1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
32 #define DRIVER_NAME "xilinx_can"
34 /* CAN registers set */
36 XCAN_SRR_OFFSET = 0x00, /* Software reset */
37 XCAN_MSR_OFFSET = 0x04, /* Mode select */
38 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
39 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
40 XCAN_ECR_OFFSET = 0x10, /* Error counter */
41 XCAN_ESR_OFFSET = 0x14, /* Error status */
42 XCAN_SR_OFFSET = 0x18, /* Status */
43 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
44 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
45 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
47 /* not on CAN FD cores */
48 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
49 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
50 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
52 /* only on CAN FD cores */
53 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
56 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
57 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
58 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
59 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
60 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
61 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
62 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
63 XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
64 XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
67 #define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
68 #define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
69 #define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
70 #define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
71 #define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
73 #define XCAN_CANFD_FRAME_SIZE 0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
75 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
77 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
79 XCAN_CANFD_FRAME_SIZE * (n))
81 /* the single TX mailbox used by this driver on CAN FD HW */
82 #define XCAN_TX_MAILBOX_IDX 0
84 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
86 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
87 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
88 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
89 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
90 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
91 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
92 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
93 #define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
94 #define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
95 #define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
96 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
97 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
98 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
99 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
100 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
101 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
102 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
103 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
104 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
105 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
106 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
107 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
108 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
109 #define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
110 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
111 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
112 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
113 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
114 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
115 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
116 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
117 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
118 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
119 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
120 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
121 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
122 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
123 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
124 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
125 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
126 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
127 #define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
128 #define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
129 #define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
130 #define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
131 #define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
132 #define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
133 #define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
135 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
136 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
137 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
138 #define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
139 #define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
140 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
141 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
142 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
143 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
145 /* CAN frame length constants */
146 #define XCAN_FRAME_MAX_DATA_LEN 8
147 #define XCANFD_DW_BYTES 4
148 #define XCAN_TIMEOUT (1 * HZ)
150 /* TX-FIFO-empty interrupt available */
151 #define XCAN_FLAG_TXFEMP 0x0001
152 /* RX Match Not Finished interrupt available */
153 #define XCAN_FLAG_RXMNF 0x0002
154 /* Extended acceptance filters with control at 0xE0 */
155 #define XCAN_FLAG_EXT_FILTERS 0x0004
156 /* TX mailboxes instead of TX FIFO */
157 #define XCAN_FLAG_TX_MAILBOXES 0x0008
158 /* RX FIFO with each buffer in separate registers at 0x1100
159 * instead of the regular FIFO at 0x50
161 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010
162 #define XCAN_FLAG_CANFD_2 0x0020
171 struct xcan_devtype_data {
172 enum xcan_ip_type cantype;
174 const struct can_bittiming_const *bittiming_const;
175 const char *bus_clk_name;
176 unsigned int btr_ts2_shift;
177 unsigned int btr_sjw_shift;
181 * struct xcan_priv - This definition define CAN driver instance
182 * @can: CAN private data structure.
183 * @tx_lock: Lock for synchronizing TX interrupt handling
184 * @tx_head: Tx CAN packets ready to send on the queue
185 * @tx_tail: Tx CAN packets successfully sended on the queue
186 * @tx_max: Maximum number packets the driver can send
187 * @napi: NAPI structure
188 * @read_reg: For reading data from CAN registers
189 * @write_reg: For writing data to CAN registers
190 * @dev: Network device data structure
191 * @reg_base: Ioremapped address to registers
192 * @irq_flags: For request_irq()
193 * @bus_clk: Pointer to struct clk
194 * @can_clk: Pointer to struct clk
195 * @devtype: Device type specific constants
199 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
200 unsigned int tx_head;
201 unsigned int tx_tail;
203 struct napi_struct napi;
204 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
205 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
208 void __iomem *reg_base;
209 unsigned long irq_flags;
212 struct xcan_devtype_data devtype;
215 /* CAN Bittiming constants as per Xilinx CAN specs */
216 static const struct can_bittiming_const xcan_bittiming_const = {
228 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
229 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
241 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
242 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
254 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
255 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
267 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
268 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
281 * xcan_write_reg_le - Write a value to the device register little endian
282 * @priv: Driver private data structure
283 * @reg: Register offset
284 * @val: Value to write at the Register offset
286 * Write data to the paricular CAN register
288 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
291 iowrite32(val, priv->reg_base + reg);
295 * xcan_read_reg_le - Read a value from the device register little endian
296 * @priv: Driver private data structure
297 * @reg: Register offset
299 * Read data from the particular CAN register
300 * Return: value read from the CAN register
302 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
304 return ioread32(priv->reg_base + reg);
308 * xcan_write_reg_be - Write a value to the device register big endian
309 * @priv: Driver private data structure
310 * @reg: Register offset
311 * @val: Value to write at the Register offset
313 * Write data to the paricular CAN register
315 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
318 iowrite32be(val, priv->reg_base + reg);
322 * xcan_read_reg_be - Read a value from the device register big endian
323 * @priv: Driver private data structure
324 * @reg: Register offset
326 * Read data from the particular CAN register
327 * Return: value read from the CAN register
329 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
331 return ioread32be(priv->reg_base + reg);
335 * xcan_rx_int_mask - Get the mask for the receive interrupt
336 * @priv: Driver private data structure
338 * Return: The receive interrupt mask used by the driver on this HW
340 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
342 /* RXNEMP is better suited for our use case as it cannot be cleared
343 * while the FIFO is non-empty, but CAN FD HW does not have it
345 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
346 return XCAN_IXR_RXOK_MASK;
348 return XCAN_IXR_RXNEMP_MASK;
352 * set_reset_mode - Resets the CAN device mode
353 * @ndev: Pointer to net_device structure
355 * This is the driver reset mode routine.The driver
356 * enters into configuration mode.
