1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
32 #include <net/route.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
38 #include "hyperv_net.h"
40 #define RING_SIZE_MIN 64
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
45 static unsigned int ring_size __ro_after_init = 128;
46 module_param(ring_size, uint, 0444);
47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48 unsigned int netvsc_ring_bytes __ro_after_init;
50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 static int debug = -1;
56 module_param(debug, int, 0444);
57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 static LIST_HEAD(netvsc_dev_list);
61 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 struct net_device_context *ndev_ctx = netdev_priv(net);
64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
70 if (change & IFF_PROMISC) {
71 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72 dev_set_promiscuity(vf_netdev, inc);
75 if (change & IFF_ALLMULTI) {
76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77 dev_set_allmulti(vf_netdev, inc);
81 static void netvsc_set_rx_mode(struct net_device *net)
83 struct net_device_context *ndev_ctx = netdev_priv(net);
84 struct net_device *vf_netdev;
85 struct netvsc_device *nvdev;
88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 dev_uc_sync(vf_netdev, net);
91 dev_mc_sync(vf_netdev, net);
94 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 rndis_filter_update(nvdev);
100 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101 struct net_device *ndev)
103 nvscdev->tx_disable = false;
104 virt_wmb(); /* ensure queue wake up mechanism is on */
106 netif_tx_wake_all_queues(ndev);
109 static int netvsc_open(struct net_device *net)
111 struct net_device_context *ndev_ctx = netdev_priv(net);
112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114 struct rndis_device *rdev;
117 netif_carrier_off(net);
119 /* Open up the device */
120 ret = rndis_filter_open(nvdev);
122 netdev_err(net, "unable to open device (ret %d).\n", ret);
126 rdev = nvdev->extension;
127 if (!rdev->link_state) {
128 netif_carrier_on(net);
129 netvsc_tx_enable(nvdev, net);
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
137 ret = dev_open(vf_netdev, NULL);
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 unsigned int retry = 0;
151 /* Ensure pending bytes in ring are read */
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
165 aread = hv_get_bytes_to_read(&chn->inbound);
169 aread = hv_get_bytes_to_read(&chn->outbound);
177 if (++retry > RETRY_MAX)
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
184 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185 struct net_device *ndev)
188 nvscdev->tx_disable = true;
189 virt_wmb(); /* ensure txq will not wake up after stop */
192 netif_tx_disable(ndev);
195 static int netvsc_close(struct net_device *net)
197 struct net_device_context *net_device_ctx = netdev_priv(net);
198 struct net_device *vf_netdev
199 = rtnl_dereference(net_device_ctx->vf_netdev);
200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203 netvsc_tx_disable(nvdev, net);
205 /* No need to close rndis filter if it is removed already */
209 ret = rndis_filter_close(nvdev);
211 netdev_err(net, "unable to close device (ret %d).\n", ret);
215 ret = netvsc_wait_until_empty(nvdev);
217 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220 dev_close(vf_netdev);
225 static inline void *init_ppi_data(struct rndis_message *msg,
226 u32 ppi_size, u32 pkt_type)
228 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229 struct rndis_per_packet_info *ppi;
231 rndis_pkt->data_offset += ppi_size;
232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233 + rndis_pkt->per_pkt_info_len;
235 ppi->size = ppi_size;
236 ppi->type = pkt_type;
238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240 rndis_pkt->per_pkt_info_len += ppi_size;
245 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
246 * packets. We can use ethtool to change UDP hash level when necessary.
248 static inline u32 netvsc_get_hash(
250 const struct net_device_context *ndc)
252 struct flow_keys flow;
253 u32 hash, pkt_proto = 0;
254 static u32 hashrnd __read_mostly;
256 net_get_random_once(&hashrnd, sizeof(hashrnd));
258 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261 switch (flow.basic.ip_proto) {
263 if (flow.basic.n_proto == htons(ETH_P_IP))
264 pkt_proto = HV_TCP4_L4HASH;
265 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266 pkt_proto = HV_TCP6_L4HASH;
271 if (flow.basic.n_proto == htons(ETH_P_IP))
272 pkt_proto = HV_UDP4_L4HASH;
273 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
274 pkt_proto = HV_UDP6_L4HASH;
279 if (pkt_proto & ndc->l4_hash) {
280 return skb_get_hash(skb);
282 if (flow.basic.n_proto == htons(ETH_P_IP))
283 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
284 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
285 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
289 __skb_set_sw_hash(skb, hash, false);
295 static inline int netvsc_get_tx_queue(struct net_device *ndev,
296 struct sk_buff *skb, int old_idx)
298 const struct net_device_context *ndc = netdev_priv(ndev);
299 struct sock *sk = skb->sk;
302 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
303 (VRSS_SEND_TAB_SIZE - 1)];
305 /* If queue index changed record the new value */
306 if (q_idx != old_idx &&
307 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
308 sk_tx_queue_set(sk, q_idx);
314 * Select queue for transmit.
316 * If a valid queue has already been assigned, then use that.
317 * Otherwise compute tx queue based on hash and the send table.
319 * This is basically similar to default (netdev_pick_tx) with the added step
320 * of using the host send_table when no other queue has been assigned.
322 * TODO support XPS - but get_xps_queue not exported
324 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 int q_idx = sk_tx_queue_get(skb->sk);
328 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
329 /* If forwarding a packet, we use the recorded queue when
330 * available for better cache locality.
332 if (skb_rx_queue_recorded(skb))
333 q_idx = skb_get_rx_queue(skb);
335 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
341 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
342 struct net_device *sb_dev)
344 struct net_device_context *ndc = netdev_priv(ndev);
345 struct net_device *vf_netdev;
349 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353 if (vf_ops->ndo_select_queue)
354 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358 /* Record the queue selected by VF so that it can be
359 * used for common case where VF has more queues than
360 * the synthetic device.
