1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
5 #include <net/ip6_checksum.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
15 /* e1000_pci_tbl - PCI Device ID Table
17 * Last entry must be all 0s
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
22 static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
152 static int __maybe_unused e1000_suspend(struct device *dev);
153 static int __maybe_unused e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
172 static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
180 static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194 MODULE_LICENSE("GPL v2");
196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197 static int debug = -1;
198 module_param(debug, int, 0);
199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
202 * e1000_get_hw_dev - helper function for getting netdev
203 * @hw: pointer to HW struct
205 * return device used by hardware layer to print debugging information
208 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
210 struct e1000_adapter *adapter = hw->back;
211 return adapter->netdev;
215 * e1000_init_module - Driver Registration Routine
217 * e1000_init_module is the first routine called when the driver is
218 * loaded. All it does is register with the PCI subsystem.
220 static int __init e1000_init_module(void)
223 pr_info("%s\n", e1000_driver_string);
225 pr_info("%s\n", e1000_copyright);
227 ret = pci_register_driver(&e1000_driver);
228 if (copybreak != COPYBREAK_DEFAULT) {
230 pr_info("copybreak disabled\n");
232 pr_info("copybreak enabled for "
233 "packets <= %u bytes\n", copybreak);
238 module_init(e1000_init_module);
241 * e1000_exit_module - Driver Exit Cleanup Routine
243 * e1000_exit_module is called just before the driver is removed
246 static void __exit e1000_exit_module(void)
248 pci_unregister_driver(&e1000_driver);
251 module_exit(e1000_exit_module);
253 static int e1000_request_irq(struct e1000_adapter *adapter)
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
269 static void e1000_free_irq(struct e1000_adapter *adapter)
271 struct net_device *netdev = adapter->netdev;
273 free_irq(adapter->pdev->irq, netdev);
277 * e1000_irq_disable - Mask off interrupt generation on the NIC
278 * @adapter: board private structure
280 static void e1000_irq_disable(struct e1000_adapter *adapter)
282 struct e1000_hw *hw = &adapter->hw;
286 synchronize_irq(adapter->pdev->irq);
290 * e1000_irq_enable - Enable default interrupt generation settings
291 * @adapter: board private structure
293 static void e1000_irq_enable(struct e1000_adapter *adapter)
295 struct e1000_hw *hw = &adapter->hw;
297 ew32(IMS, IMS_ENABLE_MASK);
301 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
303 struct e1000_hw *hw = &adapter->hw;
304 struct net_device *netdev = adapter->netdev;
305 u16 vid = hw->mng_cookie.vlan_id;
306 u16 old_vid = adapter->mng_vlan_id;
308 if (!e1000_vlan_used(adapter))
311 if (!test_bit(vid, adapter->active_vlans)) {
312 if (hw->mng_cookie.status &
313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 adapter->mng_vlan_id = vid;
317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
321 !test_bit(old_vid, adapter->active_vlans))
322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
325 adapter->mng_vlan_id = vid;
329 static void e1000_init_manageability(struct e1000_adapter *adapter)
331 struct e1000_hw *hw = &adapter->hw;
333 if (adapter->en_mng_pt) {
334 u32 manc = er32(MANC);
336 /* disable hardware interception of ARP */
337 manc &= ~(E1000_MANC_ARP_EN);
343 static void e1000_release_manageability(struct e1000_adapter *adapter)
345 struct e1000_hw *hw = &adapter->hw;
347 if (adapter->en_mng_pt) {
348 u32 manc = er32(MANC);
350 /* re-enable hardware interception of ARP */
351 manc |= E1000_MANC_ARP_EN;
358 * e1000_configure - configure the hardware for RX and TX
359 * @adapter: private board structure
361 static void e1000_configure(struct e1000_adapter *adapter)
363 struct net_device *netdev = adapter->netdev;
366 e1000_set_rx_mode(netdev);
368 e1000_restore_vlan(adapter);
369 e1000_init_manageability(adapter);
371 e1000_configure_tx(adapter);
372 e1000_setup_rctl(adapter);
373 e1000_configure_rx(adapter);
374 /* call E1000_DESC_UNUSED which always leaves
375 * at least 1 descriptor unused to make sure
376 * next_to_use != next_to_clean
378 for (i = 0; i < adapter->num_rx_queues; i++) {
379 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 adapter->alloc_rx_buf(adapter, ring,
381 E1000_DESC_UNUSED(ring));
385 int e1000_up(struct e1000_adapter *adapter)
387 struct e1000_hw *hw = &adapter->hw;
389 /* hardware has been reset, we need to reload some things */
390 e1000_configure(adapter);
392 clear_bit(__E1000_DOWN, &adapter->flags);
394 napi_enable(&adapter->napi);
396 e1000_irq_enable(adapter);
398 netif_wake_queue(adapter->netdev);
400 /* fire a link change interrupt to start the watchdog */
401 ew32(ICS, E1000_ICS_LSC);
406 * e1000_power_up_phy - restore link in case the phy was powered down
407 * @adapter: address of board private structure
409 * The phy may be powered down to save power and turn off link when the
410 * driver is unloaded and wake on lan is not enabled (among others)
411 * *** this routine MUST be followed by a call to e1000_reset ***
413 void e1000_power_up_phy(struct e1000_adapter *adapter)
415 struct e1000_hw *hw = &adapter->hw;
418 /* Just clear the power down bit to wake the phy back up */
419 if (hw->media_type == e1000_media_type_copper) {
420 /* according to the manual, the phy will retain its
421 * settings across a power-down/up cycle
423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424 mii_reg &= ~MII_CR_POWER_DOWN;
425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
429 static void e1000_power_down_phy(struct e1000_adapter *adapter)
431 struct e1000_hw *hw = &adapter->hw;
433 /* Power down the PHY so no link is implied when interface is down *
434 * The PHY cannot be powered down if any of the following is true *
437 * (c) SoL/IDER session is active
439 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 hw->media_type == e1000_media_type_copper) {
443 switch (hw->mac_type) {
446 case e1000_82545_rev_3:
449 case e1000_82546_rev_3:
451 case e1000_82541_rev_2:
453 case e1000_82547_rev_2:
454 if (er32(MANC) & E1000_MANC_SMBUS_EN)
460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461 mii_reg |= MII_CR_POWER_DOWN;
462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
469 static void e1000_down_and_stop(struct e1000_adapter *adapter)
471 set_bit(__E1000_DOWN, &adapter->flags);
473 cancel_delayed_work_sync(&adapter->watchdog_task);
476 * Since the watchdog task can reschedule other tasks, we should cancel
477 * it first, otherwise we can run into the situation when a work is
478 * still running after the adapter has been turned down.
481 cancel_delayed_work_sync(&adapter->phy_info_task);
482 cancel_delayed_work_sync(&adapter->fifo_stall_task);
484 /* Only kill reset task if adapter is not resetting */
485 if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 cancel_work_sync(&adapter->reset_task);
489 void e1000_down(struct e1000_adapter *adapter)
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
495 /* disable receives in the hardware */
497 ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 /* flush and sleep below */
500 netif_tx_disable(netdev);
502 /* disable transmits in the hardware */
504 tctl &= ~E1000_TCTL_EN;
506 /* flush both disables and wait for them to finish */
510 /* Set the carrier off after transmits have been disabled in the
511 * hardware, to avoid race conditions with e1000_watchdog() (which
512 * may be running concurrently to us, checking for the carrier
513 * bit to decide whether it should enable transmits again). Such
514 * a race condition would result into transmission being disabled
515 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
517 netif_carrier_off(netdev);
519 napi_disable(&adapter->napi);
521 e1000_irq_disable(adapter);
523 /* Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * tasks from rescheduling.
527 e1000_down_and_stop(adapter);
529 adapter->link_speed = 0;
530 adapter->link_duplex = 0;
532 e1000_reset(adapter);
533 e1000_clean_all_tx_rings(adapter);
534 e1000_clean_all_rx_rings(adapter);
537 void e1000_reinit_locked(struct e1000_adapter *adapter)
539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
542 /* only run the task if not already down */
543 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
548 clear_bit(__E1000_RESETTING, &adapter->flags);
551 void e1000_reset(struct e1000_adapter *adapter)
553 struct e1000_hw *hw = &adapter->hw;
554 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 bool legacy_pba_adjust = false;
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
562 switch (hw->mac_type) {
563 case e1000_82542_rev2_0:
564 case e1000_82542_rev2_1:
569 case e1000_82541_rev_2:
570 legacy_pba_adjust = true;
574 case e1000_82545_rev_3:
577 case e1000_82546_rev_3:
581 case e1000_82547_rev_2:
582 legacy_pba_adjust = true;
585 case e1000_undefined:
590 if (legacy_pba_adjust) {
591 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 pba -= 8; /* allocate more FIFO for Tx */
594 if (hw->mac_type == e1000_82547) {
595 adapter->tx_fifo_head = 0;
596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 adapter->tx_fifo_size =
598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 atomic_set(&adapter->tx_fifo_stall, 0);
601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
602 /* adjust PBA for jumbo frames */
605 /* To maintain wire speed transmits, the Tx FIFO should be
606 * large enough to accommodate two full transmit packets,
607 * rounded up to the next 1KB and expressed in KB. Likewise,
608 * the Rx FIFO should be large enough to accommodate at least
609 * one full receive packet and is similarly rounded up and
613 /* upper 16 bits has Tx packet buffer allocation size in KB */
614 tx_space = pba >> 16;
615 /* lower 16 bits has Rx packet buffer allocation size in KB */
617 /* the Tx fifo also stores 16 bytes of information about the Tx
618 * but don't include ethernet FCS because hardware appends it
620 min_tx_space = (hw->max_frame_size +
621 sizeof(struct e1000_tx_desc) -
623 min_tx_space = ALIGN(min_tx_space, 1024);
625 /* software strips receive CRC, so leave room for it */
626 min_rx_space = hw->max_frame_size;
627 min_rx_space = ALIGN(min_rx_space, 1024);
630 /* If current Tx allocation is less than the min Tx FIFO size,
631 * and the min Tx FIFO size is less than the current Rx FIFO
632 * allocation, take space away from current Rx allocation
634 if (tx_space < min_tx_space &&
635 ((min_tx_space - tx_space) < pba)) {
636 pba = pba - (min_tx_space - tx_space);
638 /* PCI/PCIx hardware has PBA alignment constraints */
639 switch (hw->mac_type) {
640 case e1000_82545 ... e1000_82546_rev_3:
641 pba &= ~(E1000_PBA_8K - 1);
647 /* if short on Rx space, Rx wins and must trump Tx
648 * adjustment or use Early Receive if available
650 if (pba < min_rx_space)
657 /* flow control settings:
658 * The high water mark must be low enough to fit one full frame
659 * (or the size used for early receive) above it in the Rx FIFO.
660 * Set it to the lower of:
661 * - 90% of the Rx FIFO size, and
662 * - the full Rx FIFO size minus the early receive size (for parts
663 * with ERT support assuming ERT set to E1000_ERT_2048), or
664 * - the full Rx FIFO size minus one full frame
666 hwm = min(((pba << 10) * 9 / 10),
667 ((pba << 10) - hw->max_frame_size));
669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
670 hw->fc_low_water = hw->fc_high_water - 8;
671 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
673 hw->fc = hw->original_fc;
675 /* Allow time for pending master requests to run */
677 if (hw->mac_type >= e1000_82544)
680 if (e1000_init_hw(hw))
681 e_dev_err("Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 if (hw->mac_type >= e1000_82544 &&
687 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 u32 ctrl = er32(CTRL);
689 /* clear phy power management bit if we are in gig only mode,
690 * which if enabled will attempt negotiation to 100Mb, which
691 * can cause a loss of link at power off or driver unload
693 ctrl &= ~E1000_CTRL_SWDPIN3;
697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
700 e1000_reset_adaptive(hw);
701 e1000_phy_get_info(hw, &adapter->phy_info);
703 e1000_release_manageability(adapter);
706 /* Dump the eeprom for users having checksum issues */
707 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
709 struct net_device *netdev = adapter->netdev;
710 struct ethtool_eeprom eeprom;
711 const struct ethtool_ops *ops = netdev->ethtool_ops;
714 u16 csum_old, csum_new = 0;
716 eeprom.len = ops->get_eeprom_len(netdev);
719 data = kmalloc(eeprom.len, GFP_KERNEL);
723 ops->get_eeprom(netdev, &eeprom, data);
725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 csum_new += data[i] + (data[i + 1] << 8);
729 csum_new = EEPROM_SUM - csum_new;
731 pr_err("/*********************/\n");
732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 pr_err("Calculated : 0x%04x\n", csum_new);
735 pr_err("Offset Values\n");
736 pr_err("======== ======\n");
737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
739 pr_err("Include this output when contacting your support provider.\n");
740 pr_err("This is not a software error! Something bad happened to\n");
741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 pr_err("result in further problems, possibly loss of data,\n");
743 pr_err("corruption or system hangs!\n");
744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 pr_err("which is invalid and requires you to set the proper MAC\n");
746 pr_err("address manually before continuing to enable this network\n");
747 pr_err("device. Please inspect the EEPROM dump and report the\n");
748 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 pr_err("/*********************/\n");
755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756 * @pdev: PCI device information struct
758 * Return true if an adapter needs ioport resources
760 static int e1000_is_need_ioport(struct pci_dev *pdev)
762 switch (pdev->device) {
763 case E1000_DEV_ID_82540EM:
764 case E1000_DEV_ID_82540EM_LOM:
765 case E1000_DEV_ID_82540EP:
766 case E1000_DEV_ID_82540EP_LOM:
767 case E1000_DEV_ID_82540EP_LP:
768 case E1000_DEV_ID_82541EI:
769 case E1000_DEV_ID_82541EI_MOBILE:
770 case E1000_DEV_ID_82541ER:
771 case E1000_DEV_ID_82541ER_LOM:
772 case E1000_DEV_ID_82541GI:
773 case E1000_DEV_ID_82541GI_LF:
774 case E1000_DEV_ID_82541GI_MOBILE:
775 case E1000_DEV_ID_82544EI_COPPER:
776 case E1000_DEV_ID_82544EI_FIBER:
777 case E1000_DEV_ID_82544GC_COPPER:
778 case E1000_DEV_ID_82544GC_LOM:
779 case E1000_DEV_ID_82545EM_COPPER:
780 case E1000_DEV_ID_82545EM_FIBER:
781 case E1000_DEV_ID_82546EB_COPPER:
782 case E1000_DEV_ID_82546EB_FIBER:
783 case E1000_DEV_ID_82546EB_QUAD_COPPER:
790 static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 netdev_features_t features)
793 /* Since there is no support for separate Rx/Tx vlan accel
794 * enable/disable make sure Tx flag is always in same state as Rx.