358 * Return: 0 on success and failure value on error
360 static int set_reset_mode(struct net_device *ndev)
362 struct xcan_priv *priv = netdev_priv(ndev);
363 unsigned long timeout;
365 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
367 timeout = jiffies + XCAN_TIMEOUT;
368 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
369 if (time_after(jiffies, timeout)) {
370 netdev_warn(ndev, "timed out for config mode\n");
373 usleep_range(500, 10000);
376 /* reset clears FIFOs */
384 * xcan_set_bittiming - CAN set bit timing routine
385 * @ndev: Pointer to net_device structure
387 * This is the driver set bittiming routine.
388 * Return: 0 on success and failure value on error
390 static int xcan_set_bittiming(struct net_device *ndev)
392 struct xcan_priv *priv = netdev_priv(ndev);
393 struct can_bittiming *bt = &priv->can.bittiming;
394 struct can_bittiming *dbt = &priv->can.data_bittiming;
398 /* Check whether Xilinx CAN is in configuration mode.
399 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
401 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
403 if (!is_config_mode) {
405 "BUG! Cannot set bittiming - CAN is not in config mode\n");
409 /* Setting Baud Rate prescalar value in BRPR Register */
410 btr0 = (bt->brp - 1);
412 /* Setting Time Segment 1 in BTR Register */
413 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
415 /* Setting Time Segment 2 in BTR Register */
416 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
418 /* Setting Synchronous jump width in BTR Register */
419 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
421 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
422 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
424 if (priv->devtype.cantype == XAXI_CANFD ||
425 priv->devtype.cantype == XAXI_CANFD_2_0) {
426 /* Setting Baud Rate prescalar value in F_BRPR Register */
429 /* Setting Time Segment 1 in BTR Register */
430 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
432 /* Setting Time Segment 2 in BTR Register */
433 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
435 /* Setting Synchronous jump width in BTR Register */
436 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
438 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
439 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
442 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
443 priv->read_reg(priv, XCAN_BRPR_OFFSET),
444 priv->read_reg(priv, XCAN_BTR_OFFSET));
450 * xcan_chip_start - This the drivers start routine
451 * @ndev: Pointer to net_device structure
453 * This is the drivers start routine.
454 * Based on the State of the CAN device it puts
455 * the CAN device into a proper mode.
457 * Return: 0 on success and failure value on error
459 static int xcan_chip_start(struct net_device *ndev)
461 struct xcan_priv *priv = netdev_priv(ndev);
466 /* Check if it is in reset mode */
467 err = set_reset_mode(ndev);
471 err = xcan_set_bittiming(ndev);
477 * We enable the ERROR interrupt even with
478 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
479 * dedicated interrupt for a state change to
480 * ERROR_WARNING/ERROR_PASSIVE.
482 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
483 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
484 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
485 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
487 if (priv->devtype.flags & XCAN_FLAG_RXMNF)
488 ier |= XCAN_IXR_RXMNF_MASK;
490 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
492 /* Check whether it is loopback mode or normal mode */
493 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
494 reg_msr = XCAN_MSR_LBACK_MASK;
498 /* enable the first extended filter, if any, as cores with extended
499 * filtering default to non-receipt if all filters are disabled
501 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
502 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
504 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
505 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
507 netdev_dbg(ndev, "status:#x%08x\n",
508 priv->read_reg(priv, XCAN_SR_OFFSET));
510 priv->can.state = CAN_STATE_ERROR_ACTIVE;
515 * xcan_do_set_mode - This sets the mode of the driver
516 * @ndev: Pointer to net_device structure
517 * @mode: Tells the mode of the driver
519 * This check the drivers state and calls the corresponding modes to set.
