1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
38 #include <net/netfilter/nf_conntrack.h>
40 #define DRV_NAME "vrf"
41 #define DRV_VERSION "1.1"
43 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
46 #define HASH_INITVAL ((u32)0xcafef00d)
49 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
53 * count how many distinct tables do not comply with the strict mode
55 * shared_tables value must be 0 in order to enable the strict mode.
57 * example of the evolution of shared_tables:
59 * add vrf0 --> table 100 shared_tables = 0 | t0
60 * add vrf1 --> table 101 shared_tables = 0 | t1
61 * add vrf2 --> table 100 shared_tables = 1 | t2
62 * add vrf3 --> table 100 shared_tables = 1 | t3
63 * add vrf4 --> table 101 shared_tables = 2 v t4
65 * shared_tables is a "step function" (or "staircase function")
66 * and it is increased by one when the second vrf is associated to a
69 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 * at t3, another dev (vrf3) is bound to the same table 100 but the
72 * value of shared_tables is still 1.
73 * This means that no matter how many new vrfs will register on the
74 * table 100, the shared_tables will not increase (considering only
77 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 * Looking at the value of shared_tables we can immediately know if
80 * the strict_mode can or cannot be enforced. Indeed, strict_mode
81 * can be enforced iff shared_tables = 0.
83 * Conversely, shared_tables is decreased when a vrf is de-associated
84 * from a table with exactly two associated vrfs.
92 struct hlist_node hnode;
93 struct list_head vrf_list; /* VRFs registered to this table */
100 static unsigned int vrf_net_id;
102 /* per netns vrf data */
104 /* protected by rtnl lock */
108 struct ctl_table_header *ctl_hdr;
112 struct rtable __rcu *rth;
113 struct rt6_info __rcu *rt6;
114 #if IS_ENABLED(CONFIG_IPV6)
115 struct fib6_table *fib6_table;
119 struct list_head me_list; /* entry in vrf_map_elem */
130 struct u64_stats_sync syncp;
133 static void vrf_rx_stats(struct net_device *dev, int len)
135 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
137 u64_stats_update_begin(&dstats->syncp);
139 dstats->rx_bytes += len;
140 u64_stats_update_end(&dstats->syncp);
143 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
145 vrf_dev->stats.tx_errors++;
149 static void vrf_get_stats64(struct net_device *dev,
150 struct rtnl_link_stats64 *stats)
154 for_each_possible_cpu(i) {
155 const struct pcpu_dstats *dstats;
156 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
159 dstats = per_cpu_ptr(dev->dstats, i);
161 start = u64_stats_fetch_begin_irq(&dstats->syncp);
162 tbytes = dstats->tx_bytes;
163 tpkts = dstats->tx_pkts;
164 tdrops = dstats->tx_drps;
165 rbytes = dstats->rx_bytes;
166 rpkts = dstats->rx_pkts;
167 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
168 stats->tx_bytes += tbytes;
169 stats->tx_packets += tpkts;
170 stats->tx_dropped += tdrops;
171 stats->rx_bytes += rbytes;
172 stats->rx_packets += rpkts;
176 static struct vrf_map *netns_vrf_map(struct net *net)
178 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
180 return &nn_vrf->vmap;
183 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
185 return netns_vrf_map(dev_net(dev));
188 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
190 struct list_head *me_head = &me->vrf_list;
193 if (list_empty(me_head))
196 vrf = list_first_entry(me_head, struct net_vrf, me_list);
201 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
203 struct vrf_map_elem *me;
205 me = kmalloc(sizeof(*me), flags);
212 static void vrf_map_elem_free(struct vrf_map_elem *me)
217 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
218 int ifindex, int users)
220 me->table_id = table_id;
221 me->ifindex = ifindex;
223 INIT_LIST_HEAD(&me->vrf_list);
226 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
229 struct vrf_map_elem *me;
232 key = jhash_1word(table_id, HASH_INITVAL);
233 hash_for_each_possible(vmap->ht, me, hnode, key) {
234 if (me->table_id == table_id)
241 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
243 u32 table_id = me->table_id;
246 key = jhash_1word(table_id, HASH_INITVAL);
247 hash_add(vmap->ht, &me->hnode, key);
250 static void vrf_map_del_elem(struct vrf_map_elem *me)
252 hash_del(&me->hnode);
255 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
257 spin_lock(&vmap->vmap_lock);
260 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
262 spin_unlock(&vmap->vmap_lock);
265 /* called with rtnl lock held */
267 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
269 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
270 struct net_vrf *vrf = netdev_priv(dev);
271 struct vrf_map_elem *new_me, *me;
272 u32 table_id = vrf->tb_id;
273 bool free_new_me = false;
277 /* we pre-allocate elements used in the spin-locked section (so that we
278 * keep the spinlock as short as possible).
