1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
31 #include <asm/arch_timer.h>
34 #include <clocksource/arm_arch_timer.h>
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39 #define CNTACR(n) (0x40 + ((n) * 4))
40 #define CNTACR_RPCT BIT(0)
41 #define CNTACR_RVCT BIT(1)
42 #define CNTACR_RFRQ BIT(2)
43 #define CNTACR_RVOFF BIT(3)
44 #define CNTACR_RWVT BIT(4)
45 #define CNTACR_RWPT BIT(5)
47 #define CNTVCT_LO 0x00
48 #define CNTPCT_LO 0x08
50 #define CNTP_CVAL_LO 0x20
52 #define CNTV_CVAL_LO 0x30
56 * The minimum amount of time a generic counter is guaranteed to not roll over
59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
61 static unsigned arch_timers_present __initdata;
65 struct clock_event_device evt;
68 static struct arch_timer *arch_timer_mem __ro_after_init;
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78 [ARCH_TIMER_VIRT_PPI] = "virt",
79 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
83 static struct clock_event_device __percpu *arch_timer_evt;
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98 static int __init early_evtstrm_cfg(char *buf)
100 return strtobool(buf, &evtstrm_enable);
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
105 * Makes an educated guess at a valid counter width based on the Generic Timer
106 * specification. Of note:
107 * 1) the system counter is at least 56 bits wide
108 * 2) a roll-over time of not less than 40 years
110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112 static int arch_counter_get_width(void)
114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116 /* guarantee the returned width is within the valid range */
117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
121 * Architected system timer support.
124 static __always_inline
125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126 struct clock_event_device *clk)
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
131 case ARCH_TIMER_REG_CTRL:
132 writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 case ARCH_TIMER_REG_CVAL:
136 * Not guaranteed to be atomic, so the timer
137 * must be disabled at this point.
139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145 struct arch_timer *timer = to_arch_timer(clk);
147 case ARCH_TIMER_REG_CTRL:
148 writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 case ARCH_TIMER_REG_CVAL:
151 /* Same restriction as above */
152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
158 arch_timer_reg_write_cp15(access, reg, val);
162 static __always_inline
163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164 struct clock_event_device *clk)
168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169 struct arch_timer *timer = to_arch_timer(clk);
171 case ARCH_TIMER_REG_CTRL:
172 val = readl_relaxed(timer->base + CNTP_CTL);
177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178 struct arch_timer *timer = to_arch_timer(clk);
180 case ARCH_TIMER_REG_CTRL:
181 val = readl_relaxed(timer->base + CNTV_CTL);
187 val = arch_timer_reg_read_cp15(access, reg);
193 static notrace u64 arch_counter_get_cntpct_stable(void)
195 return __arch_counter_get_cntpct_stable();
198 static notrace u64 arch_counter_get_cntpct(void)
200 return __arch_counter_get_cntpct();
203 static notrace u64 arch_counter_get_cntvct_stable(void)
205 return __arch_counter_get_cntvct_stable();
208 static notrace u64 arch_counter_get_cntvct(void)
210 return __arch_counter_get_cntvct();
214 * Default to cp15 based access because arm64 uses this function for
215 * sched_clock() before DT is probed and the cp15 method is guaranteed
216 * to exist on arm64. arm doesn't use this before DT is probed so even
217 * if we don't have the cp15 accessors we won't have a problem.
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
222 static u64 arch_counter_read(struct clocksource *cs)
224 return arch_timer_read_counter();
227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
229 return arch_timer_read_counter();
232 static struct clocksource clocksource_counter = {
233 .name = "arch_sys_counter",
234 .id = CSID_ARM_ARCH_COUNTER,
236 .read = arch_counter_read,
237 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
240 static struct cyclecounter cyclecounter __ro_after_init = {
241 .read = arch_counter_read_cc,
244 struct ate_acpi_oem_info {
245 char oem_id[ACPI_OEM_ID_SIZE + 1];
246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
250 #ifdef CONFIG_FSL_ERRATUM_A008585
252 * The number of retries is an arbitrary value well beyond the highest number
253 * of iterations the loop has been observed to take.
