1 // SPDX-License-Identifier: GPL-2.0+
2 /* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY
7 #include <linux/bitfield.h>
8 #include <linux/brcmphy.h>
9 #include <linux/hwmon.h>
10 #include <linux/module.h>
11 #include <linux/phy.h>
13 #include "bcm-phy-lib.h"
15 /* RDB per-port registers
17 #define BCM54140_RDB_ISR 0x00a /* interrupt status */
18 #define BCM54140_RDB_IMR 0x00b /* interrupt mask */
19 #define BCM54140_RDB_INT_LINK BIT(1) /* link status changed */
20 #define BCM54140_RDB_INT_SPEED BIT(2) /* link speed change */
21 #define BCM54140_RDB_INT_DUPLEX BIT(3) /* duplex mode changed */
22 #define BCM54140_RDB_SPARE1 0x012 /* spare control 1 */
23 #define BCM54140_RDB_SPARE1_LSLM BIT(2) /* link speed LED mode */
24 #define BCM54140_RDB_SPARE2 0x014 /* spare control 2 */
25 #define BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /* wirespeed retry disable */
26 #define BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /* retry limit */
27 #define BCM54140_RDB_SPARE3 0x015 /* spare control 3 */
28 #define BCM54140_RDB_SPARE3_BIT0 BIT(0)
29 #define BCM54140_RDB_LED_CTRL 0x019 /* LED control */
30 #define BCM54140_RDB_LED_CTRL_ACTLINK0 BIT(4)
31 #define BCM54140_RDB_LED_CTRL_ACTLINK1 BIT(8)
32 #define BCM54140_RDB_C_APWR 0x01a /* auto power down control */
33 #define BCM54140_RDB_C_APWR_SINGLE_PULSE BIT(8) /* single pulse */
34 #define BCM54140_RDB_C_APWR_APD_MODE_DIS 0 /* ADP disable */
35 #define BCM54140_RDB_C_APWR_APD_MODE_EN 1 /* ADP enable */
36 #define BCM54140_RDB_C_APWR_APD_MODE_DIS2 2 /* ADP disable */
37 #define BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG 3 /* ADP enable w/ aneg */
38 #define BCM54140_RDB_C_APWR_APD_MODE_MASK GENMASK(6, 5)
39 #define BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/* sleep timer */
40 #define BCM54140_RDB_C_APWR_SLP_TIM_2_7 0 /* 2.7s */
41 #define BCM54140_RDB_C_APWR_SLP_TIM_5_4 1 /* 5.4s */
42 #define BCM54140_RDB_C_PWR 0x02a /* copper power control */
43 #define BCM54140_RDB_C_PWR_ISOLATE BIT(5) /* super isolate mode */
44 #define BCM54140_RDB_C_MISC_CTRL 0x02f /* misc copper control */
45 #define BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4) /* wirespeed enable */
47 /* RDB global registers
49 #define BCM54140_RDB_TOP_IMR 0x82d /* interrupt mask */
50 #define BCM54140_RDB_TOP_IMR_PORT0 BIT(4)
51 #define BCM54140_RDB_TOP_IMR_PORT1 BIT(5)
52 #define BCM54140_RDB_TOP_IMR_PORT2 BIT(6)
53 #define BCM54140_RDB_TOP_IMR_PORT3 BIT(7)
54 #define BCM54140_RDB_MON_CTRL 0x831 /* monitor control */
55 #define BCM54140_RDB_MON_CTRL_V_MODE BIT(3) /* voltage mode */
56 #define BCM54140_RDB_MON_CTRL_SEL_MASK GENMASK(2, 1)
57 #define BCM54140_RDB_MON_CTRL_SEL_TEMP 0 /* meassure temperature */
58 #define BCM54140_RDB_MON_CTRL_SEL_1V0 1 /* meassure AVDDL 1.0V */
59 #define BCM54140_RDB_MON_CTRL_SEL_3V3 2 /* meassure AVDDH 3.3V */
60 #define BCM54140_RDB_MON_CTRL_SEL_RR 3 /* meassure all round-robin */
61 #define BCM54140_RDB_MON_CTRL_PWR_DOWN BIT(0) /* power-down monitor */
62 #define BCM54140_RDB_MON_TEMP_VAL 0x832 /* temperature value */
63 #define BCM54140_RDB_MON_TEMP_MAX 0x833 /* temperature high thresh */
64 #define BCM54140_RDB_MON_TEMP_MIN 0x834 /* temperature low thresh */
65 #define BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0)
66 #define BCM54140_RDB_MON_1V0_VAL 0x835 /* AVDDL 1.0V value */
67 #define BCM54140_RDB_MON_1V0_MAX 0x836 /* AVDDL 1.0V high thresh */
68 #define BCM54140_RDB_MON_1V0_MIN 0x837 /* AVDDL 1.0V low thresh */
69 #define BCM54140_RDB_MON_1V0_DATA_MASK GENMASK(10, 0)
70 #define BCM54140_RDB_MON_3V3_VAL 0x838 /* AVDDH 3.3V value */
71 #define BCM54140_RDB_MON_3V3_MAX 0x839 /* AVDDH 3.3V high thresh */
72 #define BCM54140_RDB_MON_3V3_MIN 0x83a /* AVDDH 3.3V low thresh */
73 #define BCM54140_RDB_MON_3V3_DATA_MASK GENMASK(11, 0)