796 if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 features |= NETIF_F_HW_VLAN_CTAG_TX;
799 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
804 static int e1000_set_features(struct net_device *netdev,
805 netdev_features_t features)
807 struct e1000_adapter *adapter = netdev_priv(netdev);
808 netdev_features_t changed = features ^ netdev->features;
810 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 e1000_vlan_mode(netdev, features);
813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
816 netdev->features = features;
817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
819 if (netif_running(netdev))
820 e1000_reinit_locked(adapter);
822 e1000_reset(adapter);
827 static const struct net_device_ops e1000_netdev_ops = {
828 .ndo_open = e1000_open,
829 .ndo_stop = e1000_close,
830 .ndo_start_xmit = e1000_xmit_frame,
831 .ndo_set_rx_mode = e1000_set_rx_mode,
832 .ndo_set_mac_address = e1000_set_mac,
833 .ndo_tx_timeout = e1000_tx_timeout,
834 .ndo_change_mtu = e1000_change_mtu,
835 .ndo_do_ioctl = e1000_ioctl,
836 .ndo_validate_addr = eth_validate_addr,
837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
839 #ifdef CONFIG_NET_POLL_CONTROLLER
840 .ndo_poll_controller = e1000_netpoll,
842 .ndo_fix_features = e1000_fix_features,
843 .ndo_set_features = e1000_set_features,
847 * e1000_init_hw_struct - initialize members of hw struct
848 * @adapter: board private struct
849 * @hw: structure used by e1000_hw.c
851 * Factors out initialization of the e1000_hw struct to its own function
852 * that can be called very early at init (just after struct allocation).
853 * Fields are initialized based on PCI device information and
854 * OS network device settings (MTU size).
855 * Returns negative error codes if MAC type setup fails.
857 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
860 struct pci_dev *pdev = adapter->pdev;
862 /* PCI config space info */
863 hw->vendor_id = pdev->vendor;
864 hw->device_id = pdev->device;
865 hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 hw->subsystem_id = pdev->subsystem_device;
867 hw->revision_id = pdev->revision;
869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
871 hw->max_frame_size = adapter->netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
875 /* identify the MAC */
876 if (e1000_set_mac_type(hw)) {
877 e_err(probe, "Unknown MAC Type\n");
881 switch (hw->mac_type) {
886 case e1000_82541_rev_2:
887 case e1000_82547_rev_2:
888 hw->phy_init_script = 1;
892 e1000_set_media_type(hw);
893 e1000_get_bus_info(hw);
895 hw->wait_autoneg_complete = false;
896 hw->tbi_compatibility_en = true;
897 hw->adaptive_ifs = true;
901 if (hw->media_type == e1000_media_type_copper) {
902 hw->mdix = AUTO_ALL_MODES;
903 hw->disable_polarity_correction = false;
904 hw->master_slave = E1000_MASTER_SLAVE;
911 * e1000_probe - Device Initialization Routine
912 * @pdev: PCI device information struct
913 * @ent: entry in e1000_pci_tbl
915 * Returns 0 on success, negative on failure
917 * e1000_probe initializes an adapter identified by a pci_dev structure.
918 * The OS initialization, configuring of the adapter private structure,
919 * and a hardware reset occur.
921 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
923 struct net_device *netdev;
924 struct e1000_adapter *adapter = NULL;
927 static int cards_found;
928 static int global_quad_port_a; /* global ksp3 port a indication */
929 int i, err, pci_using_dac;
932 u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 int bars, need_ioport;
934 bool disable_dev = false;
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
952 pci_set_master(pdev);
953 err = pci_save_state(pdev);
955 goto err_alloc_etherdev;
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
960 goto err_alloc_etherdev;
962 SET_NETDEV_DEV(netdev, &pdev->dev);
964 pci_set_drvdata(pdev, netdev);
965 adapter = netdev_priv(netdev);
966 adapter->netdev = netdev;
967 adapter->pdev = pdev;
968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969 adapter->bars = bars;
970 adapter->need_ioport = need_ioport;
976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
980 if (adapter->need_ioport) {
981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 if (pci_resource_len(pdev, i) == 0)
984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 hw->io_base = pci_resource_start(pdev, i);
991 /* make ready for any if (hw->...) below */
992 err = e1000_init_hw_struct(adapter, hw);
996 /* there is a workaround being applied below that limits
997 * 64-bit DMA addresses to 64-bit hardware. There are some
998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1001 if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1007 pr_err("No usable DMA config, aborting\n");
1012 netdev->netdev_ops = &e1000_netdev_ops;
1013 e1000_set_ethtool_ops(netdev);
1014 netdev->watchdog_timeo = 5 * HZ;
1015 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1017 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1019 adapter->bd_number = cards_found;
1021 /* setup the private structure */
1023 err = e1000_sw_init(adapter);
1028 if (hw->mac_type == e1000_ce4100) {
1029 hw->ce4100_gbe_mdio_base_virt =
1030 ioremap(pci_resource_start(pdev, BAR_1),
1031 pci_resource_len(pdev, BAR_1));
1033 if (!hw->ce4100_gbe_mdio_base_virt)
1034 goto err_mdio_ioremap;
1037 if (hw->mac_type >= e1000_82543) {
1038 netdev->hw_features = NETIF_F_SG |
1040 NETIF_F_HW_VLAN_CTAG_RX;
1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 NETIF_F_HW_VLAN_CTAG_FILTER;
1045 if ((hw->mac_type >= e1000_82544) &&
1046 (hw->mac_type != e1000_82547))
1047 netdev->hw_features |= NETIF_F_TSO;
1049 netdev->priv_flags |= IFF_SUPP_NOFCS;
1051 netdev->features |= netdev->hw_features;
1052 netdev->hw_features |= (NETIF_F_RXCSUM |
1056 if (pci_using_dac) {
1057 netdev->features |= NETIF_F_HIGHDMA;
1058 netdev->vlan_features |= NETIF_F_HIGHDMA;
1061 netdev->vlan_features |= (NETIF_F_TSO |
1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 netdev->priv_flags |= IFF_UNICAST_FLT;
1070 /* MTU range: 46 - 16110 */
1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1076 /* initialize eeprom parameters */
1077 if (e1000_init_eeprom_params(hw)) {
1078 e_err(probe, "EEPROM initialization failed\n");
1082 /* before reading the EEPROM, reset the controller to
1083 * put the device in a known good starting state
1088 /* make sure the EEPROM is good */
1089 if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 e1000_dump_eeprom(adapter);
1092 /* set MAC address to all zeroes to invalidate and temporary
1093 * disable this device for the user. This blocks regular
1094 * traffic while still permitting ethtool ioctls from reaching
1095 * the hardware as well as allowing the user to run the
1096 * interface after manually setting a hw addr using
1099 memset(hw->mac_addr, 0, netdev->addr_len);
1101 /* copy the MAC address out of the EEPROM */
1102 if (e1000_read_mac_addr(hw))
1103 e_err(probe, "EEPROM Read Error\n");
1105 /* don't block initialization here due to bad MAC address */
1106 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1108 if (!is_valid_ether_addr(netdev->dev_addr))
1109 e_err(probe, "Invalid MAC Address\n");
1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 e1000_82547_tx_fifo_stall_task);
1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1118 e1000_check_options(adapter);
1120 /* Initial Wake on LAN setting
1121 * If APM wake is enabled in the EEPROM,
1122 * enable the ACPI Magic Packet filter
1125 switch (hw->mac_type) {
1126 case e1000_82542_rev2_0:
1127 case e1000_82542_rev2_1:
1131 e1000_read_eeprom(hw,
1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1136 case e1000_82546_rev_3:
1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1148 if (eeprom_data & eeprom_apme_mask)
1149 adapter->eeprom_wol |= E1000_WUFC_MAG;
1151 /* now that we have the eeprom settings, apply the special cases
1152 * where the eeprom may be wrong or the board simply won't support
1153 * wake on lan on a particular port
1155 switch (pdev->device) {
1156 case E1000_DEV_ID_82546GB_PCIE:
1157 adapter->eeprom_wol = 0;
1159 case E1000_DEV_ID_82546EB_FIBER:
1160 case E1000_DEV_ID_82546GB_FIBER:
1161 /* Wake events only supported on port A for dual fiber
1162 * regardless of eeprom setting
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 adapter->eeprom_wol = 0;
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 /* if quad port adapter, disable WoL on all but port A */
1169 if (global_quad_port_a != 0)
1170 adapter->eeprom_wol = 0;
1172 adapter->quad_port_a = true;
1173 /* Reset for multiple quad port adapters */
1174 if (++global_quad_port_a == 4)
1175 global_quad_port_a = 0;
1179 /* initialize the wol settings based on the eeprom settings */
1180 adapter->wol = adapter->eeprom_wol;
1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1183 /* Auto detect PHY address */
1184 if (hw->mac_type == e1000_ce4100) {
1185 for (i = 0; i < 32; i++) {
1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1189 if (tmp != 0 && tmp != 0xFF)
1197 /* reset the hardware with the new settings */
1198 e1000_reset(adapter);
1200 strcpy(netdev->name, "eth%d");
1201 err = register_netdev(netdev);
1205 e1000_vlan_filter_on_off(adapter, false);
1207 /* print bus type/speed/width info */
1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1217 /* carrier off reporting is important to ethtool even BEFORE open */
1218 netif_carrier_off(netdev);
1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227 e1000_phy_hw_reset(hw);
1229 if (hw->flash_address)
1230 iounmap(hw->flash_address);
1231 kfree(adapter->tx_ring);
1232 kfree(adapter->rx_ring);
1236 iounmap(hw->ce4100_gbe_mdio_base_virt);
1237 iounmap(hw->hw_addr);
1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240 free_netdev(netdev);
1242 pci_release_selected_regions(pdev, bars);
1244 if (!adapter || disable_dev)
1245 pci_disable_device(pdev);
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1258 static void e1000_remove(struct pci_dev *pdev)
1260 struct net_device *netdev = pci_get_drvdata(pdev);
1261 struct e1000_adapter *adapter = netdev_priv(netdev);
1262 struct e1000_hw *hw = &adapter->hw;
1265 e1000_down_and_stop(adapter);
1266 e1000_release_manageability(adapter);
1268 unregister_netdev(netdev);
1270 e1000_phy_hw_reset(hw);
1272 kfree(adapter->tx_ring);
1273 kfree(adapter->rx_ring);
1275 if (hw->mac_type == e1000_ce4100)
1276 iounmap(hw->ce4100_gbe_mdio_base_virt);
1277 iounmap(hw->hw_addr);
1278 if (hw->flash_address)
1279 iounmap(hw->flash_address);
1280 pci_release_selected_regions(pdev, adapter->bars);
1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283 free_netdev(netdev);
1286 pci_disable_device(pdev);
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1296 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300 adapter->num_tx_queues = 1;
1301 adapter->num_rx_queues = 1;
1303 if (e1000_alloc_queues(adapter)) {
1304 e_err(probe, "Unable to allocate memory for queues\n");
1308 /* Explicitly disable IRQ since the NIC can be in any state. */
1309 e1000_irq_disable(adapter);
1311 spin_lock_init(&adapter->stats_lock);
1313 set_bit(__E1000_DOWN, &adapter->flags);
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1325 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 if (!adapter->tx_ring)
1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 if (!adapter->rx_ring) {
1335 kfree(adapter->tx_ring);
1339 return E1000_SUCCESS;
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1346 * Returns 0 on success, negative value on failure
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP). At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1354 int e1000_open(struct net_device *netdev)
1356 struct e1000_adapter *adapter = netdev_priv(netdev);
1357 struct e1000_hw *hw = &adapter->hw;
1360 /* disallow open during test */
1361 if (test_bit(__E1000_TESTING, &adapter->flags))
1364 netif_carrier_off(netdev);
1366 /* allocate transmit descriptors */
1367 err = e1000_setup_all_tx_resources(adapter);
1371 /* allocate receive descriptors */
1372 err = e1000_setup_all_rx_resources(adapter);
1376 e1000_power_up_phy(adapter);
1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 if ((hw->mng_cookie.status &
1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 e1000_update_mng_vlan(adapter);
1384 /* before we allocate an interrupt, we must be ready to handle it.
1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 * as soon as we call pci_request_irq, so we have to setup our
1387 * clean_rx handler before we do so.
1389 e1000_configure(adapter);
1391 err = e1000_request_irq(adapter);
1395 /* From here on the code is the same as e1000_up() */
1396 clear_bit(__E1000_DOWN, &adapter->flags);
1398 napi_enable(&adapter->napi);
1400 e1000_irq_enable(adapter);
1402 netif_start_queue(netdev);
1404 /* fire a link status change interrupt to start the watchdog */
1405 ew32(ICS, E1000_ICS_LSC);
1407 return E1000_SUCCESS;
1410 e1000_power_down_phy(adapter);
1411 e1000_free_all_rx_resources(adapter);
1413 e1000_free_all_tx_resources(adapter);
1415 e1000_reset(adapter);
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1424 * Returns 0, this is not allowed to fail
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS. The hardware is still under the drivers control, but
1428 * needs to be disabled. A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1431 int e1000_close(struct net_device *netdev)
1433 struct e1000_adapter *adapter = netdev_priv(netdev);
1434 struct e1000_hw *hw = &adapter->hw;
1435 int count = E1000_CHECK_RESET_COUNT;
1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438 usleep_range(10000, 20000);
1442 /* signal that we're down so that the reset task will no longer run */
1443 set_bit(__E1000_DOWN, &adapter->flags);
1444 clear_bit(__E1000_RESETTING, &adapter->flags);
1446 e1000_down(adapter);
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1450 e1000_free_all_tx_resources(adapter);
1451 e1000_free_all_rx_resources(adapter);
1453 /* kill manageability vlan ID if supported, but not if a vlan with
1454 * the same ID is registered on the host OS (let 8021q kill it)
1456 if ((hw->mng_cookie.status &
1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 adapter->mng_vlan_id);
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) == 0;
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1496 * Return 0 on success, negative on failure
1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1501 struct pci_dev *pdev = adapter->pdev;
1504 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1509 /* round up to nearest 4K */
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1518 vfree(txdr->buffer_info);
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1535 goto setup_tx_desc_die;
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(txdr->buffer_info);
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554 memset(txdr->desc, 0, txdr->size);
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1567 * Return 0 on success, negative on failure
1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 &adapter->tx_ring[i]);
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1591 * Configure the Tx unit of the MAC after a reset.