255 #define __fsl_a008585_read_reg(reg) ({ \
257 int _retries = 200; \
260 _old = read_sysreg(reg); \
261 _new = read_sysreg(reg); \
263 } while (unlikely(_old != _new) && _retries); \
265 WARN_ON_ONCE(!_retries); \
269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
271 return __fsl_a008585_read_reg(cntpct_el0);
274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
276 return __fsl_a008585_read_reg(cntvct_el0);
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
282 * Verify whether the value of the second read is larger than the first by
283 * less than 32 is the only way to confirm the value is correct, so clear the
284 * lower 5 bits to check whether the difference is greater than 32 or not.
285 * Theoretically the erratum should not occur more than twice in succession
286 * when reading the system counter, but it is possible that some interrupts
287 * may lead to more than twice read errors, triggering the warning, so setting
288 * the number of retries far beyond the number of iterations the loop has been
291 #define __hisi_161010101_read_reg(reg) ({ \
296 _old = read_sysreg(reg); \
297 _new = read_sysreg(reg); \
299 } while (unlikely((_new - _old) >> 5) && _retries); \
301 WARN_ON_ONCE(!_retries); \
305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
307 return __hisi_161010101_read_reg(cntpct_el0);
310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
312 return __hisi_161010101_read_reg(cntvct_el0);
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
317 * Note that trailing spaces are required to properly match
318 * the OEM table information.
322 .oem_table_id = "HIP05 ",
327 .oem_table_id = "HIP06 ",
332 .oem_table_id = "HIP07 ",
335 { /* Sentinel indicating the end of the OEM array */ },
339 #ifdef CONFIG_ARM64_ERRATUM_858921
340 static u64 notrace arm64_858921_read_cntpct_el0(void)
344 old = read_sysreg(cntpct_el0);
345 new = read_sysreg(cntpct_el0);
346 return (((old ^ new) >> 32) & 1) ? old : new;
349 static u64 notrace arm64_858921_read_cntvct_el0(void)
353 old = read_sysreg(cntvct_el0);
354 new = read_sysreg(cntvct_el0);
355 return (((old ^ new) >> 32) & 1) ? old : new;
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
361 * The low bits of the counter registers are indeterminate while bit 10 or
362 * greater is rolling over. Since the counter value can jump both backward
363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364 * with all ones or all zeros in the low bits. Bound the loop by the maximum
365 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
367 #define __sun50i_a64_read_reg(reg) ({ \
369 int _retries = 150; \
372 _val = read_sysreg(reg); \
374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
376 WARN_ON_ONCE(!_retries); \
380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
382 return __sun50i_a64_read_reg(cntpct_el0);
385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
387 return __sun50i_a64_read_reg(cntvct_el0);
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
397 static void erratum_set_next_event_generic(const int access, unsigned long evt,
398 struct clock_event_device *clk)
403 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
404 ctrl |= ARCH_TIMER_CTRL_ENABLE;
405 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
407 if (access == ARCH_TIMER_PHYS_ACCESS) {
408 cval = evt + arch_counter_get_cntpct_stable();
409 write_sysreg(cval, cntp_cval_el0);
411 cval = evt + arch_counter_get_cntvct_stable();
412 write_sysreg(cval, cntv_cval_el0);
415 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
418 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
419 struct clock_event_device *clk)
421 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
425 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
426 struct clock_event_device *clk)
428 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
432 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
433 #ifdef CONFIG_FSL_ERRATUM_A008585
435 .match_type = ate_match_dt,
436 .id = "fsl,erratum-a008585",
437 .desc = "Freescale erratum a005858",
438 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
439 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
440 .set_next_event_phys = erratum_set_next_event_phys,
441 .set_next_event_virt = erratum_set_next_event_virt,
444 #ifdef CONFIG_HISILICON_ERRATUM_161010101
446 .match_type = ate_match_dt,
447 .id = "hisilicon,erratum-161010101",
448 .desc = "HiSilicon erratum 161010101",
449 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
450 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
451 .set_next_event_phys = erratum_set_next_event_phys,
452 .set_next_event_virt = erratum_set_next_event_virt,
455 .match_type = ate_match_acpi_oem_info,
456 .id = hisi_161010101_oem_info,
457 .desc = "HiSilicon erratum 161010101",
458 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
459 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
460 .set_next_event_phys = erratum_set_next_event_phys,
461 .set_next_event_virt = erratum_set_next_event_virt,
464 #ifdef CONFIG_ARM64_ERRATUM_858921
466 .match_type = ate_match_local_cap_id,
467 .id = (void *)ARM64_WORKAROUND_858921,
468 .desc = "ARM erratum 858921",
469 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
