @interface: board private structure to initialize
1949 * We determine which queueing scheme to use based on...
1950 * - Hardware queue count (num_*_queues)
1951 * - defined by miscellaneous hardware support/features (RSS, etc.)
1953 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1957 /* Number of supported queues */
1958 fm10k_set_num_queues(interface);
1960 /* Configure MSI-X capability */
1961 err = fm10k_init_msix_capability(interface);
1963 dev_err(&interface->pdev->dev,
1964 "Unable to initialize MSI-X capability\n");
1968 /* Allocate memory for queues */
1969 err = fm10k_alloc_q_vectors(interface);
1971 dev_err(&interface->pdev->dev,
1972 "Unable to allocate queue vectors\n");
1973 goto err_alloc_q_vectors;
1976 /* Map rings to devices, and map devices to physical queues */
1977 fm10k_assign_rings(interface);
1979 /* Initialize RSS redirection table */
1980 fm10k_init_reta(interface);
1984 err_alloc_q_vectors:
1985 fm10k_reset_msix_capability(interface);
1987 fm10k_reset_num_queues(interface);
1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1993 * @interface: board private structure to clear queueing scheme on
1995 * We go through and clear queueing specific resources and reset the structure
1996 * to pre-load conditions
1998 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2000 fm10k_free_q_vectors(interface);
2001 fm10k_reset_msix_capability(interface);