1 // SPDX-License-Identifier: GPL-2.0
3 * SPI bus driver for the Ingenic JZ47xx SoCs
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/iopoll.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/regmap.h>
17 #include <linux/spi/spi.h>
20 #define REG_SSICR0 0x4
21 #define REG_SSICR1 0x8
23 #define REG_SSIGR 0x18
25 #define REG_SSICR0_TENDIAN_LSB BIT(19)
26 #define REG_SSICR0_RENDIAN_LSB BIT(17)
27 #define REG_SSICR0_SSIE BIT(15)
28 #define REG_SSICR0_LOOP BIT(10)
29 #define REG_SSICR0_EACLRUN BIT(7)
30 #define REG_SSICR0_FSEL BIT(6)
31 #define REG_SSICR0_TFLUSH BIT(2)
32 #define REG_SSICR0_RFLUSH BIT(1)
34 #define REG_SSICR1_FRMHL_MASK (BIT(31) | BIT(30))
35 #define REG_SSICR1_FRMHL BIT(30)
36 #define REG_SSICR1_LFST BIT(25)
37 #define REG_SSICR1_UNFIN BIT(23)
38 #define REG_SSICR1_PHA BIT(1)
39 #define REG_SSICR1_POL BIT(0)
41 #define REG_SSISR_END BIT(7)
42 #define REG_SSISR_BUSY BIT(6)
43 #define REG_SSISR_TFF BIT(5)
44 #define REG_SSISR_RFE BIT(4)
45 #define REG_SSISR_RFHF BIT(2)
46 #define REG_SSISR_UNDR BIT(1)
47 #define REG_SSISR_OVER BIT(0)
49 #define SPI_INGENIC_FIFO_SIZE 128u
52 u32 bits_per_word_mask;
53 struct reg_field flen_field;
58 const struct jz_soc_info *soc_info;
60 struct resource *mem_res;
63 struct regmap_field *flen_field;
66 static int spi_ingenic_wait(struct ingenic_spi *priv,
72 return regmap_read_poll_timeout(priv->map, REG_SSISR, val,
73 !!(val & mask) == condition,
77 static void spi_ingenic_set_cs(struct spi_device *spi, bool disable)
79 struct ingenic_spi *priv = spi_controller_get_devdata(spi->controller);
82 regmap_clear_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
83 regmap_clear_bits(priv->map, REG_SSISR,
84 REG_SSISR_UNDR | REG_SSISR_OVER);
86 spi_ingenic_wait(priv, REG_SSISR_END, true);
88 regmap_set_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
91 regmap_set_bits(priv->map, REG_SSICR0,
92 REG_SSICR0_RFLUSH | REG_SSICR0_TFLUSH);
95 static void spi_ingenic_prepare_transfer(struct ingenic_spi *priv,
96 struct spi_device *spi,
97 struct spi_transfer *xfer)
99 unsigned long clk_hz = clk_get_rate(priv->clk);
100 u32 cdiv, speed_hz = xfer->speed_hz ?: spi->max_speed_hz,
101 bits_per_word = xfer->bits_per_word ?: spi->bits_per_word;
103 cdiv = clk_hz / (speed_hz * 2);
104 cdiv = clamp(cdiv, 1u, 0x100u) - 1;
106 regmap_write(priv->map, REG_SSIGR, cdiv);
108 regmap_field_write(priv->flen_field, bits_per_word - 2);
111 static void spi_ingenic_finalize_transfer(void *controller)
113 spi_finalize_current_transfer(controller);
116 static struct dma_async_tx_descriptor *
117 spi_ingenic_prepare_dma(struct spi_controller *ctlr, struct dma_chan *chan,
118 struct sg_table *sg, enum dma_transfer_direction dir,
121 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
122 struct dma_slave_config cfg = {
124 .src_addr = priv->mem_res->start + REG_SSIDR,
125 .dst_addr = priv->mem_res->start + REG_SSIDR,
127 struct dma_async_tx_descriptor *desc;
132 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
133 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
134 cfg.src_maxburst = cfg.dst_maxburst = 4;
135 } else if (bits > 8) {
136 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
137 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
138 cfg.src_maxburst = cfg.dst_maxburst = 2;
140 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
141 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
142 cfg.src_maxburst = cfg.dst_maxburst = 1;
145 ret = dmaengine_slave_config(chan, &cfg);
149 desc = dmaengine_prep_slave_sg(chan, sg->sgl, sg->nents, dir,
152 return ERR_PTR(-ENOMEM);
154 if (dir == DMA_DEV_TO_MEM) {
155 desc->callback = spi_ingenic_finalize_transfer;
156 desc->callback_param = ctlr;
159 cookie = dmaengine_submit(desc);
161 ret = dma_submit_error(cookie);
163 dmaengine_desc_free(desc);