470 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
473 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
475 .match_type = ate_match_dt,
476 .id = "allwinner,erratum-unknown1",
477 .desc = "Allwinner erratum UNKNOWN1",
478 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
479 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
480 .set_next_event_phys = erratum_set_next_event_phys,
481 .set_next_event_virt = erratum_set_next_event_virt,
484 #ifdef CONFIG_ARM64_ERRATUM_1418040
486 .match_type = ate_match_local_cap_id,
487 .id = (void *)ARM64_WORKAROUND_1418040,
488 .desc = "ARM erratum 1418040",
489 .disable_compat_vdso = true,
494 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
498 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
501 const struct device_node *np = arg;
503 return of_property_read_bool(np, wa->id);
507 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
510 return this_cpu_has_cap((uintptr_t)wa->id);
515 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
518 static const struct ate_acpi_oem_info empty_oem_info = {};
519 const struct ate_acpi_oem_info *info = wa->id;
520 const struct acpi_table_header *table = arg;
522 /* Iterate over the ACPI OEM info array, looking for a match */
523 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
524 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
525 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
526 info->oem_revision == table->oem_revision)
535 static const struct arch_timer_erratum_workaround *
536 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
537 ate_match_fn_t match_fn,
542 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
543 if (ool_workarounds[i].match_type != type)
546 if (match_fn(&ool_workarounds[i], arg))
547 return &ool_workarounds[i];
554 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
560 __this_cpu_write(timer_unstable_counter_workaround, wa);
562 for_each_possible_cpu(i)
563 per_cpu(timer_unstable_counter_workaround, i) = wa;
566 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
567 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
570 * Don't use the vdso fastpath if errata require using the
571 * out-of-line counter accessor. We may change our mind pretty
572 * late in the game (with a per-CPU erratum, for example), so
573 * change both the default value and the vdso itself.
575 if (wa->read_cntvct_el0) {
576 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
577 vdso_default = VDSO_CLOCKMODE_NONE;
578 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
579 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
580 clocksource_counter.vdso_clock_mode = vdso_default;
584 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
587 const struct arch_timer_erratum_workaround *wa, *__wa;
588 ate_match_fn_t match_fn = NULL;
593 match_fn = arch_timer_check_dt_erratum;
595 case ate_match_local_cap_id:
596 match_fn = arch_timer_check_local_cap_erratum;
599 case ate_match_acpi_oem_info:
600 match_fn = arch_timer_check_acpi_oem_erratum;
607 wa = arch_timer_iterate_errata(type, match_fn, arg);
611 __wa = __this_cpu_read(timer_unstable_counter_workaround);
612 if (__wa && wa != __wa)
613 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
614 wa->desc, __wa->desc);
619 arch_timer_enable_workaround(wa, local);
620 pr_info("Enabling %s workaround for %s\n",
621 local ? "local" : "global", wa->desc);
624 static bool arch_timer_this_cpu_has_cntvct_wa(void)
626 return has_erratum_handler(read_cntvct_el0);
629 static bool arch_timer_counter_has_wa(void)
631 return atomic_read(&timer_unstable_counter_workaround_in_use);
634 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
635 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
636 #define arch_timer_counter_has_wa() ({false;})
637 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
639 static __always_inline irqreturn_t timer_handler(const int access,
640 struct clock_event_device *evt)
644 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
645 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
646 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
647 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
648 evt->event_handler(evt);
655 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
657 struct clock_event_device *evt = dev_id;
659 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
662 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
664 struct clock_event_device *evt = dev_id;
666 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
669 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
671 struct clock_event_device *evt = dev_id;
673 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
676 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
678 struct clock_event_device *evt = dev_id;
680 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
683 static __always_inline int timer_shutdown(const int access,
684 struct clock_event_device *clk)
688 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
689 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
690 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
695 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
697 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