521 * Return: 0 on success and failure value on error
523 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
529 ret = xcan_chip_start(ndev);
531 netdev_err(ndev, "xcan_chip_start failed!\n");
534 netif_wake_queue(ndev);
545 * xcan_write_frame - Write a frame to HW
546 * @ndev: Pointer to net_device structure
547 * @skb: sk_buff pointer that contains data to be Txed
548 * @frame_offset: Register offset to write the frame to
550 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
553 u32 id, dlc, data[2] = {0, 0};
554 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
555 u32 ramoff, dwindex = 0, i;
556 struct xcan_priv *priv = netdev_priv(ndev);
558 /* Watch carefully on the bit sequence */
559 if (cf->can_id & CAN_EFF_FLAG) {
560 /* Extended CAN ID format */
561 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
563 id |= (((cf->can_id & CAN_EFF_MASK) >>
564 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
565 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
567 /* The substibute remote TX request bit should be "1"
568 * for extended frames as in the Xilinx CAN datasheet
570 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
572 if (cf->can_id & CAN_RTR_FLAG)
573 /* Extended frames remote TX request */
574 id |= XCAN_IDR_RTR_MASK;
576 /* Standard CAN ID format */
577 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
580 if (cf->can_id & CAN_RTR_FLAG)
581 /* Standard frames remote TX request */
582 id |= XCAN_IDR_SRR_MASK;
585 dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
586 if (can_is_canfd_skb(skb)) {
587 if (cf->flags & CANFD_BRS)
588 dlc |= XCAN_DLCR_BRS_MASK;
589 dlc |= XCAN_DLCR_EDL_MASK;
592 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
593 (priv->devtype.flags & XCAN_FLAG_TXFEMP))
594 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
596 can_put_echo_skb(skb, ndev, 0, 0);
600 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
601 /* If the CAN frame is RTR frame this write triggers transmission
604 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
605 if (priv->devtype.cantype == XAXI_CANFD ||
606 priv->devtype.cantype == XAXI_CANFD_2_0) {
607 for (i = 0; i < cf->len; i += 4) {
608 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
609 (dwindex * XCANFD_DW_BYTES);
610 priv->write_reg(priv, ramoff,
611 be32_to_cpup((__be32 *)(cf->data + i)));
616 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
618 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
620 if (!(cf->can_id & CAN_RTR_FLAG)) {
621 priv->write_reg(priv,
622 XCAN_FRAME_DW1_OFFSET(frame_offset),
624 /* If the CAN frame is Standard/Extended frame this
625 * write triggers transmission (not on CAN FD)
627 priv->write_reg(priv,
628 XCAN_FRAME_DW2_OFFSET(frame_offset),
635 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
636 * @skb: sk_buff pointer that contains data to be Txed
637 * @ndev: Pointer to net_device structure
639 * Return: 0 on success, -ENOSPC if FIFO is full.
641 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
643 struct xcan_priv *priv = netdev_priv(ndev);
646 /* Check if the TX buffer is full */
647 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
651 spin_lock_irqsave(&priv->tx_lock, flags);
653 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
655 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
656 if (priv->tx_max > 1)
657 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
659 /* Check if the TX buffer is full */
660 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
661 netif_stop_queue(ndev);
663 spin_unlock_irqrestore(&priv->tx_lock, flags);
669 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
670 * @skb: sk_buff pointer that contains data to be Txed
671 * @ndev: Pointer to net_device structure
673 * Return: 0 on success, -ENOSPC if there is no space
675 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
677 struct xcan_priv *priv = netdev_priv(ndev);
680 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
681 BIT(XCAN_TX_MAILBOX_IDX)))
684 spin_lock_irqsave(&priv->tx_lock, flags);
686 xcan_write_frame(ndev, skb,
687 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
689 /* Mark buffer as ready for transmit */
690 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
692 netif_stop_queue(ndev);
694 spin_unlock_irqrestore(&priv->tx_lock, flags);
700 * xcan_start_xmit - Starts the transmission
701 * @skb: sk_buff pointer that contains data to be Txed
702 * @ndev: Pointer to net_device structure
704 * This function is invoked from upper layers to initiate transmission.
706 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
708 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
710 struct xcan_priv *priv = netdev_priv(ndev);
713 if (can_dropped_invalid_skb(ndev, skb))
716 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
717 ret = xcan_start_xmit_mailbox(skb, ndev);
719 ret = xcan_start_xmit_fifo(skb, ndev);
722 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
723 netif_stop_queue(ndev);
724 return NETDEV_TX_BUSY;
731 * xcan_rx - Is called from CAN isr to complete the received
733 * @ndev: Pointer to net_device structure
734 * @frame_base: Register offset to the frame to be read
736 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
737 * does minimal processing and invokes "netif_receive_skb" to complete further
739 * Return: 1 on success and 0 on failure.
741 static int xcan_rx(struct net_device *ndev, int frame_base)
743 struct xcan_priv *priv = netdev_priv(ndev);
744 struct net_device_stats *stats = &ndev->stats;
745 struct can_frame *cf;
747 u32 id_xcan, dlc, data[2] = {0, 0};
749 skb = alloc_can_skb(ndev, &cf);
750 if (unlikely(!skb)) {
755 /* Read a frame from Xilinx zynq CANPS */
756 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
757 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
760 /* Change Xilinx CAN data length format to socketCAN data format */
761 cf->len = can_cc_dlc2len(dlc);
763 /* Change Xilinx CAN ID format to socketCAN ID format */
764 if (id_xcan & XCAN_IDR_IDE_MASK) {
765 /* The received frame is an Extended format frame */
766 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
767 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
769 cf->can_id |= CAN_EFF_FLAG;
770 if (id_xcan & XCAN_IDR_RTR_MASK)
771 cf->can_id |= CAN_RTR_FLAG;
773 /* The received frame is a standard format frame */
774 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
776 if (id_xcan & XCAN_IDR_SRR_MASK)
777 cf->can_id |= CAN_RTR_FLAG;
780 /* DW1/DW2 must always be read to remove message from RXFIFO */
781 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
782 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
784 if (!(cf->can_id & CAN_RTR_FLAG)) {
785 /* Change Xilinx CAN data format to socketCAN data format */
787 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
789 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
792 stats->rx_bytes += cf->len;
794 netif_receive_skb(skb);
800 * xcanfd_rx - Is called from CAN isr to complete the received
802 * @ndev: Pointer to net_device structure
803 * @frame_base: Register offset to the frame to be read
805 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
806 * does minimal processing and invokes "netif_receive_skb" to complete further
808 * Return: 1 on success and 0 on failure.