170 static int spi_ingenic_dma_tx(struct spi_controller *ctlr,
171 struct spi_transfer *xfer, unsigned int bits)
173 struct dma_async_tx_descriptor *rx_desc, *tx_desc;
175 rx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_rx,
176 &xfer->rx_sg, DMA_DEV_TO_MEM, bits);
178 return PTR_ERR(rx_desc);
180 tx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_tx,
181 &xfer->tx_sg, DMA_MEM_TO_DEV, bits);
182 if (IS_ERR(tx_desc)) {
183 dmaengine_terminate_async(ctlr->dma_rx);
184 dmaengine_desc_free(rx_desc);
185 return PTR_ERR(tx_desc);
188 dma_async_issue_pending(ctlr->dma_rx);
189 dma_async_issue_pending(ctlr->dma_tx);
194 #define SPI_INGENIC_TX(x) \
195 static int spi_ingenic_tx##x(struct ingenic_spi *priv, \
196 struct spi_transfer *xfer) \
198 unsigned int count = xfer->len / (x / 8); \
199 unsigned int prefill = min(count, SPI_INGENIC_FIFO_SIZE); \
200 const u##x *tx_buf = xfer->tx_buf; \
201 u##x *rx_buf = xfer->rx_buf; \
202 unsigned int i, val; \
205 /* Fill up the TX fifo */ \
206 for (i = 0; i < prefill; i++) { \
207 val = tx_buf ? tx_buf[i] : 0; \
209 regmap_write(priv->map, REG_SSIDR, val); \
212 for (i = 0; i < count; i++) { \
213 err = spi_ingenic_wait(priv, REG_SSISR_RFE, false); \
217 regmap_read(priv->map, REG_SSIDR, &val); \
221 if (i < count - prefill) { \
222 val = tx_buf ? tx_buf[i + prefill] : 0; \
224 regmap_write(priv->map, REG_SSIDR, val); \
233 #undef SPI_INGENIC_TX
235 static int spi_ingenic_transfer_one(struct spi_controller *ctlr,
236 struct spi_device *spi,
237 struct spi_transfer *xfer)
239 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
240 unsigned int bits = xfer->bits_per_word ?: spi->bits_per_word;
241 bool can_dma = ctlr->can_dma && ctlr->can_dma(ctlr, spi, xfer);
243 spi_ingenic_prepare_transfer(priv, spi, xfer);
245 if (ctlr->cur_msg_mapped && can_dma)
246 return spi_ingenic_dma_tx(ctlr, xfer, bits);
249 return spi_ingenic_tx32(priv, xfer);
252 return spi_ingenic_tx16(priv, xfer);
254 return spi_ingenic_tx8(priv, xfer);
257 static int spi_ingenic_prepare_message(struct spi_controller *ctlr,
258 struct spi_message *message)
260 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
261 struct spi_device *spi = message->spi;
262 unsigned int cs = REG_SSICR1_FRMHL << spi->chip_select;
263 unsigned int ssicr0_mask = REG_SSICR0_LOOP | REG_SSICR0_FSEL;
264 unsigned int ssicr1_mask = REG_SSICR1_PHA | REG_SSICR1_POL | cs;
265 unsigned int ssicr0 = 0, ssicr1 = 0;
267 if (priv->soc_info->has_trendian) {
268 ssicr0_mask |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
270 if (spi->mode & SPI_LSB_FIRST)
271 ssicr0 |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
273 ssicr1_mask |= REG_SSICR1_LFST;
275 if (spi->mode & SPI_LSB_FIRST)
276 ssicr1 |= REG_SSICR1_LFST;
279 if (spi->mode & SPI_LOOP)
280 ssicr0 |= REG_SSICR0_LOOP;
281 if (spi->chip_select)
282 ssicr0 |= REG_SSICR0_FSEL;
284 if (spi->mode & SPI_CPHA)
285 ssicr1 |= REG_SSICR1_PHA;
286 if (spi->mode & SPI_CPOL)
287 ssicr1 |= REG_SSICR1_POL;
288 if (spi->mode & SPI_CS_HIGH)
291 regmap_update_bits(priv->map, REG_SSICR0, ssicr0_mask, ssicr0);
292 regmap_update_bits(priv->map, REG_SSICR1, ssicr1_mask, ssicr1);
297 static int spi_ingenic_prepare_hardware(struct spi_controller *ctlr)
299 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
302 ret = clk_prepare_enable(priv->clk);
306 regmap_write(priv->map, REG_SSICR0, REG_SSICR0_EACLRUN);
307 regmap_write(priv->map, REG_SSICR1, 0);
308 regmap_write(priv->map, REG_SSISR, 0);
309 regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
314 static int spi_ingenic_unprepare_hardware(struct spi_controller *ctlr)
316 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
318 regmap_clear_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
320 clk_disable_unprepare(priv->clk);