280 new_me = vrf_map_elem_alloc(GFP_KERNEL);
284 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
288 me = vrf_map_lookup_elem(vmap, table_id);
291 vrf_map_add_elem(vmap, me);
295 /* we already have an entry in the vrf_map, so it means there is (at
296 * least) a vrf registered on the specific table.
299 if (vmap->strict_mode) {
300 /* vrfs cannot share the same table */
301 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
309 ++vmap->shared_tables;
311 list_add(&vrf->me_list, &me->vrf_list);
316 vrf_map_unlock(vmap);
318 /* clean-up, if needed */
320 vrf_map_elem_free(new_me);
325 /* called with rtnl lock held */
326 static void vrf_map_unregister_dev(struct net_device *dev)
328 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
329 struct net_vrf *vrf = netdev_priv(dev);
330 u32 table_id = vrf->tb_id;
331 struct vrf_map_elem *me;
336 me = vrf_map_lookup_elem(vmap, table_id);
340 list_del(&vrf->me_list);
344 --vmap->shared_tables;
345 } else if (users == 0) {
346 vrf_map_del_elem(me);
348 /* no one will refer to this element anymore */
349 vrf_map_elem_free(me);
353 vrf_map_unlock(vmap);
356 /* return the vrf device index associated with the table_id */
357 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
359 struct vrf_map *vmap = netns_vrf_map(net);
360 struct vrf_map_elem *me;
365 if (!vmap->strict_mode) {
370 me = vrf_map_lookup_elem(vmap, table_id);
376 ifindex = vrf_map_elem_get_vrf_ifindex(me);
379 vrf_map_unlock(vmap);
384 /* by default VRF devices do not have a qdisc and are expected
385 * to be created with only a single queue.
387 static bool qdisc_tx_is_default(const struct net_device *dev)
389 struct netdev_queue *txq;
392 if (dev->num_tx_queues > 1)
395 txq = netdev_get_tx_queue(dev, 0);
396 qdisc = rcu_access_pointer(txq->qdisc);
398 return !qdisc->enqueue;
401 /* Local traffic destined to local address. Reinsert the packet to rx
402 * path, similar to loopback handling.
404 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
405 struct dst_entry *dst)
411 skb_dst_set(skb, dst);
413 /* set pkt_type to avoid skb hitting packet taps twice -
414 * once on Tx and again in Rx processing
416 skb->pkt_type = PACKET_LOOPBACK;
418 skb->protocol = eth_type_trans(skb, dev);
420 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
421 vrf_rx_stats(dev, len);
423 this_cpu_inc(dev->dstats->rx_drps);
428 static void vrf_nf_set_untracked(struct sk_buff *skb)
430 if (skb_get_nfct(skb) == 0)
431 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
434 static void vrf_nf_reset_ct(struct sk_buff *skb)
436 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
440 #if IS_ENABLED(CONFIG_IPV6)
441 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
446 vrf_nf_reset_ct(skb);
448 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
449 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
451 if (likely(err == 1))
452 err = dst_output(net, sk, skb);
457 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
458 struct net_device *dev)
460 const struct ipv6hdr *iph;
461 struct net *net = dev_net(skb->dev);
463 int ret = NET_XMIT_DROP;
464 struct dst_entry *dst;
465 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
467 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
472 memset(&fl6, 0, sizeof(fl6));
473 /* needed to match OIF rule */
474 fl6.flowi6_oif = dev->ifindex;
475 fl6.flowi6_iif = LOOPBACK_IFINDEX;
476 fl6.daddr = iph->daddr;
477 fl6.saddr = iph->saddr;
478 fl6.flowlabel = ip6_flowinfo(iph);
479 fl6.flowi6_mark = skb->mark;
480 fl6.flowi6_proto = iph->nexthdr;
481 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
483 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
484 if (IS_ERR(dst) || dst == dst_null)
489 /* if dst.dev is the VRF device again this is locally originated traffic
490 * destined to a local address. Short circuit to Rx path.
493 return vrf_local_xmit(skb, dev, dst);
495 skb_dst_set(skb, dst);
497 /* strip the ethernet header added for pass through VRF device */
498 __skb_pull(skb, skb_network_offset(skb));
500 ret = vrf_ip6_local_out(net, skb->sk, skb);
501 if (unlikely(net_xmit_eval(ret)))
502 dev->stats.tx_errors++;
504 ret = NET_XMIT_SUCCESS;
508 vrf_tx_error(dev, skb);
509 return NET_XMIT_DROP;
512 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
513 struct net_device *dev)
515 vrf_tx_error(dev, skb);
516 return NET_XMIT_DROP;
520 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
521 static int vrf_ip_local_out(struct net *net, struct sock *sk,
526 vrf_nf_reset_ct(skb);
528 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
529 skb, NULL, skb_dst(skb)->dev, dst_output);
530 if (likely(err == 1))
531 err = dst_output(net, sk, skb);
536 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
537 struct net_device *vrf_dev)
540 int ret = NET_XMIT_DROP;
542 struct net *net = dev_net(vrf_dev);
545 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
550 memset(&fl4, 0, sizeof(fl4));
551 /* needed to match OIF rule */
552 fl4.flowi4_oif = vrf_dev->ifindex;
553 fl4.flowi4_iif = LOOPBACK_IFINDEX;
554 fl4.flowi4_tos = RT_TOS(ip4h->tos);
555 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
556 fl4.flowi4_proto = ip4h->protocol;
557 fl4.daddr = ip4h->daddr;
558 fl4.saddr = ip4h->saddr;
560 rt = ip_route_output_flow(net, &fl4, NULL);
566 /* if dst.dev is the VRF device again this is locally originated traffic
567 * destined to a local address. Short circuit to Rx path.