362 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 txq = netvsc_pick_tx(ndev, skb);
368 while (txq >= ndev->real_num_tx_queues)
369 txq -= ndev->real_num_tx_queues;
374 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
375 struct hv_page_buffer *pb)
379 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
380 offset = offset & ~HV_HYP_PAGE_MASK;
385 bytes = HV_HYP_PAGE_SIZE - offset;
389 pb[j].offset = offset;
395 if (offset == HV_HYP_PAGE_SIZE && len) {
405 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
406 struct hv_netvsc_packet *packet,
407 struct hv_page_buffer *pb)
410 char *data = skb->data;
411 int frags = skb_shinfo(skb)->nr_frags;
414 /* The packet is laid out thus:
415 * 1. hdr: RNDIS header and PPI
417 * 3. skb fragment data
419 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
420 offset_in_hvpage(hdr),
424 packet->rmsg_size = len;
425 packet->rmsg_pgcnt = slots_used;
427 slots_used += fill_pg_buf(virt_to_hvpfn(data),
428 offset_in_hvpage(data),
432 for (i = 0; i < frags; i++) {
433 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
435 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
443 static int count_skb_frag_slots(struct sk_buff *skb)
445 int i, frags = skb_shinfo(skb)->nr_frags;
448 for (i = 0; i < frags; i++) {
449 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
450 unsigned long size = skb_frag_size(frag);
451 unsigned long offset = skb_frag_off(frag);
453 /* Skip unused frames from start of page */
454 offset &= ~HV_HYP_PAGE_MASK;
455 pages += HVPFN_UP(offset + size);
460 static int netvsc_get_slots(struct sk_buff *skb)
462 char *data = skb->data;
463 unsigned int offset = offset_in_hvpage(data);
464 unsigned int len = skb_headlen(skb);
468 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
469 frag_slots = count_skb_frag_slots(skb);
470 return slots + frag_slots;
473 static u32 net_checksum_info(struct sk_buff *skb)
475 if (skb->protocol == htons(ETH_P_IP)) {
476 struct iphdr *ip = ip_hdr(skb);
478 if (ip->protocol == IPPROTO_TCP)
479 return TRANSPORT_INFO_IPV4_TCP;
480 else if (ip->protocol == IPPROTO_UDP)
481 return TRANSPORT_INFO_IPV4_UDP;
483 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485 if (ip6->nexthdr == IPPROTO_TCP)
486 return TRANSPORT_INFO_IPV6_TCP;
487 else if (ip6->nexthdr == IPPROTO_UDP)
488 return TRANSPORT_INFO_IPV6_UDP;
491 return TRANSPORT_INFO_NOT_IP;
494 /* Send skb on the slave VF device. */
495 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498 struct net_device_context *ndev_ctx = netdev_priv(net);
499 unsigned int len = skb->len;
502 skb->dev = vf_netdev;
503 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
505 rc = dev_queue_xmit(skb);
506 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
507 struct netvsc_vf_pcpu_stats *pcpu_stats
508 = this_cpu_ptr(ndev_ctx->vf_stats);
510 u64_stats_update_begin(&pcpu_stats->syncp);
511 pcpu_stats->tx_packets++;
512 pcpu_stats->tx_bytes += len;
513 u64_stats_update_end(&pcpu_stats->syncp);
515 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
521 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
523 struct net_device_context *net_device_ctx = netdev_priv(net);
524 struct hv_netvsc_packet *packet = NULL;
526 unsigned int num_data_pgs;
527 struct rndis_message *rndis_msg;
528 struct net_device *vf_netdev;
531 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533 /* If VF is present and up then redirect packets to it.
534 * Skip the VF if it is marked down or has no carrier.
535 * If netpoll is in uses, then VF can not be used either.
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
540 net_device_ctx->data_path_is_vf)
541 return netvsc_vf_xmit(net, vf_netdev, skb);
543 /* We will atmost need two pages to describe the rndis
544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545 * of pages in a single packet. If skb is scattered around
546 * more pages we try linearizing it.
549 num_data_pgs = netvsc_get_slots(skb) + 2;
551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552 ++net_device_ctx->eth_stats.tx_scattered;
554 if (skb_linearize(skb))
557 num_data_pgs = netvsc_get_slots(skb) + 2;
558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559 ++net_device_ctx->eth_stats.tx_too_big;
565 * Place the rndis header in the skb head room and
566 * the skb->cb will be used for hv_netvsc_packet
569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
573 /* Use the skb control buffer for building up the packet */
574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575 sizeof_field(struct sk_buff, cb));
576 packet = (struct hv_netvsc_packet *)skb->cb;
578 packet->q_idx = skb_get_queue_mapping(skb);
580 packet->total_data_buflen = skb->len;
581 packet->total_bytes = skb->len;
582 packet->total_packets = 1;
584 rndis_msg = (struct rndis_message *)skb->head;
586 /* Add the rndis header */
587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588 rndis_msg->msg_len = packet->total_data_buflen;
590 rndis_msg->msg.pkt = (struct rndis_packet) {
591 .data_offset = sizeof(struct rndis_packet),
592 .data_len = packet->total_data_buflen,
593 .per_pkt_info_offset = sizeof(struct rndis_packet),
596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
598 hash = skb_get_hash_raw(skb);
599 if (hash != 0 && net->real_num_tx_queues > 1) {
602 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
608 /* When using AF_PACKET we need to drop VLAN header from
609 * the frame and update the SKB to allow the HOST OS
610 * to transmit the 802.1Q packet
612 if (skb->protocol == htons(ETH_P_8021Q)) {
615 skb_reset_mac_header(skb);
616 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
617 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
618 ++net_device_ctx->eth_stats.vlan_error;
622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
623 /* Update the NDIS header pkt lengths */
624 packet->total_data_buflen -= VLAN_HLEN;
625 packet->total_bytes -= VLAN_HLEN;
626 rndis_msg->msg_len = packet->total_data_buflen;
627 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
631 if (skb_vlan_tag_present(skb)) {
632 struct ndis_pkt_8021q_info *vlan;
634 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
635 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
639 vlan->vlanid = skb_vlan_tag_get_id(skb);
640 vlan->cfi = skb_vlan_tag_get_cfi(skb);
641 vlan->pri = skb_vlan_tag_get_prio(skb);
644 if (skb_is_gso(skb)) {
645 struct ndis_tcp_lso_info *lso_info;
647 rndis_msg_size += NDIS_LSO_PPI_SIZE;
648 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
649 TCP_LARGESEND_PKTINFO);
652 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
653 if (skb->protocol == htons(ETH_P_IP)) {
654 lso_info->lso_v2_transmit.ip_version =
655 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
656 ip_hdr(skb)->tot_len = 0;
657 ip_hdr(skb)->check = 0;
658 tcp_hdr(skb)->check =
659 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
660 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
662 lso_info->lso_v2_transmit.ip_version =
663 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
664 tcp_v6_gso_csum_prep(skb);
666 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
667 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
668 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
669 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
670 struct ndis_tcp_ip_checksum_info *csum_info;
672 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
673 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
674 TCPIP_CHKSUM_PKTINFO);
676 csum_info->value = 0;
677 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
679 if (skb->protocol == htons(ETH_P_IP)) {
680 csum_info->transmit.is_ipv4 = 1;
682 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
683 csum_info->transmit.tcp_checksum = 1;
685 csum_info->transmit.udp_checksum = 1;
687 csum_info->transmit.is_ipv6 = 1;
689 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
690 csum_info->transmit.tcp_checksum = 1;
692 csum_info->transmit.udp_checksum = 1;
695 /* Can't do offload of this type of checksum */
696 if (skb_checksum_help(skb))
701 /* Start filling in the page buffers with the rndis hdr */
702 rndis_msg->msg_len += rndis_msg_size;
703 packet->total_data_buflen = rndis_msg->msg_len;
704 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
707 /* timestamp packet in software */
708 skb_tx_timestamp(skb);
710 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
711 if (likely(ret == 0))
714 if (ret == -EAGAIN) {
715 ++net_device_ctx->eth_stats.tx_busy;
716 return NETDEV_TX_BUSY;
720 ++net_device_ctx->eth_stats.tx_no_space;
723 dev_kfree_skb_any(skb);
724 net->stats.tx_dropped++;
729 ++net_device_ctx->eth_stats.tx_no_memory;
733 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
734 struct net_device *ndev)
736 return netvsc_xmit(skb, ndev, false);
740 * netvsc_linkstatus_callback - Link up/down notification
742 void netvsc_linkstatus_callback(struct net_device *net,
743 struct rndis_message *resp,
744 void *data, u32 data_buflen)
746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747 struct net_device_context *ndev_ctx = netdev_priv(net);
748 struct netvsc_reconfig *event;
751 /* Ensure the packet is big enough to access its fields */
752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
758 /* Copy the RNDIS indicate status into nvchan->recv_buf */
759 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
761 /* Update the physical link speed when changing to another vSwitch */
762 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
765 /* Validate status_buf_offset and status_buflen.
767 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
768 * for the status buffer field in resp->msg_len; perform the validation
769 * using data_buflen (>= resp->msg_len).