1593 static void e1000_configure_tx(struct e1000_adapter *adapter)
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1602 switch (adapter->num_tx_queues) {
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 /* Set the Tx Interrupt Delay register */
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1649 /* Program the Transmit Control Register */
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1656 e1000_config_collision_dist(hw);
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1686 * Returns 0 on success, negative on failure
1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1691 struct pci_dev *pdev = adapter->pdev;
1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1699 desc_len = sizeof(struct e1000_rx_desc);
1701 /* Round up to nearest 4K */
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1710 vfree(rxdr->buffer_info);
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1727 goto setup_rx_desc_die;
1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1745 memset(rxdr->desc, 0, rxdr->size);
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1759 * Return 0 on success, negative on failure
1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 &adapter->rx_ring[i]);
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1783 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1785 struct e1000_hw *hw = &adapter->hw;
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1799 rctl &= ~E1000_RCTL_SBP;
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1804 rctl |= E1000_RCTL_LPE;
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1850 * Configure the Rx unit of the MAC after a reset.
1852 static void e1000_configure_rx(struct e1000_adapter *adapter)
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 /* disable receives while setting up the descriptors */
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1886 switch (adapter->num_rx_queues) {
1889 rdba = adapter->rx_ring[0].dma;
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1922 * Free all transmit software resources
1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1927 struct pci_dev *pdev = adapter->pdev;
1929 e1000_clean_tx_ring(adapter, tx_ring);
1931 vfree(tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->desc = NULL;
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1944 * Free all transmit software resources
1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1955 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 struct e1000_tx_buffer *buffer_info)
1958 if (buffer_info->dma) {
1959 if (buffer_info->mapped_as_page)
1960 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1961 buffer_info->length, DMA_TO_DEVICE);
1963 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length,
1966 buffer_info->dma = 0;
1968 if (buffer_info->skb) {
1969 dev_kfree_skb_any(buffer_info->skb);
1970 buffer_info->skb = NULL;
1972 buffer_info->time_stamp = 0;
1973 /* buffer_info must be completely set up in the transmit path */
1977 * e1000_clean_tx_ring - Free Tx Buffers
1978 * @adapter: board private structure
1979 * @tx_ring: ring to be cleaned
1981 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1982 struct e1000_tx_ring *tx_ring)
1984 struct e1000_hw *hw = &adapter->hw;
1985 struct e1000_tx_buffer *buffer_info;
1989 /* Free all the Tx ring sk_buffs */
1991 for (i = 0; i < tx_ring->count; i++) {
1992 buffer_info = &tx_ring->buffer_info[i];
1993 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1996 netdev_reset_queue(adapter->netdev);
1997 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1998 memset(tx_ring->buffer_info, 0, size);
2000 /* Zero out the descriptor ring */
2002 memset(tx_ring->desc, 0, tx_ring->size);
2004 tx_ring->next_to_use = 0;
2005 tx_ring->next_to_clean = 0;
2006 tx_ring->last_tx_tso = false;
2008 writel(0, hw->hw_addr + tx_ring->tdh);
2009 writel(0, hw->hw_addr + tx_ring->tdt);
2013 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2014 * @adapter: board private structure
2016 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020 for (i = 0; i < adapter->num_tx_queues; i++)
2021 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025 * e1000_free_rx_resources - Free Rx Resources
2026 * @adapter: board private structure
2027 * @rx_ring: ring to clean the resources from
2029 * Free all receive software resources
2031 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2032 struct e1000_rx_ring *rx_ring)
2034 struct pci_dev *pdev = adapter->pdev;
2036 e1000_clean_rx_ring(adapter, rx_ring);
2038 vfree(rx_ring->buffer_info);
2039 rx_ring->buffer_info = NULL;
2041 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2044 rx_ring->desc = NULL;
2048 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2049 * @adapter: board private structure
2051 * Free all receive software resources
2053 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057 for (i = 0; i < adapter->num_rx_queues; i++)
2058 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2061 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2062 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2065 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2068 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070 unsigned int len = e1000_frag_len(a);
2071 u8 *data = netdev_alloc_frag(len);
2074 data += E1000_HEADROOM;
2079 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2080 * @adapter: board private structure
2081 * @rx_ring: ring to free buffers from
2083 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2084 struct e1000_rx_ring *rx_ring)
2086 struct e1000_hw *hw = &adapter->hw;
2087 struct e1000_rx_buffer *buffer_info;
2088 struct pci_dev *pdev = adapter->pdev;
2092 /* Free all the Rx netfrags */
2093 for (i = 0; i < rx_ring->count; i++) {
2094 buffer_info = &rx_ring->buffer_info[i];
2095 if (adapter->clean_rx == e1000_clean_rx_irq) {
2096 if (buffer_info->dma)
2097 dma_unmap_single(&pdev->dev, buffer_info->dma,
2098 adapter->rx_buffer_len,
2100 if (buffer_info->rxbuf.data) {
2101 skb_free_frag(buffer_info->rxbuf.data);
2102 buffer_info->rxbuf.data = NULL;
2104 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2105 if (buffer_info->dma)
2106 dma_unmap_page(&pdev->dev, buffer_info->dma,
2107 adapter->rx_buffer_len,
2109 if (buffer_info->rxbuf.page) {
2110 put_page(buffer_info->rxbuf.page);
2111 buffer_info->rxbuf.page = NULL;
2115 buffer_info->dma = 0;
2118 /* there also may be some cached data from a chained receive */
2119 napi_free_frags(&adapter->napi);
2120 rx_ring->rx_skb_top = NULL;
2122 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2123 memset(rx_ring->buffer_info, 0, size);
2125 /* Zero out the descriptor ring */
2126 memset(rx_ring->desc, 0, rx_ring->size);
2128 rx_ring->next_to_clean = 0;
2129 rx_ring->next_to_use = 0;
2131 writel(0, hw->hw_addr + rx_ring->rdh);
2132 writel(0, hw->hw_addr + rx_ring->rdt);
2136 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2137 * @adapter: board private structure
2139 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143 for (i = 0; i < adapter->num_rx_queues; i++)
2144 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2147 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2148 * and memory write and invalidate disabled for certain operations
2150 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152 struct e1000_hw *hw = &adapter->hw;
2153 struct net_device *netdev = adapter->netdev;
2156 e1000_pci_clear_mwi(hw);
2159 rctl |= E1000_RCTL_RST;
2161 E1000_WRITE_FLUSH();
2164 if (netif_running(netdev))
2165 e1000_clean_all_rx_rings(adapter);
2168 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170 struct e1000_hw *hw = &adapter->hw;
2171 struct net_device *netdev = adapter->netdev;
2175 rctl &= ~E1000_RCTL_RST;
2177 E1000_WRITE_FLUSH();
2180 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2181 e1000_pci_set_mwi(hw);
2183 if (netif_running(netdev)) {
2184 /* No need to loop, because 82542 supports only 1 queue */
2185 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2186 e1000_configure_rx(adapter);
2187 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 * e1000_set_mac - Change the Ethernet Address of the NIC
2193 * @netdev: network interface device structure
2194 * @p: pointer to an address structure
2196 * Returns 0 on success, negative on failure
2198 static int e1000_set_mac(struct net_device *netdev, void *p)
2200 struct e1000_adapter *adapter = netdev_priv(netdev);
2201 struct e1000_hw *hw = &adapter->hw;
2202 struct sockaddr *addr = p;
2204 if (!is_valid_ether_addr(addr->sa_data))
2205 return -EADDRNOTAVAIL;
2207 /* 82542 2.0 needs to be in reset to write receive address registers */
2209 if (hw->mac_type == e1000_82542_rev2_0)
2210 e1000_enter_82542_rst(adapter);
2212 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2213 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215 e1000_rar_set(hw, hw->mac_addr, 0);
2217 if (hw->mac_type == e1000_82542_rev2_0)
2218 e1000_leave_82542_rst(adapter);
2224 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2225 * @netdev: network interface device structure
2227 * The set_rx_mode entry point is called whenever the unicast or multicast
2228 * address lists or the network interface flags are updated. This routine is
2229 * responsible for configuring the hardware for proper unicast, multicast,
2230 * promiscuous mode, and all-multi behavior.
2232 static void e1000_set_rx_mode(struct net_device *netdev)
2234 struct e1000_adapter *adapter = netdev_priv(netdev);
2235 struct e1000_hw *hw = &adapter->hw;
2236 struct netdev_hw_addr *ha;
2237 bool use_uc = false;
2240 int i, rar_entries = E1000_RAR_ENTRIES;
2241 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2242 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247 /* Check for Promiscuous and All Multicast modes */
2251 if (netdev->flags & IFF_PROMISC) {
2252 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2253 rctl &= ~E1000_RCTL_VFE;
2255 if (netdev->flags & IFF_ALLMULTI)
2256 rctl |= E1000_RCTL_MPE;
2258 rctl &= ~E1000_RCTL_MPE;
2259 /* Enable VLAN filter if there is a VLAN */
2260 if (e1000_vlan_used(adapter))
2261 rctl |= E1000_RCTL_VFE;
2264 if (netdev_uc_count(netdev) > rar_entries - 1) {
2265 rctl |= E1000_RCTL_UPE;
2266 } else if (!(netdev->flags & IFF_PROMISC)) {
2267 rctl &= ~E1000_RCTL_UPE;
2273 /* 82542 2.0 needs to be in reset to write receive address registers */
2275 if (hw->mac_type == e1000_82542_rev2_0)
2276 e1000_enter_82542_rst(adapter);
2278 /* load the first 14 addresses into the exact filters 1-14. Unicast
2279 * addresses take precedence to avoid disabling unicast filtering
2282 * RAR 0 is used for the station MAC address
2283 * if there are not 14 addresses, go ahead and clear the filters
2287 netdev_for_each_uc_addr(ha, netdev) {
2288 if (i == rar_entries)
2290 e1000_rar_set(hw, ha->addr, i++);
2293 netdev_for_each_mc_addr(ha, netdev) {
2294 if (i == rar_entries) {
2295 /* load any remaining addresses into the hash table */
2296 u32 hash_reg, hash_bit, mta;
2297 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2298 hash_reg = (hash_value >> 5) & 0x7F;
2299 hash_bit = hash_value & 0x1F;
2300 mta = (1 << hash_bit);
2301 mcarray[hash_reg] |= mta;
2303 e1000_rar_set(hw, ha->addr, i++);
2307 for (; i < rar_entries; i++) {
2308 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2309 E1000_WRITE_FLUSH();
2310 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2311 E1000_WRITE_FLUSH();
2314 /* write the hash table completely, write from bottom to avoid
2315 * both stupid write combining chipsets, and flushing each write
2317 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2318 /* If we are on an 82544 has an errata where writing odd
2319 * offsets overwrites the previous even offset, but writing
2320 * backwards over the range solves the issue by always
2321 * writing the odd offset first
2323 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325 E1000_WRITE_FLUSH();
2327 if (hw->mac_type == e1000_82542_rev2_0)
2328 e1000_leave_82542_rst(adapter);
2334 * e1000_update_phy_info_task - get phy info
2335 * @work: work struct contained inside adapter struct
2337 * Need to wait a few seconds after link up to get diagnostic information from
2340 static void e1000_update_phy_info_task(struct work_struct *work)
2342 struct e1000_adapter *adapter = container_of(work,
2343 struct e1000_adapter,
2344 phy_info_task.work);
2346 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350 * e1000_82547_tx_fifo_stall_task - task to complete work
2351 * @work: work struct contained inside adapter struct
2353 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355 struct e1000_adapter *adapter = container_of(work,
2356 struct e1000_adapter,
2357 fifo_stall_task.work);
2358 struct e1000_hw *hw = &adapter->hw;
2359 struct net_device *netdev = adapter->netdev;
2362 if (atomic_read(&adapter->tx_fifo_stall)) {
2363 if ((er32(TDT) == er32(TDH)) &&
2364 (er32(TDFT) == er32(TDFH)) &&
2365 (er32(TDFTS) == er32(TDFHS))) {
2367 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2368 ew32(TDFT, adapter->tx_head_addr);
2369 ew32(TDFH, adapter->tx_head_addr);
2370 ew32(TDFTS, adapter->tx_head_addr);
2371 ew32(TDFHS, adapter->tx_head_addr);
2373 E1000_WRITE_FLUSH();
2375 adapter->tx_fifo_head = 0;
2376 atomic_set(&adapter->tx_fifo_stall, 0);
2377 netif_wake_queue(netdev);
2378 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2379 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 bool e1000_has_link(struct e1000_adapter *adapter)
2386 struct e1000_hw *hw = &adapter->hw;
2387 bool link_active = false;
2389 /* get_link_status is set on LSC (link status) interrupt or rx
2390 * sequence error interrupt (except on intel ce4100).
2391 * get_link_status will stay false until the
2392 * e1000_check_for_link establishes link for copper adapters
2395 switch (hw->media_type) {
2396 case e1000_media_type_copper:
2397 if (hw->mac_type == e1000_ce4100)
2398 hw->get_link_status = 1;
2399 if (hw->get_link_status) {
2400 e1000_check_for_link(hw);
2401 link_active = !hw->get_link_status;
2406 case e1000_media_type_fiber:
2407 e1000_check_for_link(hw);
2408 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410 case e1000_media_type_internal_serdes:
2411 e1000_check_for_link(hw);
2412 link_active = hw->serdes_has_link;
2422 * e1000_watchdog - work function
2423 * @work: work struct contained inside adapter struct
2425 static void e1000_watchdog(struct work_struct *work)
2427 struct e1000_adapter *adapter = container_of(work,
2428 struct e1000_adapter,
2429 watchdog_task.work);
2430 struct e1000_hw *hw = &adapter->hw;
2431 struct net_device *netdev = adapter->netdev;
2432 struct e1000_tx_ring *txdr = adapter->tx_ring;
2435 link = e1000_has_link(adapter);
2436 if ((netif_carrier_ok(netdev)) && link)
2440 if (!netif_carrier_ok(netdev)) {
2442 /* update snapshot of PHY registers on LSC */
2443 e1000_get_speed_and_duplex(hw,
2444 &adapter->link_speed,
2445 &adapter->link_duplex);
2448 pr_info("%s NIC Link is Up %d Mbps %s, "
2449 "Flow Control: %s\n",
2451 adapter->link_speed,
2452 adapter->link_duplex == FULL_DUPLEX ?
