1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
44 #include <linux/firmware.h>
45 #include <asm/processor.h> /* Processor type for cache alignment. */
46 #include <linux/uaccess.h>
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
53 #define HAS_BROKEN_FIRMWARE
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 #ifdef HAS_BROKEN_FIRMWARE
59 #define PADDING_MASK 3
63 * Define this if using the driver with the zero-copy patch
67 #if IS_ENABLED(CONFIG_VLAN_8021Q)
71 /* The user-configurable values.
72 These may be modified when a driver module is loaded.*/
74 /* Used for tuning interrupt latency vs. overhead. */
75 static int intr_latency;
76 static int small_frames;
78 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
79 static int max_interrupt_work = 20;
81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82 The Starfire has a 512 element hash table based on the Ethernet CRC. */
83 static const int multicast_filter_limit = 512;
84 /* Whether to do TCP/UDP checksums in hardware */
85 static int enable_hw_cksum = 1;
87 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90 * Setting to > 1518 effectively disables this feature.
93 * The ia64 doesn't allow for unaligned loads even of integers being
94 * misaligned on a 2 byte boundary. Thus always force copying of
95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99 * at least, having unaligned frames leads to a rather serious performance
102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103 static int rx_copybreak = PKT_BUF_SZ;
105 static int rx_copybreak /* = 0 */;
108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110 #define DMA_BURST_SIZE 64
112 #define DMA_BURST_SIZE 128
115 /* Operational parameters that are set at compile time. */
117 /* The "native" ring sizes are either 256 or 2048.
118 However in some modes a descriptor may be marked to wrap the ring earlier.
120 #define RX_RING_SIZE 256
121 #define TX_RING_SIZE 32
122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123 #define DONE_Q_SIZE 1024
124 /* All queues must be aligned on a 256-byte boundary */
125 #define QUEUE_ALIGN 256
127 #if RX_RING_SIZE > 256
128 #define RX_Q_ENTRIES Rx2048QEntries
130 #define RX_Q_ENTRIES Rx256QEntries
133 /* Operational parameters that usually are not changed. */
134 /* Time in jiffies before concluding the transmitter is hung. */
135 #define TX_TIMEOUT (2 * HZ)
137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138 /* 64-bit dma_addr_t */
139 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
140 #define netdrv_addr_t __le64
141 #define cpu_to_dma(x) cpu_to_le64(x)
142 #define dma_to_cpu(x) le64_to_cpu(x)
143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
148 #else /* 32-bit dma_addr_t */
149 #define netdrv_addr_t __le32
150 #define cpu_to_dma(x) cpu_to_le32(x)
151 #define dma_to_cpu(x) le32_to_cpu(x)
152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #define skb_first_frag_len(skb) skb_headlen(skb)
160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
164 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168 MODULE_LICENSE("GPL");
169 MODULE_FIRMWARE(FIRMWARE_RX);
170 MODULE_FIRMWARE(FIRMWARE_TX);
172 module_param(max_interrupt_work, int, 0);
173 module_param(mtu, int, 0);
174 module_param(debug, int, 0);
175 module_param(rx_copybreak, int, 0);
176 module_param(intr_latency, int, 0);
177 module_param(small_frames, int, 0);
178 module_param(enable_hw_cksum, int, 0);
179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180 MODULE_PARM_DESC(mtu, "MTU (all boards)");
181 MODULE_PARM_DESC(debug, "Debug level (0-6)");
182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
190 I. Board Compatibility
192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
194 II. Board-specific settings
196 III. Driver operation
200 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
201 ring sizes are set fixed by the hardware, but may optionally be wrapped
202 earlier by the END bit in the descriptor.
203 This driver uses that hardware queue size for the Rx ring, where a large
204 number of entries has no ill effect beyond increases the potential backlog.
205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206 disables the queue layer priority ordering and we have no mechanism to
207 utilize the hardware two-level priority queue. When modifying the
208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
211 IIIb/c. Transmit/Receive Structure
213 See the Adaptec manual for the many possible structures, and options for
214 each structure. There are far too many to document all of them here.
216 For transmit this driver uses type 0/1 transmit descriptors (depending
217 on the 32/64 bitness of the architecture), and relies on automatic
218 minimum-length padding. It does not use the completion queue
219 consumer index, but instead checks for non-zero status entries.
221 For receive this driver uses type 2/3 receive descriptors. The driver
222 allocates full frame size skbuffs for the Rx ring buffers, so all frames
223 should fit in a single descriptor. The driver does not use the completion
224 queue consumer index, but instead checks for non-zero status entries.
226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227 is allocated and the frame is copied to the new skbuff. When the incoming
228 frame is larger, the skbuff is passed directly up the protocol stack.
229 Buffers consumed this way are replaced by newly allocated skbuffs in a later
232 A notable aspect of operation is that unaligned buffers are not permitted by
233 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
234 isn't longword aligned, which may cause problems on some machine
235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236 the frame into a new skbuff unconditionally. Copied frames are put into the
237 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
239 IIId. Synchronization
241 The driver runs as two independent, single-threaded flows of control. One
242 is the send-packet routine, which enforces single-threaded use by the
243 dev->tbusy flag. The other thread is the interrupt handler, which is single
244 threaded by the hardware and interrupt handling software.
246 The send packet thread has partial control over the Tx ring and the netif_queue
247 status. If the number of free Tx slots in the ring falls below a certain number
248 (currently hardcoded to 4), it signals the upper layer to stop the queue.
250 The interrupt handler has exclusive control over the Rx ring and records stats
251 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253 number of free Tx slow is above the threshold, it signals the upper layer to
260 The Adaptec Starfire manuals, available only from Adaptec.
261 http://www.scyld.com/expert/100mbps.html
262 http://www.scyld.com/expert/NWay.html
266 - StopOnPerr is broken, don't enable
267 - Hardware ethernet padding exposes random data, perform software padding
268 instead (unverified -- works correctly for all the hardware I have)
274 enum chip_capability_flags {CanHaveMII=1, };
280 static const struct pci_device_id starfire_pci_tbl[] = {
281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287 static const struct chip_info {
291 { "Adaptec Starfire 6915", CanHaveMII },
295 /* Offsets to the device registers.
