1 // SPDX-License-Identifier: GPL-2.0-only
3 * ACPI support for Intel Lynxpoint LPSS.
5 * Copyright (C) 2013, Intel Corporation
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
29 #ifdef CONFIG_X86_INTEL_LPSS
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37 #define LPSS_CLK_SIZE 0x04
38 #define LPSS_LTR_SIZE 0x18
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
42 #define LPSS_RESETS 0x04
43 #define LPSS_RESETS_RESET_FUNC BIT(0)
44 #define LPSS_RESETS_RESET_APB BIT(1)
45 #define LPSS_GENERAL 0x08
46 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
48 #define LPSS_SW_LTR 0x10
49 #define LPSS_AUTO_LTR 0x14
50 #define LPSS_LTR_SNOOP_REQ BIT(15)
51 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US 0x800
53 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
56 #define LPSS_LTR_MAX_VAL 0x3FF
57 #define LPSS_TX_INT 0x20
58 #define LPSS_TX_INT_MASK BIT(1)
60 #define LPSS_PRV_REG_COUNT 9
63 #define LPSS_CLK BIT(0)
64 #define LPSS_CLK_GATE BIT(1)
65 #define LPSS_CLK_DIVIDER BIT(2)
66 #define LPSS_LTR BIT(3)
67 #define LPSS_SAVE_CTX BIT(4)
69 * For some devices the DSDT AML code for another device turns off the device
70 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71 * as ctx register values.
72 * Luckily these devices always use the same ctx register values, so we can
73 * work around this by saving the ctx registers once on activation.
75 #define LPSS_SAVE_CTX_ONCE BIT(5)
76 #define LPSS_NO_D3_DELAY BIT(6)
78 struct lpss_private_data;
80 struct lpss_device_desc {
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
90 static const struct lpss_device_desc lpss_dma_desc = {
94 struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
122 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR 0xF4
126 #define LPSS_UART_CPR_AFCE BIT(4)
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 struct acpi_device *adev = pdata->adev;
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
175 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
178 #define LPSS_I2C_ENABLE 0x6c
180 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 const char *uid_str = acpi_device_uid(pdata->adev);
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
188 /* Expected to always be true, but better safe then sorry */
189 if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196 lpss_deassert_reset(pdata);
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208 "pwm-lpss-platform"),
211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 struct acpi_device *adev = pdata->adev;
215 /* Only call pwm_add_table for the first PWM controller */
216 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
222 static const struct lpss_device_desc lpt_dev_desc = {
223 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
233 static struct property_entry uart_properties[] = {
234 PROPERTY_ENTRY_U32("reg-io-width", 4),
235 PROPERTY_ENTRY_U32("reg-shift", 2),
236 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243 .clk_con_id = "baudclk",
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
258 .setup = byt_pwm_setup,
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264 .setup = bsw_pwm_setup,
265 .resume_from_noirq = true,
268 static const struct lpss_device_desc byt_uart_dev_desc = {
269 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
270 .clk_con_id = "baudclk",
272 .setup = lpss_uart_setup,
273 .properties = uart_properties,
276 static const struct lpss_device_desc bsw_uart_dev_desc = {
277 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279 .clk_con_id = "baudclk",
281 .setup = lpss_uart_setup,
282 .properties = uart_properties,
285 static const struct lpss_device_desc byt_spi_dev_desc = {
286 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
290 static const struct lpss_device_desc byt_sdio_dev_desc = {
294 static const struct lpss_device_desc byt_i2c_dev_desc = {
295 .flags = LPSS_CLK | LPSS_SAVE_CTX,
297 .setup = byt_i2c_setup,
298 .resume_from_noirq = true,
301 static const struct lpss_device_desc bsw_i2c_dev_desc = {
302 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304 .setup = byt_i2c_setup,
305 .resume_from_noirq = true,
308 static const struct lpss_device_desc bsw_spi_dev_desc = {
309 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
312 .setup = lpss_deassert_reset,
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
317 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
323 #define LPSS_ADDR(desc) (0UL)
325 #endif /* CONFIG_X86_INTEL_LPSS */
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328 /* Generic LPSS devices */
329 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331 /* Lynxpoint LPSS devices */
332 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
341 /* BayTrail LPSS devices */
342 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
350 /* Braswell LPSS devices */
351 { "80862286", LPSS_ADDR(lpss_dma_desc) },
352 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358 /* Broadwell LPSS devices */
359 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
368 /* Wildcat Point LPSS devices */
369 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
374 #ifdef CONFIG_X86_INTEL_LPSS
376 static int is_memory(struct acpi_resource *res, void *not_used)
380 return !acpi_dev_resource_memory(res, &r);
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
386 static inline void lpt_register_clock_device(void)
388 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
393 static int register_device_clock(struct acpi_device *adev,
394 struct lpss_private_data *pdata)
396 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
397 const char *devname = dev_name(&adev->dev);
399 struct lpss_clk_data *clk_data;
400 const char *parent, *clk_name;
401 void __iomem *prv_base;
404 lpt_register_clock_device();
406 clk_data = platform_get_drvdata(lpss_clk_dev);
411 if (!pdata->mmio_base
412 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
415 parent = clk_data->name;
416 prv_base = pdata->mmio_base + dev_desc->prv_offset;
418 if (pdata->fixed_clk_rate) {
419 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
420 pdata->fixed_clk_rate);
424 if (dev_desc->flags & LPSS_CLK_GATE) {
425 clk = clk_register_gate(NULL, devname, parent, 0,
426 prv_base, 0, 0, NULL);
430 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
431 /* Prevent division by zero */
432 if (!readl(prv_base))
433 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
435 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
438 clk = clk_register_fractional_divider(NULL, clk_name, parent,
439 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
440 prv_base, 1, 15, 16, 15, 0, NULL);
443 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
448 clk = clk_register_gate(NULL, clk_name, parent,
449 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
450 prv_base, 31, 0, NULL);
459 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
463 struct lpss_device_links {
464 const char *supplier_hid;
465 const char *supplier_uid;
466 const char *consumer_hid;
467 const char *consumer_uid;
469 const struct dmi_system_id *dep_missing_ids;
472 /* Please keep this list sorted alphabetically by vendor and model */
473 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
476 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
477 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
484 * The _DEP method is used to identify dependencies but instead of creating
485 * device links for every handle in _DEP, only links in the following list are
486 * created. That is necessary because, in the general case, _DEP can refer to
487 * devices that might not have drivers, or that are on different buses, or where
488 * the supplier is not enumerated until after the consumer is probed.