2453 "Full Duplex" : "Half Duplex",
2454 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457 E1000_CTRL_TFCE) ? "TX" : "None")));
2459 /* adjust timeout factor according to speed/duplex */
2460 adapter->tx_timeout_factor = 1;
2461 switch (adapter->link_speed) {
2463 adapter->tx_timeout_factor = 16;
2466 /* maybe add some timeout factor ? */
2470 /* enable transmits in the hardware */
2472 tctl |= E1000_TCTL_EN;
2475 netif_carrier_on(netdev);
2476 if (!test_bit(__E1000_DOWN, &adapter->flags))
2477 schedule_delayed_work(&adapter->phy_info_task,
2479 adapter->smartspeed = 0;
2482 if (netif_carrier_ok(netdev)) {
2483 adapter->link_speed = 0;
2484 adapter->link_duplex = 0;
2485 pr_info("%s NIC Link is Down\n",
2487 netif_carrier_off(netdev);
2489 if (!test_bit(__E1000_DOWN, &adapter->flags))
2490 schedule_delayed_work(&adapter->phy_info_task,
2494 e1000_smartspeed(adapter);
2498 e1000_update_stats(adapter);
2500 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2501 adapter->tpt_old = adapter->stats.tpt;
2502 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2503 adapter->colc_old = adapter->stats.colc;
2505 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2506 adapter->gorcl_old = adapter->stats.gorcl;
2507 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2508 adapter->gotcl_old = adapter->stats.gotcl;
2510 e1000_update_adaptive(hw);
2512 if (!netif_carrier_ok(netdev)) {
2513 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2514 /* We've lost link, so the controller stops DMA,
2515 * but we've got queued Tx work that's never going
2516 * to get done, so reset controller to flush Tx.
2517 * (Do the reset outside of interrupt context).
2519 adapter->tx_timeout_count++;
2520 schedule_work(&adapter->reset_task);
2521 /* exit immediately since reset is imminent */
2526 /* Simple mode for Interrupt Throttle Rate (ITR) */
2527 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2528 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2529 * Total asymmetrical Tx or Rx gets ITR=8000;
2530 * everyone else is between 2000-8000.
2532 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2533 u32 dif = (adapter->gotcl > adapter->gorcl ?
2534 adapter->gotcl - adapter->gorcl :
2535 adapter->gorcl - adapter->gotcl) / 10000;
2536 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538 ew32(ITR, 1000000000 / (itr * 256));
2541 /* Cause software interrupt to ensure rx ring is cleaned */
2542 ew32(ICS, E1000_ICS_RXDMT0);
2544 /* Force detection of hung controller every watchdog period */
2545 adapter->detect_tx_hung = true;
2547 /* Reschedule the task */
2548 if (!test_bit(__E1000_DOWN, &adapter->flags))
2549 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2552 enum latency_range {
2556 latency_invalid = 255
2560 * e1000_update_itr - update the dynamic ITR value based on statistics
2561 * @adapter: pointer to adapter
2562 * @itr_setting: current adapter->itr
2563 * @packets: the number of packets during this measurement interval
2564 * @bytes: the number of bytes during this measurement interval
2566 * Stores a new ITR value based on packets and byte
2567 * counts during the last interrupt. The advantage of per interrupt
2568 * computation is faster updates and more accurate ITR for the current
2569 * traffic pattern. Constants in this function were computed
2570 * based on theoretical maximum wire speed and thresholds were set based
2571 * on testing data as well as attempting to minimize response time
2572 * while increasing bulk throughput.
2573 * this functionality is controlled by the InterruptThrottleRate module
2574 * parameter (see e1000_param.c)
2576 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2577 u16 itr_setting, int packets, int bytes)
2579 unsigned int retval = itr_setting;
2580 struct e1000_hw *hw = &adapter->hw;
2582 if (unlikely(hw->mac_type < e1000_82540))
2583 goto update_itr_done;
2586 goto update_itr_done;
2588 switch (itr_setting) {
2589 case lowest_latency:
2590 /* jumbo frames get bulk treatment*/
2591 if (bytes/packets > 8000)
2592 retval = bulk_latency;
2593 else if ((packets < 5) && (bytes > 512))
2594 retval = low_latency;
2596 case low_latency: /* 50 usec aka 20000 ints/s */
2597 if (bytes > 10000) {
2598 /* jumbo frames need bulk latency setting */
2599 if (bytes/packets > 8000)
2600 retval = bulk_latency;
2601 else if ((packets < 10) || ((bytes/packets) > 1200))
2602 retval = bulk_latency;
2603 else if ((packets > 35))
2604 retval = lowest_latency;
2605 } else if (bytes/packets > 2000)
2606 retval = bulk_latency;
2607 else if (packets <= 2 && bytes < 512)
2608 retval = lowest_latency;
2610 case bulk_latency: /* 250 usec aka 4000 ints/s */
2611 if (bytes > 25000) {
2613 retval = low_latency;
2614 } else if (bytes < 6000) {
2615 retval = low_latency;
2624 static void e1000_set_itr(struct e1000_adapter *adapter)
2626 struct e1000_hw *hw = &adapter->hw;
2628 u32 new_itr = adapter->itr;
2630 if (unlikely(hw->mac_type < e1000_82540))
2633 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2634 if (unlikely(adapter->link_speed != SPEED_1000)) {
2639 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2640 adapter->total_tx_packets,
2641 adapter->total_tx_bytes);
2642 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2643 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2644 adapter->tx_itr = low_latency;
2646 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2647 adapter->total_rx_packets,
2648 adapter->total_rx_bytes);
2649 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2650 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2651 adapter->rx_itr = low_latency;
2653 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655 switch (current_itr) {
2656 /* counts and packets in update_itr are dependent on these numbers */
2657 case lowest_latency:
2661 new_itr = 20000; /* aka hwitr = ~200 */
2671 if (new_itr != adapter->itr) {
2672 /* this attempts to bias the interrupt rate towards Bulk
2673 * by adding intermediate steps when interrupt rate is
2676 new_itr = new_itr > adapter->itr ?
2677 min(adapter->itr + (new_itr >> 2), new_itr) :
2679 adapter->itr = new_itr;
2680 ew32(ITR, 1000000000 / (new_itr * 256));
2684 #define E1000_TX_FLAGS_CSUM 0x00000001
2685 #define E1000_TX_FLAGS_VLAN 0x00000002
2686 #define E1000_TX_FLAGS_TSO 0x00000004
2687 #define E1000_TX_FLAGS_IPV4 0x00000008
2688 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2689 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2690 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2692 static int e1000_tso(struct e1000_adapter *adapter,
2693 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2696 struct e1000_context_desc *context_desc;
2697 struct e1000_tx_buffer *buffer_info;
2700 u16 ipcse = 0, tucse, mss;
2701 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703 if (skb_is_gso(skb)) {
2706 err = skb_cow_head(skb, 0);
2710 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2711 mss = skb_shinfo(skb)->gso_size;
2712 if (protocol == htons(ETH_P_IP)) {
2713 struct iphdr *iph = ip_hdr(skb);
2716 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 cmd_length = E1000_TXD_CMD_IP;
2721 ipcse = skb_transport_offset(skb) - 1;
2722 } else if (skb_is_gso_v6(skb)) {
2723 tcp_v6_gso_csum_prep(skb);
2726 ipcss = skb_network_offset(skb);
2727 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728 tucss = skb_transport_offset(skb);
2729 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2732 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735 i = tx_ring->next_to_use;
2736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737 buffer_info = &tx_ring->buffer_info[i];
2739 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2740 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2741 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2742 context_desc->upper_setup.tcp_fields.tucss = tucss;
2743 context_desc->upper_setup.tcp_fields.tucso = tucso;
2744 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2746 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749 buffer_info->time_stamp = jiffies;
2750 buffer_info->next_to_watch = i;
2752 if (++i == tx_ring->count)
2755 tx_ring->next_to_use = i;
2762 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2763 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2766 struct e1000_context_desc *context_desc;
2767 struct e1000_tx_buffer *buffer_info;
2770 u32 cmd_len = E1000_TXD_CMD_DEXT;
2772 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 case cpu_to_be16(ETH_P_IP):
2777 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2778 cmd_len |= E1000_TXD_CMD_TCP;
2780 case cpu_to_be16(ETH_P_IPV6):
2781 /* XXX not handling all IPV6 headers */
2782 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2783 cmd_len |= E1000_TXD_CMD_TCP;
2786 if (unlikely(net_ratelimit()))
2787 e_warn(drv, "checksum_partial proto=%x!\n",
2792 css = skb_checksum_start_offset(skb);
2794 i = tx_ring->next_to_use;
2795 buffer_info = &tx_ring->buffer_info[i];
2796 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798 context_desc->lower_setup.ip_config = 0;
2799 context_desc->upper_setup.tcp_fields.tucss = css;
2800 context_desc->upper_setup.tcp_fields.tucso =
2801 css + skb->csum_offset;
2802 context_desc->upper_setup.tcp_fields.tucse = 0;
2803 context_desc->tcp_seg_setup.data = 0;
2804 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806 buffer_info->time_stamp = jiffies;
2807 buffer_info->next_to_watch = i;
2809 if (unlikely(++i == tx_ring->count))
2812 tx_ring->next_to_use = i;
2817 #define E1000_MAX_TXD_PWR 12
2818 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2820 static int e1000_tx_map(struct e1000_adapter *adapter,
2821 struct e1000_tx_ring *tx_ring,
2822 struct sk_buff *skb, unsigned int first,
2823 unsigned int max_per_txd, unsigned int nr_frags,
2826 struct e1000_hw *hw = &adapter->hw;
2827 struct pci_dev *pdev = adapter->pdev;
2828 struct e1000_tx_buffer *buffer_info;
2829 unsigned int len = skb_headlen(skb);
2830 unsigned int offset = 0, size, count = 0, i;
2831 unsigned int f, bytecount, segs;
2833 i = tx_ring->next_to_use;
2836 buffer_info = &tx_ring->buffer_info[i];
2837 size = min(len, max_per_txd);
2838 /* Workaround for Controller erratum --
2839 * descriptor for non-tso packet in a linear SKB that follows a
2840 * tso gets written back prematurely before the data is fully
2841 * DMA'd to the controller
2843 if (!skb->data_len && tx_ring->last_tx_tso &&
2845 tx_ring->last_tx_tso = false;
2849 /* Workaround for premature desc write-backs
2850 * in TSO mode. Append 4-byte sentinel desc
2852 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 /* work-around for errata 10 and it applies
2855 * to all controllers in PCI-X mode
2856 * The fix is to make sure that the first descriptor of a
2857 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860 (size > 2015) && count == 0))
2863 /* Workaround for potential 82544 hang in PCI-X. Avoid
2864 * terminating buffers within evenly-aligned dwords.
2866 if (unlikely(adapter->pcix_82544 &&
2867 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 buffer_info->length = size;
2872 /* set time_stamp *before* dma to help avoid a possible race */
2873 buffer_info->time_stamp = jiffies;
2874 buffer_info->mapped_as_page = false;
2875 buffer_info->dma = dma_map_single(&pdev->dev,
2877 size, DMA_TO_DEVICE);
2878 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880 buffer_info->next_to_watch = i;
2887 if (unlikely(i == tx_ring->count))
2892 for (f = 0; f < nr_frags; f++) {
2893 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895 len = skb_frag_size(frag);
2899 unsigned long bufend;
2901 if (unlikely(i == tx_ring->count))
2904 buffer_info = &tx_ring->buffer_info[i];
2905 size = min(len, max_per_txd);
2906 /* Workaround for premature desc write-backs
2907 * in TSO mode. Append 4-byte sentinel desc
2909 if (unlikely(mss && f == (nr_frags-1) &&
2910 size == len && size > 8))
2912 /* Workaround for potential 82544 hang in PCI-X.
2913 * Avoid terminating buffers within evenly-aligned
2916 bufend = (unsigned long)
2917 page_to_phys(skb_frag_page(frag));
2918 bufend += offset + size - 1;
2919 if (unlikely(adapter->pcix_82544 &&
2924 buffer_info->length = size;
2925 buffer_info->time_stamp = jiffies;
2926 buffer_info->mapped_as_page = true;
2927 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928 offset, size, DMA_TO_DEVICE);
2929 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 buffer_info->next_to_watch = i;
2939 segs = skb_shinfo(skb)->gso_segs ?: 1;
2940 /* multiply data chunks by size of headers */
2941 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943 tx_ring->buffer_info[i].skb = skb;
2944 tx_ring->buffer_info[i].segs = segs;
2945 tx_ring->buffer_info[i].bytecount = bytecount;
2946 tx_ring->buffer_info[first].next_to_watch = i;
2951 dev_err(&pdev->dev, "TX DMA map failed\n");
2952 buffer_info->dma = 0;
2958 i += tx_ring->count;
2960 buffer_info = &tx_ring->buffer_info[i];
2961 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2967 static void e1000_tx_queue(struct e1000_adapter *adapter,
2968 struct e1000_tx_ring *tx_ring, int tx_flags,
2971 struct e1000_tx_desc *tx_desc = NULL;
2972 struct e1000_tx_buffer *buffer_info;
2973 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2976 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2985 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2990 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991 txd_lower |= E1000_TXD_CMD_VLE;
2992 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2995 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998 i = tx_ring->next_to_use;
3001 buffer_info = &tx_ring->buffer_info[i];
3002 tx_desc = E1000_TX_DESC(*tx_ring, i);
3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004 tx_desc->lower.data =
3005 cpu_to_le32(txd_lower | buffer_info->length);
3006 tx_desc->upper.data = cpu_to_le32(txd_upper);
3007 if (unlikely(++i == tx_ring->count))
3011 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017 /* Force memory writes to complete before letting h/w
3018 * know there are new descriptors to fetch. (Only
3019 * applicable for weak-ordered memory model archs,
3024 tx_ring->next_to_use = i;
3027 /* 82547 workaround to avoid controller hang in half-duplex environment.
3028 * The workaround is to avoid queuing a large packet that would span
3029 * the internal Tx FIFO ring boundary by notifying the stack to resend
3030 * the packet at a later time. This gives the Tx FIFO an opportunity to
3031 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3032 * to the beginning of the Tx FIFO.