810 static int xcanfd_rx(struct net_device *ndev, int frame_base)
812 struct xcan_priv *priv = netdev_priv(ndev);
813 struct net_device_stats *stats = &ndev->stats;
814 struct canfd_frame *cf;
816 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
818 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
819 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
820 if (dlc & XCAN_DLCR_EDL_MASK)
821 skb = alloc_canfd_skb(ndev, &cf);
823 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
825 if (unlikely(!skb)) {
830 /* Change Xilinx CANFD data length format to socketCAN data
833 if (dlc & XCAN_DLCR_EDL_MASK)
834 cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
835 XCAN_DLCR_DLC_SHIFT);
837 cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
838 XCAN_DLCR_DLC_SHIFT);
840 /* Change Xilinx CAN ID format to socketCAN ID format */
841 if (id_xcan & XCAN_IDR_IDE_MASK) {
842 /* The received frame is an Extended format frame */
843 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
844 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
846 cf->can_id |= CAN_EFF_FLAG;
847 if (id_xcan & XCAN_IDR_RTR_MASK)
848 cf->can_id |= CAN_RTR_FLAG;
850 /* The received frame is a standard format frame */
851 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
853 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
855 cf->can_id |= CAN_RTR_FLAG;
858 /* Check the frame received is FD or not*/
859 if (dlc & XCAN_DLCR_EDL_MASK) {
860 for (i = 0; i < cf->len; i += 4) {
861 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
862 (dwindex * XCANFD_DW_BYTES);
863 data[0] = priv->read_reg(priv, dw_offset);
864 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
868 for (i = 0; i < cf->len; i += 4) {
869 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
870 data[0] = priv->read_reg(priv, dw_offset + i);
871 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
874 stats->rx_bytes += cf->len;
876 netif_receive_skb(skb);
882 * xcan_current_error_state - Get current error state from HW
883 * @ndev: Pointer to net_device structure
885 * Checks the current CAN error state from the HW. Note that this
886 * only checks for ERROR_PASSIVE and ERROR_WARNING.
889 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
892 static enum can_state xcan_current_error_state(struct net_device *ndev)
894 struct xcan_priv *priv = netdev_priv(ndev);
895 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
897 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
898 return CAN_STATE_ERROR_PASSIVE;
899 else if (status & XCAN_SR_ERRWRN_MASK)
900 return CAN_STATE_ERROR_WARNING;
902 return CAN_STATE_ERROR_ACTIVE;
906 * xcan_set_error_state - Set new CAN error state
907 * @ndev: Pointer to net_device structure
908 * @new_state: The new CAN state to be set
909 * @cf: Error frame to be populated or NULL
911 * Set new CAN error state for the device, updating statistics and
912 * populating the error frame if given.
914 static void xcan_set_error_state(struct net_device *ndev,
915 enum can_state new_state,
916 struct can_frame *cf)
918 struct xcan_priv *priv = netdev_priv(ndev);
919 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
920 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
921 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
922 enum can_state tx_state = txerr >= rxerr ? new_state : 0;
923 enum can_state rx_state = txerr <= rxerr ? new_state : 0;
925 /* non-ERROR states are handled elsewhere */
926 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
929 can_change_state(ndev, cf, tx_state, rx_state);
938 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
939 * @ndev: Pointer to net_device structure
941 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
942 * the performed RX/TX has caused it to drop to a lesser state and set
943 * the interface state accordingly.
945 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
947 struct xcan_priv *priv = netdev_priv(ndev);
948 enum can_state old_state = priv->can.state;
949 enum can_state new_state;
951 /* changing error state due to successful frame RX/TX can only
952 * occur from these states
954 if (old_state != CAN_STATE_ERROR_WARNING &&
955 old_state != CAN_STATE_ERROR_PASSIVE)
958 new_state = xcan_current_error_state(ndev);
960 if (new_state != old_state) {
962 struct can_frame *cf;
964 skb = alloc_can_err_skb(ndev, &cf);
966 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
969 struct net_device_stats *stats = &ndev->stats;
972 stats->rx_bytes += cf->len;
979 * xcan_err_interrupt - error frame Isr
980 * @ndev: net_device pointer
981 * @isr: interrupt status register value
983 * This is the CAN error interrupt and it will
984 * check the type of error and forward the error
985 * frame to upper layers.