74 #define BCM54140_RDB_MON_ISR 0x83b /* interrupt status */
75 #define BCM54140_RDB_MON_ISR_3V3 BIT(2) /* AVDDH 3.3V alarm */
76 #define BCM54140_RDB_MON_ISR_1V0 BIT(1) /* AVDDL 1.0V alarm */
77 #define BCM54140_RDB_MON_ISR_TEMP BIT(0) /* temperature alarm */
79 /* According to the datasheet the formula is:
80 * T = 413.35 - (0.49055 * bits[9:0])
82 #define BCM54140_HWMON_TO_TEMP(v) (413350L - (v) * 491)
83 #define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L - (v), 491)
85 /* According to the datasheet the formula is:
86 * U = bits[11:0] / 1024 * 220 / 0.2
89 * U = bits[11:0] / 4096 * 2514
91 #define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11)
92 #define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514)
94 /* According to the datasheet the formula is:
95 * U = bits[10:0] / 1024 * 880 / 0.7
98 * U = bits[10:0] / 2048 * 4400
100 #define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12)
101 #define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400)
103 #define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v) \
104 : BCM54140_HWMON_TO_IN_1V0(v))
105 #define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) \
106 : BCM54140_HWMON_FROM_IN_1V0(v))
107 #define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK \
108 : BCM54140_RDB_MON_1V0_DATA_MASK)
109 #define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL \
110 : BCM54140_RDB_MON_1V0_VAL)
111 #define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN \
112 : BCM54140_RDB_MON_1V0_MIN)
113 #define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX \
114 : BCM54140_RDB_MON_1V0_MAX)
115 #define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 \
116 : BCM54140_RDB_MON_ISR_1V0)
118 /* This PHY has two different PHY IDs depening on its MODE_SEL pin. This
119 * pin choses between 4x SGMII and QSGMII mode:
123 #define BCM54140_PHY_ID_MASK 0xffffffe8
125 #define BCM54140_PHY_ID_REV(phy_id) ((phy_id) & 0x7)
126 #define BCM54140_REV_B0 1
128 #define BCM54140_DEFAULT_DOWNSHIFT 5
129 #define BCM54140_MAX_DOWNSHIFT 9
131 struct bcm54140_priv {
134 #if IS_ENABLED(CONFIG_HWMON)
135 /* protect the alarm bits */
136 struct mutex alarm_lock;
141 #if IS_ENABLED(CONFIG_HWMON)
142 static umode_t bcm54140_hwmon_is_visible(const void *data,
143 enum hwmon_sensor_types type,
144 u32 attr, int channel)
164 case hwmon_temp_input:
165 case hwmon_temp_alarm:
175 static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit,
178 struct phy_device *phydev = dev_get_drvdata(dev);
179 struct bcm54140_priv *priv = phydev->priv;
182 mutex_lock(&priv->alarm_lock);
184 /* latch any alarm bits */
185 tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR);
192 *val = !!(priv->alarm & bit);
196 mutex_unlock(&priv->alarm_lock);
200 static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val)
202 struct phy_device *phydev = dev_get_drvdata(dev);
207 case hwmon_temp_input:
208 reg = BCM54140_RDB_MON_TEMP_VAL;
211 reg = BCM54140_RDB_MON_TEMP_MIN;
214 reg = BCM54140_RDB_MON_TEMP_MAX;
216 case hwmon_temp_alarm:
217 return bcm54140_hwmon_read_alarm(dev,
218 BCM54140_RDB_MON_ISR_TEMP,
224 tmp = bcm_phy_read_rdb(phydev, reg);
228 *val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK);
233 static int bcm54140_hwmon_read_in(struct device *dev, u32 attr,
234 int channel, long *val)
236 struct phy_device *phydev = dev_get_drvdata(dev);
242 reg = BCM54140_HWMON_IN_VAL_REG(channel);
245 reg = BCM54140_HWMON_IN_MIN_REG(channel);
248 reg = BCM54140_HWMON_IN_MAX_REG(channel);
251 bit = BCM54140_HWMON_IN_ALARM_BIT(channel);
252 return bcm54140_hwmon_read_alarm(dev, bit, val);
257 tmp = bcm_phy_read_rdb(phydev, reg);
261 tmp &= BCM54140_HWMON_IN_MASK(channel);
262 *val = BCM54140_HWMON_TO_IN(channel, tmp);
