1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
8 * Many thanks to linaro-mm-sig list, and specially
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 #include "dma-buf-sysfs-stats.h"
34 static inline int is_dma_buf_file(struct file *);
37 struct list_head head;
41 static struct dma_buf_list db_list;
43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
45 struct dma_buf *dmabuf;
46 char name[DMA_BUF_NAME_LEN];
49 dmabuf = dentry->d_fsdata;
50 spin_lock(&dmabuf->name_lock);
52 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 spin_unlock(&dmabuf->name_lock);
55 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 dentry->d_name.name, ret > 0 ? name : "");
59 static void dma_buf_release(struct dentry *dentry)
61 struct dma_buf *dmabuf;
63 dmabuf = dentry->d_fsdata;
64 if (unlikely(!dmabuf))
67 BUG_ON(dmabuf->vmapping_counter);
70 * Any fences that a dma-buf poll can wait on should be signaled
71 * before releasing dma-buf. This is the responsibility of each
72 * driver that uses the reservation objects.
74 * If you hit this BUG() it means someone dropped their ref to the
75 * dma-buf while still having pending operation to the buffer.
77 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
79 dma_buf_stats_teardown(dmabuf);
80 dmabuf->ops->release(dmabuf);
82 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
83 dma_resv_fini(dmabuf->resv);
85 WARN_ON(!list_empty(&dmabuf->attachments));
86 module_put(dmabuf->owner);
91 static int dma_buf_file_release(struct inode *inode, struct file *file)
93 struct dma_buf *dmabuf;
95 if (!is_dma_buf_file(file))
98 dmabuf = file->private_data;
100 mutex_lock(&db_list.lock);
101 list_del(&dmabuf->list_node);
102 mutex_unlock(&db_list.lock);
107 static const struct dentry_operations dma_buf_dentry_ops = {
108 .d_dname = dmabuffs_dname,
109 .d_release = dma_buf_release,
112 static struct vfsmount *dma_buf_mnt;
114 static int dma_buf_fs_init_context(struct fs_context *fc)
116 struct pseudo_fs_context *ctx;
118 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
121 ctx->dops = &dma_buf_dentry_ops;
125 static struct file_system_type dma_buf_fs_type = {
127 .init_fs_context = dma_buf_fs_init_context,
128 .kill_sb = kill_anon_super,
131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
133 struct dma_buf *dmabuf;
135 if (!is_dma_buf_file(file))
138 dmabuf = file->private_data;
140 /* check if buffer supports mmap */
141 if (!dmabuf->ops->mmap)
144 /* check for overflowing the buffer's size */
145 if (vma->vm_pgoff + vma_pages(vma) >
146 dmabuf->size >> PAGE_SHIFT)
149 return dmabuf->ops->mmap(dmabuf, vma);
152 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
154 struct dma_buf *dmabuf;
157 if (!is_dma_buf_file(file))
160 dmabuf = file->private_data;
162 /* only support discovering the end of the buffer,
163 but also allow SEEK_SET to maintain the idiomatic
164 SEEK_END(0), SEEK_CUR(0) pattern */
165 if (whence == SEEK_END)
167 else if (whence == SEEK_SET)
175 return base + offset;
179 * DOC: implicit fence polling
181 * To support cross-device and cross-driver synchronization of buffer access
182 * implicit fences (represented internally in the kernel with &struct dma_fence)
183 * can be attached to a &dma_buf. The glue for that and a few related things are
184 * provided in the &dma_resv structure.
186 * Userspace can query the state of these implicitly tracked fences using poll()
187 * and related system calls:
189 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
190 * most recent write or exclusive fence.
192 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
193 * all attached fences, shared and exclusive ones.
195 * Note that this only signals the completion of the respective fences, i.e. the
196 * DMA transfers are complete. Cache flushing and any other necessary
197 * preparations before CPU access can begin still need to happen.