569 if (rt->dst.dev == vrf_dev)
570 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
572 skb_dst_set(skb, &rt->dst);
574 /* strip the ethernet header added for pass through VRF device */
575 __skb_pull(skb, skb_network_offset(skb));
578 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
582 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
583 if (unlikely(net_xmit_eval(ret)))
584 vrf_dev->stats.tx_errors++;
586 ret = NET_XMIT_SUCCESS;
591 vrf_tx_error(vrf_dev, skb);
595 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
597 switch (skb->protocol) {
598 case htons(ETH_P_IP):
599 return vrf_process_v4_outbound(skb, dev);
600 case htons(ETH_P_IPV6):
601 return vrf_process_v6_outbound(skb, dev);
603 vrf_tx_error(dev, skb);
604 return NET_XMIT_DROP;
608 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
611 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
613 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
614 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
616 u64_stats_update_begin(&dstats->syncp);
618 dstats->tx_bytes += len;
619 u64_stats_update_end(&dstats->syncp);
621 this_cpu_inc(dev->dstats->tx_drps);
627 static void vrf_finish_direct(struct sk_buff *skb)
629 struct net_device *vrf_dev = skb->dev;
631 if (!list_empty(&vrf_dev->ptype_all) &&
632 likely(skb_headroom(skb) >= ETH_HLEN)) {
633 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
635 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
636 eth_zero_addr(eth->h_dest);
637 eth->h_proto = skb->protocol;
640 dev_queue_xmit_nit(skb, vrf_dev);
641 rcu_read_unlock_bh();
643 skb_pull(skb, ETH_HLEN);
646 vrf_nf_reset_ct(skb);
649 #if IS_ENABLED(CONFIG_IPV6)
650 /* modelled after ip6_finish_output2 */
651 static int vrf_finish_output6(struct net *net, struct sock *sk,
654 struct dst_entry *dst = skb_dst(skb);
655 struct net_device *dev = dst->dev;
656 const struct in6_addr *nexthop;
657 struct neighbour *neigh;
660 vrf_nf_reset_ct(skb);
662 skb->protocol = htons(ETH_P_IPV6);
666 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
667 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
668 if (unlikely(!neigh))
669 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
670 if (!IS_ERR(neigh)) {
671 sock_confirm_neigh(skb, neigh);
672 ret = neigh_output(neigh, skb, false);
673 rcu_read_unlock_bh();
676 rcu_read_unlock_bh();
678 IP6_INC_STATS(dev_net(dst->dev),
679 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
684 /* modelled after ip6_output */
685 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
687 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
688 net, sk, skb, NULL, skb_dst(skb)->dev,
690 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
693 /* set dst on skb to send packet to us via dev_xmit path. Allows
694 * packet to go through device based features such as qdisc, netfilter
695 * hooks and packet sockets with skb->dev set to vrf device.