296 Unlike software-only systems, device drivers interact with complex hardware.
297 It's not useful to define symbolic names for every register bit in the
298 device. The name can only partially document the semantics and make
299 the driver longer and more difficult to read.
300 In general, only the important configuration values or bits changed
301 multiple times should be defined symbolically.
303 enum register_offsets {
304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 TxMode=0x55000, VlanType=0x55064,
318 PerfFilterTable=0x56000, HashTable=0x56100,
319 TxGfpMem=0x58000, RxGfpMem=0x5a000,
323 * Bits in the interrupt status/mask registers.
324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325 * enables all the interrupt sources that are or'ed into those status bits.
327 enum intr_status_bits {
328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 IntrTxGfp=0x02, IntrPCIPad=0x01,
343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
348 /* Bits in the RxFilterMode register. */
350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
356 /* Bits in the TxMode register */
358 MiiSoftReset=0x8000, MIILoopback=0x4000,
359 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
363 /* Bits in the TxDescCtrl register. */
365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 TxDescSpace128=0x30, TxDescSpace256=0x40,
367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 TxDescType3=0x03, TxDescType4=0x04,
369 TxNoDMACompletion=0x08,
370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 TxDMABurstSizeShift=8,
375 /* Bits in the RxDescQCtrl register. */
377 RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 Rx2048QEntries=0x4000, Rx256QEntries=0,
380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 RxDescSpace4=0x000, RxDescSpace8=0x100,
383 RxDescSpace16=0x200, RxDescSpace32=0x300,
384 RxDescSpace64=0x400, RxDescSpace128=0x500,
388 /* Bits in the RxDMACtrl register. */
389 enum rx_dmactrl_bits {
390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 RxChecksumRejectTCPOnly=0x01000000,
395 RxCompletionQ2Enable=0x800000,
396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 RxDMAQ2NonIP=0x400000,
399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
404 /* Bits in the RxCompletionAddr register */
406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 RxComplProducerWrEn=0x40,
408 RxComplType0=0x00, RxComplType1=0x10,
409 RxComplType2=0x20, RxComplType3=0x30,
410 RxComplThreshShift=0,
413 /* Bits in the TxCompletionAddr register */
415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 TxComplProducerWrEn=0x40,
417 TxComplIntrStatus=0x20,
418 CommonQueueMode=0x10,
419 TxComplThreshShift=0,
422 /* Bits in the GenCtrl register */
424 RxEnable=0x05, TxEnable=0x0a,
425 RxGFPEnable=0x10, TxGFPEnable=0x20,
428 /* Bits in the IntrTimerCtrl register */
429 enum intr_ctrl_bits {
430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 IntrLatencyMask=0x1f,
435 /* The Rx and Tx buffer descriptors. */
436 struct starfire_rx_desc {
437 netdrv_addr_t rxaddr;
440 RxDescValid=1, RxDescEndRing=2,
443 /* Completion queue entry. */
444 struct short_rx_done_desc {
445 __le32 status; /* Low 16 bits is length. */
447 struct basic_rx_done_desc {
448 __le32 status; /* Low 16 bits is length. */
452 struct csum_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
454 __le16 csum; /* Partial checksum */
457 struct full_rx_done_desc {
458 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* partial checksum */
465 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
467 typedef struct full_rx_done_desc rx_done_desc;
468 #define RxComplType RxComplType3
469 #else /* not VLAN_SUPPORT */
470 typedef struct csum_rx_done_desc rx_done_desc;
471 #define RxComplType RxComplType2
472 #endif /* not VLAN_SUPPORT */
475 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
478 /* Type 1 Tx descriptor. */
479 struct starfire_tx_desc_1 {
480 __le32 status; /* Upper bits are status, lower 16 length. */
484 /* Type 2 Tx descriptor. */
485 struct starfire_tx_desc_2 {
486 __le32 status; /* Upper bits are status, lower 16 length. */
492 typedef struct starfire_tx_desc_2 starfire_tx_desc;
493 #define TX_DESC_TYPE TxDescType2
494 #else /* not ADDR_64BITS */
495 typedef struct starfire_tx_desc_1 starfire_tx_desc;
496 #define TX_DESC_TYPE TxDescType1
497 #endif /* not ADDR_64BITS */
498 #define TX_DESC_SPACING TxDescSpaceUnlim
502 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
503 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
505 struct tx_done_desc {
506 __le32 status; /* timestamp, index. */
508 __le32 intrstatus; /* interrupt status */
512 struct rx_ring_info {
516 struct tx_ring_info {
519 unsigned int used_slots;
523 struct netdev_private {
524 /* Descriptor rings first for alignment. */
525 struct starfire_rx_desc *rx_ring;
526 starfire_tx_desc *tx_ring;
527 dma_addr_t rx_ring_dma;
528 dma_addr_t tx_ring_dma;
529 /* The addresses of rx/tx-in-place skbuffs. */
530 struct rx_ring_info rx_info[RX_RING_SIZE];
531 struct tx_ring_info tx_info[TX_RING_SIZE];
532 /* Pointers to completion queues (full pages). */
533 rx_done_desc *rx_done_q;
534 dma_addr_t rx_done_q_dma;
535 unsigned int rx_done;
536 struct tx_done_desc *tx_done_q;
537 dma_addr_t tx_done_q_dma;
538 unsigned int tx_done;
539 struct napi_struct napi;
540 struct net_device *dev;
541 struct pci_dev *pci_dev;
543 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
546 dma_addr_t queue_mem_dma;
547 size_t queue_mem_size;
549 /* Frequently used values: keep some adjacent for cache effect. */
551 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
552 unsigned int cur_tx, dirty_tx, reap_tx;
553 unsigned int rx_buf_sz; /* Based on MTU+slack. */
554 /* These values keep track of the transceiver/media in use. */
555 int speed100; /* Set if speed == 100MBit. */
559 /* MII transceiver section. */
560 struct mii_if_info mii_if; /* MII lib hooks/info */
561 int phy_cnt; /* MII device addresses. */
562 unsigned char phys[PHY_CNT]; /* MII device addresses. */
567 static int mdio_read(struct net_device *dev, int phy_id, int location);
568 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
569 static int netdev_open(struct net_device *dev);
570 static void check_duplex(struct net_device *dev);
571 static void tx_timeout(struct net_device *dev, unsigned int txqueue);
572 static void init_ring(struct net_device *dev);
573 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
574 static irqreturn_t intr_handler(int irq, void *dev_instance);
575 static void netdev_error(struct net_device *dev, int intr_status);
576 static int __netdev_rx(struct net_device *dev, int *quota);