200 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
202 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
205 spin_lock_irqsave(&dcb->poll->lock, flags);
206 wake_up_locked_poll(dcb->poll, dcb->active);
208 spin_unlock_irqrestore(&dcb->poll->lock, flags);
209 dma_fence_put(fence);
212 static bool dma_buf_poll_shared(struct dma_resv *resv,
213 struct dma_buf_poll_cb_t *dcb)
215 struct dma_resv_list *fobj = dma_resv_shared_list(resv);
216 struct dma_fence *fence;
222 for (i = 0; i < fobj->shared_count; ++i) {
223 fence = rcu_dereference_protected(fobj->shared[i],
224 dma_resv_held(resv));
225 dma_fence_get(fence);
226 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
229 dma_fence_put(fence);
235 static bool dma_buf_poll_excl(struct dma_resv *resv,
236 struct dma_buf_poll_cb_t *dcb)
238 struct dma_fence *fence = dma_resv_excl_fence(resv);
244 dma_fence_get(fence);
245 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
248 dma_fence_put(fence);
253 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
255 struct dma_buf *dmabuf;
256 struct dma_resv *resv;
259 dmabuf = file->private_data;
260 if (!dmabuf || !dmabuf->resv)
265 poll_wait(file, &dmabuf->poll, poll);
267 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
271 dma_resv_lock(resv, NULL);
273 if (events & EPOLLOUT) {
274 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
276 /* Check that callback isn't busy */
277 spin_lock_irq(&dmabuf->poll.lock);
281 dcb->active = EPOLLOUT;
282 spin_unlock_irq(&dmabuf->poll.lock);
284 if (events & EPOLLOUT) {
285 if (!dma_buf_poll_shared(resv, dcb) &&
286 !dma_buf_poll_excl(resv, dcb))
287 /* No callback queued, wake up any other waiters */
288 dma_buf_poll_cb(NULL, &dcb->cb);
294 if (events & EPOLLIN) {
295 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
297 /* Check that callback isn't busy */
298 spin_lock_irq(&dmabuf->poll.lock);
302 dcb->active = EPOLLIN;
303 spin_unlock_irq(&dmabuf->poll.lock);
305 if (events & EPOLLIN) {
306 if (!dma_buf_poll_excl(resv, dcb))
307 /* No callback queued, wake up any other waiters */
308 dma_buf_poll_cb(NULL, &dcb->cb);
314 dma_resv_unlock(resv);
319 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
320 * The name of the dma-buf buffer can only be set when the dma-buf is not
321 * attached to any devices. It could theoritically support changing the
322 * name of the dma-buf if the same piece of memory is used for multiple
323 * purpose between different devices.
325 * @dmabuf: [in] dmabuf buffer that will be renamed.
326 * @buf: [in] A piece of userspace memory that contains the name of
329 * Returns 0 on success. If the dma-buf buffer is already attached to
330 * devices, return -EBUSY.
333 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
335 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
339 return PTR_ERR(name);
341 dma_resv_lock(dmabuf->resv, NULL);
342 if (!list_empty(&dmabuf->attachments)) {
347 spin_lock(&dmabuf->name_lock);
350 spin_unlock(&dmabuf->name_lock);
353 dma_resv_unlock(dmabuf->resv);
357 static long dma_buf_ioctl(struct file *file,
358 unsigned int cmd, unsigned long arg)
360 struct dma_buf *dmabuf;
361 struct dma_buf_sync sync;
362 enum dma_data_direction direction;
365 dmabuf = file->private_data;
368 case DMA_BUF_IOCTL_SYNC:
369 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
372 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
375 switch (sync.flags & DMA_BUF_SYNC_RW) {
376 case DMA_BUF_SYNC_READ:
377 direction = DMA_FROM_DEVICE;
379 case DMA_BUF_SYNC_WRITE:
380 direction = DMA_TO_DEVICE;
382 case DMA_BUF_SYNC_RW:
383 direction = DMA_BIDIRECTIONAL;
389 if (sync.flags & DMA_BUF_SYNC_END)
390 ret = dma_buf_end_cpu_access(dmabuf, direction);
392 ret = dma_buf_begin_cpu_access(dmabuf, direction);
396 case DMA_BUF_SET_NAME_A:
397 case DMA_BUF_SET_NAME_B:
398 return dma_buf_set_name(dmabuf, (const char __user *)arg);
405 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
407 struct dma_buf *dmabuf = file->private_data;
409 seq_printf(m, "size:\t%zu\n", dmabuf->size);
410 /* Don't count the temporary reference taken inside procfs seq_show */
411 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
412 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
413 spin_lock(&dmabuf->name_lock);
415 seq_printf(m, "name:\t%s\n", dmabuf->name);
416 spin_unlock(&dmabuf->name_lock);
419 static const struct file_operations dma_buf_fops = {
420 .release = dma_buf_file_release,
421 .mmap = dma_buf_mmap_internal,
422 .llseek = dma_buf_llseek,
423 .poll = dma_buf_poll,
424 .unlocked_ioctl = dma_buf_ioctl,
425 .compat_ioctl = compat_ptr_ioctl,
426 .show_fdinfo = dma_buf_show_fdinfo,
430 * is_dma_buf_file - Check if struct file* is associated with dma_buf
432 static inline int is_dma_buf_file(struct file *file)
434 return file->f_op == &dma_buf_fops;
437 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
440 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
443 return ERR_CAST(inode);
445 inode->i_size = dmabuf->size;
446 inode_set_bytes(inode, dmabuf->size);
448 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
449 flags, &dma_buf_fops);
452 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
453 file->private_data = dmabuf;
454 file->f_path.dentry->d_fsdata = dmabuf;
464 * DOC: dma buf device access
466 * For device DMA access to a shared DMA buffer the usual sequence of operations
469 * 1. The exporter defines his exporter instance using
470 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
471 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
472 * as a file descriptor by calling dma_buf_fd().