987 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
989 struct xcan_priv *priv = netdev_priv(ndev);
990 struct net_device_stats *stats = &ndev->stats;
991 struct can_frame cf = { };
994 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
995 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
997 if (isr & XCAN_IXR_BSOFF_MASK) {
998 priv->can.state = CAN_STATE_BUS_OFF;
999 priv->can.can_stats.bus_off++;
1000 /* Leave device in Config Mode in bus-off state */
1001 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1003 cf.can_id |= CAN_ERR_BUSOFF;
1005 enum can_state new_state = xcan_current_error_state(ndev);
1007 if (new_state != priv->can.state)
1008 xcan_set_error_state(ndev, new_state, &cf);
1011 /* Check for Arbitration lost interrupt */
1012 if (isr & XCAN_IXR_ARBLST_MASK) {
1013 priv->can.can_stats.arbitration_lost++;
1014 cf.can_id |= CAN_ERR_LOSTARB;
1015 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1018 /* Check for RX FIFO Overflow interrupt */
1019 if (isr & XCAN_IXR_RXOFLW_MASK) {
1020 stats->rx_over_errors++;
1022 cf.can_id |= CAN_ERR_CRTL;
1023 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1026 /* Check for RX Match Not Finished interrupt */
1027 if (isr & XCAN_IXR_RXMNF_MASK) {
1028 stats->rx_dropped++;
1030 netdev_err(ndev, "RX match not finished, frame discarded\n");
1031 cf.can_id |= CAN_ERR_CRTL;
1032 cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1035 /* Check for error interrupt */
1036 if (isr & XCAN_IXR_ERROR_MASK) {
1037 bool berr_reporting = false;
1039 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1040 berr_reporting = true;
1041 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1044 /* Check for Ack error interrupt */
1045 if (err_status & XCAN_ESR_ACKER_MASK) {
1047 if (berr_reporting) {
1048 cf.can_id |= CAN_ERR_ACK;
1049 cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1053 /* Check for Bit error interrupt */
1054 if (err_status & XCAN_ESR_BERR_MASK) {
1056 if (berr_reporting) {
1057 cf.can_id |= CAN_ERR_PROT;
1058 cf.data[2] = CAN_ERR_PROT_BIT;
1062 /* Check for Stuff error interrupt */
1063 if (err_status & XCAN_ESR_STER_MASK) {
1065 if (berr_reporting) {
1066 cf.can_id |= CAN_ERR_PROT;
1067 cf.data[2] = CAN_ERR_PROT_STUFF;
1071 /* Check for Form error interrupt */
1072 if (err_status & XCAN_ESR_FMER_MASK) {
1074 if (berr_reporting) {
1075 cf.can_id |= CAN_ERR_PROT;
1076 cf.data[2] = CAN_ERR_PROT_FORM;
1080 /* Check for CRC error interrupt */
1081 if (err_status & XCAN_ESR_CRCER_MASK) {
1083 if (berr_reporting) {
1084 cf.can_id |= CAN_ERR_PROT;
1085 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1088 priv->can.can_stats.bus_error++;
1092 struct can_frame *skb_cf;
1093 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1096 skb_cf->can_id |= cf.can_id;
1097 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1098 stats->rx_packets++;
1099 stats->rx_bytes += CAN_ERR_DLC;
1104 netdev_dbg(ndev, "%s: error status register:0x%x\n",
1105 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1109 * xcan_state_interrupt - It will check the state of the CAN device
1110 * @ndev: net_device pointer
1111 * @isr: interrupt status register value
1113 * This will checks the state of the CAN device
1114 * and puts the device into appropriate state.
1116 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1118 struct xcan_priv *priv = netdev_priv(ndev);
1120 /* Check for Sleep interrupt if set put CAN device in sleep state */
1121 if (isr & XCAN_IXR_SLP_MASK)
1122 priv->can.state = CAN_STATE_SLEEPING;
1124 /* Check for Wake up interrupt if set put CAN device in Active state */
1125 if (isr & XCAN_IXR_WKUP_MASK)
1126 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1130 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1131 * @priv: Driver private data structure
1133 * Return: Register offset of the next frame in RX FIFO.
1135 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1139 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1142 /* clear RXOK before the is-empty check so that any newly
1143 * received frame will reassert it without a race
1145 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1147 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1149 /* check if RX FIFO is empty */
1150 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1151 mask = XCAN_2_FSR_FL_MASK;
1153 mask = XCAN_FSR_FL_MASK;
1158 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1160 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1163 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1166 /* check if RX FIFO is empty */
1167 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1168 XCAN_IXR_RXNEMP_MASK))
1171 /* frames are read from a static offset */
1172 offset = XCAN_RXFIFO_OFFSET;
1179 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1180 * @napi: napi structure pointer
1181 * @quota: Max number of rx packets to be processed.
1183 * This is the poll routine for rx part.
1184 * It will process the packets maximux quota value.
1186 * Return: number of packets received
1188 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1190 struct net_device *ndev = napi->dev;
1191 struct xcan_priv *priv = netdev_priv(ndev);
1196 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1197 (work_done < quota)) {
1198 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1199 work_done += xcanfd_rx(ndev, frame_offset);
1201 work_done += xcan_rx(ndev, frame_offset);
1203 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1204 /* increment read index */
1205 priv->write_reg(priv, XCAN_FSR_OFFSET,
1208 /* clear rx-not-empty (will actually clear only if
1211 priv->write_reg(priv, XCAN_ICR_OFFSET,
1212 XCAN_IXR_RXNEMP_MASK);
1216 can_led_event(ndev, CAN_LED_EVENT_RX);
1217 xcan_update_error_state_after_rxtx(ndev);
1220 if (work_done < quota) {
1221 napi_complete_done(napi, work_done);
1222 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1223 ier |= xcan_rx_int_mask(priv);
1224 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1230 * xcan_tx_interrupt - Tx Done Isr
1231 * @ndev: net_device pointer
1232 * @isr: Interrupt status register value
1234 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1236 struct xcan_priv *priv = netdev_priv(ndev);
1237 struct net_device_stats *stats = &ndev->stats;
1238 unsigned int frames_in_fifo;
1239 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1240 unsigned long flags;
1243 /* Synchronize with xmit as we need to know the exact number
1244 * of frames in the FIFO to stay in sync due to the TXFEMP
1246 * This also prevents a race between netif_wake_queue() and
1247 * netif_stop_queue().