771 if (indicate->status_buflen < sizeof(speed) ||
772 indicate->status_buf_offset < sizeof(*indicate) ||
773 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
774 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
775 < indicate->status_buflen) {
776 netdev_err(net, "invalid rndis_indicate_status packet\n");
780 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
781 ndev_ctx->speed = speed;
785 /* Handle these link change statuses below */
786 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
787 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
788 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
791 if (net->reg_state != NETREG_REGISTERED)
794 event = kzalloc(sizeof(*event), GFP_ATOMIC);
797 event->event = indicate->status;
799 spin_lock_irqsave(&ndev_ctx->lock, flags);
800 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
801 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
803 schedule_delayed_work(&ndev_ctx->dwork, 0);
806 /* This function should only be called after skb_record_rx_queue() */
807 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
811 skb->queue_mapping = skb_get_rx_queue(skb);
812 __skb_push(skb, ETH_HLEN);
814 rc = netvsc_xmit(skb, ndev, true);
816 if (dev_xmit_complete(rc))
819 dev_kfree_skb_any(skb);
820 ndev->stats.tx_dropped++;
823 static void netvsc_comp_ipcsum(struct sk_buff *skb)
825 struct iphdr *iph = (struct iphdr *)skb->data;
828 iph->check = ip_fast_csum(iph, iph->ihl);
831 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
832 struct netvsc_channel *nvchan,
833 struct xdp_buff *xdp)
835 struct napi_struct *napi = &nvchan->napi;
836 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
837 const struct ndis_tcp_ip_checksum_info *csum_info =
838 &nvchan->rsc.csum_info;
839 const u32 *hash_info = &nvchan->rsc.hash_info;
840 u8 ppi_flags = nvchan->rsc.ppi_flags;
842 void *xbuf = xdp->data_hard_start;
846 unsigned int hdroom = xdp->data - xdp->data_hard_start;
847 unsigned int xlen = xdp->data_end - xdp->data;
848 unsigned int frag_size = xdp->frame_sz;
850 skb = build_skb(xbuf, frag_size);
853 __free_page(virt_to_page(xbuf));
857 skb_reserve(skb, hdroom);
859 skb->dev = napi->dev;
861 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
866 /* Copy to skb. This copy is needed here since the memory
867 * pointed by hv_netvsc_packet cannot be deallocated.
869 for (i = 0; i < nvchan->rsc.cnt; i++)
870 skb_put_data(skb, nvchan->rsc.data[i],
874 skb->protocol = eth_type_trans(skb, net);
876 /* skb is already created with CHECKSUM_NONE */
877 skb_checksum_none_assert(skb);
879 /* Incoming packets may have IP header checksum verified by the host.
880 * They may not have IP header checksum computed after coalescing.
881 * We compute it here if the flags are set, because on Linux, the IP
882 * checksum is always checked.
884 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
885 csum_info->receive.ip_checksum_succeeded &&
886 skb->protocol == htons(ETH_P_IP)) {
887 /* Check that there is enough space to hold the IP header. */
888 if (skb_headlen(skb) < sizeof(struct iphdr)) {
892 netvsc_comp_ipcsum(skb);
895 /* Do L4 checksum offload if enabled and present. */
896 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
897 if (csum_info->receive.tcp_checksum_succeeded ||
898 csum_info->receive.udp_checksum_succeeded)
899 skb->ip_summed = CHECKSUM_UNNECESSARY;
902 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
903 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
905 if (ppi_flags & NVSC_RSC_VLAN) {
906 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
907 (vlan->cfi ? VLAN_CFI_MASK : 0);
909 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
917 * netvsc_recv_callback - Callback when we receive a packet from the
918 * "wire" on the specified device.
920 int netvsc_recv_callback(struct net_device *net,
921 struct netvsc_device *net_device,
922 struct netvsc_channel *nvchan)
924 struct net_device_context *net_device_ctx = netdev_priv(net);
925 struct vmbus_channel *channel = nvchan->channel;
926 u16 q_idx = channel->offermsg.offer.sub_channel_index;
928 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
932 if (net->reg_state != NETREG_REGISTERED)
933 return NVSP_STAT_FAIL;
935 act = netvsc_run_xdp(net, nvchan, &xdp);
937 if (act != XDP_PASS && act != XDP_TX) {
938 u64_stats_update_begin(&rx_stats->syncp);
939 rx_stats->xdp_drop++;
940 u64_stats_update_end(&rx_stats->syncp);
942 return NVSP_STAT_SUCCESS; /* consumed by XDP */
945 /* Allocate a skb - TODO direct I/O to pages? */
946 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
948 if (unlikely(!skb)) {
949 ++net_device_ctx->eth_stats.rx_no_memory;
950 return NVSP_STAT_FAIL;
953 skb_record_rx_queue(skb, q_idx);
956 * Even if injecting the packet, record the statistics
957 * on the synthetic device because modifying the VF device
958 * statistics will not work correctly.
960 u64_stats_update_begin(&rx_stats->syncp);
962 rx_stats->bytes += nvchan->rsc.pktlen;
964 if (skb->pkt_type == PACKET_BROADCAST)
965 ++rx_stats->broadcast;
966 else if (skb->pkt_type == PACKET_MULTICAST)
967 ++rx_stats->multicast;
968 u64_stats_update_end(&rx_stats->syncp);
971 netvsc_xdp_xmit(skb, net);
972 return NVSP_STAT_SUCCESS;
975 napi_gro_receive(&nvchan->napi, skb);
976 return NVSP_STAT_SUCCESS;
979 static void netvsc_get_drvinfo(struct net_device *net,
980 struct ethtool_drvinfo *info)
982 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
983 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
986 static void netvsc_get_channels(struct net_device *net,
987 struct ethtool_channels *channel)
989 struct net_device_context *net_device_ctx = netdev_priv(net);
990 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
993 channel->max_combined = nvdev->max_chn;
994 channel->combined_count = nvdev->num_chn;
998 /* Alloc struct netvsc_device_info, and initialize it from either existing
999 * struct netvsc_device, or from default values.