267 static int bcm54140_hwmon_read(struct device *dev,
268 enum hwmon_sensor_types type, u32 attr,
269 int channel, long *val)
273 return bcm54140_hwmon_read_temp(dev, attr, val);
275 return bcm54140_hwmon_read_in(dev, attr, channel, val);
281 static const char *const bcm54140_hwmon_in_labels[] = {
286 static int bcm54140_hwmon_read_string(struct device *dev,
287 enum hwmon_sensor_types type, u32 attr,
288 int channel, const char **str)
294 *str = bcm54140_hwmon_in_labels[channel];
304 static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr,
305 int channel, long val)
307 struct phy_device *phydev = dev_get_drvdata(dev);
308 u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK;
311 val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask),
312 BCM54140_HWMON_TO_TEMP(0));
316 reg = BCM54140_RDB_MON_TEMP_MIN;
319 reg = BCM54140_RDB_MON_TEMP_MAX;
325 return bcm_phy_modify_rdb(phydev, reg, mask,
326 BCM54140_HWMON_FROM_TEMP(val));
329 static int bcm54140_hwmon_write_in(struct device *dev, u32 attr,
330 int channel, long val)
332 struct phy_device *phydev = dev_get_drvdata(dev);
333 u16 mask = BCM54140_HWMON_IN_MASK(channel);
336 val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask));
340 reg = BCM54140_HWMON_IN_MIN_REG(channel);
343 reg = BCM54140_HWMON_IN_MAX_REG(channel);
349 return bcm_phy_modify_rdb(phydev, reg, mask,
350 BCM54140_HWMON_FROM_IN(channel, val));
353 static int bcm54140_hwmon_write(struct device *dev,
354 enum hwmon_sensor_types type, u32 attr,
355 int channel, long val)
359 return bcm54140_hwmon_write_temp(dev, attr, channel, val);
361 return bcm54140_hwmon_write_in(dev, attr, channel, val);
367 static const struct hwmon_channel_info *bcm54140_hwmon_info[] = {
368 HWMON_CHANNEL_INFO(temp,
369 HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
371 HWMON_CHANNEL_INFO(in,
372 HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
373 HWMON_I_ALARM | HWMON_I_LABEL,
374 HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
375 HWMON_I_ALARM | HWMON_I_LABEL),
379 static const struct hwmon_ops bcm54140_hwmon_ops = {
380 .is_visible = bcm54140_hwmon_is_visible,
381 .read = bcm54140_hwmon_read,
382 .read_string = bcm54140_hwmon_read_string,
383 .write = bcm54140_hwmon_write,
386 static const struct hwmon_chip_info bcm54140_chip_info = {
387 .ops = &bcm54140_hwmon_ops,
388 .info = bcm54140_hwmon_info,
391 static int bcm54140_enable_monitoring(struct phy_device *phydev)
395 /* 3.3V voltage mode */
396 set = BCM54140_RDB_MON_CTRL_V_MODE;
398 /* select round-robin */
399 mask = BCM54140_RDB_MON_CTRL_SEL_MASK;
400 set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK,
401 BCM54140_RDB_MON_CTRL_SEL_RR);
403 /* remove power-down bit */
404 mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN;
406 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set);
409 static int bcm54140_probe_once(struct phy_device *phydev)
411 struct device *hwmon;
414 /* enable hardware monitoring */
415 ret = bcm54140_enable_monitoring(phydev);
419 hwmon = devm_hwmon_device_register_with_info(&phydev->mdio.dev,
423 return PTR_ERR_OR_ZERO(hwmon);
427 static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb)
431 phy_lock_mdio_bus(phydev);
432 ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
436 ret = __phy_package_read(phydev, MII_BCM54XX_RDB_DATA);
439 phy_unlock_mdio_bus(phydev);
443 static int bcm54140_base_write_rdb(struct phy_device *phydev,
448 phy_lock_mdio_bus(phydev);
449 ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
453 ret = __phy_package_write(phydev, MII_BCM54XX_RDB_DATA, val);
456 phy_unlock_mdio_bus(phydev);
460 /* Under some circumstances a core PLL may not lock, this will then prevent
461 * a successful link establishment. Restart the PLL after the voltages are
462 * stable to workaround this issue.