325 static bool spi_ingenic_can_dma(struct spi_controller *ctlr,
326 struct spi_device *spi,
327 struct spi_transfer *xfer)
329 struct dma_slave_caps caps;
332 ret = dma_get_slave_caps(ctlr->dma_tx, &caps);
334 dev_err(&spi->dev, "Unable to get slave caps: %d\n", ret);
338 return !caps.max_sg_burst ||
339 xfer->len <= caps.max_sg_burst * SPI_INGENIC_FIFO_SIZE;
342 static int spi_ingenic_request_dma(struct spi_controller *ctlr,
345 ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
349 ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
354 ctlr->can_dma = spi_ingenic_can_dma;
359 static void spi_ingenic_release_dma(void *data)
361 struct spi_controller *ctlr = data;
364 dma_release_channel(ctlr->dma_tx);
366 dma_release_channel(ctlr->dma_rx);
369 static const struct regmap_config spi_ingenic_regmap_config = {
373 .max_register = REG_SSIGR,
376 static int spi_ingenic_probe(struct platform_device *pdev)
378 const struct jz_soc_info *pdata;
379 struct device *dev = &pdev->dev;
380 struct spi_controller *ctlr;
381 struct ingenic_spi *priv;
385 pdata = of_device_get_match_data(dev);
387 dev_err(dev, "Missing platform data.\n");
391 ctlr = devm_spi_alloc_master(dev, sizeof(*priv));
393 dev_err(dev, "Unable to allocate SPI controller.\n");
397 priv = spi_controller_get_devdata(ctlr);
398 priv->soc_info = pdata;
400 priv->clk = devm_clk_get(dev, NULL);
401 if (IS_ERR(priv->clk)) {
402 return dev_err_probe(dev, PTR_ERR(priv->clk),
403 "Unable to get clock.\n");
406 base = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->mem_res);
408 return PTR_ERR(base);
410 priv->map = devm_regmap_init_mmio(dev, base, &spi_ingenic_regmap_config);
411 if (IS_ERR(priv->map))
412 return PTR_ERR(priv->map);
414 priv->flen_field = devm_regmap_field_alloc(dev, priv->map,
416 if (IS_ERR(priv->flen_field))
417 return PTR_ERR(priv->flen_field);
419 platform_set_drvdata(pdev, ctlr);
421 ctlr->prepare_transfer_hardware = spi_ingenic_prepare_hardware;
422 ctlr->unprepare_transfer_hardware = spi_ingenic_unprepare_hardware;
423 ctlr->prepare_message = spi_ingenic_prepare_message;
424 ctlr->set_cs = spi_ingenic_set_cs;
425 ctlr->transfer_one = spi_ingenic_transfer_one;
426 ctlr->mode_bits = SPI_MODE_3 | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH;
427 ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
428 ctlr->max_dma_len = SPI_INGENIC_FIFO_SIZE;
429 ctlr->bits_per_word_mask = pdata->bits_per_word_mask;
430 ctlr->min_speed_hz = 7200;
431 ctlr->max_speed_hz = 54000000;
432 ctlr->num_chipselect = 2;
433 ctlr->dev.of_node = pdev->dev.of_node;
435 if (spi_ingenic_request_dma(ctlr, dev))
436 dev_warn(dev, "DMA not available.\n");
438 ret = devm_add_action_or_reset(dev, spi_ingenic_release_dma, ctlr);
440 dev_err(dev, "Unable to add action.\n");
444 ret = devm_spi_register_controller(dev, ctlr);
446 dev_err(dev, "Unable to register SPI controller.\n");
451 static const struct jz_soc_info jz4750_soc_info = {
452 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 17),
453 .flen_field = REG_FIELD(REG_SSICR1, 4, 7),
454 .has_trendian = false,
457 static const struct jz_soc_info jz4780_soc_info = {
458 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
459 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
460 .has_trendian = true,
463 static const struct of_device_id spi_ingenic_of_match[] = {
464 { .compatible = "ingenic,jz4750-spi", .data = &jz4750_soc_info },
465 { .compatible = "ingenic,jz4780-spi", .data = &jz4780_soc_info },
468 MODULE_DEVICE_TABLE(of, spi_ingenic_of_match);
470 static struct platform_driver spi_ingenic_driver = {
472 .name = "spi-ingenic",
473 .of_match_table = spi_ingenic_of_match,
475 .probe = spi_ingenic_probe,
478 module_platform_driver(spi_ingenic_driver);
479 MODULE_DESCRIPTION("SPI bus driver for the Ingenic JZ47xx SoCs");
482 MODULE_LICENSE("GPL");