474 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
475 * to share with: First the filedescriptor is converted to a &dma_buf using
476 * dma_buf_get(). Then the buffer is attached to the device using
479 * Up to this stage the exporter is still free to migrate or reallocate the
482 * 3. Once the buffer is attached to all devices userspace can initiate DMA
483 * access to the shared buffer. In the kernel this is done by calling
484 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
486 * 4. Once a driver is done with a shared buffer it needs to call
487 * dma_buf_detach() (after cleaning up any mappings) and then release the
488 * reference acquired with dma_buf_get() by calling dma_buf_put().
490 * For the detailed semantics exporters are expected to implement see
495 * dma_buf_export - Creates a new dma_buf, and associates an anon file
496 * with this buffer, so it can be exported.
497 * Also connect the allocator specific data and ops to the buffer.
498 * Additionally, provide a name string for exporter; useful in debugging.
500 * @exp_info: [in] holds all the export related information provided
501 * by the exporter. see &struct dma_buf_export_info
502 * for further details.
504 * Returns, on success, a newly created struct dma_buf object, which wraps the
505 * supplied private data and operations for struct dma_buf_ops. On either
506 * missing ops, or error in allocating struct dma_buf, will return negative
509 * For most cases the easiest way to create @exp_info is through the
510 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
512 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
514 struct dma_buf *dmabuf;
515 struct dma_resv *resv = exp_info->resv;
517 size_t alloc_size = sizeof(struct dma_buf);
521 alloc_size += sizeof(struct dma_resv);
523 /* prevent &dma_buf[1] == dma_buf->resv */
526 if (WARN_ON(!exp_info->priv
528 || !exp_info->ops->map_dma_buf
529 || !exp_info->ops->unmap_dma_buf
530 || !exp_info->ops->release)) {
531 return ERR_PTR(-EINVAL);
534 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
535 (exp_info->ops->pin || exp_info->ops->unpin)))
536 return ERR_PTR(-EINVAL);
538 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
539 return ERR_PTR(-EINVAL);
541 if (!try_module_get(exp_info->owner))
542 return ERR_PTR(-ENOENT);
544 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
550 dmabuf->priv = exp_info->priv;
551 dmabuf->ops = exp_info->ops;
552 dmabuf->size = exp_info->size;
553 dmabuf->exp_name = exp_info->exp_name;
554 dmabuf->owner = exp_info->owner;
555 spin_lock_init(&dmabuf->name_lock);
556 init_waitqueue_head(&dmabuf->poll);
557 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
558 dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
561 resv = (struct dma_resv *)&dmabuf[1];
566 file = dma_buf_getfile(dmabuf, exp_info->flags);
572 file->f_mode |= FMODE_LSEEK;
575 ret = dma_buf_stats_setup(dmabuf);
579 mutex_init(&dmabuf->lock);
580 INIT_LIST_HEAD(&dmabuf->attachments);
582 mutex_lock(&db_list.lock);
583 list_add(&dmabuf->list_node, &db_list.head);
584 mutex_unlock(&db_list.lock);
590 * Set file->f_path.dentry->d_fsdata to NULL so that when
591 * dma_buf_release() gets invoked by dentry_ops, it exits
592 * early before calling the release() dma_buf op.