3035 #define E1000_FIFO_HDR 0x10
3036 #define E1000_82547_PAD_LEN 0x3E0
3038 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039 struct sk_buff *skb)
3041 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046 if (adapter->link_duplex != HALF_DUPLEX)
3047 goto no_fifo_stall_required;
3049 if (atomic_read(&adapter->tx_fifo_stall))
3052 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053 atomic_set(&adapter->tx_fifo_stall, 1);
3057 no_fifo_stall_required:
3058 adapter->tx_fifo_head += skb_fifo_len;
3059 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066 struct e1000_adapter *adapter = netdev_priv(netdev);
3067 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069 netif_stop_queue(netdev);
3070 /* Herbert's original patch had:
3071 * smp_mb__after_netif_stop_queue();
3072 * but since that doesn't exist yet, just open code it.
3076 /* We need to check again in a case another CPU has just
3077 * made room available.
3079 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 netif_start_queue(netdev);
3084 ++adapter->restart_queue;
3088 static int e1000_maybe_stop_tx(struct net_device *netdev,
3089 struct e1000_tx_ring *tx_ring, int size)
3091 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093 return __e1000_maybe_stop_tx(netdev, size);
3096 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098 struct net_device *netdev)
3100 struct e1000_adapter *adapter = netdev_priv(netdev);
3101 struct e1000_hw *hw = &adapter->hw;
3102 struct e1000_tx_ring *tx_ring;
3103 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105 unsigned int tx_flags = 0;
3106 unsigned int len = skb_headlen(skb);
3107 unsigned int nr_frags;
3112 __be16 protocol = vlan_get_protocol(skb);
3114 /* This goes back to the question of how to logically map a Tx queue
3115 * to a flow. Right now, performance is impacted slightly negatively
3116 * if using multiple Tx queues. If the stack breaks away from a
3117 * single qdisc implementation, we can look at this again.
3119 tx_ring = adapter->tx_ring;
3121 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122 * packets may get corrupted during padding by HW.
3123 * To WA this issue, pad all small packets manually.
3125 if (eth_skb_pad(skb))
3126 return NETDEV_TX_OK;
3128 mss = skb_shinfo(skb)->gso_size;
3129 /* The controller does a simple calculation to
3130 * make sure there is enough room in the FIFO before
3131 * initiating the DMA for each buffer. The calc is:
3132 * 4 = ceil(buffer len/mss). To make sure we don't
3133 * overrun the FIFO, adjust the max buffer len if mss
3138 max_per_txd = min(mss << 2, max_per_txd);
3139 max_txd_pwr = fls(max_per_txd) - 1;
3141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142 if (skb->data_len && hdr_len == len) {
3143 switch (hw->mac_type) {
3145 unsigned int pull_size;
3147 /* Make sure we have room to chop off 4 bytes,
3148 * and that the end alignment will work out to
3149 * this hardware's requirements
3150 * NOTE: this is a TSO only workaround
3151 * if end byte alignment not correct move us
3152 * into the next dword
3154 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3157 pull_size = min((unsigned int)4, skb->data_len);
3158 if (!__pskb_pull_tail(skb, pull_size)) {
3159 e_err(drv, "__pskb_pull_tail "
3161 dev_kfree_skb_any(skb);
3162 return NETDEV_TX_OK;
3164 len = skb_headlen(skb);
3174 /* reserve a descriptor for the offload context */
3175 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 /* Controller Erratum workaround */
3180 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3183 count += TXD_USE_COUNT(len, max_txd_pwr);
3185 if (adapter->pcix_82544)
3188 /* work-around for errata 10 and it applies to all controllers
3189 * in PCI-X mode, so add one more descriptor to the count
3191 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 nr_frags = skb_shinfo(skb)->nr_frags;
3196 for (f = 0; f < nr_frags; f++)
3197 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199 if (adapter->pcix_82544)
3202 /* need: count + 2 desc gap to keep tail from touching
3203 * head, otherwise try next time
3205 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3206 return NETDEV_TX_BUSY;
3208 if (unlikely((hw->mac_type == e1000_82547) &&
3209 (e1000_82547_fifo_workaround(adapter, skb)))) {
3210 netif_stop_queue(netdev);
3211 if (!test_bit(__E1000_DOWN, &adapter->flags))
3212 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3213 return NETDEV_TX_BUSY;
3216 if (skb_vlan_tag_present(skb)) {
3217 tx_flags |= E1000_TX_FLAGS_VLAN;
3218 tx_flags |= (skb_vlan_tag_get(skb) <<
3219 E1000_TX_FLAGS_VLAN_SHIFT);
3222 first = tx_ring->next_to_use;
3224 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226 dev_kfree_skb_any(skb);
3227 return NETDEV_TX_OK;
3231 if (likely(hw->mac_type != e1000_82544))
3232 tx_ring->last_tx_tso = true;
3233 tx_flags |= E1000_TX_FLAGS_TSO;
3234 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3235 tx_flags |= E1000_TX_FLAGS_CSUM;
3237 if (protocol == htons(ETH_P_IP))
3238 tx_flags |= E1000_TX_FLAGS_IPV4;
3240 if (unlikely(skb->no_fcs))
3241 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 /* The descriptors needed is higher than other Intel drivers
3248 * due to a number of workarounds. The breakdown is below:
3249 * Data descriptors: MAX_SKB_FRAGS + 1
3250 * Context Descriptor: 1
3251 * Keep head from touching tail: 2
3254 int desc_needed = MAX_SKB_FRAGS + 7;
3256 netdev_sent_queue(netdev, skb->len);
3257 skb_tx_timestamp(skb);
3259 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261 /* 82544 potentially requires twice as many data descriptors
3262 * in order to guarantee buffers don't end on evenly-aligned
3265 if (adapter->pcix_82544)
3266 desc_needed += MAX_SKB_FRAGS + 1;
3268 /* Make sure there is space in the ring for the next send. */
3269 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271 if (!netdev_xmit_more() ||
3272 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3273 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3276 dev_kfree_skb_any(skb);
3277 tx_ring->buffer_info[first].time_stamp = 0;
3278 tx_ring->next_to_use = first;
3281 return NETDEV_TX_OK;
3284 #define NUM_REGS 38 /* 1 based count */
3285 static void e1000_regdump(struct e1000_adapter *adapter)
3287 struct e1000_hw *hw = &adapter->hw;
3289 u32 *regs_buff = regs;
3292 static const char * const reg_name[] = {
3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 "TIDV", "TXDCTL", "TADV", "TARC0",
3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3304 regs_buff[0] = er32(CTRL);
3305 regs_buff[1] = er32(STATUS);
3307 regs_buff[2] = er32(RCTL);
3308 regs_buff[3] = er32(RDLEN);
3309 regs_buff[4] = er32(RDH);
3310 regs_buff[5] = er32(RDT);
3311 regs_buff[6] = er32(RDTR);
3313 regs_buff[7] = er32(TCTL);
3314 regs_buff[8] = er32(TDBAL);
3315 regs_buff[9] = er32(TDBAH);
3316 regs_buff[10] = er32(TDLEN);
3317 regs_buff[11] = er32(TDH);
3318 regs_buff[12] = er32(TDT);
3319 regs_buff[13] = er32(TIDV);
3320 regs_buff[14] = er32(TXDCTL);
3321 regs_buff[15] = er32(TADV);
3322 regs_buff[16] = er32(TARC0);
3324 regs_buff[17] = er32(TDBAL1);
3325 regs_buff[18] = er32(TDBAH1);
3326 regs_buff[19] = er32(TDLEN1);
3327 regs_buff[20] = er32(TDH1);
3328 regs_buff[21] = er32(TDT1);
3329 regs_buff[22] = er32(TXDCTL1);
3330 regs_buff[23] = er32(TARC1);
3331 regs_buff[24] = er32(CTRL_EXT);
3332 regs_buff[25] = er32(ERT);
3333 regs_buff[26] = er32(RDBAL0);
3334 regs_buff[27] = er32(RDBAH0);
3335 regs_buff[28] = er32(TDFH);
3336 regs_buff[29] = er32(TDFT);
3337 regs_buff[30] = er32(TDFHS);
3338 regs_buff[31] = er32(TDFTS);
3339 regs_buff[32] = er32(TDFPC);
3340 regs_buff[33] = er32(RDFH);
3341 regs_buff[34] = er32(RDFT);
3342 regs_buff[35] = er32(RDFHS);
3343 regs_buff[36] = er32(RDFTS);
3344 regs_buff[37] = er32(RDFPC);
3346 pr_info("Register dump\n");
3347 for (i = 0; i < NUM_REGS; i++)
3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352 * e1000_dump: Print registers, tx ring and rx ring
3354 static void e1000_dump(struct e1000_adapter *adapter)
3356 /* this code doesn't handle multiple rings */
3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3361 if (!netif_msg_hw(adapter))
3364 /* Print Registers */
3365 e1000_regdump(adapter);
3368 pr_info("TX Desc ring0 dump\n");
3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 * Legacy Transmit Descriptor
3373 * +--------------------------------------------------------------+
3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3375 * +--------------------------------------------------------------+
3376 * 8 | Special | CSS | Status | CMD | CSO | Length |
3377 * +--------------------------------------------------------------+
3378 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 * 63 48 47 40 39 32 31 16 15 8 7 0
3382 * +----------------------------------------------------------------+
3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3384 * +----------------------------------------------------------------+
3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3386 * +----------------------------------------------------------------+
3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 * Extended Data Descriptor (DTYP=0x1)
3390 * +----------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] |
3392 * +----------------------------------------------------------------+
3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3394 * +----------------------------------------------------------------+
3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400 if (!netif_msg_tx_done(adapter))
3401 goto rx_ring_summary;
3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406 struct my_u { __le64 a; __le64 b; };
3407 struct my_u *u = (struct my_u *)tx_desc;
3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 else if (i == tx_ring->next_to_use)
3414 else if (i == tx_ring->next_to_clean)
3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 (u64)buffer_info->dma, buffer_info->length,
3423 buffer_info->next_to_watch,
3424 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3429 pr_info("\nRX Desc ring dump\n");
3431 /* Legacy Receive Descriptor Format
3433 * +-----------------------------------------------------+
3434 * | Buffer Address [63:0] |
3435 * +-----------------------------------------------------+
3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 * +-----------------------------------------------------+
3438 * 63 48 47 40 39 32 31 16 15 0
3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3442 if (!netif_msg_rx_status(adapter))
3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448 struct my_u { __le64 a; __le64 b; };
3449 struct my_u *u = (struct my_u *)rx_desc;
3452 if (i == rx_ring->next_to_use)
3454 else if (i == rx_ring->next_to_clean)
3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3464 /* dump the descriptor caches */
3466 pr_info("Rx descriptor cache in 64bit format\n");
3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470 readl(adapter->hw.hw_addr + i+4),
3471 readl(adapter->hw.hw_addr + i),
3472 readl(adapter->hw.hw_addr + i+12),
3473 readl(adapter->hw.hw_addr + i+8));
3476 pr_info("Tx descriptor cache in 64bit format\n");
3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480 readl(adapter->hw.hw_addr + i+4),
3481 readl(adapter->hw.hw_addr + i),
3482 readl(adapter->hw.hw_addr + i+12),
3483 readl(adapter->hw.hw_addr + i+8));
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 * @txqueue: number of the Tx queue that hung (unused)
3494 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496 struct e1000_adapter *adapter = netdev_priv(netdev);
3498 /* Do the reset outside of interrupt context */
3499 adapter->tx_timeout_count++;
3500 schedule_work(&adapter->reset_task);
3503 static void e1000_reset_task(struct work_struct *work)
3505 struct e1000_adapter *adapter =
3506 container_of(work, struct e1000_adapter, reset_task);
3508 e_err(drv, "Reset adapter\n");
3509 e1000_reinit_locked(adapter);
3513 * e1000_change_mtu - Change the Maximum Transfer Unit
3514 * @netdev: network interface device structure
3515 * @new_mtu: new value for maximum frame size
3517 * Returns 0 on success, negative on failure
3519 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521 struct e1000_adapter *adapter = netdev_priv(netdev);
3522 struct e1000_hw *hw = &adapter->hw;
3523 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525 /* Adapter-specific max frame size limits. */
3526 switch (hw->mac_type) {
3527 case e1000_undefined ... e1000_82542_rev2_1:
3528 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3529 e_err(probe, "Jumbo Frames not supported.\n");
3534 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540 /* e1000_down has a dependency on max_frame_size */
3541 hw->max_frame_size = max_frame;
3542 if (netif_running(netdev)) {
3543 /* prevent buffers from being reallocated */
3544 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3545 e1000_down(adapter);
3548 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3549 * means we reserve 2 more, this pushes us to allocate from the next
3551 * i.e. RXBUFFER_2048 --> size-4096 slab
3552 * however with the new *_jumbo_rx* routines, jumbo receives will use
3556 if (max_frame <= E1000_RXBUFFER_2048)
3557 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3560 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3561 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3562 adapter->rx_buffer_len = PAGE_SIZE;
3565 /* adjust allocation if LPE protects us, and we aren't using SBP */
3566 if (!hw->tbi_compatibility_on &&
3567 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3568 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3569 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3572 netdev->mtu, new_mtu);
3573 netdev->mtu = new_mtu;
3575 if (netif_running(netdev))
3578 e1000_reset(adapter);
3580 clear_bit(__E1000_RESETTING, &adapter->flags);
3586 * e1000_update_stats - Update the board statistics counters
3587 * @adapter: board private structure
3589 void e1000_update_stats(struct e1000_adapter *adapter)
3591 struct net_device *netdev = adapter->netdev;
3592 struct e1000_hw *hw = &adapter->hw;
3593 struct pci_dev *pdev = adapter->pdev;
3594 unsigned long flags;
3597 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599 /* Prevent stats update while adapter is being reset, or if the pci
3600 * connection is down.