700 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
702 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
705 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
707 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
710 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
712 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
715 static __always_inline void set_next_event(const int access, unsigned long evt,
716 struct clock_event_device *clk)
721 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
722 ctrl |= ARCH_TIMER_CTRL_ENABLE;
723 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
725 if (access == ARCH_TIMER_PHYS_ACCESS)
726 cnt = __arch_counter_get_cntpct();
728 cnt = __arch_counter_get_cntvct();
730 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
731 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
734 static int arch_timer_set_next_event_virt(unsigned long evt,
735 struct clock_event_device *clk)
737 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
741 static int arch_timer_set_next_event_phys(unsigned long evt,
742 struct clock_event_device *clk)
744 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
748 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
750 u32 cnt_lo, cnt_hi, tmp_hi;
753 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
754 cnt_lo = readl_relaxed(t->base + offset_lo);
755 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
756 } while (cnt_hi != tmp_hi);
758 return ((u64) cnt_hi << 32) | cnt_lo;
761 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
762 struct clock_event_device *clk)
764 struct arch_timer *timer = to_arch_timer(clk);
768 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
769 ctrl |= ARCH_TIMER_CTRL_ENABLE;
770 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
772 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
773 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
775 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
777 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
778 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
781 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
782 struct clock_event_device *clk)
784 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
788 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
789 struct clock_event_device *clk)
791 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
795 static u64 __arch_timer_check_delta(void)
798 const struct midr_range broken_cval_midrs[] = {
800 * XGene-1 implements CVAL in terms of TVAL, meaning
801 * that the maximum timer range is 32bit. Shame on them.
803 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
804 APM_CPU_PART_POTENZA)),
808 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
809 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
810 return CLOCKSOURCE_MASK(32);
813 return CLOCKSOURCE_MASK(arch_counter_get_width());
816 static void __arch_timer_setup(unsigned type,
817 struct clock_event_device *clk)
821 clk->features = CLOCK_EVT_FEAT_ONESHOT;
823 if (type == ARCH_TIMER_TYPE_CP15) {
824 typeof(clk->set_next_event) sne;
826 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
828 if (arch_timer_c3stop)
829 clk->features |= CLOCK_EVT_FEAT_C3STOP;
830 clk->name = "arch_sys_timer";
832 clk->cpumask = cpumask_of(smp_processor_id());
833 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
834 switch (arch_timer_uses_ppi) {
835 case ARCH_TIMER_VIRT_PPI:
836 clk->set_state_shutdown = arch_timer_shutdown_virt;
837 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
838 sne = erratum_handler(set_next_event_virt);
840 case ARCH_TIMER_PHYS_SECURE_PPI:
841 case ARCH_TIMER_PHYS_NONSECURE_PPI:
842 case ARCH_TIMER_HYP_PPI:
843 clk->set_state_shutdown = arch_timer_shutdown_phys;
844 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
845 sne = erratum_handler(set_next_event_phys);
851 clk->set_next_event = sne;
852 max_delta = __arch_timer_check_delta();
854 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
855 clk->name = "arch_mem_timer";
857 clk->cpumask = cpu_possible_mask;
858 if (arch_timer_mem_use_virtual) {
859 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
860 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
861 clk->set_next_event =
862 arch_timer_set_next_event_virt_mem;
864 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
865 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
866 clk->set_next_event =
867 arch_timer_set_next_event_phys_mem;
870 max_delta = CLOCKSOURCE_MASK(56);
873 clk->set_state_shutdown(clk);
875 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
878 static void arch_timer_evtstrm_enable(int divider)
880 u32 cntkctl = arch_timer_get_cntkctl();
882 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
883 /* Set the divider and enable virtual event stream */
884 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
885 | ARCH_TIMER_VIRT_EVT_EN;
886 arch_timer_set_cntkctl(cntkctl);
887 arch_timer_set_evtstrm_feature();
888 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
891 static void arch_timer_configure_evtstream(void)
893 int evt_stream_div, lsb;
896 * As the event stream can at most be generated at half the frequency
897 * of the counter, use half the frequency when computing the divider.