594 file->f_path.dentry->d_fsdata = NULL;
599 module_put(exp_info->owner);
602 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
605 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
606 * @dmabuf: [in] pointer to dma_buf for which fd is required.
607 * @flags: [in] flags to give to fd
609 * On success, returns an associated 'fd'. Else, returns error.
611 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
615 if (!dmabuf || !dmabuf->file)
618 fd = get_unused_fd_flags(flags);
622 fd_install(fd, dmabuf->file);
626 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
629 * dma_buf_get - returns the struct dma_buf related to an fd
630 * @fd: [in] fd associated with the struct dma_buf to be returned
632 * On success, returns the struct dma_buf associated with an fd; uses
633 * file's refcounting done by fget to increase refcount. returns ERR_PTR
636 struct dma_buf *dma_buf_get(int fd)
643 return ERR_PTR(-EBADF);
645 if (!is_dma_buf_file(file)) {
647 return ERR_PTR(-EINVAL);
650 return file->private_data;
652 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
655 * dma_buf_put - decreases refcount of the buffer
656 * @dmabuf: [in] buffer to reduce refcount of
658 * Uses file's refcounting done implicitly by fput().
660 * If, as a result of this call, the refcount becomes 0, the 'release' file
661 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
662 * in turn, and frees the memory allocated for dmabuf when exported.
664 void dma_buf_put(struct dma_buf *dmabuf)
666 if (WARN_ON(!dmabuf || !dmabuf->file))
671 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
673 static void mangle_sg_table(struct sg_table *sg_table)
675 #ifdef CONFIG_DMABUF_DEBUG
677 struct scatterlist *sg;
679 /* To catch abuse of the underlying struct page by importers mix
680 * up the bits, but take care to preserve the low SG_ bits to
681 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
682 * before passing the sgt back to the exporter. */
683 for_each_sgtable_sg(sg_table, sg, i)
684 sg->page_link ^= ~0xffUL;
688 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
689 enum dma_data_direction direction)
691 struct sg_table *sg_table;
693 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
695 if (!IS_ERR_OR_NULL(sg_table))
696 mangle_sg_table(sg_table);
702 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
703 * @dmabuf: [in] buffer to attach device to.
704 * @dev: [in] device to be attached.
705 * @importer_ops: [in] importer operations for the attachment
706 * @importer_priv: [in] importer private pointer for the attachment
708 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
709 * must be cleaned up by calling dma_buf_detach().
711 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
716 * A pointer to newly created &dma_buf_attachment on success, or a negative
717 * error code wrapped into a pointer on failure.
719 * Note that this can fail if the backing storage of @dmabuf is in a place not
720 * accessible to @dev, and cannot be moved to a more suitable place. This is
721 * indicated with the error code -EBUSY.
723 struct dma_buf_attachment *
724 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
725 const struct dma_buf_attach_ops *importer_ops,
728 struct dma_buf_attachment *attach;
731 if (WARN_ON(!dmabuf || !dev))
732 return ERR_PTR(-EINVAL);
734 if (WARN_ON(importer_ops && !importer_ops->move_notify))
735 return ERR_PTR(-EINVAL);
737 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
739 return ERR_PTR(-ENOMEM);
742 attach->dmabuf = dmabuf;
744 attach->peer2peer = importer_ops->allow_peer2peer;
745 attach->importer_ops = importer_ops;
746 attach->importer_priv = importer_priv;
748 if (dmabuf->ops->attach) {
749 ret = dmabuf->ops->attach(dmabuf, attach);
753 dma_resv_lock(dmabuf->resv, NULL);
754 list_add(&attach->node, &dmabuf->attachments);
755 dma_resv_unlock(dmabuf->resv);
757 /* When either the importer or the exporter can't handle dynamic
758 * mappings we cache the mapping here to avoid issues with the
759 * reservation object lock.