1002 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1004 struct netvsc_device_info *dev_info;
1005 struct bpf_prog *prog;
1007 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1015 dev_info->num_chn = nvdev->num_chn;
1016 dev_info->send_sections = nvdev->send_section_cnt;
1017 dev_info->send_section_size = nvdev->send_section_size;
1018 dev_info->recv_sections = nvdev->recv_section_cnt;
1019 dev_info->recv_section_size = nvdev->recv_section_size;
1021 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1022 NETVSC_HASH_KEYLEN);
1024 prog = netvsc_xdp_get(nvdev);
1027 dev_info->bprog = prog;
1030 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1031 dev_info->send_sections = NETVSC_DEFAULT_TX;
1032 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1033 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1034 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1040 /* Free struct netvsc_device_info */
1041 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1043 if (dev_info->bprog) {
1045 bpf_prog_put(dev_info->bprog);
1051 static int netvsc_detach(struct net_device *ndev,
1052 struct netvsc_device *nvdev)
1054 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055 struct hv_device *hdev = ndev_ctx->device_ctx;
1058 /* Don't try continuing to try and setup sub channels */
1059 if (cancel_work_sync(&nvdev->subchan_work))
1062 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1064 /* If device was up (receiving) then shutdown */
1065 if (netif_running(ndev)) {
1066 netvsc_tx_disable(nvdev, ndev);
1068 ret = rndis_filter_close(nvdev);
1071 "unable to close device (ret %d).\n", ret);
1075 ret = netvsc_wait_until_empty(nvdev);
1078 "Ring buffer not empty after closing rndis\n");
1083 netif_device_detach(ndev);
1085 rndis_filter_device_remove(hdev, nvdev);
1090 static int netvsc_attach(struct net_device *ndev,
1091 struct netvsc_device_info *dev_info)
1093 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1094 struct hv_device *hdev = ndev_ctx->device_ctx;
1095 struct netvsc_device *nvdev;
1096 struct rndis_device *rdev;
1097 struct bpf_prog *prog;
1100 nvdev = rndis_filter_device_add(hdev, dev_info);
1102 return PTR_ERR(nvdev);
1104 if (nvdev->num_chn > 1) {
1105 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1107 /* if unavailable, just proceed with one queue */
1114 prog = dev_info->bprog;
1117 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1124 /* In any case device is now ready */
1125 nvdev->tx_disable = false;
1126 netif_device_attach(ndev);
1128 /* Note: enable and attach happen when sub-channels setup */
1129 netif_carrier_off(ndev);
1131 if (netif_running(ndev)) {
1132 ret = rndis_filter_open(nvdev);
1136 rdev = nvdev->extension;
1137 if (!rdev->link_state)
1138 netif_carrier_on(ndev);
1144 netif_device_detach(ndev);
1147 rndis_filter_device_remove(hdev, nvdev);
1152 static int netvsc_set_channels(struct net_device *net,
1153 struct ethtool_channels *channels)
1155 struct net_device_context *net_device_ctx = netdev_priv(net);
1156 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1157 unsigned int orig, count = channels->combined_count;
1158 struct netvsc_device_info *device_info;
1161 /* We do not support separate count for rx, tx, or other */
1163 channels->rx_count || channels->tx_count || channels->other_count)
1166 if (!nvdev || nvdev->destroy)
1169 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1172 if (count > nvdev->max_chn)
1175 orig = nvdev->num_chn;
1177 device_info = netvsc_devinfo_get(nvdev);
1182 device_info->num_chn = count;
1184 ret = netvsc_detach(net, nvdev);
1188 ret = netvsc_attach(net, device_info);
1190 device_info->num_chn = orig;
1191 if (netvsc_attach(net, device_info))
1192 netdev_err(net, "restoring channel setting failed\n");
1196 netvsc_devinfo_put(device_info);
1200 static void netvsc_init_settings(struct net_device *dev)
1202 struct net_device_context *ndc = netdev_priv(dev);
1204 ndc->l4_hash = HV_DEFAULT_L4HASH;
1206 ndc->speed = SPEED_UNKNOWN;
1207 ndc->duplex = DUPLEX_FULL;
1209 dev->features = NETIF_F_LRO;
1212 static int netvsc_get_link_ksettings(struct net_device *dev,
1213 struct ethtool_link_ksettings *cmd)
1215 struct net_device_context *ndc = netdev_priv(dev);
1216 struct net_device *vf_netdev;
1218 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1221 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1223 cmd->base.speed = ndc->speed;
1224 cmd->base.duplex = ndc->duplex;
1225 cmd->base.port = PORT_OTHER;
1230 static int netvsc_set_link_ksettings(struct net_device *dev,
1231 const struct ethtool_link_ksettings *cmd)
1233 struct net_device_context *ndc = netdev_priv(dev);
1234 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1237 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1240 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1244 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1245 &ndc->speed, &ndc->duplex);
1248 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1250 struct net_device_context *ndevctx = netdev_priv(ndev);
1251 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1252 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1253 int orig_mtu = ndev->mtu;
1254 struct netvsc_device_info *device_info;
1257 if (!nvdev || nvdev->destroy)
1260 device_info = netvsc_devinfo_get(nvdev);
1265 /* Change MTU of underlying VF netdev first. */
1267 ret = dev_set_mtu(vf_netdev, mtu);
1272 ret = netvsc_detach(ndev, nvdev);
1278 ret = netvsc_attach(ndev, device_info);
1282 /* Attempt rollback to original MTU */
1283 ndev->mtu = orig_mtu;
1285 if (netvsc_attach(ndev, device_info))
1286 netdev_err(ndev, "restoring mtu failed\n");
1289 dev_set_mtu(vf_netdev, orig_mtu);
1292 netvsc_devinfo_put(device_info);
1296 static void netvsc_get_vf_stats(struct net_device *net,
1297 struct netvsc_vf_pcpu_stats *tot)
1299 struct net_device_context *ndev_ctx = netdev_priv(net);
1302 memset(tot, 0, sizeof(*tot));
1304 for_each_possible_cpu(i) {
1305 const struct netvsc_vf_pcpu_stats *stats
1306 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1307 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1311 start = u64_stats_fetch_begin_irq(&stats->syncp);
1312 rx_packets = stats->rx_packets;
1313 tx_packets = stats->tx_packets;
1314 rx_bytes = stats->rx_bytes;
1315 tx_bytes = stats->tx_bytes;
1316 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1318 tot->rx_packets += rx_packets;
1319 tot->tx_packets += tx_packets;
1320 tot->rx_bytes += rx_bytes;
1321 tot->tx_bytes += tx_bytes;
1322 tot->tx_dropped += stats->tx_dropped;
1326 static void netvsc_get_pcpu_stats(struct net_device *net,
1327 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1329 struct net_device_context *ndev_ctx = netdev_priv(net);
1330 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1333 /* fetch percpu stats of vf */
1334 for_each_possible_cpu(i) {
1335 const struct netvsc_vf_pcpu_stats *stats =
1336 per_cpu_ptr(ndev_ctx->vf_stats, i);
1337 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1341 start = u64_stats_fetch_begin_irq(&stats->syncp);
1342 this_tot->vf_rx_packets = stats->rx_packets;
1343 this_tot->vf_tx_packets = stats->tx_packets;
1344 this_tot->vf_rx_bytes = stats->rx_bytes;
1345 this_tot->vf_tx_bytes = stats->tx_bytes;
1346 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1347 this_tot->rx_packets = this_tot->vf_rx_packets;
1348 this_tot->tx_packets = this_tot->vf_tx_packets;
1349 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1350 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1353 /* fetch percpu stats of netvsc */
1354 for (i = 0; i < nvdev->num_chn; i++) {
1355 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1356 const struct netvsc_stats *stats;
1357 struct netvsc_ethtool_pcpu_stats *this_tot =
1358 &pcpu_tot[nvchan->channel->target_cpu];
1362 stats = &nvchan->tx_stats;
1364 start = u64_stats_fetch_begin_irq(&stats->syncp);
1365 packets = stats->packets;
1366 bytes = stats->bytes;
1367 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1369 this_tot->tx_bytes += bytes;
1370 this_tot->tx_packets += packets;
1372 stats = &nvchan->rx_stats;
1374 start = u64_stats_fetch_begin_irq(&stats->syncp);
1375 packets = stats->packets;
1376 bytes = stats->bytes;
1377 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1379 this_tot->rx_bytes += bytes;
1380 this_tot->rx_packets += packets;
1384 static void netvsc_get_stats64(struct net_device *net,
1385 struct rtnl_link_stats64 *t)
1387 struct net_device_context *ndev_ctx = netdev_priv(net);
1388 struct netvsc_device *nvdev;
1389 struct netvsc_vf_pcpu_stats vf_tot;
1394 nvdev = rcu_dereference(ndev_ctx->nvdev);
1398 netdev_stats_to_stats64(t, &net->stats);
1400 netvsc_get_vf_stats(net, &vf_tot);
1401 t->rx_packets += vf_tot.rx_packets;
1402 t->tx_packets += vf_tot.tx_packets;
1403 t->rx_bytes += vf_tot.rx_bytes;
1404 t->tx_bytes += vf_tot.tx_bytes;
1405 t->tx_dropped += vf_tot.tx_dropped;
1407 for (i = 0; i < nvdev->num_chn; i++) {
1408 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1409 const struct netvsc_stats *stats;
1410 u64 packets, bytes, multicast;