697 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
700 struct net_vrf *vrf = netdev_priv(vrf_dev);
701 struct dst_entry *dst = NULL;
702 struct rt6_info *rt6;
706 rt6 = rcu_dereference(vrf->rt6);
714 if (unlikely(!dst)) {
715 vrf_tx_error(vrf_dev, skb);
720 skb_dst_set(skb, dst);
725 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
728 vrf_finish_direct(skb);
730 return vrf_ip6_local_out(net, sk, skb);
733 static int vrf_output6_direct(struct net *net, struct sock *sk,
738 skb->protocol = htons(ETH_P_IPV6);
740 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
741 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
742 NULL, skb->dev, vrf_output6_direct_finish);
744 if (likely(err == 1))
745 vrf_finish_direct(skb);
750 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
755 err = vrf_output6_direct(net, sk, skb);
756 if (likely(err == 1))
757 err = vrf_ip6_local_out(net, sk, skb);
762 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
766 struct net *net = dev_net(vrf_dev);
771 vrf_nf_set_untracked(skb);
773 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
774 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
776 if (likely(err == 1))
777 err = vrf_output6_direct(net, sk, skb);
779 if (likely(err == 1))
785 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
789 /* don't divert link scope packets */
790 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
793 if (qdisc_tx_is_default(vrf_dev) ||
794 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
795 return vrf_ip6_out_direct(vrf_dev, sk, skb);
797 return vrf_ip6_out_redirect(vrf_dev, skb);
801 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
803 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
804 struct net *net = dev_net(dev);
805 struct dst_entry *dst;
807 RCU_INIT_POINTER(vrf->rt6, NULL);
810 /* move dev in dst's to loopback so this VRF device can be deleted
811 * - based on dst_ifdown
816 dst->dev = net->loopback_dev;
822 static int vrf_rt6_create(struct net_device *dev)
824 int flags = DST_NOPOLICY | DST_NOXFRM;
825 struct net_vrf *vrf = netdev_priv(dev);
826 struct net *net = dev_net(dev);
827 struct rt6_info *rt6;
830 /* IPv6 can be CONFIG enabled and then disabled runtime */
831 if (!ipv6_mod_enabled())
834 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
835 if (!vrf->fib6_table)
838 /* create a dst for routing packets out a VRF device */
839 rt6 = ip6_dst_alloc(net, dev, flags);
843 rt6->dst.output = vrf_output6;
845 rcu_assign_pointer(vrf->rt6, rt6);
852 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
859 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
863 static int vrf_rt6_create(struct net_device *dev)
869 /* modelled after ip_finish_output2 */
870 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
872 struct dst_entry *dst = skb_dst(skb);
873 struct rtable *rt = (struct rtable *)dst;
874 struct net_device *dev = dst->dev;
875 unsigned int hh_len = LL_RESERVED_SPACE(dev);
876 struct neighbour *neigh;
877 bool is_v6gw = false;
879 vrf_nf_reset_ct(skb);
881 /* Be paranoid, rather than too clever. */
882 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
883 skb = skb_expand_head(skb, hh_len);
885 dev->stats.tx_errors++;
892 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
893 if (!IS_ERR(neigh)) {
896 sock_confirm_neigh(skb, neigh);
897 /* if crossing protocols, can not use the cached header */
898 ret = neigh_output(neigh, skb, is_v6gw);
899 rcu_read_unlock_bh();
903 rcu_read_unlock_bh();
904 vrf_tx_error(skb->dev, skb);
908 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
910 struct net_device *dev = skb_dst(skb)->dev;
912 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
915 skb->protocol = htons(ETH_P_IP);
917 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
918 net, sk, skb, NULL, dev,
920 !(IPCB(skb)->flags & IPSKB_REROUTED));
923 /* set dst on skb to send packet to us via dev_xmit path. Allows
924 * packet to go through device based features such as qdisc, netfilter
925 * hooks and packet sockets with skb->dev set to vrf device.
927 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
930 struct net_vrf *vrf = netdev_priv(vrf_dev);
931 struct dst_entry *dst = NULL;
936 rth = rcu_dereference(vrf->rth);
944 if (unlikely(!dst)) {
945 vrf_tx_error(vrf_dev, skb);
950 skb_dst_set(skb, dst);
955 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
958 vrf_finish_direct(skb);
960 return vrf_ip_local_out(net, sk, skb);
963 static int vrf_output_direct(struct net *net, struct sock *sk,
968 skb->protocol = htons(ETH_P_IP);
970 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
971 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
972 NULL, skb->dev, vrf_output_direct_finish);
974 if (likely(err == 1))
975 vrf_finish_direct(skb);
980 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
985 err = vrf_output_direct(net, sk, skb);
986 if (likely(err == 1))
987 err = vrf_ip_local_out(net, sk, skb);
992 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
996 struct net *net = dev_net(vrf_dev);
1001 vrf_nf_set_untracked(skb);
1003 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1004 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1006 if (likely(err == 1))
1007 err = vrf_output_direct(net, sk, skb);
1009 if (likely(err == 1))
1015 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1017 struct sk_buff *skb)
1019 /* don't divert multicast or local broadcast */
1020 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1021 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1024 if (qdisc_tx_is_default(vrf_dev) ||
1025 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1026 return vrf_ip_out_direct(vrf_dev, sk, skb);
1028 return vrf_ip_out_redirect(vrf_dev, skb);
1031 /* called with rcu lock held */
1032 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1034 struct sk_buff *skb,
1039 return vrf_ip_out(vrf_dev, sk, skb);
1041 return vrf_ip6_out(vrf_dev, sk, skb);
1048 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1050 struct rtable *rth = rtnl_dereference(vrf->rth);
1051 struct net *net = dev_net(dev);
1052 struct dst_entry *dst;
1054 RCU_INIT_POINTER(vrf->rth, NULL);
1057 /* move dev in dst's to loopback so this VRF device can be deleted
1058 * - based on dst_ifdown
1063 dst->dev = net->loopback_dev;
1069 static int vrf_rtable_create(struct net_device *dev)
1071 struct net_vrf *vrf = netdev_priv(dev);
1074 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1077 /* create a dst for routing packets out through a VRF device */
1078 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1082 rth->dst.output = vrf_output;
1084 rcu_assign_pointer(vrf->rth, rth);
1089 /**************************** device handling ********************/
1091 /* cycle interface to flush neighbor cache and move routes across tables */
1092 static void cycle_netdev(struct net_device *dev,
1093 struct netlink_ext_ack *extack)
1095 unsigned int flags = dev->flags;
1098 if (!netif_running(dev))
1101 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1103 ret = dev_change_flags(dev, flags, extack);
1107 "Failed to cycle device %s; route tables might be wrong!\n",
1112 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1113 struct netlink_ext_ack *extack)
1117 /* do not allow loopback device to be enslaved to a VRF.