761 if (dma_buf_attachment_is_dynamic(attach) !=
762 dma_buf_is_dynamic(dmabuf)) {
763 struct sg_table *sgt;
765 if (dma_buf_is_dynamic(attach->dmabuf)) {
766 dma_resv_lock(attach->dmabuf->resv, NULL);
767 ret = dmabuf->ops->pin(attach);
772 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
774 sgt = ERR_PTR(-ENOMEM);
779 if (dma_buf_is_dynamic(attach->dmabuf))
780 dma_resv_unlock(attach->dmabuf->resv);
782 attach->dir = DMA_BIDIRECTIONAL;
792 if (dma_buf_is_dynamic(attach->dmabuf))
793 dmabuf->ops->unpin(attach);
796 if (dma_buf_is_dynamic(attach->dmabuf))
797 dma_resv_unlock(attach->dmabuf->resv);
799 dma_buf_detach(dmabuf, attach);
802 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
805 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
806 * @dmabuf: [in] buffer to attach device to.
807 * @dev: [in] device to be attached.
809 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
812 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
815 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
817 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
819 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
820 struct sg_table *sg_table,
821 enum dma_data_direction direction)
823 /* uses XOR, hence this unmangles */
824 mangle_sg_table(sg_table);
826 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
830 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
831 * @dmabuf: [in] buffer to detach from.
832 * @attach: [in] attachment to be detached; is free'd after this call.
834 * Clean up a device attachment obtained by calling dma_buf_attach().
836 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
838 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
840 if (WARN_ON(!dmabuf || !attach))
844 if (dma_buf_is_dynamic(attach->dmabuf))
845 dma_resv_lock(attach->dmabuf->resv, NULL);
847 __unmap_dma_buf(attach, attach->sgt, attach->dir);
849 if (dma_buf_is_dynamic(attach->dmabuf)) {
850 dmabuf->ops->unpin(attach);
851 dma_resv_unlock(attach->dmabuf->resv);
855 dma_resv_lock(dmabuf->resv, NULL);
856 list_del(&attach->node);
857 dma_resv_unlock(dmabuf->resv);
858 if (dmabuf->ops->detach)
859 dmabuf->ops->detach(dmabuf, attach);
863 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
866 * dma_buf_pin - Lock down the DMA-buf
867 * @attach: [in] attachment which should be pinned
869 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
870 * call this, and only for limited use cases like scanout and not for temporary
871 * pin operations. It is not permitted to allow userspace to pin arbitrary
872 * amounts of buffers through this interface.
874 * Buffers must be unpinned by calling dma_buf_unpin().
877 * 0 on success, negative error code on failure.
879 int dma_buf_pin(struct dma_buf_attachment *attach)
881 struct dma_buf *dmabuf = attach->dmabuf;
884 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
886 dma_resv_assert_held(dmabuf->resv);
888 if (dmabuf->ops->pin)
889 ret = dmabuf->ops->pin(attach);
893 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
896 * dma_buf_unpin - Unpin a DMA-buf
897 * @attach: [in] attachment which should be unpinned
899 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
900 * any mapping of @attach again and inform the importer through
901 * &dma_buf_attach_ops.move_notify.
903 void dma_buf_unpin(struct dma_buf_attachment *attach)
905 struct dma_buf *dmabuf = attach->dmabuf;
907 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
909 dma_resv_assert_held(dmabuf->resv);
911 if (dmabuf->ops->unpin)
912 dmabuf->ops->unpin(attach);
914 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
917 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
918 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
920 * @attach: [in] attachment whose scatterlist is to be returned
921 * @direction: [in] direction of DMA transfer
923 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
924 * on error. May return -EINTR if it is interrupted by a signal.
926 * On success, the DMA addresses and lengths in the returned scatterlist are
929 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
930 * the underlying backing storage is pinned for as long as a mapping exists,
931 * therefore users/importers should not hold onto a mapping for undue amounts of
934 * Important: Dynamic importers must wait for the exclusive fence of the struct
935 * dma_resv attached to the DMA-BUF first.
937 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
938 enum dma_data_direction direction)
940 struct sg_table *sg_table;
945 if (WARN_ON(!attach || !attach->dmabuf))
946 return ERR_PTR(-EINVAL);
948 if (dma_buf_attachment_is_dynamic(attach))
949 dma_resv_assert_held(attach->dmabuf->resv);
953 * Two mappings with different directions for the same
954 * attachment are not allowed.