577 static int netdev_poll(struct napi_struct *napi, int budget);
578 static void refill_rx_ring(struct net_device *dev);
579 static void netdev_error(struct net_device *dev, int intr_status);
580 static void set_rx_mode(struct net_device *dev);
581 static struct net_device_stats *get_stats(struct net_device *dev);
582 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
583 static int netdev_close(struct net_device *dev);
584 static void netdev_media_change(struct net_device *dev);
585 static const struct ethtool_ops ethtool_ops;
589 static int netdev_vlan_rx_add_vid(struct net_device *dev,
590 __be16 proto, u16 vid)
592 struct netdev_private *np = netdev_priv(dev);
594 spin_lock(&np->lock);
596 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
597 set_bit(vid, np->active_vlans);
599 spin_unlock(&np->lock);
604 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
605 __be16 proto, u16 vid)
607 struct netdev_private *np = netdev_priv(dev);
609 spin_lock(&np->lock);
611 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
612 clear_bit(vid, np->active_vlans);
614 spin_unlock(&np->lock);
618 #endif /* VLAN_SUPPORT */
621 static const struct net_device_ops netdev_ops = {
622 .ndo_open = netdev_open,
623 .ndo_stop = netdev_close,
624 .ndo_start_xmit = start_tx,
625 .ndo_tx_timeout = tx_timeout,
626 .ndo_get_stats = get_stats,
627 .ndo_set_rx_mode = set_rx_mode,
628 .ndo_eth_ioctl = netdev_ioctl,
629 .ndo_set_mac_address = eth_mac_addr,
630 .ndo_validate_addr = eth_validate_addr,
632 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
633 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
637 static int starfire_init_one(struct pci_dev *pdev,
638 const struct pci_device_id *ent)
640 struct device *d = &pdev->dev;
641 struct netdev_private *np;
642 int i, irq, chip_idx = ent->driver_data;
643 struct net_device *dev;
647 int drv_flags, io_size;
650 if (pci_enable_device (pdev))
653 ioaddr = pci_resource_start(pdev, 0);
654 io_size = pci_resource_len(pdev, 0);
655 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
656 dev_err(d, "no PCI MEM resources, aborting\n");
660 dev = alloc_etherdev(sizeof(*np));
664 SET_NETDEV_DEV(dev, &pdev->dev);
668 if (pci_request_regions (pdev, DRV_NAME)) {
669 dev_err(d, "cannot reserve PCI resources, aborting\n");
670 goto err_out_free_netdev;
673 base = ioremap(ioaddr, io_size);
675 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
677 goto err_out_free_res;
680 pci_set_master(pdev);
682 /* enable MWI -- it vastly improves Rx performance on sparc64 */
683 pci_try_set_mwi(pdev);
686 /* Starfire can do TCP/UDP checksumming */
688 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
689 #endif /* ZEROCOPY */
692 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
693 #endif /* VLAN_RX_KILL_VID */
695 dev->features |= NETIF_F_HIGHDMA;
696 #endif /* ADDR_64BITS */
698 /* Serial EEPROM reads are hidden by the hardware. */
699 for (i = 0; i < 6; i++)
700 addr[i] = readb(base + EEPROMCtrl + 20 - i);
701 eth_hw_addr_set(dev, addr);
703 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
705 for (i = 0; i < 0x20; i++)
707 (unsigned int)readb(base + EEPROMCtrl + i),
708 i % 16 != 15 ? " " : "\n");
711 /* Issue soft reset */
712 writel(MiiSoftReset, base + TxMode);
714 writel(0, base + TxMode);
716 /* Reset the chip to erase previous misconfiguration. */
717 writel(1, base + PCIDeviceConfig);
719 while (--boguscnt > 0) {
721 if ((readl(base + PCIDeviceConfig) & 1) == 0)
725 printk("%s: chipset reset never completed!\n", dev->name);
726 /* wait a little longer */
729 np = netdev_priv(dev);
732 spin_lock_init(&np->lock);
733 pci_set_drvdata(pdev, dev);
737 np->mii_if.dev = dev;
738 np->mii_if.mdio_read = mdio_read;
739 np->mii_if.mdio_write = mdio_write;
740 np->mii_if.phy_id_mask = 0x1f;
741 np->mii_if.reg_num_mask = 0x1f;
743 drv_flags = netdrv_tbl[chip_idx].drv_flags;
747 /* timer resolution is 128 * 0.8us */
748 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
749 Timer10X | EnableIntrMasking;
751 if (small_frames > 0) {
752 np->intr_timer_ctrl |= SmallFrameBypass;
753 switch (small_frames) {
755 np->intr_timer_ctrl |= SmallFrame64;
758 np->intr_timer_ctrl |= SmallFrame128;
761 np->intr_timer_ctrl |= SmallFrame256;
764 np->intr_timer_ctrl |= SmallFrame512;
765 if (small_frames > 512)
766 printk("Adjusting small_frames down to 512\n");
771 dev->netdev_ops = &netdev_ops;
772 dev->watchdog_timeo = TX_TIMEOUT;
773 dev->ethtool_ops = ðtool_ops;
775 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
780 if (register_netdev(dev))
781 goto err_out_cleardev;
783 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
784 dev->name, netdrv_tbl[chip_idx].name, base,
787 if (drv_flags & CanHaveMII) {
788 int phy, phy_idx = 0;
790 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
791 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
794 while (--boguscnt > 0)
795 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
798 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
801 mii_status = mdio_read(dev, phy, MII_BMSR);
802 if (mii_status != 0) {
803 np->phys[phy_idx++] = phy;
804 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
805 printk(KERN_INFO "%s: MII PHY found at address %d, status "
806 "%#4.4x advertising %#4.4x.\n",
807 dev->name, phy, mii_status, np->mii_if.advertising);
808 /* there can be only one PHY on-board */
812 np->phy_cnt = phy_idx;
814 np->mii_if.phy_id = np->phys[0];
816 memset(&np->mii_if, 0, sizeof(np->mii_if));
819 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
820 dev->name, enable_hw_cksum ? "enabled" : "disabled");
826 pci_release_regions (pdev);
833 /* Read the MII Management Data I/O (MDIO) interfaces. */
834 static int mdio_read(struct net_device *dev, int phy_id, int location)
836 struct netdev_private *np = netdev_priv(dev);
837 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
838 int result, boguscnt=1000;
839 /* ??? Should we add a busy-wait here? */
841 result = readl(mdio_addr);
842 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
845 if ((result & 0xffff) == 0xffff)
847 return result & 0xffff;
851 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
853 struct netdev_private *np = netdev_priv(dev);
854 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
855 writel(value, mdio_addr);
856 /* The busy-wait will occur before a read. */
860 static int netdev_open(struct net_device *dev)
862 const struct firmware *fw_rx, *fw_tx;
863 const __be32 *fw_rx_data, *fw_tx_data;
864 struct netdev_private *np = netdev_priv(dev);
865 void __iomem *ioaddr = np->base;
866 const int irq = np->pci_dev->irq;
868 size_t tx_size, rx_size;
869 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