1118 * The vrf device acts as the loopback for the vrf.
1120 if (port_dev == dev_net(dev)->loopback_dev) {
1121 NL_SET_ERR_MSG(extack,
1122 "Can not enslave loopback device to a VRF");
1126 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1127 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1131 cycle_netdev(port_dev, extack);
1136 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1140 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1141 struct netlink_ext_ack *extack)
1143 if (netif_is_l3_master(port_dev)) {
1144 NL_SET_ERR_MSG(extack,
1145 "Can not enslave an L3 master device to a VRF");
1149 if (netif_is_l3_slave(port_dev))
1152 return do_vrf_add_slave(dev, port_dev, extack);
1155 /* inverse of do_vrf_add_slave */
1156 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1158 netdev_upper_dev_unlink(port_dev, dev);
1159 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1161 cycle_netdev(port_dev, NULL);
1166 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1168 return do_vrf_del_slave(dev, port_dev);
1171 static void vrf_dev_uninit(struct net_device *dev)
1173 struct net_vrf *vrf = netdev_priv(dev);
1175 vrf_rtable_release(dev, vrf);
1176 vrf_rt6_release(dev, vrf);
1178 free_percpu(dev->dstats);
1182 static int vrf_dev_init(struct net_device *dev)
1184 struct net_vrf *vrf = netdev_priv(dev);
1186 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1190 /* create the default dst which points back to us */
1191 if (vrf_rtable_create(dev) != 0)
1194 if (vrf_rt6_create(dev) != 0)
1197 dev->flags = IFF_MASTER | IFF_NOARP;
1199 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1200 dev->operstate = IF_OPER_UP;
1201 netdev_lockdep_set_classes(dev);
1205 vrf_rtable_release(dev, vrf);
1207 free_percpu(dev->dstats);
1213 static const struct net_device_ops vrf_netdev_ops = {
1214 .ndo_init = vrf_dev_init,
1215 .ndo_uninit = vrf_dev_uninit,
1216 .ndo_start_xmit = vrf_xmit,
1217 .ndo_set_mac_address = eth_mac_addr,
1218 .ndo_get_stats64 = vrf_get_stats64,
1219 .ndo_add_slave = vrf_add_slave,
1220 .ndo_del_slave = vrf_del_slave,
1223 static u32 vrf_fib_table(const struct net_device *dev)
1225 struct net_vrf *vrf = netdev_priv(dev);
1230 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1236 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1237 struct sk_buff *skb,
1238 struct net_device *dev)
1240 struct net *net = dev_net(dev);
1242 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1243 skb = NULL; /* kfree_skb(skb) handled by nf code */
1248 static int vrf_prepare_mac_header(struct sk_buff *skb,
1249 struct net_device *vrf_dev, u16 proto)
1254 /* in general, we do not know if there is enough space in the head of
1255 * the packet for hosting the mac header.
1257 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1259 /* no space in the skb head */
1262 __skb_push(skb, ETH_HLEN);
1263 eth = (struct ethhdr *)skb->data;
1265 skb_reset_mac_header(skb);
1267 /* we set the ethernet destination and the source addresses to the
1268 * address of the VRF device.
1270 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1271 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1272 eth->h_proto = htons(proto);
1274 /* the destination address of the Ethernet frame corresponds to the
1275 * address set on the VRF interface; therefore, the packet is intended
1276 * to be processed locally.
1278 skb->protocol = eth->h_proto;
1279 skb->pkt_type = PACKET_HOST;
1281 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1283 skb_pull_inline(skb, ETH_HLEN);
1288 /* prepare and add the mac header to the packet if it was not set previously.
1289 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1290 * If the mac header was already set, the original mac header is left
1291 * untouched and the function returns immediately.