3602 if (adapter->link_speed == 0)
3604 if (pci_channel_offline(pdev))
3607 spin_lock_irqsave(&adapter->stats_lock, flags);
3609 /* these counters are modified from e1000_tbi_adjust_stats,
3610 * called from the interrupt context, so they must only
3611 * be written while holding adapter->stats_lock
3614 adapter->stats.crcerrs += er32(CRCERRS);
3615 adapter->stats.gprc += er32(GPRC);
3616 adapter->stats.gorcl += er32(GORCL);
3617 adapter->stats.gorch += er32(GORCH);
3618 adapter->stats.bprc += er32(BPRC);
3619 adapter->stats.mprc += er32(MPRC);
3620 adapter->stats.roc += er32(ROC);
3622 adapter->stats.prc64 += er32(PRC64);
3623 adapter->stats.prc127 += er32(PRC127);
3624 adapter->stats.prc255 += er32(PRC255);
3625 adapter->stats.prc511 += er32(PRC511);
3626 adapter->stats.prc1023 += er32(PRC1023);
3627 adapter->stats.prc1522 += er32(PRC1522);
3629 adapter->stats.symerrs += er32(SYMERRS);
3630 adapter->stats.mpc += er32(MPC);
3631 adapter->stats.scc += er32(SCC);
3632 adapter->stats.ecol += er32(ECOL);
3633 adapter->stats.mcc += er32(MCC);
3634 adapter->stats.latecol += er32(LATECOL);
3635 adapter->stats.dc += er32(DC);
3636 adapter->stats.sec += er32(SEC);
3637 adapter->stats.rlec += er32(RLEC);
3638 adapter->stats.xonrxc += er32(XONRXC);
3639 adapter->stats.xontxc += er32(XONTXC);
3640 adapter->stats.xoffrxc += er32(XOFFRXC);
3641 adapter->stats.xofftxc += er32(XOFFTXC);
3642 adapter->stats.fcruc += er32(FCRUC);
3643 adapter->stats.gptc += er32(GPTC);
3644 adapter->stats.gotcl += er32(GOTCL);
3645 adapter->stats.gotch += er32(GOTCH);
3646 adapter->stats.rnbc += er32(RNBC);
3647 adapter->stats.ruc += er32(RUC);
3648 adapter->stats.rfc += er32(RFC);
3649 adapter->stats.rjc += er32(RJC);
3650 adapter->stats.torl += er32(TORL);
3651 adapter->stats.torh += er32(TORH);
3652 adapter->stats.totl += er32(TOTL);
3653 adapter->stats.toth += er32(TOTH);
3654 adapter->stats.tpr += er32(TPR);
3656 adapter->stats.ptc64 += er32(PTC64);
3657 adapter->stats.ptc127 += er32(PTC127);
3658 adapter->stats.ptc255 += er32(PTC255);
3659 adapter->stats.ptc511 += er32(PTC511);
3660 adapter->stats.ptc1023 += er32(PTC1023);
3661 adapter->stats.ptc1522 += er32(PTC1522);
3663 adapter->stats.mptc += er32(MPTC);
3664 adapter->stats.bptc += er32(BPTC);
3666 /* used for adaptive IFS */
3668 hw->tx_packet_delta = er32(TPT);
3669 adapter->stats.tpt += hw->tx_packet_delta;
3670 hw->collision_delta = er32(COLC);
3671 adapter->stats.colc += hw->collision_delta;
3673 if (hw->mac_type >= e1000_82543) {
3674 adapter->stats.algnerrc += er32(ALGNERRC);
3675 adapter->stats.rxerrc += er32(RXERRC);
3676 adapter->stats.tncrs += er32(TNCRS);
3677 adapter->stats.cexterr += er32(CEXTERR);
3678 adapter->stats.tsctc += er32(TSCTC);
3679 adapter->stats.tsctfc += er32(TSCTFC);
3682 /* Fill out the OS statistics structure */
3683 netdev->stats.multicast = adapter->stats.mprc;
3684 netdev->stats.collisions = adapter->stats.colc;
3688 /* RLEC on some newer hardware can be incorrect so build
3689 * our own version based on RUC and ROC
3691 netdev->stats.rx_errors = adapter->stats.rxerrc +
3692 adapter->stats.crcerrs + adapter->stats.algnerrc +
3693 adapter->stats.ruc + adapter->stats.roc +
3694 adapter->stats.cexterr;
3695 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3696 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3697 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3698 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3699 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3702 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3703 netdev->stats.tx_errors = adapter->stats.txerrc;
3704 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3705 netdev->stats.tx_window_errors = adapter->stats.latecol;
3706 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3707 if (hw->bad_tx_carr_stats_fd &&
3708 adapter->link_duplex == FULL_DUPLEX) {
3709 netdev->stats.tx_carrier_errors = 0;
3710 adapter->stats.tncrs = 0;
3713 /* Tx Dropped needs to be maintained elsewhere */
3716 if (hw->media_type == e1000_media_type_copper) {
3717 if ((adapter->link_speed == SPEED_1000) &&
3718 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3719 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3720 adapter->phy_stats.idle_errors += phy_tmp;
3723 if ((hw->mac_type <= e1000_82546) &&
3724 (hw->phy_type == e1000_phy_m88) &&
3725 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3726 adapter->phy_stats.receive_errors += phy_tmp;
3729 /* Management Stats */
3730 if (hw->has_smbus) {
3731 adapter->stats.mgptc += er32(MGTPTC);
3732 adapter->stats.mgprc += er32(MGTPRC);
3733 adapter->stats.mgpdc += er32(MGTPDC);
3736 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3740 * e1000_intr - Interrupt Handler
3741 * @irq: interrupt number
3742 * @data: pointer to a network interface device structure
3744 static irqreturn_t e1000_intr(int irq, void *data)
3746 struct net_device *netdev = data;
3747 struct e1000_adapter *adapter = netdev_priv(netdev);
3748 struct e1000_hw *hw = &adapter->hw;
3749 u32 icr = er32(ICR);
3751 if (unlikely((!icr)))
3752 return IRQ_NONE; /* Not our interrupt */
3754 /* we might have caused the interrupt, but the above
3755 * read cleared it, and just in case the driver is
3756 * down there is nothing to do so return handled
3758 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3761 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3762 hw->get_link_status = 1;
3763 /* guard against interrupt when we're going down */
3764 if (!test_bit(__E1000_DOWN, &adapter->flags))
3765 schedule_delayed_work(&adapter->watchdog_task, 1);
3768 /* disable interrupts, without the synchronize_irq bit */
3770 E1000_WRITE_FLUSH();
3772 if (likely(napi_schedule_prep(&adapter->napi))) {
3773 adapter->total_tx_bytes = 0;
3774 adapter->total_tx_packets = 0;
3775 adapter->total_rx_bytes = 0;
3776 adapter->total_rx_packets = 0;
3777 __napi_schedule(&adapter->napi);
3779 /* this really should not happen! if it does it is basically a
3780 * bug, but not a hard error, so enable ints and continue
3782 if (!test_bit(__E1000_DOWN, &adapter->flags))
3783 e1000_irq_enable(adapter);
3790 * e1000_clean - NAPI Rx polling callback
3791 * @napi: napi struct containing references to driver info
3792 * @budget: budget given to driver for receive packets
3794 static int e1000_clean(struct napi_struct *napi, int budget)
3796 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798 int tx_clean_complete = 0, work_done = 0;
3800 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804 if (!tx_clean_complete || work_done == budget)
3807 /* Exit the polling mode, but don't re-enable interrupts if stack might
3808 * poll us due to busy-polling
3810 if (likely(napi_complete_done(napi, work_done))) {
3811 if (likely(adapter->itr_setting & 3))
3812 e1000_set_itr(adapter);
3813 if (!test_bit(__E1000_DOWN, &adapter->flags))
3814 e1000_irq_enable(adapter);
3821 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3822 * @adapter: board private structure
3823 * @tx_ring: ring to clean
3825 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3826 struct e1000_tx_ring *tx_ring)
3828 struct e1000_hw *hw = &adapter->hw;
3829 struct net_device *netdev = adapter->netdev;
3830 struct e1000_tx_desc *tx_desc, *eop_desc;
3831 struct e1000_tx_buffer *buffer_info;
3832 unsigned int i, eop;
3833 unsigned int count = 0;
3834 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3835 unsigned int bytes_compl = 0, pkts_compl = 0;
3837 i = tx_ring->next_to_clean;
3838 eop = tx_ring->buffer_info[i].next_to_watch;
3839 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3842 (count < tx_ring->count)) {
3843 bool cleaned = false;
3844 dma_rmb(); /* read buffer_info after eop_desc */
3845 for ( ; !cleaned; count++) {
3846 tx_desc = E1000_TX_DESC(*tx_ring, i);
3847 buffer_info = &tx_ring->buffer_info[i];
3848 cleaned = (i == eop);
3851 total_tx_packets += buffer_info->segs;
3852 total_tx_bytes += buffer_info->bytecount;
3853 if (buffer_info->skb) {
3854 bytes_compl += buffer_info->skb->len;
3859 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3860 tx_desc->upper.data = 0;
3862 if (unlikely(++i == tx_ring->count))
3866 eop = tx_ring->buffer_info[i].next_to_watch;
3867 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3871 * which will reuse the cleaned buffers.
3873 smp_store_release(&tx_ring->next_to_clean, i);
3875 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3877 #define TX_WAKE_THRESHOLD 32
3878 if (unlikely(count && netif_carrier_ok(netdev) &&
3879 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3880 /* Make sure that anybody stopping the queue after this
3881 * sees the new next_to_clean.
3885 if (netif_queue_stopped(netdev) &&
3886 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3887 netif_wake_queue(netdev);
3888 ++adapter->restart_queue;
3892 if (adapter->detect_tx_hung) {
3893 /* Detect a transmit hang in hardware, this serializes the
3894 * check with the clearing of time_stamp and movement of i
3896 adapter->detect_tx_hung = false;
3897 if (tx_ring->buffer_info[eop].time_stamp &&
3898 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3899 (adapter->tx_timeout_factor * HZ)) &&
3900 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3902 /* detected Tx unit hang */
3903 e_err(drv, "Detected Tx Unit Hang\n"
3907 " next_to_use <%x>\n"
3908 " next_to_clean <%x>\n"
3909 "buffer_info[next_to_clean]\n"
3910 " time_stamp <%lx>\n"
3911 " next_to_watch <%x>\n"
3913 " next_to_watch.status <%x>\n",
3914 (unsigned long)(tx_ring - adapter->tx_ring),
3915 readl(hw->hw_addr + tx_ring->tdh),
3916 readl(hw->hw_addr + tx_ring->tdt),
3917 tx_ring->next_to_use,
3918 tx_ring->next_to_clean,
3919 tx_ring->buffer_info[eop].time_stamp,
3922 eop_desc->upper.fields.status);
3923 e1000_dump(adapter);
3924 netif_stop_queue(netdev);
3927 adapter->total_tx_bytes += total_tx_bytes;
3928 adapter->total_tx_packets += total_tx_packets;
3929 netdev->stats.tx_bytes += total_tx_bytes;
3930 netdev->stats.tx_packets += total_tx_packets;
3931 return count < tx_ring->count;
3935 * e1000_rx_checksum - Receive Checksum Offload for 82543
3936 * @adapter: board private structure
3937 * @status_err: receive descriptor status and error fields
3938 * @csum: receive descriptor csum field
3939 * @skb: socket buffer with received data
3941 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3942 u32 csum, struct sk_buff *skb)
3944 struct e1000_hw *hw = &adapter->hw;
3945 u16 status = (u16)status_err;
3946 u8 errors = (u8)(status_err >> 24);
3948 skb_checksum_none_assert(skb);
3950 /* 82543 or newer only */
3951 if (unlikely(hw->mac_type < e1000_82543))
3953 /* Ignore Checksum bit is set */
3954 if (unlikely(status & E1000_RXD_STAT_IXSM))
3956 /* TCP/UDP checksum error bit is set */
3957 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3958 /* let the stack verify checksum errors */
3959 adapter->hw_csum_err++;
3962 /* TCP/UDP Checksum has not been calculated */
3963 if (!(status & E1000_RXD_STAT_TCPCS))
3966 /* It must be a TCP or UDP packet with a valid checksum */
3967 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3968 /* TCP checksum is good */
3969 skb->ip_summed = CHECKSUM_UNNECESSARY;
3971 adapter->hw_csum_good++;
3975 * e1000_consume_page - helper function for jumbo Rx path
3976 * @bi: software descriptor shadow data
3977 * @skb: skb being modified
3978 * @length: length of data being added
3980 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983 bi->rxbuf.page = NULL;
3985 skb->data_len += length;
3986 skb->truesize += PAGE_SIZE;
3990 * e1000_receive_skb - helper function to handle rx indications
3991 * @adapter: board private structure
3992 * @status: descriptor status field as written by hardware
3993 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3994 * @skb: pointer to sk_buff to be indicated to stack
3996 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3997 __le16 vlan, struct sk_buff *skb)
3999 skb->protocol = eth_type_trans(skb, adapter->netdev);
4001 if (status & E1000_RXD_STAT_VP) {
4002 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4004 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4006 napi_gro_receive(&adapter->napi, skb);
4010 * e1000_tbi_adjust_stats
4011 * @hw: Struct containing variables accessed by shared code
4012 * @stats: point to stats struct
4013 * @frame_len: The length of the frame in question
4014 * @mac_addr: The Ethernet destination address of the frame in question
4016 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4018 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4019 struct e1000_hw_stats *stats,
4020 u32 frame_len, const u8 *mac_addr)
4024 /* First adjust the frame length. */
4026 /* We need to adjust the statistics counters, since the hardware
4027 * counters overcount this packet as a CRC error and undercount
4028 * the packet as a good packet
4030 /* This packet should not be counted as a CRC error. */
4032 /* This packet does count as a Good Packet Received. */
4035 /* Adjust the Good Octets received counters */
4036 carry_bit = 0x80000000 & stats->gorcl;
4037 stats->gorcl += frame_len;
4038 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4039 * Received Count) was one before the addition,
4040 * AND it is zero after, then we lost the carry out,
4041 * need to add one to Gorch (Good Octets Received Count High).
4042 * This could be simplified if all environments supported
4045 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4047 /* Is this a broadcast or multicast? Check broadcast first,
4048 * since the test for a multicast frame will test positive on
4049 * a broadcast frame.
4051 if (is_broadcast_ether_addr(mac_addr))
4053 else if (is_multicast_ether_addr(mac_addr))
4056 if (frame_len == hw->max_frame_size) {
4057 /* In this case, the hardware has overcounted the number of
4064 /* Adjust the bin counters when the extra byte put the frame in the
4065 * wrong bin. Remember that the frame_len was adjusted above.