871 /* Do we ever need to reset the chip??? */
873 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
877 /* Disable the Rx and Tx, and reset the chip. */
878 writel(0, ioaddr + GenCtrl);
879 writel(1, ioaddr + PCIDeviceConfig);
881 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
884 /* Allocate the various queues. */
885 if (!np->queue_mem) {
886 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
887 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
888 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
889 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
890 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
891 np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
893 &np->queue_mem_dma, GFP_ATOMIC);
894 if (np->queue_mem == NULL) {
899 np->tx_done_q = np->queue_mem;
900 np->tx_done_q_dma = np->queue_mem_dma;
901 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
902 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
903 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
904 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
905 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
906 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
909 /* Start with no carrier, it gets adjusted later */
910 netif_carrier_off(dev);
912 /* Set the size of the Rx buffers. */
913 writel((np->rx_buf_sz << RxBufferLenShift) |
914 (0 << RxMinDescrThreshShift) |
915 RxPrefetchMode | RxVariableQ |
917 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
919 ioaddr + RxDescQCtrl);
921 /* Set up the Rx DMA controller. */
922 writel(RxChecksumIgnore |
923 (0 << RxEarlyIntThreshShift) |
924 (6 << RxHighPrioThreshShift) |
925 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
928 /* Set Tx descriptor */
929 writel((2 << TxHiPriFIFOThreshShift) |
930 (0 << TxPadLenShift) |
931 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
932 TX_DESC_Q_ADDR_SIZE |
933 TX_DESC_SPACING | TX_DESC_TYPE,
934 ioaddr + TxDescCtrl);
936 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
937 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
938 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
939 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
940 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
942 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
943 writel(np->rx_done_q_dma |
945 (0 << RxComplThreshShift),
946 ioaddr + RxCompletionAddr);
949 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
951 /* Fill both the Tx SA register and the Rx perfect filter. */
952 for (i = 0; i < 6; i++)
953 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
954 /* The first entry is special because it bypasses the VLAN filter.
956 writew(0, ioaddr + PerfFilterTable);
957 writew(0, ioaddr + PerfFilterTable + 4);
958 writew(0, ioaddr + PerfFilterTable + 8);
959 for (i = 1; i < 16; i++) {
960 const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
961 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
962 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
963 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
964 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
967 /* Initialize other registers. */
968 /* Configure the PCI bus bursts and FIFO thresholds. */
969 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
970 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
972 writel(np->tx_mode, ioaddr + TxMode);
973 np->tx_threshold = 4;
974 writel(np->tx_threshold, ioaddr + TxThreshold);
976 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
978 napi_enable(&np->napi);
980 netif_start_queue(dev);
983 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
986 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
989 /* Enable GPIO interrupts on link change */
990 writel(0x0f00ff00, ioaddr + GPIOCtrl);
992 /* Set the interrupt mask */
993 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
994 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
995 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
996 ioaddr + IntrEnable);
997 /* Enable PCI interrupts. */
998 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
999 ioaddr + PCIDeviceConfig);
1002 /* Set VLAN type to 802.1q */
1003 writel(ETH_P_8021Q, ioaddr + VlanType);
1004 #endif /* VLAN_SUPPORT */
1006 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1008 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1012 if (fw_rx->size % 4) {
1013 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1014 fw_rx->size, FIRMWARE_RX);
1018 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1024 if (fw_tx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_tx->size, FIRMWARE_TX);
1030 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1031 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1032 rx_size = fw_rx->size / 4;
1033 tx_size = fw_tx->size / 4;
1035 /* Load Rx/Tx firmware into the frame processors */
1036 for (i = 0; i < rx_size; i++)
1037 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1038 for (i = 0; i < tx_size; i++)
1039 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1040 if (enable_hw_cksum)
1041 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1042 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1044 /* Enable the Rx and Tx units only. */
1045 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1048 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1052 release_firmware(fw_tx);
1054 release_firmware(fw_rx);
1062 static void check_duplex(struct net_device *dev)
1064 struct netdev_private *np = netdev_priv(dev);
1066 int silly_count = 1000;
1068 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1069 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1071 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1074 printk("%s: MII reset failed!\n", dev->name);
1078 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1080 if (!np->mii_if.force_media) {
1081 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1083 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1085 reg0 |= BMCR_SPEED100;
1086 if (np->mii_if.full_duplex)
1087 reg0 |= BMCR_FULLDPLX;
1088 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1090 np->speed100 ? "100" : "10",
1091 np->mii_if.full_duplex ? "full" : "half");
1093 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1097 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1099 struct netdev_private *np = netdev_priv(dev);
1100 void __iomem *ioaddr = np->base;
1103 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1104 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1106 /* Perhaps we should reinitialize the hardware here. */
1109 * Stop and restart the interface.