899 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
902 * Find the closest power of two to the divisor. If the adjacent bit
903 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
905 lsb = fls(evt_stream_div) - 1;
906 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
909 /* enable event stream */
910 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
913 static void arch_counter_set_user_access(void)
915 u32 cntkctl = arch_timer_get_cntkctl();
917 /* Disable user access to the timers and both counters */
918 /* Also disable virtual event stream */
919 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
920 | ARCH_TIMER_USR_VT_ACCESS_EN
921 | ARCH_TIMER_USR_VCT_ACCESS_EN
922 | ARCH_TIMER_VIRT_EVT_EN
923 | ARCH_TIMER_USR_PCT_ACCESS_EN);
926 * Enable user access to the virtual counter if it doesn't
927 * need to be workaround. The vdso may have been already
930 if (arch_timer_this_cpu_has_cntvct_wa())
931 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
933 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
935 arch_timer_set_cntkctl(cntkctl);
938 static bool arch_timer_has_nonsecure_ppi(void)
940 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
941 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
944 static u32 check_ppi_trigger(int irq)
946 u32 flags = irq_get_trigger_type(irq);
948 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
949 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
950 pr_warn("WARNING: Please fix your firmware\n");
951 flags = IRQF_TRIGGER_LOW;
957 static int arch_timer_starting_cpu(unsigned int cpu)
959 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
962 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
964 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
965 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
967 if (arch_timer_has_nonsecure_ppi()) {
968 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
969 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
973 arch_counter_set_user_access();
975 arch_timer_configure_evtstream();
980 static int validate_timer_rate(void)
982 if (!arch_timer_rate)
985 /* Arch timer frequency < 1MHz can cause trouble */
986 WARN_ON(arch_timer_rate < 1000000);
992 * For historical reasons, when probing with DT we use whichever (non-zero)
993 * rate was probed first, and don't verify that others match. If the first node
994 * probed has a clock-frequency property, this overrides the HW register.
996 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
998 /* Who has more than one independent system counter? */
1002 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1003 arch_timer_rate = rate;
1005 /* Check the timer frequency. */
1006 if (validate_timer_rate())
1007 pr_warn("frequency not available\n");
1010 static void __init arch_timer_banner(unsigned type)
1012 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1013 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1014 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1016 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1017 (unsigned long)arch_timer_rate / 1000000,
1018 (unsigned long)(arch_timer_rate / 10000) % 100,
1019 type & ARCH_TIMER_TYPE_CP15 ?
1020 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1022 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1023 type & ARCH_TIMER_TYPE_MEM ?
1024 arch_timer_mem_use_virtual ? "virt" : "phys" :
1028 u32 arch_timer_get_rate(void)
1030 return arch_timer_rate;
1033 bool arch_timer_evtstrm_available(void)
1036 * We might get called from a preemptible context. This is fine
1037 * because availability of the event stream should be always the same
1038 * for a preemptible context and context where we might resume a task.