1413 stats = &nvchan->tx_stats;
1415 start = u64_stats_fetch_begin_irq(&stats->syncp);
1416 packets = stats->packets;
1417 bytes = stats->bytes;
1418 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1420 t->tx_bytes += bytes;
1421 t->tx_packets += packets;
1423 stats = &nvchan->rx_stats;
1425 start = u64_stats_fetch_begin_irq(&stats->syncp);
1426 packets = stats->packets;
1427 bytes = stats->bytes;
1428 multicast = stats->multicast + stats->broadcast;
1429 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1431 t->rx_bytes += bytes;
1432 t->rx_packets += packets;
1433 t->multicast += multicast;
1439 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1441 struct net_device_context *ndc = netdev_priv(ndev);
1442 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1443 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1444 struct sockaddr *addr = p;
1447 err = eth_prepare_mac_addr_change(ndev, p);
1455 err = dev_set_mac_address(vf_netdev, addr, NULL);
1460 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1462 eth_commit_mac_addr_change(ndev, p);
1463 } else if (vf_netdev) {
1464 /* rollback change on VF */
1465 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1466 dev_set_mac_address(vf_netdev, addr, NULL);
1472 static const struct {
1473 char name[ETH_GSTRING_LEN];
1475 } netvsc_stats[] = {
1476 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1477 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1478 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1479 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1480 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1481 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1482 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1483 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1484 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1485 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1486 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1488 { "cpu%u_rx_packets",
1489 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1491 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1492 { "cpu%u_tx_packets",
1493 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1495 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1496 { "cpu%u_vf_rx_packets",
1497 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1498 { "cpu%u_vf_rx_bytes",
1499 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1500 { "cpu%u_vf_tx_packets",
1501 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1502 { "cpu%u_vf_tx_bytes",
1503 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1505 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1506 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1507 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1508 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1509 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1512 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1513 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1515 /* statistics per queue (rx/tx packets/bytes) */
1516 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1518 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1519 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1521 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1523 struct net_device_context *ndc = netdev_priv(dev);
1524 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1529 switch (string_set) {
1531 return NETVSC_GLOBAL_STATS_LEN
1532 + NETVSC_VF_STATS_LEN
1533 + NETVSC_QUEUE_STATS_LEN(nvdev)
1534 + NETVSC_PCPU_STATS_LEN;
1540 static void netvsc_get_ethtool_stats(struct net_device *dev,
1541 struct ethtool_stats *stats, u64 *data)
1543 struct net_device_context *ndc = netdev_priv(dev);
1544 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1545 const void *nds = &ndc->eth_stats;
1546 const struct netvsc_stats *qstats;
1547 struct netvsc_vf_pcpu_stats sum;
1548 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1557 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1558 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1560 netvsc_get_vf_stats(dev, &sum);
1561 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1562 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1564 for (j = 0; j < nvdev->num_chn; j++) {
1565 qstats = &nvdev->chan_table[j].tx_stats;
1568 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1569 packets = qstats->packets;
1570 bytes = qstats->bytes;
1571 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1572 data[i++] = packets;
1575 qstats = &nvdev->chan_table[j].rx_stats;
1577 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1578 packets = qstats->packets;
1579 bytes = qstats->bytes;
1580 xdp_drop = qstats->xdp_drop;
1581 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1582 data[i++] = packets;
1584 data[i++] = xdp_drop;
1587 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1588 sizeof(struct netvsc_ethtool_pcpu_stats),
1590 netvsc_get_pcpu_stats(dev, pcpu_sum);
1591 for_each_present_cpu(cpu) {
1592 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1594 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1595 data[i++] = *(u64 *)((void *)this_sum
1596 + pcpu_stats[j].offset);
1601 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1603 struct net_device_context *ndc = netdev_priv(dev);
1604 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1611 switch (stringset) {
1613 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1614 ethtool_sprintf(&p, netvsc_stats[i].name);
1616 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1617 ethtool_sprintf(&p, vf_stats[i].name);
1619 for (i = 0; i < nvdev->num_chn; i++) {
1620 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1621 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1622 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1623 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1624 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1627 for_each_present_cpu(cpu) {
1628 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1629 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1637 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1638 struct ethtool_rxnfc *info)
1640 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1642 info->data = RXH_IP_SRC | RXH_IP_DST;
1644 switch (info->flow_type) {
1646 if (ndc->l4_hash & HV_TCP4_L4HASH)
1647 info->data |= l4_flag;
1652 if (ndc->l4_hash & HV_TCP6_L4HASH)
1653 info->data |= l4_flag;
1658 if (ndc->l4_hash & HV_UDP4_L4HASH)
1659 info->data |= l4_flag;
1664 if (ndc->l4_hash & HV_UDP6_L4HASH)
1665 info->data |= l4_flag;
1681 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1684 struct net_device_context *ndc = netdev_priv(dev);
1685 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1690 switch (info->cmd) {
1691 case ETHTOOL_GRXRINGS:
1692 info->data = nvdev->num_chn;
1696 return netvsc_get_rss_hash_opts(ndc, info);
1701 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1702 struct ethtool_rxnfc *info)
1704 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1705 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1706 switch (info->flow_type) {
1708 ndc->l4_hash |= HV_TCP4_L4HASH;
1712 ndc->l4_hash |= HV_TCP6_L4HASH;
1716 ndc->l4_hash |= HV_UDP4_L4HASH;
1720 ndc->l4_hash |= HV_UDP6_L4HASH;
1730 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1731 switch (info->flow_type) {
1733 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1737 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1741 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1745 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1759 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1761 struct net_device_context *ndc = netdev_priv(ndev);
1763 if (info->cmd == ETHTOOL_SRXFH)
1764 return netvsc_set_rss_hash_opts(ndc, info);
1769 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1771 return NETVSC_HASH_KEYLEN;
1774 static u32 netvsc_rss_indir_size(struct net_device *dev)
1779 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1782 struct net_device_context *ndc = netdev_priv(dev);
1783 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784 struct rndis_device *rndis_dev;
1791 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1793 rndis_dev = ndev->extension;
1795 for (i = 0; i < ITAB_NUM; i++)
1796 indir[i] = ndc->rx_table[i];
1800 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1805 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1806 const u8 *key, const u8 hfunc)
1808 struct net_device_context *ndc = netdev_priv(dev);
1809 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1810 struct rndis_device *rndis_dev;
1816 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1819 rndis_dev = ndev->extension;
1821 for (i = 0; i < ITAB_NUM; i++)
1822 if (indir[i] >= ndev->num_chn)
1825 for (i = 0; i < ITAB_NUM; i++)
1826 ndc->rx_table[i] = indir[i];
1833 key = rndis_dev->rss_key;
1836 return rndis_filter_set_rss_param(rndis_dev, key);
1839 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1840 * It does have pre-allocated receive area which is divided into sections.