1110 * Cheat and increase the debug level temporarily.
1118 /* Trigger an immediate transmit demand. */
1120 netif_trans_update(dev); /* prevent tx timeout */
1121 dev->stats.tx_errors++;
1122 netif_wake_queue(dev);
1126 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1127 static void init_ring(struct net_device *dev)
1129 struct netdev_private *np = netdev_priv(dev);
1132 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1133 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1135 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1137 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1138 for (i = 0; i < RX_RING_SIZE; i++) {
1139 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1140 np->rx_info[i].skb = skb;
1143 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1147 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1149 np->rx_info[i].skb = NULL;
1152 /* Grrr, we cannot offset to correctly align the IP header. */
1153 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1155 writew(i - 1, np->base + RxDescQIdx);
1156 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1158 /* Clear the remainder of the Rx buffer ring. */
1159 for ( ; i < RX_RING_SIZE; i++) {
1160 np->rx_ring[i].rxaddr = 0;
1161 np->rx_info[i].skb = NULL;
1162 np->rx_info[i].mapping = 0;
1164 /* Mark the last entry as wrapping the ring. */
1165 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1167 /* Clear the completion rings. */
1168 for (i = 0; i < DONE_Q_SIZE; i++) {
1169 np->rx_done_q[i].status = 0;
1170 np->tx_done_q[i].status = 0;
1173 for (i = 0; i < TX_RING_SIZE; i++)
1174 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1178 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1180 struct netdev_private *np = netdev_priv(dev);
1182 unsigned int prev_tx;
1187 * be cautious here, wrapping the queue has weird semantics
1188 * and we may not have enough slots even when it seems we do.
1190 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1191 netif_stop_queue(dev);
1192 return NETDEV_TX_BUSY;
1195 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1196 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1197 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1198 return NETDEV_TX_OK;
1200 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1202 prev_tx = np->cur_tx;
1203 entry = np->cur_tx % TX_RING_SIZE;
1204 for (i = 0; i < skb_num_frags(skb); i++) {
1209 np->tx_info[entry].skb = skb;
1211 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1212 status |= TxRingWrap;
1216 status |= TxDescIntr;
1219 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1221 dev->stats.tx_compressed++;
1223 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1225 np->tx_info[entry].mapping =
1226 dma_map_single(&np->pci_dev->dev, skb->data,
1227 skb_first_frag_len(skb),
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(this_frag);
1232 np->tx_info[entry].mapping =
1233 dma_map_single(&np->pci_dev->dev,
1234 skb_frag_address(this_frag),
1235 skb_frag_size(this_frag),
1238 if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1239 dev->stats.tx_dropped++;
1243 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1244 np->tx_ring[entry].status = cpu_to_le32(status);
1246 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1247 dev->name, np->cur_tx, np->dirty_tx,
1250 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1254 np->tx_info[entry].used_slots = 1;
1255 np->cur_tx += np->tx_info[entry].used_slots;
1258 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1259 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1263 /* Non-x86: explicitly flush descriptor cache lines here. */
1264 /* Ensure all descriptors are written back before the transmit is
1268 /* Update the producer index. */
1269 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1271 /* 4 is arbitrary, but should be ok */
1272 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1273 netif_stop_queue(dev);
1275 return NETDEV_TX_OK;
1278 entry = prev_tx % TX_RING_SIZE;
1279 np->tx_info[entry].skb = NULL;
1281 dma_unmap_single(&np->pci_dev->dev,
1282 np->tx_info[entry].mapping,
1283 skb_first_frag_len(skb), DMA_TO_DEVICE);
1284 np->tx_info[entry].mapping = 0;
1285 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1286 for (j = 1; j < i; j++) {
1287 dma_unmap_single(&np->pci_dev->dev,
1288 np->tx_info[entry].mapping,
1289 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1294 dev_kfree_skb_any(skb);
1295 np->cur_tx = prev_tx;
1296 return NETDEV_TX_OK;
1299 /* The interrupt handler does all of the Rx thread work and cleans up
1300 after the Tx thread. */
1301 static irqreturn_t intr_handler(int irq, void *dev_instance)
1303 struct net_device *dev = dev_instance;
1304 struct netdev_private *np = netdev_priv(dev);
1305 void __iomem *ioaddr = np->base;
1306 int boguscnt = max_interrupt_work;
1312 u32 intr_status = readl(ioaddr + IntrClear);
1315 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1316 dev->name, intr_status);
1318 if (intr_status == 0 || intr_status == (u32) -1)
1323 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1326 if (likely(napi_schedule_prep(&np->napi))) {
1327 __napi_schedule(&np->napi);
1328 enable = readl(ioaddr + IntrEnable);
1329 enable &= ~(IntrRxDone | IntrRxEmpty);
1330 writel(enable, ioaddr + IntrEnable);
1331 /* flush PCI posting buffers */
1332 readl(ioaddr + IntrEnable);
1334 /* Paranoia check */
1335 enable = readl(ioaddr + IntrEnable);
1336 if (enable & (IntrRxDone | IntrRxEmpty)) {
1338 "%s: interrupt while in poll!\n",
1340 enable &= ~(IntrRxDone | IntrRxEmpty);
1341 writel(enable, ioaddr + IntrEnable);
1346 /* Scavenge the skbuff list based on the Tx-done queue.