1040 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1043 static u64 arch_counter_get_cntvct_mem(void)
1045 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1048 static struct arch_timer_kvm_info arch_timer_kvm_info;
1050 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1052 return &arch_timer_kvm_info;
1055 static void __init arch_counter_register(unsigned type)
1060 /* Register the CP15 based counter if we have one */
1061 if (type & ARCH_TIMER_TYPE_CP15) {
1064 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1065 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1066 if (arch_timer_counter_has_wa())
1067 rd = arch_counter_get_cntvct_stable;
1069 rd = arch_counter_get_cntvct;
1071 if (arch_timer_counter_has_wa())
1072 rd = arch_counter_get_cntpct_stable;
1074 rd = arch_counter_get_cntpct;
1077 arch_timer_read_counter = rd;
1078 clocksource_counter.vdso_clock_mode = vdso_default;
1080 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1083 width = arch_counter_get_width();
1084 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1085 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1087 if (!arch_counter_suspend_stop)
1088 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1089 start_count = arch_timer_read_counter();
1090 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1091 cyclecounter.mult = clocksource_counter.mult;
1092 cyclecounter.shift = clocksource_counter.shift;
1093 timecounter_init(&arch_timer_kvm_info.timecounter,
1094 &cyclecounter, start_count);
1096 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1099 static void arch_timer_stop(struct clock_event_device *clk)
1101 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1103 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1104 if (arch_timer_has_nonsecure_ppi())
1105 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1107 clk->set_state_shutdown(clk);
1110 static int arch_timer_dying_cpu(unsigned int cpu)
1112 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1114 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1116 arch_timer_stop(clk);
1120 #ifdef CONFIG_CPU_PM
1121 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1122 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1123 unsigned long action, void *hcpu)
1125 if (action == CPU_PM_ENTER) {
1126 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1128 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1129 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1130 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1132 if (arch_timer_have_evtstrm_feature())
1133 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1138 static struct notifier_block arch_timer_cpu_pm_notifier = {
1139 .notifier_call = arch_timer_cpu_pm_notify,
1142 static int __init arch_timer_cpu_pm_init(void)
1144 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1147 static void __init arch_timer_cpu_pm_deinit(void)
1149 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1153 static int __init arch_timer_cpu_pm_init(void)
1158 static void __init arch_timer_cpu_pm_deinit(void)
1163 static int __init arch_timer_register(void)
1168 arch_timer_evt = alloc_percpu(struct clock_event_device);
1169 if (!arch_timer_evt) {
1174 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1175 switch (arch_timer_uses_ppi) {
1176 case ARCH_TIMER_VIRT_PPI:
1177 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1178 "arch_timer", arch_timer_evt);
1180 case ARCH_TIMER_PHYS_SECURE_PPI:
1181 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1182 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1183 "arch_timer", arch_timer_evt);
1184 if (!err && arch_timer_has_nonsecure_ppi()) {
1185 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1186 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1187 "arch_timer", arch_timer_evt);
1189 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1193 case ARCH_TIMER_HYP_PPI:
1194 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1195 "arch_timer", arch_timer_evt);
1202 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1206 err = arch_timer_cpu_pm_init();
1208 goto out_unreg_notify;
1210 /* Register and immediately configure the timer on the boot CPU */
1211 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1212 "clockevents/arm/arch_timer:starting",
1213 arch_timer_starting_cpu, arch_timer_dying_cpu);
1215 goto out_unreg_cpupm;
1219 arch_timer_cpu_pm_deinit();
1222 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1223 if (arch_timer_has_nonsecure_ppi())
1224 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1228 free_percpu(arch_timer_evt);
1233 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1238 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1239 if (!arch_timer_mem)
1242 arch_timer_mem->base = base;
1243 arch_timer_mem->evt.irq = irq;
1244 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1246 if (arch_timer_mem_use_virtual)
1247 func = arch_timer_handler_virt_mem;
1249 func = arch_timer_handler_phys_mem;
1251 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1253 pr_err("Failed to request mem timer irq\n");
1254 kfree(arch_timer_mem);
1255 arch_timer_mem = NULL;
1261 static const struct of_device_id arch_timer_of_match[] __initconst = {
1262 { .compatible = "arm,armv7-timer", },
1263 { .compatible = "arm,armv8-timer", },
1267 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1268 { .compatible = "arm,armv7-timer-mem", },
1272 static bool __init arch_timer_needs_of_probing(void)
1274 struct device_node *dn;
1275 bool needs_probing = false;
1276 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1278 /* We have two timers, and both device-tree nodes are probed. */
1279 if ((arch_timers_present & mask) == mask)
1283 * Only one type of timer is probed,
1284 * check if we have another type of timer node in device-tree.
1286 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1287 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1289 dn = of_find_matching_node(NULL, arch_timer_of_match);
1291 if (dn && of_device_is_available(dn))
1292 needs_probing = true;
1296 return needs_probing;
1299 static int __init arch_timer_common_init(void)
1301 arch_timer_banner(arch_timers_present);
1302 arch_counter_register(arch_timers_present);
1303 return arch_timer_arch_init();
1307 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1309 * If HYP mode is available, we know that the physical timer
1310 * has been configured to be accessible from PL1. Use it, so
1311 * that a guest can use the virtual timer instead.