956 if (attach->dir != direction &&
957 attach->dir != DMA_BIDIRECTIONAL)
958 return ERR_PTR(-EBUSY);
963 if (dma_buf_is_dynamic(attach->dmabuf)) {
964 dma_resv_assert_held(attach->dmabuf->resv);
965 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
966 r = attach->dmabuf->ops->pin(attach);
972 sg_table = __map_dma_buf(attach, direction);
974 sg_table = ERR_PTR(-ENOMEM);
976 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
977 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
978 attach->dmabuf->ops->unpin(attach);
980 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
981 attach->sgt = sg_table;
982 attach->dir = direction;
985 #ifdef CONFIG_DMA_API_DEBUG
986 if (!IS_ERR(sg_table)) {
987 struct scatterlist *sg;
992 for_each_sgtable_dma_sg(sg_table, sg, i) {
993 addr = sg_dma_address(sg);
994 len = sg_dma_len(sg);
995 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
996 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
997 __func__, addr, len);
1001 #endif /* CONFIG_DMA_API_DEBUG */
1004 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1007 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1008 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1010 * @attach: [in] attachment to unmap buffer from
1011 * @sg_table: [in] scatterlist info of the buffer to unmap
1012 * @direction: [in] direction of DMA transfer
1014 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1016 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1017 struct sg_table *sg_table,
1018 enum dma_data_direction direction)
1022 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1025 if (dma_buf_attachment_is_dynamic(attach))
1026 dma_resv_assert_held(attach->dmabuf->resv);
1028 if (attach->sgt == sg_table)
1031 if (dma_buf_is_dynamic(attach->dmabuf))
1032 dma_resv_assert_held(attach->dmabuf->resv);
1034 __unmap_dma_buf(attach, sg_table, direction);
1036 if (dma_buf_is_dynamic(attach->dmabuf) &&
1037 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1038 dma_buf_unpin(attach);
1040 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1043 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1045 * @dmabuf: [in] buffer which is moving
1047 * Informs all attachmenst that they need to destroy and recreated all their
1050 void dma_buf_move_notify(struct dma_buf *dmabuf)
1052 struct dma_buf_attachment *attach;
1054 dma_resv_assert_held(dmabuf->resv);
1056 list_for_each_entry(attach, &dmabuf->attachments, node)
1057 if (attach->importer_ops)
1058 attach->importer_ops->move_notify(attach);
1060 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1065 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1067 * - Fallback operations in the kernel, for example when a device is connected
1068 * over USB and the kernel needs to shuffle the data around first before
1069 * sending it away. Cache coherency is handled by braketing any transactions
1070 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1073 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1074 * vmap interface is introduced. Note that on very old 32-bit architectures
1075 * vmalloc space might be limited and result in vmap calls failing.
1079 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1080 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1082 * The vmap call can fail if there is no vmap support in the exporter, or if
1083 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1084 * count for all vmap access and calls down into the exporter's vmap function
1085 * only when no vmapping exists, and only unmaps it once. Protection against
1086 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1088 * - For full compatibility on the importer side with existing userspace
1089 * interfaces, which might already support mmap'ing buffers. This is needed in
1090 * many processing pipelines (e.g. feeding a software rendered image into a
1091 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1092 * framework already supported this and for DMA buffer file descriptors to
1093 * replace ION buffers mmap support was needed.
1095 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1096 * fd. But like for CPU access there's a need to braket the actual access,
1097 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1098 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1101 * Some systems might need some sort of cache coherency management e.g. when
1102 * CPU and GPU domains are being accessed through dma-buf at the same time.
1103 * To circumvent this problem there are begin/end coherency markers, that
1104 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1105 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1106 * sequence would be used like following:
1109 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1110 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1111 * want (with the new data being consumed by say the GPU or the scanout
1113 * - munmap once you don't need the buffer any more
1115 * For correctness and optimal performance, it is always required to use
1116 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1117 * mapped address. Userspace cannot rely on coherent access, even when there
1118 * are systems where it just works without calling these ioctls.
1120 * - And as a CPU fallback in userspace processing pipelines.
1122 * Similar to the motivation for kernel cpu access it is again important that
1123 * the userspace code of a given importing subsystem can use the same
1124 * interfaces with a imported dma-buf buffer object as with a native buffer
1125 * object. This is especially important for drm where the userspace part of
1126 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1127 * use a different way to mmap a buffer rather invasive.