1347 There are redundant checks here that may be cleaned up
1348 after the driver has proven to be reliable. */
1349 consumer = readl(ioaddr + TxConsumerIdx);
1351 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1352 dev->name, consumer);
1354 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1356 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1357 dev->name, np->dirty_tx, np->tx_done, tx_status);
1358 if ((tx_status & 0xe0000000) == 0xa0000000) {
1359 dev->stats.tx_packets++;
1360 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1361 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1362 struct sk_buff *skb = np->tx_info[entry].skb;
1363 np->tx_info[entry].skb = NULL;
1364 dma_unmap_single(&np->pci_dev->dev,
1365 np->tx_info[entry].mapping,
1366 skb_first_frag_len(skb),
1368 np->tx_info[entry].mapping = 0;
1369 np->dirty_tx += np->tx_info[entry].used_slots;
1370 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1374 dma_unmap_single(&np->pci_dev->dev,
1375 np->tx_info[entry].mapping,
1376 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1383 dev_consume_skb_irq(skb);
1385 np->tx_done_q[np->tx_done].status = 0;
1386 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1388 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1390 if (netif_queue_stopped(dev) &&
1391 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1392 /* The ring is no longer full, wake the queue. */
1393 netif_wake_queue(dev);
1396 /* Stats overflow */
1397 if (intr_status & IntrStatsMax)
1400 /* Media change interrupt. */
1401 if (intr_status & IntrLinkChange)
1402 netdev_media_change(dev);
1404 /* Abnormal error summary/uncommon events handlers. */
1405 if (intr_status & IntrAbnormalSummary)
1406 netdev_error(dev, intr_status);
1408 if (--boguscnt < 0) {
1410 printk(KERN_WARNING "%s: Too much work at interrupt, "
1412 dev->name, intr_status);
1418 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1419 dev->name, (int) readl(ioaddr + IntrStatus));
1420 return IRQ_RETVAL(handled);
1425 * This routine is logically part of the interrupt/poll handler, but separated
1426 * for clarity and better register allocation.
1428 static int __netdev_rx(struct net_device *dev, int *quota)
1430 struct netdev_private *np = netdev_priv(dev);
1434 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1435 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1436 struct sk_buff *skb;
1439 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1442 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1443 if (!(desc_status & RxOK)) {
1444 /* There was an error. */
1446 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1447 dev->stats.rx_errors++;
1448 if (desc_status & RxFIFOErr)
1449 dev->stats.rx_fifo_errors++;
1453 if (*quota <= 0) { /* out of rx quota */
1459 pkt_len = desc_status; /* Implicitly Truncate */
1460 entry = (desc_status >> 16) & 0x7ff;
1463 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1464 /* Check if the packet is long enough to accept without copying
1465 to a minimally-sized skbuff. */
1466 if (pkt_len < rx_copybreak &&
1467 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1468 skb_reserve(skb, 2); /* 16 byte align the IP header */
1469 dma_sync_single_for_cpu(&np->pci_dev->dev,
1470 np->rx_info[entry].mapping,
1471 pkt_len, DMA_FROM_DEVICE);
1472 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1473 dma_sync_single_for_device(&np->pci_dev->dev,
1474 np->rx_info[entry].mapping,
1475 pkt_len, DMA_FROM_DEVICE);
1476 skb_put(skb, pkt_len);
1478 dma_unmap_single(&np->pci_dev->dev,
1479 np->rx_info[entry].mapping,
1480 np->rx_buf_sz, DMA_FROM_DEVICE);
1481 skb = np->rx_info[entry].skb;
1482 skb_put(skb, pkt_len);
1483 np->rx_info[entry].skb = NULL;
1484 np->rx_info[entry].mapping = 0;
1486 #ifndef final_version /* Remove after testing. */
1487 /* You will want this info for the initial debug. */
1489 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1490 skb->data, skb->data + 6,
1491 skb->data[12], skb->data[13]);
1495 skb->protocol = eth_type_trans(skb, dev);
1498 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1500 if (le16_to_cpu(desc->status2) & 0x0100) {
1501 skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 dev->stats.rx_compressed++;
1505 * This feature doesn't seem to be working, at least
1506 * with the two firmware versions I have. If the GFP sees
1507 * an IP fragment, it either ignores it completely, or reports
1508 * "bad checksum" on it.
1510 * Maybe I missed something -- corrections are welcome.