1293 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1294 struct net_device *vrf_dev,
1297 if (skb_mac_header_was_set(skb))
1300 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1303 #if IS_ENABLED(CONFIG_IPV6)
1304 /* neighbor handling is done with actual device; do not want
1305 * to flip skb->dev for those ndisc packets. This really fails
1306 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1309 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1311 const struct ipv6hdr *iph = ipv6_hdr(skb);
1314 if (iph->nexthdr == NEXTHDR_ICMP) {
1315 const struct icmp6hdr *icmph;
1316 struct icmp6hdr _icmph;
1318 icmph = skb_header_pointer(skb, sizeof(*iph),
1319 sizeof(_icmph), &_icmph);
1323 switch (icmph->icmp6_type) {
1324 case NDISC_ROUTER_SOLICITATION:
1325 case NDISC_ROUTER_ADVERTISEMENT:
1326 case NDISC_NEIGHBOUR_SOLICITATION:
1327 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1328 case NDISC_REDIRECT:
1338 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1339 const struct net_device *dev,
1342 const struct sk_buff *skb,
1345 struct net_vrf *vrf = netdev_priv(dev);
1347 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1350 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1353 const struct ipv6hdr *iph = ipv6_hdr(skb);
1354 struct flowi6 fl6 = {
1355 .flowi6_iif = ifindex,
1356 .flowi6_mark = skb->mark,
1357 .flowi6_proto = iph->nexthdr,
1358 .daddr = iph->daddr,
1359 .saddr = iph->saddr,
1360 .flowlabel = ip6_flowinfo(iph),
1362 struct net *net = dev_net(vrf_dev);
1363 struct rt6_info *rt6;
1365 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1366 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1370 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1373 skb_dst_set(skb, &rt6->dst);
1376 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1377 struct sk_buff *skb)
1379 int orig_iif = skb->skb_iif;
1380 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1381 bool is_ndisc = ipv6_ndisc_frame(skb);
1383 /* loopback, multicast & non-ND link-local traffic; do not push through
1384 * packet taps again. Reset pkt_type for upper layers to process skb.
1385 * For strict packets with a source LLA, determine the dst using the
1388 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1390 skb->skb_iif = vrf_dev->ifindex;
1391 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1393 if (skb->pkt_type == PACKET_LOOPBACK)
1394 skb->pkt_type = PACKET_HOST;
1395 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1396 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1401 /* if packet is NDISC then keep the ingress interface */
1403 vrf_rx_stats(vrf_dev, skb->len);
1405 skb->skb_iif = vrf_dev->ifindex;
1407 if (!list_empty(&vrf_dev->ptype_all)) {
1410 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1413 skb_push(skb, skb->mac_len);
1414 dev_queue_xmit_nit(skb, vrf_dev);
1415 skb_pull(skb, skb->mac_len);
1419 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1423 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1425 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1431 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1432 struct sk_buff *skb)
1438 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1439 struct sk_buff *skb)
1442 skb->skb_iif = vrf_dev->ifindex;
1443 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1445 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1448 /* loopback traffic; do not push through packet taps again.
1449 * Reset pkt_type for upper layers to process skb
1451 if (skb->pkt_type == PACKET_LOOPBACK) {
1452 skb->pkt_type = PACKET_HOST;
1456 vrf_rx_stats(vrf_dev, skb->len);
1458 if (!list_empty(&vrf_dev->ptype_all)) {
1461 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1463 skb_push(skb, skb->mac_len);
1464 dev_queue_xmit_nit(skb, vrf_dev);
1465 skb_pull(skb, skb->mac_len);
1469 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1474 /* called with rcu lock held */
1475 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1476 struct sk_buff *skb,
1481 return vrf_ip_rcv(vrf_dev, skb);
1483 return vrf_ip6_rcv(vrf_dev, skb);
1489 #if IS_ENABLED(CONFIG_IPV6)
1490 /* send to link-local or multicast address via interface enslaved to
1491 * VRF device. Force lookup to VRF table without changing flow struct
1492 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1493 * is taken on the dst by this function.
1495 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1498 struct net *net = dev_net(dev);
1499 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1500 struct dst_entry *dst = NULL;
1501 struct rt6_info *rt;
1503 /* VRF device does not have a link-local address and
1504 * sending packets to link-local or mcast addresses over
1505 * a VRF device does not make sense
1507 if (fl6->flowi6_oif == dev->ifindex) {
1508 dst = &net->ipv6.ip6_null_entry->dst;
1512 if (!ipv6_addr_any(&fl6->saddr))
1513 flags |= RT6_LOOKUP_F_HAS_SADDR;
1515 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1523 static const struct l3mdev_ops vrf_l3mdev_ops = {
1524 .l3mdev_fib_table = vrf_fib_table,
1525 .l3mdev_l3_rcv = vrf_l3_rcv,
1526 .l3mdev_l3_out = vrf_l3_out,
1527 #if IS_ENABLED(CONFIG_IPV6)