1129 * The assumption in the current dma-buf interfaces is that redirecting the
1130 * initial mmap is all that's needed. A survey of some of the existing
1131 * subsystems shows that no driver seems to do any nefarious thing like
1132 * syncing up with outstanding asynchronous processing on the device or
1133 * allocating special resources at fault time. So hopefully this is good
1134 * enough, since adding interfaces to intercept pagefaults and allow pte
1135 * shootdowns would increase the complexity quite a bit.
1139 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1142 * If the importing subsystem simply provides a special-purpose mmap call to
1143 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1144 * equally achieve that for a dma-buf object.
1147 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1148 enum dma_data_direction direction)
1150 bool write = (direction == DMA_BIDIRECTIONAL ||
1151 direction == DMA_TO_DEVICE);
1152 struct dma_resv *resv = dmabuf->resv;
1155 /* Wait on any implicit rendering fences */
1156 ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1164 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1165 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1166 * preparations. Coherency is only guaranteed in the specified range for the
1167 * specified access direction.
1168 * @dmabuf: [in] buffer to prepare cpu access for.
1169 * @direction: [in] length of range for cpu access.
1171 * After the cpu access is complete the caller should call
1172 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1173 * it guaranteed to be coherent with other DMA access.
1175 * This function will also wait for any DMA transactions tracked through
1176 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1177 * synchronization this function will only ensure cache coherency, callers must
1178 * ensure synchronization with such DMA transactions on their own.
1180 * Can return negative error values, returns 0 on success.
1182 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1183 enum dma_data_direction direction)
1187 if (WARN_ON(!dmabuf))
1190 might_lock(&dmabuf->resv->lock.base);
1192 if (dmabuf->ops->begin_cpu_access)
1193 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1195 /* Ensure that all fences are waited upon - but we first allow
1196 * the native handler the chance to do so more efficiently if it
1197 * chooses. A double invocation here will be reasonably cheap no-op.
1200 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1204 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1207 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1208 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1209 * actions. Coherency is only guaranteed in the specified range for the
1210 * specified access direction.
1211 * @dmabuf: [in] buffer to complete cpu access for.
1212 * @direction: [in] length of range for cpu access.
1214 * This terminates CPU access started with dma_buf_begin_cpu_access().
1216 * Can return negative error values, returns 0 on success.
1218 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1219 enum dma_data_direction direction)
1225 might_lock(&dmabuf->resv->lock.base);
1227 if (dmabuf->ops->end_cpu_access)
1228 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1232 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1236 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1237 * @dmabuf: [in] buffer that should back the vma
1238 * @vma: [in] vma for the mmap
1239 * @pgoff: [in] offset in pages where this mmap should start within the
1242 * This function adjusts the passed in vma so that it points at the file of the
1243 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1244 * checking on the size of the vma. Then it calls the exporters mmap function to
1245 * set up the mapping.
1247 * Can return negative error values, returns 0 on success.
1249 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1250 unsigned long pgoff)
1252 if (WARN_ON(!dmabuf || !vma))
1255 /* check if buffer supports mmap */
1256 if (!dmabuf->ops->mmap)
1259 /* check for offset overflow */
1260 if (pgoff + vma_pages(vma) < pgoff)
1263 /* check for overflowing the buffer's size */
1264 if (pgoff + vma_pages(vma) >
1265 dmabuf->size >> PAGE_SHIFT)
1268 /* readjust the vma */
1269 vma_set_file(vma, dmabuf->file);
1270 vma->vm_pgoff = pgoff;
1272 return dmabuf->ops->mmap(dmabuf, vma);
1274 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1277 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1278 * address space. Same restrictions as for vmap and friends apply.
1279 * @dmabuf: [in] buffer to vmap
1280 * @map: [out] returns the vmap pointer
1282 * This call may fail due to lack of virtual mapping address space.
1283 * These calls are optional in drivers. The intended use for them
1284 * is for mapping objects linear in kernel space for high use objects.
1286 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1287 * dma_buf_end_cpu_access() around any cpu access performed through this
1290 * Returns 0 on success, or a negative errno code otherwise.