1842 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1843 struct ethtool_ringparam *ring)
1847 ring->rx_pending = nvdev->recv_section_cnt;
1848 ring->tx_pending = nvdev->send_section_cnt;
1850 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1851 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1853 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1855 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1856 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1857 / nvdev->send_section_size;
1860 static void netvsc_get_ringparam(struct net_device *ndev,
1861 struct ethtool_ringparam *ring)
1863 struct net_device_context *ndevctx = netdev_priv(ndev);
1864 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1869 __netvsc_get_ringparam(nvdev, ring);
1872 static int netvsc_set_ringparam(struct net_device *ndev,
1873 struct ethtool_ringparam *ring)
1875 struct net_device_context *ndevctx = netdev_priv(ndev);
1876 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1877 struct netvsc_device_info *device_info;
1878 struct ethtool_ringparam orig;
1882 if (!nvdev || nvdev->destroy)
1885 memset(&orig, 0, sizeof(orig));
1886 __netvsc_get_ringparam(nvdev, &orig);
1888 new_tx = clamp_t(u32, ring->tx_pending,
1889 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1890 new_rx = clamp_t(u32, ring->rx_pending,
1891 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1893 if (new_tx == orig.tx_pending &&
1894 new_rx == orig.rx_pending)
1895 return 0; /* no change */
1897 device_info = netvsc_devinfo_get(nvdev);
1902 device_info->send_sections = new_tx;
1903 device_info->recv_sections = new_rx;
1905 ret = netvsc_detach(ndev, nvdev);
1909 ret = netvsc_attach(ndev, device_info);
1911 device_info->send_sections = orig.tx_pending;
1912 device_info->recv_sections = orig.rx_pending;
1914 if (netvsc_attach(ndev, device_info))
1915 netdev_err(ndev, "restoring ringparam failed");
1919 netvsc_devinfo_put(device_info);
1923 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1924 netdev_features_t features)
1926 struct net_device_context *ndevctx = netdev_priv(ndev);
1927 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1929 if (!nvdev || nvdev->destroy)
1932 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1933 features ^= NETIF_F_LRO;
1934 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1940 static int netvsc_set_features(struct net_device *ndev,
1941 netdev_features_t features)
1943 netdev_features_t change = features ^ ndev->features;
1944 struct net_device_context *ndevctx = netdev_priv(ndev);
1945 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1946 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1947 struct ndis_offload_params offloads;
1950 if (!nvdev || nvdev->destroy)
1953 if (!(change & NETIF_F_LRO))
1956 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1958 if (features & NETIF_F_LRO) {
1959 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1960 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1962 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1963 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1966 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1969 features ^= NETIF_F_LRO;
1970 ndev->features = features;
1977 vf_netdev->wanted_features = features;
1978 netdev_update_features(vf_netdev);
1983 static int netvsc_get_regs_len(struct net_device *netdev)
1985 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1988 static void netvsc_get_regs(struct net_device *netdev,
1989 struct ethtool_regs *regs, void *p)
1991 struct net_device_context *ndc = netdev_priv(netdev);
1994 /* increase the version, if buffer format is changed. */
1997 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2000 static u32 netvsc_get_msglevel(struct net_device *ndev)
2002 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2004 return ndev_ctx->msg_enable;
2007 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2009 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2011 ndev_ctx->msg_enable = val;
2014 static const struct ethtool_ops ethtool_ops = {
2015 .get_drvinfo = netvsc_get_drvinfo,
2016 .get_regs_len = netvsc_get_regs_len,
2017 .get_regs = netvsc_get_regs,
2018 .get_msglevel = netvsc_get_msglevel,
2019 .set_msglevel = netvsc_set_msglevel,
2020 .get_link = ethtool_op_get_link,
2021 .get_ethtool_stats = netvsc_get_ethtool_stats,
2022 .get_sset_count = netvsc_get_sset_count,
2023 .get_strings = netvsc_get_strings,
2024 .get_channels = netvsc_get_channels,
2025 .set_channels = netvsc_set_channels,
2026 .get_ts_info = ethtool_op_get_ts_info,
2027 .get_rxnfc = netvsc_get_rxnfc,
2028 .set_rxnfc = netvsc_set_rxnfc,
2029 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2030 .get_rxfh_indir_size = netvsc_rss_indir_size,
2031 .get_rxfh = netvsc_get_rxfh,
2032 .set_rxfh = netvsc_set_rxfh,
2033 .get_link_ksettings = netvsc_get_link_ksettings,
2034 .set_link_ksettings = netvsc_set_link_ksettings,
2035 .get_ringparam = netvsc_get_ringparam,
2036 .set_ringparam = netvsc_set_ringparam,
2039 static const struct net_device_ops device_ops = {
2040 .ndo_open = netvsc_open,
2041 .ndo_stop = netvsc_close,
2042 .ndo_start_xmit = netvsc_start_xmit,
2043 .ndo_change_rx_flags = netvsc_change_rx_flags,
2044 .ndo_set_rx_mode = netvsc_set_rx_mode,
2045 .ndo_fix_features = netvsc_fix_features,
2046 .ndo_set_features = netvsc_set_features,
2047 .ndo_change_mtu = netvsc_change_mtu,
2048 .ndo_validate_addr = eth_validate_addr,
2049 .ndo_set_mac_address = netvsc_set_mac_addr,
2050 .ndo_select_queue = netvsc_select_queue,
2051 .ndo_get_stats64 = netvsc_get_stats64,
2052 .ndo_bpf = netvsc_bpf,
2056 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2057 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2058 * present send GARP packet to network peers with netif_notify_peers().
2060 static void netvsc_link_change(struct work_struct *w)
2062 struct net_device_context *ndev_ctx =
2063 container_of(w, struct net_device_context, dwork.work);
2064 struct hv_device *device_obj = ndev_ctx->device_ctx;
2065 struct net_device *net = hv_get_drvdata(device_obj);
2066 unsigned long flags, next_reconfig, delay;
2067 struct netvsc_reconfig *event = NULL;
2068 struct netvsc_device *net_device;
2069 struct rndis_device *rdev;
2070 bool reschedule = false;
2072 /* if changes are happening, comeback later */
2073 if (!rtnl_trylock()) {
2074 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2078 net_device = rtnl_dereference(ndev_ctx->nvdev);
2082 rdev = net_device->extension;
2084 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2085 if (time_is_after_jiffies(next_reconfig)) {
2086 /* link_watch only sends one notification with current state
2087 * per second, avoid doing reconfig more frequently. Handle
2090 delay = next_reconfig - jiffies;
2091 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2092 schedule_delayed_work(&ndev_ctx->dwork, delay);
2095 ndev_ctx->last_reconfig = jiffies;
2097 spin_lock_irqsave(&ndev_ctx->lock, flags);
2098 if (!list_empty(&ndev_ctx->reconfig_events)) {
2099 event = list_first_entry(&ndev_ctx->reconfig_events,
2100 struct netvsc_reconfig, list);
2101 list_del(&event->list);
2102 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2104 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2109 switch (event->event) {
2110 /* Only the following events are possible due to the check in
2111 * netvsc_linkstatus_callback()
2113 case RNDIS_STATUS_MEDIA_CONNECT:
2114 if (rdev->link_state) {
2115 rdev->link_state = false;
2116 netif_carrier_on(net);
2117 netvsc_tx_enable(net_device, net);
2119 __netdev_notify_peers(net);
2123 case RNDIS_STATUS_MEDIA_DISCONNECT:
2124 if (!rdev->link_state) {
2125 rdev->link_state = true;
2126 netif_carrier_off(net);
2127 netvsc_tx_disable(net_device, net);
2131 case RNDIS_STATUS_NETWORK_CHANGE:
2132 /* Only makes sense if carrier is present */
2133 if (!rdev->link_state) {
2134 rdev->link_state = true;
2135 netif_carrier_off(net);
2136 netvsc_tx_disable(net_device, net);
2137 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2138 spin_lock_irqsave(&ndev_ctx->lock, flags);
2139 list_add(&event->list, &ndev_ctx->reconfig_events);
2140 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2148 /* link_watch only sends one notification with current state per
2149 * second, handle next reconfig event in 2 seconds.