1249 spin_lock_irqsave(&priv->tx_lock, flags);
1251 frames_in_fifo = priv->tx_head - priv->tx_tail;
1253 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1254 /* clear TXOK anyway to avoid getting back here */
1255 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1256 spin_unlock_irqrestore(&priv->tx_lock, flags);
1260 /* Check if 2 frames were sent (TXOK only means that at least 1
1263 if (frames_in_fifo > 1) {
1264 WARN_ON(frames_in_fifo > priv->tx_max);
1266 /* Synchronize TXOK and isr so that after the loop:
1267 * (1) isr variable is up-to-date at least up to TXOK clear
1268 * time. This avoids us clearing a TXOK of a second frame
1269 * but not noticing that the FIFO is now empty and thus
1270 * marking only a single frame as sent.
1271 * (2) No TXOK is left. Having one could mean leaving a
1272 * stray TXOK as we might process the associated frame
1273 * via TXFEMP handling as we read TXFEMP *after* TXOK
1274 * clear to satisfy (1).
1276 while ((isr & XCAN_IXR_TXOK_MASK) &&
1277 !WARN_ON(++retries == 100)) {
1278 priv->write_reg(priv, XCAN_ICR_OFFSET,
1279 XCAN_IXR_TXOK_MASK);
1280 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1283 if (isr & XCAN_IXR_TXFEMP_MASK) {
1284 /* nothing in FIFO anymore */
1285 frames_sent = frames_in_fifo;
1288 /* single frame in fifo, just clear TXOK */
1289 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1292 while (frames_sent--) {
1293 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1294 priv->tx_max, NULL);
1296 stats->tx_packets++;
1299 netif_wake_queue(ndev);
1301 spin_unlock_irqrestore(&priv->tx_lock, flags);
1303 can_led_event(ndev, CAN_LED_EVENT_TX);
1304 xcan_update_error_state_after_rxtx(ndev);
1308 * xcan_interrupt - CAN Isr
1310 * @dev_id: device id pointer
1312 * This is the xilinx CAN Isr. It checks for the type of interrupt
1313 * and invokes the corresponding ISR.
1316 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1318 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1320 struct net_device *ndev = (struct net_device *)dev_id;
1321 struct xcan_priv *priv = netdev_priv(ndev);
1324 u32 rx_int_mask = xcan_rx_int_mask(priv);
1326 /* Get the interrupt status from Xilinx CAN */
1327 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1331 /* Check for the type of interrupt and Processing it */
1332 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1333 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1334 XCAN_IXR_WKUP_MASK));
1335 xcan_state_interrupt(ndev, isr);
1338 /* Check for Tx interrupt and Processing it */
1339 if (isr & XCAN_IXR_TXOK_MASK)
1340 xcan_tx_interrupt(ndev, isr);
1342 /* Check for the type of error interrupt and Processing it */
1343 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1344 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1345 XCAN_IXR_RXMNF_MASK);
1347 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1348 xcan_err_interrupt(ndev, isr);
1351 /* Check for the type of receive interrupt and Processing it */
1352 if (isr & rx_int_mask) {
1353 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1354 ier &= ~rx_int_mask;
1355 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1356 napi_schedule(&priv->napi);
1362 * xcan_chip_stop - Driver stop routine
1363 * @ndev: Pointer to net_device structure
1365 * This is the drivers stop routine. It will disable the
1366 * interrupts and put the device into configuration mode.
1368 static void xcan_chip_stop(struct net_device *ndev)
1370 struct xcan_priv *priv = netdev_priv(ndev);
1373 /* Disable interrupts and leave the can in configuration mode */
1374 ret = set_reset_mode(ndev);
1376 netdev_dbg(ndev, "set_reset_mode() Failed\n");
1378 priv->can.state = CAN_STATE_STOPPED;
1382 * xcan_open - Driver open routine
1383 * @ndev: Pointer to net_device structure
1385 * This is the driver open routine.
1386 * Return: 0 on success and failure value on error
1388 static int xcan_open(struct net_device *ndev)
1390 struct xcan_priv *priv = netdev_priv(ndev);
1393 ret = pm_runtime_get_sync(priv->dev);
1395 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1400 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1403 netdev_err(ndev, "irq allocation for CAN failed\n");
1407 /* Set chip into reset mode */
1408 ret = set_reset_mode(ndev);
1410 netdev_err(ndev, "mode resetting failed!\n");
1415 ret = open_candev(ndev);
1419 ret = xcan_chip_start(ndev);
1421 netdev_err(ndev, "xcan_chip_start failed!\n");
1425 can_led_event(ndev, CAN_LED_EVENT_OPEN);
1426 napi_enable(&priv->napi);
1427 netif_start_queue(ndev);
1434 free_irq(ndev->irq, ndev);
1436 pm_runtime_put(priv->dev);
1442 * xcan_close - Driver close routine
1443 * @ndev: Pointer to net_device structure
1447 static int xcan_close(struct net_device *ndev)
1449 struct xcan_priv *priv = netdev_priv(ndev);
1451 netif_stop_queue(ndev);
1452 napi_disable(&priv->napi);
1453 xcan_chip_stop(ndev);
1454 free_irq(ndev->irq, ndev);
1457 can_led_event(ndev, CAN_LED_EVENT_STOP);
1458 pm_runtime_put(priv->dev);
1464 * xcan_get_berr_counter - error counter routine
1465 * @ndev: Pointer to net_device structure
1466 * @bec: Pointer to can_berr_counter structure
1468 * This is the driver error counter routine.