1528 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1532 static void vrf_get_drvinfo(struct net_device *dev,
1533 struct ethtool_drvinfo *info)
1535 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1536 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1539 static const struct ethtool_ops vrf_ethtool_ops = {
1540 .get_drvinfo = vrf_get_drvinfo,
1543 static inline size_t vrf_fib_rule_nl_size(void)
1547 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1548 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1549 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1550 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1555 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1557 struct fib_rule_hdr *frh;
1558 struct nlmsghdr *nlh;
1559 struct sk_buff *skb;
1562 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1563 !ipv6_mod_enabled())
1566 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1570 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1572 goto nla_put_failure;
1574 /* rule only needs to appear once */
1575 nlh->nlmsg_flags |= NLM_F_EXCL;
1577 frh = nlmsg_data(nlh);
1578 memset(frh, 0, sizeof(*frh));
1579 frh->family = family;
1580 frh->action = FR_ACT_TO_TBL;
1582 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1583 goto nla_put_failure;
1585 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1586 goto nla_put_failure;
1588 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1589 goto nla_put_failure;
1591 nlmsg_end(skb, nlh);
1593 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1594 skb->sk = dev_net(dev)->rtnl;
1596 err = fib_nl_newrule(skb, nlh, NULL);
1600 err = fib_nl_delrule(skb, nlh, NULL);
1614 static int vrf_add_fib_rules(const struct net_device *dev)
1618 err = vrf_fib_rule(dev, AF_INET, true);
1622 err = vrf_fib_rule(dev, AF_INET6, true);
1626 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1627 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1632 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1633 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1640 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1642 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1645 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1647 vrf_fib_rule(dev, AF_INET6, false);
1651 vrf_fib_rule(dev, AF_INET, false);
1654 netdev_err(dev, "Failed to add FIB rules.\n");
1658 static void vrf_setup(struct net_device *dev)
1662 /* Initialize the device structure. */
1663 dev->netdev_ops = &vrf_netdev_ops;
1664 dev->l3mdev_ops = &vrf_l3mdev_ops;
1665 dev->ethtool_ops = &vrf_ethtool_ops;
1666 dev->needs_free_netdev = true;
1668 /* Fill in device structure with ethernet-generic values. */
1669 eth_hw_addr_random(dev);
1671 /* don't acquire vrf device's netif_tx_lock when transmitting */
1672 dev->features |= NETIF_F_LLTX;
1674 /* don't allow vrf devices to change network namespaces. */
1675 dev->features |= NETIF_F_NETNS_LOCAL;
1677 /* does not make sense for a VLAN to be added to a vrf device */
1678 dev->features |= NETIF_F_VLAN_CHALLENGED;
1680 /* enable offload features */
1681 dev->features |= NETIF_F_GSO_SOFTWARE;
1682 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1683 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1685 dev->hw_features = dev->features;
1686 dev->hw_enc_features = dev->features;
1688 /* default to no qdisc; user can add if desired */
1689 dev->priv_flags |= IFF_NO_QUEUE;
1690 dev->priv_flags |= IFF_NO_RX_HANDLER;
1691 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1693 /* VRF devices do not care about MTU, but if the MTU is set
1694 * too low then the ipv4 and ipv6 protocols are disabled
1695 * which breaks networking.
1697 dev->min_mtu = IPV6_MIN_MTU;
1698 dev->max_mtu = IP6_MAX_MTU;
1699 dev->mtu = dev->max_mtu;
1702 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1703 struct netlink_ext_ack *extack)
1705 if (tb[IFLA_ADDRESS]) {
1706 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1707 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1710 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1711 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1712 return -EADDRNOTAVAIL;
1718 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1720 struct net_device *port_dev;
1721 struct list_head *iter;
1723 netdev_for_each_lower_dev(dev, port_dev, iter)
1724 vrf_del_slave(dev, port_dev);
1726 vrf_map_unregister_dev(dev);
1728 unregister_netdevice_queue(dev, head);
1731 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1732 struct nlattr *tb[], struct nlattr *data[],
1733 struct netlink_ext_ack *extack)
1735 struct net_vrf *vrf = netdev_priv(dev);
1736 struct netns_vrf *nn_vrf;
1737 bool *add_fib_rules;
1741 if (!data || !data[IFLA_VRF_TABLE]) {
1742 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1746 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1747 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1748 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1749 "Invalid VRF table id");
1753 dev->priv_flags |= IFF_L3MDEV_MASTER;
1755 err = register_netdevice(dev);
1759 /* mapping between table_id and vrf;
1760 * note: such binding could not be done in the dev init function
1761 * because dev->ifindex id is not available yet.