4067 if (frame_len == 64) {
4070 } else if (frame_len == 127) {
4073 } else if (frame_len == 255) {
4076 } else if (frame_len == 511) {
4079 } else if (frame_len == 1023) {
4082 } else if (frame_len == 1522) {
4087 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4088 u8 status, u8 errors,
4089 u32 length, const u8 *data)
4091 struct e1000_hw *hw = &adapter->hw;
4092 u8 last_byte = *(data + length - 1);
4094 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4095 unsigned long irq_flags;
4097 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4098 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4099 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4107 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113 adapter->alloc_rx_buff_failed++;
4118 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4119 * @adapter: board private structure
4120 * @rx_ring: ring to clean
4121 * @work_done: amount of napi work completed this call
4122 * @work_to_do: max amount of work allowed for this call to do
4124 * the return value indicates whether actual cleaning was done, there
4125 * is no guarantee that everything was cleaned
4127 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4128 struct e1000_rx_ring *rx_ring,
4129 int *work_done, int work_to_do)
4131 struct net_device *netdev = adapter->netdev;
4132 struct pci_dev *pdev = adapter->pdev;
4133 struct e1000_rx_desc *rx_desc, *next_rxd;
4134 struct e1000_rx_buffer *buffer_info, *next_buffer;
4137 int cleaned_count = 0;
4138 bool cleaned = false;
4139 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4141 i = rx_ring->next_to_clean;
4142 rx_desc = E1000_RX_DESC(*rx_ring, i);
4143 buffer_info = &rx_ring->buffer_info[i];
4145 while (rx_desc->status & E1000_RXD_STAT_DD) {
4146 struct sk_buff *skb;
4149 if (*work_done >= work_to_do)
4152 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4154 status = rx_desc->status;
4156 if (++i == rx_ring->count)
4159 next_rxd = E1000_RX_DESC(*rx_ring, i);
4162 next_buffer = &rx_ring->buffer_info[i];
4166 dma_unmap_page(&pdev->dev, buffer_info->dma,
4167 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4168 buffer_info->dma = 0;
4170 length = le16_to_cpu(rx_desc->length);
4172 /* errors is only valid for DD + EOP descriptors */
4173 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4174 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4175 u8 *mapped = page_address(buffer_info->rxbuf.page);
4177 if (e1000_tbi_should_accept(adapter, status,
4181 } else if (netdev->features & NETIF_F_RXALL) {
4184 /* an error means any chain goes out the window
4187 dev_kfree_skb(rx_ring->rx_skb_top);
4188 rx_ring->rx_skb_top = NULL;
4193 #define rxtop rx_ring->rx_skb_top
4195 if (!(status & E1000_RXD_STAT_EOP)) {
4196 /* this descriptor is only the beginning (or middle) */
4198 /* this is the beginning of a chain */
4199 rxtop = napi_get_frags(&adapter->napi);
4203 skb_fill_page_desc(rxtop, 0,
4204 buffer_info->rxbuf.page,
4207 /* this is the middle of a chain */
4208 skb_fill_page_desc(rxtop,
4209 skb_shinfo(rxtop)->nr_frags,
4210 buffer_info->rxbuf.page, 0, length);
4212 e1000_consume_page(buffer_info, rxtop, length);
4216 /* end of the chain */
4217 skb_fill_page_desc(rxtop,
4218 skb_shinfo(rxtop)->nr_frags,
4219 buffer_info->rxbuf.page, 0, length);
4222 e1000_consume_page(buffer_info, skb, length);
4225 /* no chain, got EOP, this buf is the packet
4226 * copybreak to save the put_page/alloc_page
4228 p = buffer_info->rxbuf.page;
4229 if (length <= copybreak) {
4232 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4234 skb = e1000_alloc_rx_skb(adapter,
4239 vaddr = kmap_atomic(p);
4240 memcpy(skb_tail_pointer(skb), vaddr,
4242 kunmap_atomic(vaddr);
4243 /* re-use the page, so don't erase
4244 * buffer_info->rxbuf.page
4246 skb_put(skb, length);
4247 e1000_rx_checksum(adapter,
4248 status | rx_desc->errors << 24,
4249 le16_to_cpu(rx_desc->csum), skb);
4251 total_rx_bytes += skb->len;
4254 e1000_receive_skb(adapter, status,
4255 rx_desc->special, skb);
4258 skb = napi_get_frags(&adapter->napi);
4260 adapter->alloc_rx_buff_failed++;
4263 skb_fill_page_desc(skb, 0, p, 0,
4265 e1000_consume_page(buffer_info, skb,
4271 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4272 e1000_rx_checksum(adapter,
4274 ((u32)(rx_desc->errors) << 24),
4275 le16_to_cpu(rx_desc->csum), skb);
4277 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4278 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4279 pskb_trim(skb, skb->len - 4);
4282 if (status & E1000_RXD_STAT_VP) {
4283 __le16 vlan = rx_desc->special;
4284 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4286 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4289 napi_gro_frags(&adapter->napi);
4292 rx_desc->status = 0;
4294 /* return some buffers to hardware, one at a time is too slow */
4295 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4296 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 /* use prefetched values */
4302 buffer_info = next_buffer;
4304 rx_ring->next_to_clean = i;
4306 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4308 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4310 adapter->total_rx_packets += total_rx_packets;
4311 adapter->total_rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_bytes += total_rx_bytes;
4313 netdev->stats.rx_packets += total_rx_packets;
4317 /* this should improve performance for small packets with large amounts
4318 * of reassembly being done in the stack
4320 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4321 struct e1000_rx_buffer *buffer_info,
4322 u32 length, const void *data)
4324 struct sk_buff *skb;
4326 if (length > copybreak)
4329 skb = e1000_alloc_rx_skb(adapter, length);
4333 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4334 length, DMA_FROM_DEVICE);
4336 skb_put_data(skb, data, length);
4342 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4343 * @adapter: board private structure
4344 * @rx_ring: ring to clean
4345 * @work_done: amount of napi work completed this call
4346 * @work_to_do: max amount of work allowed for this call to do
4348 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4349 struct e1000_rx_ring *rx_ring,
4350 int *work_done, int work_to_do)
4352 struct net_device *netdev = adapter->netdev;
4353 struct pci_dev *pdev = adapter->pdev;
4354 struct e1000_rx_desc *rx_desc, *next_rxd;
4355 struct e1000_rx_buffer *buffer_info, *next_buffer;
4358 int cleaned_count = 0;
4359 bool cleaned = false;
4360 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4362 i = rx_ring->next_to_clean;
4363 rx_desc = E1000_RX_DESC(*rx_ring, i);
4364 buffer_info = &rx_ring->buffer_info[i];
4366 while (rx_desc->status & E1000_RXD_STAT_DD) {
4367 struct sk_buff *skb;
4371 if (*work_done >= work_to_do)
4374 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4376 status = rx_desc->status;
4377 length = le16_to_cpu(rx_desc->length);
4379 data = buffer_info->rxbuf.data;
4381 skb = e1000_copybreak(adapter, buffer_info, length, data);
4383 unsigned int frag_len = e1000_frag_len(adapter);
4385 skb = build_skb(data - E1000_HEADROOM, frag_len);
4387 adapter->alloc_rx_buff_failed++;
4391 skb_reserve(skb, E1000_HEADROOM);
4392 dma_unmap_single(&pdev->dev, buffer_info->dma,
4393 adapter->rx_buffer_len,
4395 buffer_info->dma = 0;
4396 buffer_info->rxbuf.data = NULL;
4399 if (++i == rx_ring->count)
4402 next_rxd = E1000_RX_DESC(*rx_ring, i);
4405 next_buffer = &rx_ring->buffer_info[i];
4410 /* !EOP means multiple descriptors were used to store a single
4411 * packet, if thats the case we need to toss it. In fact, we
4412 * to toss every packet with the EOP bit clear and the next
4413 * frame that _does_ have the EOP bit set, as it is by
4414 * definition only a frame fragment
4416 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4417 adapter->discarding = true;
4419 if (adapter->discarding) {
4420 /* All receives must fit into a single buffer */
4421 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4423 if (status & E1000_RXD_STAT_EOP)
4424 adapter->discarding = false;
4428 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4429 if (e1000_tbi_should_accept(adapter, status,
4433 } else if (netdev->features & NETIF_F_RXALL) {
4442 total_rx_bytes += (length - 4); /* don't count FCS */
4445 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4446 /* adjust length to remove Ethernet CRC, this must be
4447 * done after the TBI_ACCEPT workaround above
4451 if (buffer_info->rxbuf.data == NULL)
4452 skb_put(skb, length);
4453 else /* copybreak skb */
4454 skb_trim(skb, length);
4456 /* Receive Checksum Offload */
4457 e1000_rx_checksum(adapter,
4459 ((u32)(rx_desc->errors) << 24),
4460 le16_to_cpu(rx_desc->csum), skb);
4462 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4465 rx_desc->status = 0;
4467 /* return some buffers to hardware, one at a time is too slow */
4468 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4469 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 /* use prefetched values */
4475 buffer_info = next_buffer;
4477 rx_ring->next_to_clean = i;
4479 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4481 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4483 adapter->total_rx_packets += total_rx_packets;
4484 adapter->total_rx_bytes += total_rx_bytes;
4485 netdev->stats.rx_bytes += total_rx_bytes;
4486 netdev->stats.rx_packets += total_rx_packets;
4491 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4492 * @adapter: address of board private structure
4493 * @rx_ring: pointer to receive ring structure
4494 * @cleaned_count: number of buffers to allocate this pass
4497 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4498 struct e1000_rx_ring *rx_ring, int cleaned_count)
4500 struct pci_dev *pdev = adapter->pdev;
4501 struct e1000_rx_desc *rx_desc;
4502 struct e1000_rx_buffer *buffer_info;
4505 i = rx_ring->next_to_use;
4506 buffer_info = &rx_ring->buffer_info[i];
4508 while (cleaned_count--) {
4509 /* allocate a new page if necessary */
4510 if (!buffer_info->rxbuf.page) {
4511 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4512 if (unlikely(!buffer_info->rxbuf.page)) {
4513 adapter->alloc_rx_buff_failed++;
4518 if (!buffer_info->dma) {
4519 buffer_info->dma = dma_map_page(&pdev->dev,
4520 buffer_info->rxbuf.page, 0,
4521 adapter->rx_buffer_len,
4523 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4524 put_page(buffer_info->rxbuf.page);
4525 buffer_info->rxbuf.page = NULL;
4526 buffer_info->dma = 0;
4527 adapter->alloc_rx_buff_failed++;
4532 rx_desc = E1000_RX_DESC(*rx_ring, i);
4533 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4535 if (unlikely(++i == rx_ring->count))
4537 buffer_info = &rx_ring->buffer_info[i];
4540 if (likely(rx_ring->next_to_use != i)) {
4541 rx_ring->next_to_use = i;
4542 if (unlikely(i-- == 0))
4543 i = (rx_ring->count - 1);
4545 /* Force memory writes to complete before letting h/w
4546 * know there are new descriptors to fetch. (Only
4547 * applicable for weak-ordered memory model archs,
4551 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4556 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4557 * @adapter: address of board private structure
4558 * @rx_ring: pointer to ring struct
4559 * @cleaned_count: number of new Rx buffers to try to allocate
4561 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4562 struct e1000_rx_ring *rx_ring,
4565 struct e1000_hw *hw = &adapter->hw;
4566 struct pci_dev *pdev = adapter->pdev;
4567 struct e1000_rx_desc *rx_desc;
4568 struct e1000_rx_buffer *buffer_info;
4570 unsigned int bufsz = adapter->rx_buffer_len;
4572 i = rx_ring->next_to_use;
4573 buffer_info = &rx_ring->buffer_info[i];
4575 while (cleaned_count--) {
4578 if (buffer_info->rxbuf.data)
4581 data = e1000_alloc_frag(adapter);
4583 /* Better luck next round */
4584 adapter->alloc_rx_buff_failed++;
4588 /* Fix for errata 23, can't cross 64kB boundary */
4589 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4590 void *olddata = data;
4591 e_err(rx_err, "skb align check failed: %u bytes at "
4592 "%p\n", bufsz, data);
4593 /* Try again, without freeing the previous */
4594 data = e1000_alloc_frag(adapter);
4595 /* Failed allocation, critical failure */
4597 skb_free_frag(olddata);
4598 adapter->alloc_rx_buff_failed++;
4602 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4604 skb_free_frag(data);
4605 skb_free_frag(olddata);
4606 adapter->alloc_rx_buff_failed++;
4610 /* Use new allocation */
4611 skb_free_frag(olddata);
4613 buffer_info->dma = dma_map_single(&pdev->dev,
4615 adapter->rx_buffer_len,
4617 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4618 skb_free_frag(data);
4619 buffer_info->dma = 0;
4620 adapter->alloc_rx_buff_failed++;
4624 /* XXX if it was allocated cleanly it will never map to a
4628 /* Fix for errata 23, can't cross 64kB boundary */
4629 if (!e1000_check_64k_bound(adapter,
4630 (void *)(unsigned long)buffer_info->dma,
4631 adapter->rx_buffer_len)) {
4632 e_err(rx_err, "dma align check failed: %u bytes at "
4633 "%p\n", adapter->rx_buffer_len,
4634 (void *)(unsigned long)buffer_info->dma);
4636 dma_unmap_single(&pdev->dev, buffer_info->dma,
4637 adapter->rx_buffer_len,
4640 skb_free_frag(data);
4641 buffer_info->rxbuf.data = NULL;
4642 buffer_info->dma = 0;
4644 adapter->alloc_rx_buff_failed++;
4647 buffer_info->rxbuf.data = data;
4649 rx_desc = E1000_RX_DESC(*rx_ring, i);
4650 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4652 if (unlikely(++i == rx_ring->count))
4654 buffer_info = &rx_ring->buffer_info[i];
4657 if (likely(rx_ring->next_to_use != i)) {
4658 rx_ring->next_to_use = i;
4659 if (unlikely(i-- == 0))
4660 i = (rx_ring->count - 1);
4662 /* Force memory writes to complete before letting h/w
4663 * know there are new descriptors to fetch. (Only
4664 * applicable for weak-ordered memory model archs,
4668 writel(i, hw->hw_addr + rx_ring->rdt);
4673 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4674 * @adapter: address of board private structure