1313 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1314 * accesses to CNTP_*_EL1 registers are silently redirected to
1315 * their CNTHP_*_EL2 counterparts, and use a different PPI
1318 * If no interrupt provided for virtual timer, we'll have to
1319 * stick to the physical timer. It'd better be accessible...
1320 * For arm64 we never use the secure interrupt.
1322 * Return: a suitable PPI type for the current system.
1324 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1326 if (is_kernel_in_hyp_mode())
1327 return ARCH_TIMER_HYP_PPI;
1329 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1330 return ARCH_TIMER_VIRT_PPI;
1332 if (IS_ENABLED(CONFIG_ARM64))
1333 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1335 return ARCH_TIMER_PHYS_SECURE_PPI;
1338 static void __init arch_timer_populate_kvm_info(void)
1340 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1341 if (is_kernel_in_hyp_mode())
1342 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1345 static int __init arch_timer_of_init(struct device_node *np)
1351 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1352 pr_warn("multiple nodes in dt, skipping\n");
1356 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1358 has_names = of_property_read_bool(np, "interrupt-names");
1360 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1362 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1364 irq = of_irq_get(np, i);
1366 arch_timer_ppi[i] = irq;
1369 arch_timer_populate_kvm_info();
1371 rate = arch_timer_get_cntfrq();
1372 arch_timer_of_configure_rate(rate, np);
1374 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1376 /* Check for globally applicable workarounds */
1377 arch_timer_check_ool_workaround(ate_match_dt, np);
1380 * If we cannot rely on firmware initializing the timer registers then
1381 * we should use the physical timers instead.
1383 if (IS_ENABLED(CONFIG_ARM) &&
1384 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1385 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1387 arch_timer_uses_ppi = arch_timer_select_ppi();
1389 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1390 pr_err("No interrupt available, giving up\n");
1394 /* On some systems, the counter stops ticking when in suspend. */
1395 arch_counter_suspend_stop = of_property_read_bool(np,
1396 "arm,no-tick-in-suspend");
1398 ret = arch_timer_register();
1402 if (arch_timer_needs_of_probing())
1405 return arch_timer_common_init();
1407 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1408 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1411 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1416 base = ioremap(frame->cntbase, frame->size);
1418 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1422 rate = readl_relaxed(base + CNTFRQ);
1429 static struct arch_timer_mem_frame * __init
1430 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1432 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1433 void __iomem *cntctlbase;
1437 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1439 pr_err("Can't map CNTCTLBase @ %pa\n",
1440 &timer_mem->cntctlbase);
1444 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1447 * Try to find a virtual capable frame. Otherwise fall back to a
1448 * physical capable frame.
1450 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1451 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1452 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1454 frame = &timer_mem->frame[i];
1458 /* Try enabling everything, and see what sticks */
1459 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1460 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1462 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1463 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1465 arch_timer_mem_use_virtual = true;
1469 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1475 iounmap(cntctlbase);
1481 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1486 if (arch_timer_mem_use_virtual)
1487 irq = frame->virt_irq;
1489 irq = frame->phys_irq;
1492 pr_err("Frame missing %s irq.\n",
1493 arch_timer_mem_use_virtual ? "virt" : "phys");
1497 if (!request_mem_region(frame->cntbase, frame->size,
1501 base = ioremap(frame->cntbase, frame->size);
1503 pr_err("Can't map frame's registers\n");
1507 ret = arch_timer_mem_register(base, irq);
1513 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1518 static int __init arch_timer_mem_of_init(struct device_node *np)
1520 struct arch_timer_mem *timer_mem;
1521 struct arch_timer_mem_frame *frame;
1522 struct device_node *frame_node;
1523 struct resource res;
1527 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1531 if (of_address_to_resource(np, 0, &res))
1533 timer_mem->cntctlbase = res.start;
1534 timer_mem->size = resource_size(&res);
1536 for_each_available_child_of_node(np, frame_node) {
1538 struct arch_timer_mem_frame *frame;
1540 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1541 pr_err(FW_BUG "Missing frame-number.\n");