2152 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2160 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2162 struct net_device_context *net_device_ctx;
2163 struct net_device *dev;
2165 dev = netdev_master_upper_dev_get(vf_netdev);
2166 if (!dev || dev->netdev_ops != &device_ops)
2167 return NULL; /* not a netvsc device */
2169 net_device_ctx = netdev_priv(dev);
2170 if (!rtnl_dereference(net_device_ctx->nvdev))
2171 return NULL; /* device is removed */
2176 /* Called when VF is injecting data into network stack.
2177 * Change the associated network device from VF to netvsc.
2178 * note: already called with rcu_read_lock
2180 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2182 struct sk_buff *skb = *pskb;
2183 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2184 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2185 struct netvsc_vf_pcpu_stats *pcpu_stats
2186 = this_cpu_ptr(ndev_ctx->vf_stats);
2188 skb = skb_share_check(skb, GFP_ATOMIC);
2190 return RX_HANDLER_CONSUMED;
2196 u64_stats_update_begin(&pcpu_stats->syncp);
2197 pcpu_stats->rx_packets++;
2198 pcpu_stats->rx_bytes += skb->len;
2199 u64_stats_update_end(&pcpu_stats->syncp);
2201 return RX_HANDLER_ANOTHER;
2204 static int netvsc_vf_join(struct net_device *vf_netdev,
2205 struct net_device *ndev)
2207 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2210 ret = netdev_rx_handler_register(vf_netdev,
2211 netvsc_vf_handle_frame, ndev);
2213 netdev_err(vf_netdev,
2214 "can not register netvsc VF receive handler (err = %d)\n",
2216 goto rx_handler_failed;
2219 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2222 netdev_err(vf_netdev,
2223 "can not set master device %s (err = %d)\n",
2225 goto upper_link_failed;
2228 /* set slave flag before open to prevent IPv6 addrconf */
2229 vf_netdev->flags |= IFF_SLAVE;
2231 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2233 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2235 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2239 netdev_rx_handler_unregister(vf_netdev);
2244 static void __netvsc_vf_setup(struct net_device *ndev,
2245 struct net_device *vf_netdev)
2249 /* Align MTU of VF with master */
2250 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2252 netdev_warn(vf_netdev,
2253 "unable to change mtu to %u\n", ndev->mtu);
2255 /* set multicast etc flags on VF */
2256 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2258 /* sync address list from ndev to VF */
2259 netif_addr_lock_bh(ndev);
2260 dev_uc_sync(vf_netdev, ndev);
2261 dev_mc_sync(vf_netdev, ndev);
2262 netif_addr_unlock_bh(ndev);
2264 if (netif_running(ndev)) {
2265 ret = dev_open(vf_netdev, NULL);
2267 netdev_warn(vf_netdev,
2268 "unable to open: %d\n", ret);
2272 /* Setup VF as slave of the synthetic device.
2273 * Runs in workqueue to avoid recursion in netlink callbacks.
2275 static void netvsc_vf_setup(struct work_struct *w)
2277 struct net_device_context *ndev_ctx
2278 = container_of(w, struct net_device_context, vf_takeover.work);
2279 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2280 struct net_device *vf_netdev;
2282 if (!rtnl_trylock()) {
2283 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2287 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2289 __netvsc_vf_setup(ndev, vf_netdev);
2294 /* Find netvsc by VF serial number.
2295 * The PCI hyperv controller records the serial number as the slot kobj name.
2297 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2299 struct device *parent = vf_netdev->dev.parent;
2300 struct net_device_context *ndev_ctx;
2301 struct net_device *ndev;
2302 struct pci_dev *pdev;
2305 if (!parent || !dev_is_pci(parent))
2306 return NULL; /* not a PCI device */
2308 pdev = to_pci_dev(parent);
2310 netdev_notice(vf_netdev, "no PCI slot information\n");
2314 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2315 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2316 pci_slot_name(pdev->slot));
2320 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2321 if (!ndev_ctx->vf_alloc)
2324 if (ndev_ctx->vf_serial != serial)
2327 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2328 if (ndev->addr_len != vf_netdev->addr_len ||
2329 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2330 ndev->addr_len) != 0)
2337 netdev_notice(vf_netdev,
2338 "no netdev found for vf serial:%u\n", serial);
2342 static int netvsc_register_vf(struct net_device *vf_netdev)
2344 struct net_device_context *net_device_ctx;
2345 struct netvsc_device *netvsc_dev;
2346 struct bpf_prog *prog;
2347 struct net_device *ndev;
2350 if (vf_netdev->addr_len != ETH_ALEN)
2353 ndev = get_netvsc_byslot(vf_netdev);
2357 net_device_ctx = netdev_priv(ndev);
2358 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2359 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2362 /* if synthetic interface is a different namespace,
2363 * then move the VF to that namespace; join will be
2364 * done again in that context.
2366 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2367 ret = dev_change_net_namespace(vf_netdev,
2368 dev_net(ndev), "eth%d");
2370 netdev_err(vf_netdev,
2371 "could not move to same namespace as %s: %d\n",
2374 netdev_info(vf_netdev,
2375 "VF moved to namespace with: %s\n",
2380 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2382 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2385 dev_hold(vf_netdev);
2386 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2388 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2389 ndev->needed_headroom = vf_netdev->needed_headroom;
2391 vf_netdev->wanted_features = ndev->features;
2392 netdev_update_features(vf_netdev);
2394 prog = netvsc_xdp_get(netvsc_dev);
2395 netvsc_vf_setxdp(vf_netdev, prog);
2400 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2402 * Typically a UP or DOWN event is followed by a CHANGE event, so
2403 * net_device_ctx->data_path_is_vf is used to cache the current data path
2404 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2407 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2408 * interface, there is only the CHANGE event and no UP or DOWN event.
2410 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2412 struct net_device_context *net_device_ctx;
2413 struct netvsc_device *netvsc_dev;
2414 struct net_device *ndev;
2415 bool vf_is_up = false;
2418 if (event != NETDEV_GOING_DOWN)
2419 vf_is_up = netif_running(vf_netdev);
2421 ndev = get_netvsc_byref(vf_netdev);
2425 net_device_ctx = netdev_priv(ndev);
2426 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2430 if (net_device_ctx->data_path_is_vf == vf_is_up)
2433 ret = netvsc_switch_datapath(ndev, vf_is_up);
2437 "Data path failed to switch %s VF: %s, err: %d\n",
2438 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2441 netdev_info(ndev, "Data path switched %s VF: %s\n",
2442 vf_is_up ? "to" : "from", vf_netdev->name);
2448 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2450 struct net_device *ndev;
2451 struct net_device_context *net_device_ctx;
2453 ndev = get_netvsc_byref(vf_netdev);
2457 net_device_ctx = netdev_priv(ndev);
2458 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2460 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2462 netvsc_vf_setxdp(vf_netdev, NULL);
2464 netdev_rx_handler_unregister(vf_netdev);
2465 netdev_upper_dev_unlink(vf_netdev, ndev);
2466 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2469 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2474 static int netvsc_probe(struct hv_device *dev,
2475 const struct hv_vmbus_device_id *dev_id)
2477 struct net_device *net = NULL;
2478 struct net_device_context *net_device_ctx;
2479 struct netvsc_device_info *device_info = NULL;
2480 struct netvsc_device *nvdev;
2483 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2488 netif_carrier_off(net);
2490 netvsc_init_settings(net);
2492 net_device_ctx = netdev_priv(net);
2493 net_device_ctx->device_ctx = dev;
2494 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2495 if (netif_msg_probe(net_device_ctx))
2496 netdev_dbg(net, "netvsc msg_enable: %d\n",
2497 net_device_ctx->msg_enable);
2499 hv_set_drvdata(dev, net);
2501 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2503 spin_lock_init(&net_device_ctx->lock);
2504 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2505 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2507 net_device_ctx->vf_stats
2508 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2509 if (!net_device_ctx->vf_stats)
2512 net->netdev_ops = &device_ops;
2513 net->ethtool_ops = ðtool_ops;
2514 SET_NETDEV_DEV(net, &dev->device);
2516 /* We always need headroom for rndis header */
2517 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2519 /* Initialize the number of queues to be 1, we may change it if more
2520 * channels are offered later.