1469 * Return: 0 on success and failure value on error
1471 static int xcan_get_berr_counter(const struct net_device *ndev,
1472 struct can_berr_counter *bec)
1474 struct xcan_priv *priv = netdev_priv(ndev);
1477 ret = pm_runtime_get_sync(priv->dev);
1479 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1481 pm_runtime_put(priv->dev);
1485 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1486 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1487 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1489 pm_runtime_put(priv->dev);
1494 static const struct net_device_ops xcan_netdev_ops = {
1495 .ndo_open = xcan_open,
1496 .ndo_stop = xcan_close,
1497 .ndo_start_xmit = xcan_start_xmit,
1498 .ndo_change_mtu = can_change_mtu,
1502 * xcan_suspend - Suspend method for the driver
1503 * @dev: Address of the device structure
1505 * Put the driver into low power mode.
1506 * Return: 0 on success and failure value on error
1508 static int __maybe_unused xcan_suspend(struct device *dev)
1510 struct net_device *ndev = dev_get_drvdata(dev);
1512 if (netif_running(ndev)) {
1513 netif_stop_queue(ndev);
1514 netif_device_detach(ndev);
1515 xcan_chip_stop(ndev);
1518 return pm_runtime_force_suspend(dev);
1522 * xcan_resume - Resume from suspend
1523 * @dev: Address of the device structure
1525 * Resume operation after suspend.
1526 * Return: 0 on success and failure value on error
1528 static int __maybe_unused xcan_resume(struct device *dev)
1530 struct net_device *ndev = dev_get_drvdata(dev);
1533 ret = pm_runtime_force_resume(dev);
1535 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1539 if (netif_running(ndev)) {
1540 ret = xcan_chip_start(ndev);
1542 dev_err(dev, "xcan_chip_start failed on resume\n");
1546 netif_device_attach(ndev);
1547 netif_start_queue(ndev);
1554 * xcan_runtime_suspend - Runtime suspend method for the driver
1555 * @dev: Address of the device structure
1557 * Put the driver into low power mode.
1560 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1562 struct net_device *ndev = dev_get_drvdata(dev);
1563 struct xcan_priv *priv = netdev_priv(ndev);
1565 clk_disable_unprepare(priv->bus_clk);
1566 clk_disable_unprepare(priv->can_clk);
1572 * xcan_runtime_resume - Runtime resume from suspend
1573 * @dev: Address of the device structure
1575 * Resume operation after suspend.
1576 * Return: 0 on success and failure value on error
1578 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1580 struct net_device *ndev = dev_get_drvdata(dev);
1581 struct xcan_priv *priv = netdev_priv(ndev);
1584 ret = clk_prepare_enable(priv->bus_clk);
1586 dev_err(dev, "Cannot enable clock.\n");
1589 ret = clk_prepare_enable(priv->can_clk);
1591 dev_err(dev, "Cannot enable clock.\n");
1592 clk_disable_unprepare(priv->bus_clk);
1599 static const struct dev_pm_ops xcan_dev_pm_ops = {
1600 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1601 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1604 static const struct xcan_devtype_data xcan_zynq_data = {
1605 .cantype = XZYNQ_CANPS,
1606 .flags = XCAN_FLAG_TXFEMP,
1607 .bittiming_const = &xcan_bittiming_const,
1608 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1609 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1610 .bus_clk_name = "pclk",
1613 static const struct xcan_devtype_data xcan_axi_data = {
1614 .cantype = XAXI_CAN,
1615 .bittiming_const = &xcan_bittiming_const,
1616 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1617 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1618 .bus_clk_name = "s_axi_aclk",
1621 static const struct xcan_devtype_data xcan_canfd_data = {
1622 .cantype = XAXI_CANFD,
1623 .flags = XCAN_FLAG_EXT_FILTERS |
1625 XCAN_FLAG_TX_MAILBOXES |
1626 XCAN_FLAG_RX_FIFO_MULTI,
1627 .bittiming_const = &xcan_bittiming_const_canfd,
1628 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1629 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1630 .bus_clk_name = "s_axi_aclk",
1633 static const struct xcan_devtype_data xcan_canfd2_data = {
1634 .cantype = XAXI_CANFD_2_0,
1635 .flags = XCAN_FLAG_EXT_FILTERS |
1637 XCAN_FLAG_TX_MAILBOXES |
1639 XCAN_FLAG_RX_FIFO_MULTI,
1640 .bittiming_const = &xcan_bittiming_const_canfd2,
1641 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1642 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1643 .bus_clk_name = "s_axi_aclk",
1646 /* Match table for OF platform binding */
1647 static const struct of_device_id xcan_of_match[] = {
1648 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1649 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1650 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1651 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1652 { /* end of list */ },
1654 MODULE_DEVICE_TABLE(of, xcan_of_match);
1657 * xcan_probe - Platform registration call
1658 * @pdev: Handle to the platform device structure
1660 * This function does all the memory allocation and registration for the CAN
1663 * Return: 0 on success and failure value on error
1665 static int xcan_probe(struct platform_device *pdev)
1667 struct net_device *ndev;
1668 struct xcan_priv *priv;
1669 const struct of_device_id *of_id;
1670 const struct xcan_devtype_data *devtype = &xcan_axi_data;
1674 u32 hw_tx_max = 0, hw_rx_max = 0;
1675 const char *hw_tx_max_property;
1677 /* Get the virtual base address for the device */
1678 addr = devm_platform_ioremap_resource(pdev, 0);
1680 ret = PTR_ERR(addr);
1684 of_id = of_match_device(xcan_of_match, &pdev->dev);
1685 if (of_id && of_id->data)
1686 devtype = of_id->data;
1688 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1689 "tx-mailbox-count" : "tx-fifo-depth";
1691 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1694 dev_err(&pdev->dev, "missing %s property\n",
1695 hw_tx_max_property);
1699 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1703 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1709 * There is no way to directly figure out how many frames have been
1710 * sent when the TXOK interrupt is processed. If TXFEMP
1711 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1712 * to determine if 1 or 2 frames have been sent.