1542 of_node_put(frame_node);
1545 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1546 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1547 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1548 of_node_put(frame_node);
1551 frame = &timer_mem->frame[n];
1554 pr_err(FW_BUG "Duplicated frame-number.\n");
1555 of_node_put(frame_node);
1559 if (of_address_to_resource(frame_node, 0, &res)) {
1560 of_node_put(frame_node);
1563 frame->cntbase = res.start;
1564 frame->size = resource_size(&res);
1566 frame->virt_irq = irq_of_parse_and_map(frame_node,
1567 ARCH_TIMER_VIRT_SPI);
1568 frame->phys_irq = irq_of_parse_and_map(frame_node,
1569 ARCH_TIMER_PHYS_SPI);
1571 frame->valid = true;
1574 frame = arch_timer_mem_find_best_frame(timer_mem);
1576 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1577 &timer_mem->cntctlbase);
1582 rate = arch_timer_mem_frame_get_cntfrq(frame);
1583 arch_timer_of_configure_rate(rate, np);
1585 ret = arch_timer_mem_frame_register(frame);
1586 if (!ret && !arch_timer_needs_of_probing())
1587 ret = arch_timer_common_init();
1592 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1593 arch_timer_mem_of_init);
1595 #ifdef CONFIG_ACPI_GTDT
1597 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1599 struct arch_timer_mem_frame *frame;
1603 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1604 frame = &timer_mem->frame[i];
1609 rate = arch_timer_mem_frame_get_cntfrq(frame);
1610 if (rate == arch_timer_rate)
1613 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1615 (unsigned long)rate, (unsigned long)arch_timer_rate);
1623 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1625 struct arch_timer_mem *timers, *timer;
1626 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1627 int timer_count, i, ret = 0;
1629 timers = kcalloc(platform_timer_count, sizeof(*timers),
1634 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1635 if (ret || !timer_count)
1639 * While unlikely, it's theoretically possible that none of the frames
1640 * in a timer expose the combination of feature we want.
1642 for (i = 0; i < timer_count; i++) {
1645 frame = arch_timer_mem_find_best_frame(timer);
1649 ret = arch_timer_mem_verify_cntfrq(timer);
1651 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1655 if (!best_frame) /* implies !frame */
1657 * Only complain about missing suitable frames if we
1658 * haven't already found one in a previous iteration.
1660 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1661 &timer->cntctlbase);
1665 ret = arch_timer_mem_frame_register(best_frame);
1671 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1672 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1674 int ret, platform_timer_count;
1676 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1677 pr_warn("already initialized, skipping\n");
1681 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1683 ret = acpi_gtdt_init(table, &platform_timer_count);
1687 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1688 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1690 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1691 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1693 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1694 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1696 arch_timer_populate_kvm_info();
1699 * When probing via ACPI, we have no mechanism to override the sysreg
1700 * CNTFRQ value. This *must* be correct.
1702 arch_timer_rate = arch_timer_get_cntfrq();
1703 ret = validate_timer_rate();
1705 pr_err(FW_BUG "frequency not available.\n");
1709 arch_timer_uses_ppi = arch_timer_select_ppi();
1710 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1711 pr_err("No interrupt available, giving up\n");
1715 /* Always-on capability */
1716 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1718 /* Check for globally applicable workarounds */
1719 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1721 ret = arch_timer_register();
1725 if (platform_timer_count &&
1726 arch_timer_mem_acpi_init(platform_timer_count))
1727 pr_err("Failed to initialize memory-mapped timer.\n");
1729 return arch_timer_common_init();
1731 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1734 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1735 struct clocksource **cs)
1737 struct arm_smccc_res hvc_res;
1741 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1744 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1745 ptp_counter = KVM_PTP_VIRT_COUNTER;
1747 ptp_counter = KVM_PTP_PHYS_COUNTER;
1749 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1750 ptp_counter, &hvc_res);
1752 if ((int)(hvc_res.a0) < 0)
1755 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1756 *ts = ktime_to_timespec64(ktime);
1758 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1760 *cs = &clocksource_counter;
1764 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);