1763 vrf->ifindex = dev->ifindex;
1765 err = vrf_map_register_dev(dev, extack);
1767 unregister_netdevice(dev);
1772 nn_vrf = net_generic(net, vrf_net_id);
1774 add_fib_rules = &nn_vrf->add_fib_rules;
1775 if (*add_fib_rules) {
1776 err = vrf_add_fib_rules(dev);
1778 vrf_map_unregister_dev(dev);
1779 unregister_netdevice(dev);
1782 *add_fib_rules = false;
1789 static size_t vrf_nl_getsize(const struct net_device *dev)
1791 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1794 static int vrf_fillinfo(struct sk_buff *skb,
1795 const struct net_device *dev)
1797 struct net_vrf *vrf = netdev_priv(dev);
1799 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1802 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1803 const struct net_device *slave_dev)
1805 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1808 static int vrf_fill_slave_info(struct sk_buff *skb,
1809 const struct net_device *vrf_dev,
1810 const struct net_device *slave_dev)
1812 struct net_vrf *vrf = netdev_priv(vrf_dev);
1814 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1820 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1821 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1824 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1826 .priv_size = sizeof(struct net_vrf),
1828 .get_size = vrf_nl_getsize,
1829 .policy = vrf_nl_policy,
1830 .validate = vrf_validate,
1831 .fill_info = vrf_fillinfo,
1833 .get_slave_size = vrf_get_slave_size,
1834 .fill_slave_info = vrf_fill_slave_info,
1836 .newlink = vrf_newlink,
1837 .dellink = vrf_dellink,
1839 .maxtype = IFLA_VRF_MAX,
1842 static int vrf_device_event(struct notifier_block *unused,
1843 unsigned long event, void *ptr)
1845 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1847 /* only care about unregister events to drop slave references */
1848 if (event == NETDEV_UNREGISTER) {
1849 struct net_device *vrf_dev;
1851 if (!netif_is_l3_slave(dev))
1854 vrf_dev = netdev_master_upper_dev_get(dev);
1855 vrf_del_slave(vrf_dev, dev);
1861 static struct notifier_block vrf_notifier_block __read_mostly = {
1862 .notifier_call = vrf_device_event,
1865 static int vrf_map_init(struct vrf_map *vmap)
1867 spin_lock_init(&vmap->vmap_lock);
1868 hash_init(vmap->ht);
1870 vmap->strict_mode = false;
1875 #ifdef CONFIG_SYSCTL
1876 static bool vrf_strict_mode(struct vrf_map *vmap)
1881 strict_mode = vmap->strict_mode;
1882 vrf_map_unlock(vmap);
1887 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1894 cur_mode = &vmap->strict_mode;
1895 if (*cur_mode == new_mode)
1899 /* disable strict mode */
1902 if (vmap->shared_tables) {
1903 /* we cannot allow strict_mode because there are some
1904 * vrfs that share one or more tables.
1910 /* no tables are shared among vrfs, so we can go back
1911 * to 1:1 association between a vrf with its table.
1917 vrf_map_unlock(vmap);
1922 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1923 void *buffer, size_t *lenp, loff_t *ppos)
1925 struct net *net = (struct net *)table->extra1;
1926 struct vrf_map *vmap = netns_vrf_map(net);
1927 int proc_strict_mode = 0;
1928 struct ctl_table tmp = {
1929 .procname = table->procname,
1930 .data = &proc_strict_mode,
1931 .maxlen = sizeof(int),
1932 .mode = table->mode,
1933 .extra1 = SYSCTL_ZERO,
1934 .extra2 = SYSCTL_ONE,
1939 proc_strict_mode = vrf_strict_mode(vmap);
1941 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1943 if (write && ret == 0)
1944 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1949 static const struct ctl_table vrf_table[] = {
1951 .procname = "strict_mode",
1953 .maxlen = sizeof(int),
1955 .proc_handler = vrf_shared_table_handler,
1956 /* set by the vrf_netns_init */
1962 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1964 struct ctl_table *table;
1966 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1970 /* init the extra1 parameter with the reference to current netns */
1971 table[0].extra1 = net;
1973 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1974 if (!nn_vrf->ctl_hdr) {
1982 static void vrf_netns_exit_sysctl(struct net *net)
1984 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1985 struct ctl_table *table;
1987 table = nn_vrf->ctl_hdr->ctl_table_arg;
1988 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1992 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1997 static void vrf_netns_exit_sysctl(struct net *net)
2002 /* Initialize per network namespace state */
2003 static int __net_init vrf_netns_init(struct net *net)
2005 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2007 nn_vrf->add_fib_rules = true;
2008 vrf_map_init(&nn_vrf->vmap);
2010 return vrf_netns_init_sysctl(net, nn_vrf);
2013 static void __net_exit vrf_netns_exit(struct net *net)
2015 vrf_netns_exit_sysctl(net);
2018 static struct pernet_operations vrf_net_ops __net_initdata = {
2019 .init = vrf_netns_init,
2020 .exit = vrf_netns_exit,
2022 .size = sizeof(struct netns_vrf),
2025 static int __init vrf_init_module(void)
2029 register_netdevice_notifier(&vrf_notifier_block);
2031 rc = register_pernet_subsys(&vrf_net_ops);
2035 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2036 vrf_ifindex_lookup_by_table_id);
2040 rc = rtnl_link_register(&vrf_link_ops);
2042 goto table_lookup_unreg;
2047 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2048 vrf_ifindex_lookup_by_table_id);
2051 unregister_pernet_subsys(&vrf_net_ops);
2054 unregister_netdevice_notifier(&vrf_notifier_block);
2058 module_init(vrf_init_module);
2059 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2060 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2061 MODULE_LICENSE("GPL");
2062 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2063 MODULE_VERSION(DRV_VERSION);