1292 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1294 struct dma_buf_map ptr;
1297 dma_buf_map_clear(map);
1299 if (WARN_ON(!dmabuf))
1302 if (!dmabuf->ops->vmap)
1305 mutex_lock(&dmabuf->lock);
1306 if (dmabuf->vmapping_counter) {
1307 dmabuf->vmapping_counter++;
1308 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1309 *map = dmabuf->vmap_ptr;
1313 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1315 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1316 if (WARN_ON_ONCE(ret))
1319 dmabuf->vmap_ptr = ptr;
1320 dmabuf->vmapping_counter = 1;
1322 *map = dmabuf->vmap_ptr;
1325 mutex_unlock(&dmabuf->lock);
1328 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1331 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1332 * @dmabuf: [in] buffer to vunmap
1333 * @map: [in] vmap pointer to vunmap
1335 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1337 if (WARN_ON(!dmabuf))
1340 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1341 BUG_ON(dmabuf->vmapping_counter == 0);
1342 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1344 mutex_lock(&dmabuf->lock);
1345 if (--dmabuf->vmapping_counter == 0) {
1346 if (dmabuf->ops->vunmap)
1347 dmabuf->ops->vunmap(dmabuf, map);
1348 dma_buf_map_clear(&dmabuf->vmap_ptr);
1350 mutex_unlock(&dmabuf->lock);
1352 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1354 #ifdef CONFIG_DEBUG_FS
1355 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1357 struct dma_buf *buf_obj;
1358 struct dma_buf_attachment *attach_obj;
1359 struct dma_resv *robj;
1360 struct dma_resv_list *fobj;
1361 struct dma_fence *fence;
1362 int count = 0, attach_count, shared_count, i;
1366 ret = mutex_lock_interruptible(&db_list.lock);
1371 seq_puts(s, "\nDma-buf Objects:\n");
1372 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1373 "size", "flags", "mode", "count", "ino");
1375 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1377 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1381 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1383 buf_obj->file->f_flags, buf_obj->file->f_mode,
1384 file_count(buf_obj->file),
1386 file_inode(buf_obj->file)->i_ino,
1387 buf_obj->name ?: "");
1389 robj = buf_obj->resv;
1390 fence = dma_resv_excl_fence(robj);
1392 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1393 fence->ops->get_driver_name(fence),
1394 fence->ops->get_timeline_name(fence),
1395 dma_fence_is_signaled(fence) ? "" : "un");
1397 fobj = rcu_dereference_protected(robj->fence,
1398 dma_resv_held(robj));
1399 shared_count = fobj ? fobj->shared_count : 0;
1400 for (i = 0; i < shared_count; i++) {
1401 fence = rcu_dereference_protected(fobj->shared[i],
1402 dma_resv_held(robj));
1403 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1404 fence->ops->get_driver_name(fence),
1405 fence->ops->get_timeline_name(fence),
1406 dma_fence_is_signaled(fence) ? "" : "un");
1409 seq_puts(s, "\tAttached Devices:\n");
1412 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1413 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1416 dma_resv_unlock(buf_obj->resv);
1418 seq_printf(s, "Total %d devices attached\n\n",
1422 size += buf_obj->size;
1425 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1427 mutex_unlock(&db_list.lock);
1431 mutex_unlock(&db_list.lock);
1435 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1437 static struct dentry *dma_buf_debugfs_dir;
1439 static int dma_buf_init_debugfs(void)
1444 d = debugfs_create_dir("dma_buf", NULL);
1448 dma_buf_debugfs_dir = d;
1450 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1451 NULL, &dma_buf_debug_fops);
1453 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1454 debugfs_remove_recursive(dma_buf_debugfs_dir);
1455 dma_buf_debugfs_dir = NULL;
1462 static void dma_buf_uninit_debugfs(void)
1464 debugfs_remove_recursive(dma_buf_debugfs_dir);
1467 static inline int dma_buf_init_debugfs(void)
1471 static inline void dma_buf_uninit_debugfs(void)
1476 static int __init dma_buf_init(void)
1480 ret = dma_buf_init_sysfs_statistics();
1484 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1485 if (IS_ERR(dma_buf_mnt))
1486 return PTR_ERR(dma_buf_mnt);
1488 mutex_init(&db_list.lock);
1489 INIT_LIST_HEAD(&db_list.head);
1490 dma_buf_init_debugfs();
1493 subsys_initcall(dma_buf_init);
1495 static void __exit dma_buf_deinit(void)
1497 dma_buf_uninit_debugfs();
1498 kern_unmount(dma_buf_mnt);
1499 dma_buf_uninit_sysfs_statistics();
1501 __exitcall(dma_buf_deinit);