2522 netif_set_real_num_tx_queues(net, 1);
2523 netif_set_real_num_rx_queues(net, 1);
2525 /* Notify the netvsc driver of the new device */
2526 device_info = netvsc_devinfo_get(NULL);
2530 goto devinfo_failed;
2533 nvdev = rndis_filter_device_add(dev, device_info);
2534 if (IS_ERR(nvdev)) {
2535 ret = PTR_ERR(nvdev);
2536 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2540 eth_hw_addr_set(net, device_info->mac_adr);
2542 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2543 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2544 * all subchannels to show up, but that may not happen because
2545 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2546 * -> ... -> device_add() -> ... -> __device_attach() can't get
2547 * the device lock, so all the subchannels can't be processed --
2548 * finally netvsc_subchan_work() hangs forever.
2552 if (nvdev->num_chn > 1)
2553 schedule_work(&nvdev->subchan_work);
2555 /* hw_features computed in rndis_netdev_set_hwcaps() */
2556 net->features = net->hw_features |
2557 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2558 NETIF_F_HW_VLAN_CTAG_RX;
2559 net->vlan_features = net->features;
2561 netdev_lockdep_set_classes(net);
2563 /* MTU range: 68 - 1500 or 65521 */
2564 net->min_mtu = NETVSC_MTU_MIN;
2565 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2566 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2568 net->max_mtu = ETH_DATA_LEN;
2570 nvdev->tx_disable = false;
2572 ret = register_netdevice(net);
2574 pr_err("Unable to register netdev.\n");
2575 goto register_failed;
2578 list_add(&net_device_ctx->list, &netvsc_dev_list);
2581 netvsc_devinfo_put(device_info);
2586 rndis_filter_device_remove(dev, nvdev);
2588 netvsc_devinfo_put(device_info);
2590 free_percpu(net_device_ctx->vf_stats);
2592 hv_set_drvdata(dev, NULL);
2598 static int netvsc_remove(struct hv_device *dev)
2600 struct net_device_context *ndev_ctx;
2601 struct net_device *vf_netdev, *net;
2602 struct netvsc_device *nvdev;
2604 net = hv_get_drvdata(dev);
2606 dev_err(&dev->device, "No net device to remove\n");
2610 ndev_ctx = netdev_priv(net);
2612 cancel_delayed_work_sync(&ndev_ctx->dwork);
2615 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2617 cancel_work_sync(&nvdev->subchan_work);
2618 netvsc_xdp_set(net, NULL, NULL, nvdev);
2622 * Call to the vsc driver to let it know that the device is being
2623 * removed. Also blocks mtu and channel changes.
2625 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2627 netvsc_unregister_vf(vf_netdev);
2630 rndis_filter_device_remove(dev, nvdev);
2632 unregister_netdevice(net);
2633 list_del(&ndev_ctx->list);
2637 hv_set_drvdata(dev, NULL);
2639 free_percpu(ndev_ctx->vf_stats);
2644 static int netvsc_suspend(struct hv_device *dev)
2646 struct net_device_context *ndev_ctx;
2647 struct netvsc_device *nvdev;
2648 struct net_device *net;
2651 net = hv_get_drvdata(dev);
2653 ndev_ctx = netdev_priv(net);
2654 cancel_delayed_work_sync(&ndev_ctx->dwork);
2658 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2659 if (nvdev == NULL) {
2664 /* Save the current config info */
2665 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2667 ret = netvsc_detach(net, nvdev);
2674 static int netvsc_resume(struct hv_device *dev)
2676 struct net_device *net = hv_get_drvdata(dev);
2677 struct net_device_context *net_device_ctx;
2678 struct netvsc_device_info *device_info;
2683 net_device_ctx = netdev_priv(net);
2685 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2686 * channel. Later netvsc_netdev_event() will switch the data path to
2687 * the VF upon the UP or CHANGE event.
2689 net_device_ctx->data_path_is_vf = false;
2690 device_info = net_device_ctx->saved_netvsc_dev_info;
2692 ret = netvsc_attach(net, device_info);
2694 netvsc_devinfo_put(device_info);
2695 net_device_ctx->saved_netvsc_dev_info = NULL;
2701 static const struct hv_vmbus_device_id id_table[] = {
2707 MODULE_DEVICE_TABLE(vmbus, id_table);
2709 /* The one and only one */
2710 static struct hv_driver netvsc_drv = {
2711 .name = KBUILD_MODNAME,
2712 .id_table = id_table,
2713 .probe = netvsc_probe,
2714 .remove = netvsc_remove,
2715 .suspend = netvsc_suspend,
2716 .resume = netvsc_resume,
2718 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2723 * On Hyper-V, every VF interface is matched with a corresponding
2724 * synthetic interface. The synthetic interface is presented first
2725 * to the guest. When the corresponding VF instance is registered,
2726 * we will take care of switching the data path.
2728 static int netvsc_netdev_event(struct notifier_block *this,
2729 unsigned long event, void *ptr)
2731 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2733 /* Skip our own events */
2734 if (event_dev->netdev_ops == &device_ops)
2737 /* Avoid non-Ethernet type devices */
2738 if (event_dev->type != ARPHRD_ETHER)
2741 /* Avoid Vlan dev with same MAC registering as VF */
2742 if (is_vlan_dev(event_dev))
2745 /* Avoid Bonding master dev with same MAC registering as VF */
2746 if (netif_is_bond_master(event_dev))
2750 case NETDEV_REGISTER:
2751 return netvsc_register_vf(event_dev);
2752 case NETDEV_UNREGISTER:
2753 return netvsc_unregister_vf(event_dev);
2757 case NETDEV_GOING_DOWN:
2758 return netvsc_vf_changed(event_dev, event);
2764 static struct notifier_block netvsc_netdev_notifier = {
2765 .notifier_call = netvsc_netdev_event,
2768 static void __exit netvsc_drv_exit(void)
2770 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2771 vmbus_driver_unregister(&netvsc_drv);
2774 static int __init netvsc_drv_init(void)
2778 if (ring_size < RING_SIZE_MIN) {
2779 ring_size = RING_SIZE_MIN;
2780 pr_info("Increased ring_size to %u (min allowed)\n",
2783 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2785 ret = vmbus_driver_register(&netvsc_drv);
2789 register_netdevice_notifier(&netvsc_netdev_notifier);
2793 MODULE_LICENSE("GPL");
2794 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2796 module_init(netvsc_drv_init);
2797 module_exit(netvsc_drv_exit);