464 static int bcm54140_b0_workaround(struct phy_device *phydev)
469 spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3);
473 spare3 &= ~BCM54140_RDB_SPARE3_BIT0;
475 ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
479 ret = phy_modify(phydev, MII_BMCR, 0, BMCR_PDOWN);
483 ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, 0);
487 spare3 |= BCM54140_RDB_SPARE3_BIT0;
489 return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
492 /* The BCM54140 is a quad PHY where only the first port has access to the
493 * global register. Thus we need to find out its PHY address.
496 static int bcm54140_get_base_addr_and_port(struct phy_device *phydev)
498 struct bcm54140_priv *priv = phydev->priv;
499 struct mii_bus *bus = phydev->mdio.bus;
500 int addr, min_addr, max_addr;
505 min_addr = phydev->mdio.addr;
506 max_addr = phydev->mdio.addr;
507 addr = phydev->mdio.addr;
509 /* We scan forward and backwards and look for PHYs which have the
510 * same phy_id like we do. Step 1 will scan forward, step 2
511 * backwards. Once we are finished, we have a min_addr and
512 * max_addr which resembles the range of PHY addresses of the same
513 * type of PHY. There is one caveat; there may be many PHYs of
514 * the same type, but we know that each PHY takes exactly 4
515 * consecutive addresses. Therefore we can deduce our offset
516 * to the base address of this quad PHY.
522 } else if (step == 1) {
530 if (addr < 0 || addr >= PHY_MAX_ADDR) {
531 addr = phydev->mdio.addr;
536 /* read the PHY id */
537 tmp = mdiobus_read(bus, addr, MII_PHYSID1);
541 tmp = mdiobus_read(bus, addr, MII_PHYSID2);
546 /* see if it is still the same PHY */
547 if ((phy_id & phydev->drv->phy_id_mask) !=
548 (phydev->drv->phy_id & phydev->drv->phy_id_mask)) {
549 addr = phydev->mdio.addr;
554 /* The range we get should be a multiple of four. Please note that both
555 * the min_addr and max_addr are inclusive. So we have to add one if we
558 if ((max_addr - min_addr + 1) % 4) {
559 dev_err(&phydev->mdio.dev,
560 "Detected Quad PHY IDs %d..%d doesn't make sense.\n",
565 priv->port = (phydev->mdio.addr - min_addr) % 4;
566 priv->base_addr = phydev->mdio.addr - priv->port;
571 static int bcm54140_probe(struct phy_device *phydev)
573 struct bcm54140_priv *priv;
576 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
582 ret = bcm54140_get_base_addr_and_port(phydev);
586 devm_phy_package_join(&phydev->mdio.dev, phydev, priv->base_addr, 0);
588 #if IS_ENABLED(CONFIG_HWMON)
589 mutex_init(&priv->alarm_lock);
591 if (phy_package_init_once(phydev)) {
592 ret = bcm54140_probe_once(phydev);
598 phydev_dbg(phydev, "probed (port %d, base PHY address %d)\n",
599 priv->port, priv->base_addr);
604 static int bcm54140_config_init(struct phy_device *phydev)
609 /* Apply hardware errata */
610 if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) {
611 ret = bcm54140_b0_workaround(phydev);
616 /* Unmask events we are interested in. */
617 reg &= ~(BCM54140_RDB_INT_DUPLEX |
618 BCM54140_RDB_INT_SPEED |
619 BCM54140_RDB_INT_LINK);
620 ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, reg);
624 /* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */
625 ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1,
626 0, BCM54140_RDB_SPARE1_LSLM);
630 ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL,
631 0, BCM54140_RDB_LED_CTRL_ACTLINK0);
635 /* disable super isolate mode */
636 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR,
637 BCM54140_RDB_C_PWR_ISOLATE, 0);
640 static irqreturn_t bcm54140_handle_interrupt(struct phy_device *phydev)
642 int irq_status, irq_mask;
644 irq_status = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
645 if (irq_status < 0) {
650 irq_mask = bcm_phy_read_rdb(phydev, BCM54140_RDB_IMR);
655 irq_mask = ~irq_mask;
657 if (!(irq_status & irq_mask))
660 phy_trigger_machine(phydev);
665 static int bcm54140_ack_intr(struct phy_device *phydev)
669 /* clear pending interrupts */
670 reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
677 static int bcm54140_config_intr(struct phy_device *phydev)
679 struct bcm54140_priv *priv = phydev->priv;
680 static const u16 port_to_imr_bit[] = {
681 BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1,
682 BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3,
686 if (priv->port >= ARRAY_SIZE(port_to_imr_bit))
689 reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR);
693 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