1511 * Until then, the printk stays. :-) -Ion
1513 else if (le16_to_cpu(desc->status2) & 0x0040) {
1514 skb->ip_summed = CHECKSUM_COMPLETE;
1515 skb->csum = le16_to_cpu(desc->csum);
1516 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1519 if (le16_to_cpu(desc->status2) & 0x0200) {
1520 u16 vlid = le16_to_cpu(desc->vlanid);
1523 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1526 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1528 #endif /* VLAN_SUPPORT */
1529 netif_receive_skb(skb);
1530 dev->stats.rx_packets++;
1535 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1538 if (*quota == 0) { /* out of rx quota */
1542 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1545 refill_rx_ring(dev);
1547 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1548 retcode, np->rx_done, desc_status);
1552 static int netdev_poll(struct napi_struct *napi, int budget)
1554 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1555 struct net_device *dev = np->dev;
1557 void __iomem *ioaddr = np->base;
1561 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1563 if (__netdev_rx(dev, "a))
1566 intr_status = readl(ioaddr + IntrStatus);
1567 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1569 napi_complete(napi);
1570 intr_status = readl(ioaddr + IntrEnable);
1571 intr_status |= IntrRxDone | IntrRxEmpty;
1572 writel(intr_status, ioaddr + IntrEnable);
1576 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1579 /* Restart Rx engine if stopped. */
1580 return budget - quota;
1583 static void refill_rx_ring(struct net_device *dev)
1585 struct netdev_private *np = netdev_priv(dev);
1586 struct sk_buff *skb;
1589 /* Refill the Rx ring buffers. */
1590 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1591 entry = np->dirty_rx % RX_RING_SIZE;
1592 if (np->rx_info[entry].skb == NULL) {
1593 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1594 np->rx_info[entry].skb = skb;
1596 break; /* Better luck next round. */
1597 np->rx_info[entry].mapping =
1598 dma_map_single(&np->pci_dev->dev, skb->data,
1599 np->rx_buf_sz, DMA_FROM_DEVICE);
1600 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1602 np->rx_info[entry].skb = NULL;
1605 np->rx_ring[entry].rxaddr =
1606 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1608 if (entry == RX_RING_SIZE - 1)
1609 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1612 writew(entry, np->base + RxDescQIdx);
1616 static void netdev_media_change(struct net_device *dev)
1618 struct netdev_private *np = netdev_priv(dev);
1619 void __iomem *ioaddr = np->base;
1620 u16 reg0, reg1, reg4, reg5;
1622 u32 new_intr_timer_ctrl;
1624 /* reset status first */
1625 mdio_read(dev, np->phys[0], MII_BMCR);
1626 mdio_read(dev, np->phys[0], MII_BMSR);
1628 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1629 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1631 if (reg1 & BMSR_LSTATUS) {
1633 if (reg0 & BMCR_ANENABLE) {
1634 /* autonegotiation is enabled */
1635 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1636 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1637 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1639 np->mii_if.full_duplex = 1;
1640 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1642 np->mii_if.full_duplex = 0;
1643 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1645 np->mii_if.full_duplex = 1;
1648 np->mii_if.full_duplex = 0;
1651 /* autonegotiation is disabled */
1652 if (reg0 & BMCR_SPEED100)
1656 if (reg0 & BMCR_FULLDPLX)
1657 np->mii_if.full_duplex = 1;
1659 np->mii_if.full_duplex = 0;
1661 netif_carrier_on(dev);
1662 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1664 np->speed100 ? "100" : "10",
1665 np->mii_if.full_duplex ? "full" : "half");
1667 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1668 if (np->mii_if.full_duplex)
1669 new_tx_mode |= FullDuplex;
1670 if (np->tx_mode != new_tx_mode) {
1671 np->tx_mode = new_tx_mode;
1672 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1674 writel(np->tx_mode, ioaddr + TxMode);
1677 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1679 new_intr_timer_ctrl |= Timer10X;
1680 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1681 np->intr_timer_ctrl = new_intr_timer_ctrl;
1682 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1685 netif_carrier_off(dev);
1686 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1691 static void netdev_error(struct net_device *dev, int intr_status)
1693 struct netdev_private *np = netdev_priv(dev);
1695 /* Came close to underrunning the Tx FIFO, increase threshold. */
1696 if (intr_status & IntrTxDataLow) {
1697 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1698 writel(++np->tx_threshold, np->base + TxThreshold);
1699 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1700 dev->name, np->tx_threshold * 16);
1702 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1704 if (intr_status & IntrRxGFPDead) {
1705 dev->stats.rx_fifo_errors++;
1706 dev->stats.rx_errors++;
1708 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1709 dev->stats.tx_fifo_errors++;
1710 dev->stats.tx_errors++;
1712 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1713 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1714 dev->name, intr_status);
1718 static struct net_device_stats *get_stats(struct net_device *dev)
1720 struct netdev_private *np = netdev_priv(dev);
1721 void __iomem *ioaddr = np->base;
1723 /* This adapter architecture needs no SMP locks. */
1724 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1725 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1726 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1727 dev->stats.tx_aborted_errors =
1728 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1729 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1730 dev->stats.collisions =
1731 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1733 /* The chip only need report frame silently dropped. */
1734 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1735 writew(0, ioaddr + RxDMAStatus);
1736 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1737 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1738 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1739 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1745 static u32 set_vlan_mode(struct netdev_private *np)
1749 void __iomem *filter_addr = np->base + HashTable + 8;
1752 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1753 if (vlan_count == 32)
1755 writew(vid, filter_addr);
1759 if (vlan_count == 32) {
1760 ret |= PerfectFilterVlan;
1761 while (vlan_count < 32) {
1762 writew(0, filter_addr);
1769 #endif /* VLAN_SUPPORT */
1771 static void set_rx_mode(struct net_device *dev)
1773 struct netdev_private *np = netdev_priv(dev);
1774 void __iomem *ioaddr = np->base;
1775 u32 rx_mode = MinVLANPrio;
1776 struct netdev_hw_addr *ha;
1780 rx_mode |= set_vlan_mode(np);
1781 #endif /* VLAN_SUPPORT */
1783 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1784 rx_mode |= AcceptAll;
1785 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786 (dev->flags & IFF_ALLMULTI)) {