4676 static void e1000_smartspeed(struct e1000_adapter *adapter)
4678 struct e1000_hw *hw = &adapter->hw;
4682 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4683 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4686 if (adapter->smartspeed == 0) {
4687 /* If Master/Slave config fault is asserted twice,
4688 * we assume back-to-back
4690 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4696 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4697 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4698 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4699 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4701 adapter->smartspeed++;
4702 if (!e1000_phy_setup_autoneg(hw) &&
4703 !e1000_read_phy_reg(hw, PHY_CTRL,
4705 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4706 MII_CR_RESTART_AUTO_NEG);
4707 e1000_write_phy_reg(hw, PHY_CTRL,
4712 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4713 /* If still no link, perhaps using 2/3 pair cable */
4714 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4715 phy_ctrl |= CR_1000T_MS_ENABLE;
4716 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4717 if (!e1000_phy_setup_autoneg(hw) &&
4718 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4719 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4720 MII_CR_RESTART_AUTO_NEG);
4721 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4724 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4725 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4726 adapter->smartspeed = 0;
4730 * e1000_ioctl - handle ioctl calls
4731 * @netdev: pointer to our netdev
4732 * @ifr: pointer to interface request structure
4735 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4741 return e1000_mii_ioctl(netdev, ifr, cmd);
4749 * @netdev: pointer to our netdev
4750 * @ifr: pointer to interface request structure
4753 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4756 struct e1000_adapter *adapter = netdev_priv(netdev);
4757 struct e1000_hw *hw = &adapter->hw;
4758 struct mii_ioctl_data *data = if_mii(ifr);
4761 unsigned long flags;
4763 if (hw->media_type != e1000_media_type_copper)
4768 data->phy_id = hw->phy_addr;
4771 spin_lock_irqsave(&adapter->stats_lock, flags);
4772 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4774 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4780 if (data->reg_num & ~(0x1F))
4782 mii_reg = data->val_in;
4783 spin_lock_irqsave(&adapter->stats_lock, flags);
4784 if (e1000_write_phy_reg(hw, data->reg_num,
4786 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 if (hw->media_type == e1000_media_type_copper) {
4791 switch (data->reg_num) {
4793 if (mii_reg & MII_CR_POWER_DOWN)
4795 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4797 hw->autoneg_advertised = 0x2F;
4802 else if (mii_reg & 0x2000)
4806 retval = e1000_set_spd_dplx(
4814 if (netif_running(adapter->netdev))
4815 e1000_reinit_locked(adapter);
4817 e1000_reset(adapter);
4819 case M88E1000_PHY_SPEC_CTRL:
4820 case M88E1000_EXT_PHY_SPEC_CTRL:
4821 if (e1000_phy_reset(hw))
4826 switch (data->reg_num) {
4828 if (mii_reg & MII_CR_POWER_DOWN)
4830 if (netif_running(adapter->netdev))
4831 e1000_reinit_locked(adapter);
4833 e1000_reset(adapter);
4841 return E1000_SUCCESS;
4844 void e1000_pci_set_mwi(struct e1000_hw *hw)
4846 struct e1000_adapter *adapter = hw->back;
4847 int ret_val = pci_set_mwi(adapter->pdev);
4850 e_err(probe, "Error in setting MWI\n");
4853 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4855 struct e1000_adapter *adapter = hw->back;
4857 pci_clear_mwi(adapter->pdev);
4860 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4862 struct e1000_adapter *adapter = hw->back;
4863 return pcix_get_mmrbc(adapter->pdev);
4866 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4868 struct e1000_adapter *adapter = hw->back;
4869 pcix_set_mmrbc(adapter->pdev, mmrbc);
4872 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4877 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4886 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4887 netdev_features_t features)
4889 struct e1000_hw *hw = &adapter->hw;
4893 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4894 /* enable VLAN tag insert/strip */
4895 ctrl |= E1000_CTRL_VME;
4897 /* disable VLAN tag insert/strip */
4898 ctrl &= ~E1000_CTRL_VME;
4902 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4905 struct e1000_hw *hw = &adapter->hw;
4908 if (!test_bit(__E1000_DOWN, &adapter->flags))
4909 e1000_irq_disable(adapter);
4911 __e1000_vlan_mode(adapter, adapter->netdev->features);
4913 /* enable VLAN receive filtering */
4915 rctl &= ~E1000_RCTL_CFIEN;
4916 if (!(adapter->netdev->flags & IFF_PROMISC))
4917 rctl |= E1000_RCTL_VFE;
4919 e1000_update_mng_vlan(adapter);
4921 /* disable VLAN receive filtering */
4923 rctl &= ~E1000_RCTL_VFE;
4927 if (!test_bit(__E1000_DOWN, &adapter->flags))
4928 e1000_irq_enable(adapter);
4931 static void e1000_vlan_mode(struct net_device *netdev,
4932 netdev_features_t features)
4934 struct e1000_adapter *adapter = netdev_priv(netdev);
4936 if (!test_bit(__E1000_DOWN, &adapter->flags))
4937 e1000_irq_disable(adapter);
4939 __e1000_vlan_mode(adapter, features);
4941 if (!test_bit(__E1000_DOWN, &adapter->flags))
4942 e1000_irq_enable(adapter);
4945 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4946 __be16 proto, u16 vid)
4948 struct e1000_adapter *adapter = netdev_priv(netdev);
4949 struct e1000_hw *hw = &adapter->hw;
4952 if ((hw->mng_cookie.status &
4953 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4954 (vid == adapter->mng_vlan_id))
4957 if (!e1000_vlan_used(adapter))
4958 e1000_vlan_filter_on_off(adapter, true);
4960 /* add VID to filter table */
4961 index = (vid >> 5) & 0x7F;
4962 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4963 vfta |= (1 << (vid & 0x1F));
4964 e1000_write_vfta(hw, index, vfta);
4966 set_bit(vid, adapter->active_vlans);
4971 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4972 __be16 proto, u16 vid)
4974 struct e1000_adapter *adapter = netdev_priv(netdev);
4975 struct e1000_hw *hw = &adapter->hw;
4978 if (!test_bit(__E1000_DOWN, &adapter->flags))
4979 e1000_irq_disable(adapter);
4980 if (!test_bit(__E1000_DOWN, &adapter->flags))
4981 e1000_irq_enable(adapter);
4983 /* remove VID from filter table */
4984 index = (vid >> 5) & 0x7F;
4985 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4986 vfta &= ~(1 << (vid & 0x1F));
4987 e1000_write_vfta(hw, index, vfta);
4989 clear_bit(vid, adapter->active_vlans);
4991 if (!e1000_vlan_used(adapter))
4992 e1000_vlan_filter_on_off(adapter, false);
4997 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001 if (!e1000_vlan_used(adapter))
5004 e1000_vlan_filter_on_off(adapter, true);
5005 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5006 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5009 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5011 struct e1000_hw *hw = &adapter->hw;
5015 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5016 * for the switch() below to work
5018 if ((spd & 1) || (dplx & ~1))
5021 /* Fiber NICs only allow 1000 gbps Full duplex */
5022 if ((hw->media_type == e1000_media_type_fiber) &&
5023 spd != SPEED_1000 &&
5024 dplx != DUPLEX_FULL)
5027 switch (spd + dplx) {
5028 case SPEED_10 + DUPLEX_HALF:
5029 hw->forced_speed_duplex = e1000_10_half;
5031 case SPEED_10 + DUPLEX_FULL:
5032 hw->forced_speed_duplex = e1000_10_full;
5034 case SPEED_100 + DUPLEX_HALF:
5035 hw->forced_speed_duplex = e1000_100_half;
5037 case SPEED_100 + DUPLEX_FULL:
5038 hw->forced_speed_duplex = e1000_100_full;
5040 case SPEED_1000 + DUPLEX_FULL:
5042 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5044 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5049 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5050 hw->mdix = AUTO_ALL_MODES;
5055 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5061 struct net_device *netdev = pci_get_drvdata(pdev);
5062 struct e1000_adapter *adapter = netdev_priv(netdev);
5063 struct e1000_hw *hw = &adapter->hw;
5064 u32 ctrl, ctrl_ext, rctl, status;
5065 u32 wufc = adapter->wol;
5067 netif_device_detach(netdev);
5069 if (netif_running(netdev)) {
5070 int count = E1000_CHECK_RESET_COUNT;
5072 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5073 usleep_range(10000, 20000);
5075 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5076 e1000_down(adapter);
5079 status = er32(STATUS);
5080 if (status & E1000_STATUS_LU)
5081 wufc &= ~E1000_WUFC_LNKC;
5084 e1000_setup_rctl(adapter);
5085 e1000_set_rx_mode(netdev);
5089 /* turn on all-multi mode if wake on multicast is enabled */
5090 if (wufc & E1000_WUFC_MC)
5091 rctl |= E1000_RCTL_MPE;
5093 /* enable receives in the hardware */
5094 ew32(RCTL, rctl | E1000_RCTL_EN);
5096 if (hw->mac_type >= e1000_82540) {
5098 /* advertise wake from D3Cold */
5099 #define E1000_CTRL_ADVD3WUC 0x00100000
5100 /* phy power management enable */
5101 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5102 ctrl |= E1000_CTRL_ADVD3WUC |
5103 E1000_CTRL_EN_PHY_PWR_MGMT;
5107 if (hw->media_type == e1000_media_type_fiber ||
5108 hw->media_type == e1000_media_type_internal_serdes) {
5109 /* keep the laser running in D3 */
5110 ctrl_ext = er32(CTRL_EXT);
5111 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5112 ew32(CTRL_EXT, ctrl_ext);
5115 ew32(WUC, E1000_WUC_PME_EN);
5122 e1000_release_manageability(adapter);
5124 *enable_wake = !!wufc;
5126 /* make sure adapter isn't asleep if manageability is enabled */
5127 if (adapter->en_mng_pt)
5128 *enable_wake = true;
5130 if (netif_running(netdev))
5131 e1000_free_irq(adapter);
5133 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5134 pci_disable_device(pdev);
5139 static int __maybe_unused e1000_suspend(struct device *dev)
5142 struct pci_dev *pdev = to_pci_dev(dev);
5145 retval = __e1000_shutdown(pdev, &wake);
5146 device_set_wakeup_enable(dev, wake);
5151 static int __maybe_unused e1000_resume(struct device *dev)
5153 struct pci_dev *pdev = to_pci_dev(dev);
5154 struct net_device *netdev = pci_get_drvdata(pdev);
5155 struct e1000_adapter *adapter = netdev_priv(netdev);
5156 struct e1000_hw *hw = &adapter->hw;
5159 if (adapter->need_ioport)
5160 err = pci_enable_device(pdev);
5162 err = pci_enable_device_mem(pdev);
5164 pr_err("Cannot enable PCI device from suspend\n");
5168 /* flush memory to make sure state is correct */
5169 smp_mb__before_atomic();
5170 clear_bit(__E1000_DISABLED, &adapter->flags);
5171 pci_set_master(pdev);
5173 pci_enable_wake(pdev, PCI_D3hot, 0);
5174 pci_enable_wake(pdev, PCI_D3cold, 0);
5176 if (netif_running(netdev)) {
5177 err = e1000_request_irq(adapter);
5182 e1000_power_up_phy(adapter);
5183 e1000_reset(adapter);
5186 e1000_init_manageability(adapter);
5188 if (netif_running(netdev))
5191 netif_device_attach(netdev);
5196 static void e1000_shutdown(struct pci_dev *pdev)
5200 __e1000_shutdown(pdev, &wake);
5202 if (system_state == SYSTEM_POWER_OFF) {
5203 pci_wake_from_d3(pdev, wake);
5204 pci_set_power_state(pdev, PCI_D3hot);
5208 #ifdef CONFIG_NET_POLL_CONTROLLER
5209 /* Polling 'interrupt' - used by things like netconsole to send skbs
5210 * without having to re-enable interrupts. It's not called while
5211 * the interrupt routine is executing.
5213 static void e1000_netpoll(struct net_device *netdev)
5215 struct e1000_adapter *adapter = netdev_priv(netdev);
5217 if (disable_hardirq(adapter->pdev->irq))
5218 e1000_intr(adapter->pdev->irq, netdev);
5219 enable_irq(adapter->pdev->irq);
5224 * e1000_io_error_detected - called when PCI error is detected
5225 * @pdev: Pointer to PCI device
5226 * @state: The current pci connection state
5228 * This function is called after a PCI bus error affecting
5229 * this device has been detected.
5231 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5232 pci_channel_state_t state)
5234 struct net_device *netdev = pci_get_drvdata(pdev);
5235 struct e1000_adapter *adapter = netdev_priv(netdev);
5237 netif_device_detach(netdev);
5239 if (state == pci_channel_io_perm_failure)
5240 return PCI_ERS_RESULT_DISCONNECT;
5242 if (netif_running(netdev))
5243 e1000_down(adapter);
5245 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5246 pci_disable_device(pdev);
5248 /* Request a slot reset. */
5249 return PCI_ERS_RESULT_NEED_RESET;
5253 * e1000_io_slot_reset - called after the pci bus has been reset.
5254 * @pdev: Pointer to PCI device
5256 * Restart the card from scratch, as if from a cold-boot. Implementation
5257 * resembles the first-half of the e1000_resume routine.
5259 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5261 struct net_device *netdev = pci_get_drvdata(pdev);
5262 struct e1000_adapter *adapter = netdev_priv(netdev);
5263 struct e1000_hw *hw = &adapter->hw;
5266 if (adapter->need_ioport)
5267 err = pci_enable_device(pdev);
5269 err = pci_enable_device_mem(pdev);
5271 pr_err("Cannot re-enable PCI device after reset.\n");
5272 return PCI_ERS_RESULT_DISCONNECT;
5275 /* flush memory to make sure state is correct */
5276 smp_mb__before_atomic();
5277 clear_bit(__E1000_DISABLED, &adapter->flags);
5278 pci_set_master(pdev);
5280 pci_enable_wake(pdev, PCI_D3hot, 0);
5281 pci_enable_wake(pdev, PCI_D3cold, 0);
5283 e1000_reset(adapter);
5286 return PCI_ERS_RESULT_RECOVERED;
5290 * e1000_io_resume - called when traffic can start flowing again.
5291 * @pdev: Pointer to PCI device
5293 * This callback is called when the error recovery driver tells us that
5294 * its OK to resume normal operation. Implementation resembles the
5295 * second-half of the e1000_resume routine.
5297 static void e1000_io_resume(struct pci_dev *pdev)
5299 struct net_device *netdev = pci_get_drvdata(pdev);
5300 struct e1000_adapter *adapter = netdev_priv(netdev);
5302 e1000_init_manageability(adapter);
5304 if (netif_running(netdev)) {
5305 if (e1000_up(adapter)) {
5306 pr_info("can't bring device back up after reset\n");
5311 netif_device_attach(netdev);