694 err = bcm54140_ack_intr(phydev);
698 reg &= ~port_to_imr_bit[priv->port];
699 err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
701 reg |= port_to_imr_bit[priv->port];
702 err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
706 err = bcm54140_ack_intr(phydev);
712 static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data)
716 val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL);
720 if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) {
721 *data = DOWNSHIFT_DEV_DISABLE;
725 val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2);
729 if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS)
732 *data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2;
737 static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt)
742 if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT)
746 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
747 BCM54140_RDB_C_MISC_CTRL_WS_EN, 0);
749 if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT)
750 cnt = BCM54140_DEFAULT_DOWNSHIFT;
754 set = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
756 mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
757 mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT;
758 set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2);
760 ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2,
765 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
766 0, BCM54140_RDB_C_MISC_CTRL_WS_EN);
769 static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval)
773 val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR);
777 switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) {
778 case BCM54140_RDB_C_APWR_APD_MODE_DIS:
779 case BCM54140_RDB_C_APWR_APD_MODE_DIS2:
780 *tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
782 case BCM54140_RDB_C_APWR_APD_MODE_EN:
783 case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG:
784 switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) {
785 case BCM54140_RDB_C_APWR_SLP_TIM_2_7:
788 case BCM54140_RDB_C_APWR_SLP_TIM_5_4:
797 static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval)
801 mask = BCM54140_RDB_C_APWR_APD_MODE_MASK;
802 if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
803 set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
804 BCM54140_RDB_C_APWR_APD_MODE_DIS);
806 set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
807 BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG);
809 /* enable single pulse mode */
810 set |= BCM54140_RDB_C_APWR_SINGLE_PULSE;
812 /* set sleep timer */
813 mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK;
814 switch (tx_interval) {
815 case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
816 case ETHTOOL_PHY_EDPD_DISABLE:
818 set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7;
821 set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4;
827 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set);
830 static int bcm54140_get_tunable(struct phy_device *phydev,
831 struct ethtool_tunable *tuna, void *data)
834 case ETHTOOL_PHY_DOWNSHIFT:
835 return bcm54140_get_downshift(phydev, data);
836 case ETHTOOL_PHY_EDPD:
837 return bcm54140_get_edpd(phydev, data);
843 static int bcm54140_set_tunable(struct phy_device *phydev,
844 struct ethtool_tunable *tuna, const void *data)
847 case ETHTOOL_PHY_DOWNSHIFT:
848 return bcm54140_set_downshift(phydev, *(const u8 *)data);
849 case ETHTOOL_PHY_EDPD:
850 return bcm54140_set_edpd(phydev, *(const u16 *)data);
856 static struct phy_driver bcm54140_drivers[] = {
858 .phy_id = PHY_ID_BCM54140,
859 .phy_id_mask = BCM54140_PHY_ID_MASK,
860 .name = "Broadcom BCM54140",
861 .flags = PHY_POLL_CABLE_TEST,
862 .features = PHY_GBIT_FEATURES,
863 .config_init = bcm54140_config_init,
864 .handle_interrupt = bcm54140_handle_interrupt,
865 .config_intr = bcm54140_config_intr,
866 .probe = bcm54140_probe,
867 .suspend = genphy_suspend,
868 .resume = genphy_resume,
869 .soft_reset = genphy_soft_reset,
870 .get_tunable = bcm54140_get_tunable,
871 .set_tunable = bcm54140_set_tunable,
872 .cable_test_start = bcm_phy_cable_test_start_rdb,
873 .cable_test_get_status = bcm_phy_cable_test_get_status_rdb,
876 module_phy_driver(bcm54140_drivers);
878 static struct mdio_device_id __maybe_unused bcm54140_tbl[] = {
879 { PHY_ID_BCM54140, BCM54140_PHY_ID_MASK },
883 MODULE_AUTHOR("Michael Walle");
884 MODULE_DESCRIPTION("Broadcom BCM54140 PHY driver");
885 MODULE_DEVICE_TABLE(mdio, bcm54140_tbl);
886 MODULE_LICENSE("GPL");