1787 /* Too many to match, or accept all multicasts. */
1788 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1789 } else if (netdev_mc_count(dev) <= 14) {
1790 /* Use the 16 element perfect filter, skip first two entries. */
1791 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 const __be16 *eaddrs;
1793 netdev_for_each_mc_addr(ha, dev) {
1794 eaddrs = (__be16 *) ha->addr;
1795 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1799 eaddrs = (const __be16 *)dev->dev_addr;
1800 i = netdev_mc_count(dev) + 2;
1802 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1803 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1806 rx_mode |= AcceptBroadcast|PerfectFilter;
1808 /* Must use a multicast hash table. */
1809 void __iomem *filter_addr;
1810 const __be16 *eaddrs;
1811 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1813 memset(mc_filter, 0, sizeof(mc_filter));
1814 netdev_for_each_mc_addr(ha, dev) {
1815 /* The chip uses the upper 9 CRC bits
1816 as index into the hash table */
1817 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1818 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1820 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1822 /* Clear the perfect filter list, skip first two entries. */
1823 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1824 eaddrs = (const __be16 *)dev->dev_addr;
1825 for (i = 2; i < 16; i++) {
1826 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1827 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1828 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1830 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1831 writew(mc_filter[i], filter_addr);
1832 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1834 writel(rx_mode, ioaddr + RxFilterMode);
1837 static int check_if_running(struct net_device *dev)
1839 if (!netif_running(dev))
1844 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1846 struct netdev_private *np = netdev_priv(dev);
1847 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1848 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1851 static int get_link_ksettings(struct net_device *dev,
1852 struct ethtool_link_ksettings *cmd)
1854 struct netdev_private *np = netdev_priv(dev);
1855 spin_lock_irq(&np->lock);
1856 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1857 spin_unlock_irq(&np->lock);
1861 static int set_link_ksettings(struct net_device *dev,
1862 const struct ethtool_link_ksettings *cmd)
1864 struct netdev_private *np = netdev_priv(dev);
1866 spin_lock_irq(&np->lock);
1867 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1868 spin_unlock_irq(&np->lock);
1873 static int nway_reset(struct net_device *dev)
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_nway_restart(&np->mii_if);
1879 static u32 get_link(struct net_device *dev)
1881 struct netdev_private *np = netdev_priv(dev);
1882 return mii_link_ok(&np->mii_if);
1885 static u32 get_msglevel(struct net_device *dev)
1890 static void set_msglevel(struct net_device *dev, u32 val)
1895 static const struct ethtool_ops ethtool_ops = {
1896 .begin = check_if_running,
1897 .get_drvinfo = get_drvinfo,
1898 .nway_reset = nway_reset,
1899 .get_link = get_link,
1900 .get_msglevel = get_msglevel,
1901 .set_msglevel = set_msglevel,
1902 .get_link_ksettings = get_link_ksettings,
1903 .set_link_ksettings = set_link_ksettings,
1906 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1908 struct netdev_private *np = netdev_priv(dev);
1909 struct mii_ioctl_data *data = if_mii(rq);
1912 if (!netif_running(dev))
1915 spin_lock_irq(&np->lock);
1916 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917 spin_unlock_irq(&np->lock);
1919 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1925 static int netdev_close(struct net_device *dev)
1927 struct netdev_private *np = netdev_priv(dev);
1928 void __iomem *ioaddr = np->base;
1931 netif_stop_queue(dev);
1933 napi_disable(&np->napi);
1936 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937 dev->name, (int) readl(ioaddr + IntrStatus));
1938 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939 dev->name, np->cur_tx, np->dirty_tx,
1940 np->cur_rx, np->dirty_rx);
1943 /* Disable interrupts by clearing the interrupt mask. */
1944 writel(0, ioaddr + IntrEnable);
1946 /* Stop the chip's Tx and Rx processes. */
1947 writel(0, ioaddr + GenCtrl);
1948 readl(ioaddr + GenCtrl);
1951 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1952 (long long) np->tx_ring_dma);
1953 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955 i, le32_to_cpu(np->tx_ring[i].status),
1956 (long long) dma_to_cpu(np->tx_ring[i].addr),
1957 le32_to_cpu(np->tx_done_q[i].status));
1958 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1959 (long long) np->rx_ring_dma, np->rx_done_q);
1961 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1967 free_irq(np->pci_dev->irq, dev);
1969 /* Free all the skbuffs in the Rx queue. */
1970 for (i = 0; i < RX_RING_SIZE; i++) {
1971 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972 if (np->rx_info[i].skb != NULL) {
1973 dma_unmap_single(&np->pci_dev->dev,
1974 np->rx_info[i].mapping,
1975 np->rx_buf_sz, DMA_FROM_DEVICE);
1976 dev_kfree_skb(np->rx_info[i].skb);
1978 np->rx_info[i].skb = NULL;
1979 np->rx_info[i].mapping = 0;
1981 for (i = 0; i < TX_RING_SIZE; i++) {
1982 struct sk_buff *skb = np->tx_info[i].skb;
1985 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), DMA_TO_DEVICE);
1987 np->tx_info[i].mapping = 0;
1989 np->tx_info[i].skb = NULL;
1995 static int __maybe_unused starfire_suspend(struct device *dev_d)
1997 struct net_device *dev = dev_get_drvdata(dev_d);
1999 if (netif_running(dev)) {
2000 netif_device_detach(dev);
2007 static int __maybe_unused starfire_resume(struct device *dev_d)
2009 struct net_device *dev = dev_get_drvdata(dev_d);
2011 if (netif_running(dev)) {
2013 netif_device_attach(dev);
2019 static void starfire_remove_one(struct pci_dev *pdev)
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022 struct netdev_private *np = netdev_priv(dev);
2026 unregister_netdev(dev);
2029 dma_free_coherent(&pdev->dev, np->queue_mem_size,
2030 np->queue_mem, np->queue_mem_dma);
2033 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2034 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2035 pci_disable_device(pdev);
2038 pci_release_regions(pdev);
2040 free_netdev(dev); /* Will also free np!! */
2043 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2045 static struct pci_driver starfire_driver = {
2047 .probe = starfire_init_one,
2048 .remove = starfire_remove_one,
2049 .driver.pm = &starfire_pm_ops,
2050 .id_table = starfire_pci_tbl,
2054 static int __init starfire_init (void)
2056 /* when a module, this is printed whether or not devices are found in probe */
2058 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2061 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2063 return pci_register_driver(&starfire_driver);
2067 static void __exit starfire_cleanup (void)
2069 pci_unregister_driver (&starfire_driver);
2073 module_init(starfire_init);
2074 module_exit(starfire_cleanup);