1713 * Theoretically we should be able to use TXFWMEMP to determine up
1714 * to 3 frames, but it seems that after putting a second frame in the
1715 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1716 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1717 * sent), which is not a sensible state - possibly TXFWMEMP is not
1718 * completely synchronized with the rest of the bits?
1720 * With TX mailboxes:
1722 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1723 * we submit frames one at a time.
1725 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1726 (devtype->flags & XCAN_FLAG_TXFEMP))
1727 tx_max = min(hw_tx_max, 2U);
1733 /* Create a CAN device instance */
1734 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1738 priv = netdev_priv(ndev);
1739 priv->dev = &pdev->dev;
1740 priv->can.bittiming_const = devtype->bittiming_const;
1741 priv->can.do_set_mode = xcan_do_set_mode;
1742 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1743 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1744 CAN_CTRLMODE_BERR_REPORTING;
1746 if (devtype->cantype == XAXI_CANFD)
1747 priv->can.data_bittiming_const =
1748 &xcan_data_bittiming_const_canfd;
1750 if (devtype->cantype == XAXI_CANFD_2_0)
1751 priv->can.data_bittiming_const =
1752 &xcan_data_bittiming_const_canfd2;
1754 if (devtype->cantype == XAXI_CANFD ||
1755 devtype->cantype == XAXI_CANFD_2_0)
1756 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1758 priv->reg_base = addr;
1759 priv->tx_max = tx_max;
1760 priv->devtype = *devtype;
1761 spin_lock_init(&priv->tx_lock);
1763 /* Get IRQ for the device */
1764 ndev->irq = platform_get_irq(pdev, 0);
1765 ndev->flags |= IFF_ECHO; /* We support local echo */
1767 platform_set_drvdata(pdev, ndev);
1768 SET_NETDEV_DEV(ndev, &pdev->dev);
1769 ndev->netdev_ops = &xcan_netdev_ops;
1771 /* Getting the CAN can_clk info */
1772 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1773 if (IS_ERR(priv->can_clk)) {
1774 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1775 "device clock not found\n");
1779 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1780 if (IS_ERR(priv->bus_clk)) {
1781 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1782 "bus clock not found\n");
1786 priv->write_reg = xcan_write_reg_le;
1787 priv->read_reg = xcan_read_reg_le;
1789 pm_runtime_enable(&pdev->dev);
1790 ret = pm_runtime_get_sync(&pdev->dev);
1792 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1794 goto err_disableclks;
1797 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1798 priv->write_reg = xcan_write_reg_be;
1799 priv->read_reg = xcan_read_reg_be;
1802 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1804 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1806 ret = register_candev(ndev);
1808 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1809 goto err_disableclks;
1812 devm_can_led_init(ndev);
1814 pm_runtime_put(&pdev->dev);
1816 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1817 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1818 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1821 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1822 priv->reg_base, ndev->irq, priv->can.clock.freq,
1823 hw_tx_max, priv->tx_max);
1828 pm_runtime_put(priv->dev);
1829 pm_runtime_disable(&pdev->dev);
1837 * xcan_remove - Unregister the device after releasing the resources
1838 * @pdev: Handle to the platform device structure
1840 * This function frees all the resources allocated to the device.
1843 static int xcan_remove(struct platform_device *pdev)
1845 struct net_device *ndev = platform_get_drvdata(pdev);
1847 unregister_candev(ndev);
1848 pm_runtime_disable(&pdev->dev);
1854 static struct platform_driver xcan_driver = {
1855 .probe = xcan_probe,
1856 .remove = xcan_remove,
1858 .name = DRIVER_NAME,
1859 .pm = &xcan_dev_pm_ops,
1860 .of_match_table = xcan_of_match,
1864 module_platform_driver(xcan_driver);
1866 MODULE_LICENSE("GPL");
1867 MODULE_AUTHOR("Xilinx Inc");
1868 MODULE_DESCRIPTION("Xilinx CAN interface");