490 static const struct lpss_device_links lpss_device_links[] = {
491 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
492 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
493 /* CHT iGPU depends on PMIC I2C controller */
494 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
495 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
496 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
497 i2c1_dep_missing_dmi_ids},
498 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
499 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
500 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
501 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
504 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
505 const struct lpss_device_links *link)
507 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
510 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
511 const struct lpss_device_links *link)
513 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
521 static int match_hid_uid(struct device *dev, const void *data)
523 struct acpi_device *adev = ACPI_COMPANION(dev);
524 const struct hid_uid *id = data;
529 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
532 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
536 struct hid_uid data = {
541 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
545 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
548 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
550 struct acpi_handle_list dep_devices;
554 if (!acpi_has_method(adev->handle, "_DEP"))
557 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
559 if (ACPI_FAILURE(status)) {
560 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
564 for (i = 0; i < dep_devices.count; i++) {
565 if (dep_devices.handles[i] == handle)
572 static void acpi_lpss_link_consumer(struct device *dev1,
573 const struct lpss_device_links *link)
577 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
581 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
582 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
583 device_link_add(dev2, dev1, link->flags);
588 static void acpi_lpss_link_supplier(struct device *dev1,
589 const struct lpss_device_links *link)
593 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
597 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
598 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
599 device_link_add(dev1, dev2, link->flags);
604 static void acpi_lpss_create_device_links(struct acpi_device *adev,
605 struct platform_device *pdev)
609 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
610 const struct lpss_device_links *link = &lpss_device_links[i];
612 if (acpi_lpss_is_supplier(adev, link))
613 acpi_lpss_link_consumer(&pdev->dev, link);
615 if (acpi_lpss_is_consumer(adev, link))
616 acpi_lpss_link_supplier(&pdev->dev, link);
620 static int acpi_lpss_create_device(struct acpi_device *adev,
621 const struct acpi_device_id *id)
623 const struct lpss_device_desc *dev_desc;
624 struct lpss_private_data *pdata;
625 struct resource_entry *rentry;
626 struct list_head resource_list;
627 struct platform_device *pdev;
630 dev_desc = (const struct lpss_device_desc *)id->driver_data;
632 pdev = acpi_create_platform_device(adev, NULL);
633 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
635 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
639 INIT_LIST_HEAD(&resource_list);
640 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
644 list_for_each_entry(rentry, &resource_list, node)
645 if (resource_type(rentry->res) == IORESOURCE_MEM) {
646 if (dev_desc->prv_size_override)
647 pdata->mmio_size = dev_desc->prv_size_override;
649 pdata->mmio_size = resource_size(rentry->res);
650 pdata->mmio_base = ioremap(rentry->res->start,
655 acpi_dev_free_resource_list(&resource_list);
657 if (!pdata->mmio_base) {
658 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
659 adev->pnp.type.platform_id = 0;
660 /* Skip the device, but continue the namespace scan. */
666 pdata->dev_desc = dev_desc;
669 dev_desc->setup(pdata);
671 if (dev_desc->flags & LPSS_CLK) {
672 ret = register_device_clock(adev, pdata);
674 /* Skip the device, but continue the namespace scan. */
681 * This works around a known issue in ACPI tables where LPSS devices
682 * have _PS0 and _PS3 without _PSC (and no power resources), so
683 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
685 acpi_device_fix_up_power(adev);
687 adev->driver_data = pdata;
688 pdev = acpi_create_platform_device(adev, dev_desc->properties);
689 if (!IS_ERR_OR_NULL(pdev)) {
690 acpi_lpss_create_device_links(adev, pdev);
695 adev->driver_data = NULL;
702 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
704 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
707 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
710 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
713 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
715 struct acpi_device *adev = ACPI_COMPANION(dev);
716 struct lpss_private_data *pdata;
723 spin_lock_irqsave(&dev->power.lock, flags);
724 if (pm_runtime_suspended(dev)) {
728 pdata = acpi_driver_data(adev);
729 if (WARN_ON(!pdata || !pdata->mmio_base)) {
733 *val = __lpss_reg_read(pdata, reg);
737 spin_unlock_irqrestore(&dev->power.lock, flags);
741 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
748 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
749 ret = lpss_reg_read(dev, reg, <r_value);
753 return sysfs_emit(buf, "%08x\n", ltr_value);
756 static ssize_t lpss_ltr_mode_show(struct device *dev,
757 struct device_attribute *attr, char *buf)
763 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
767 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
768 return sprintf(buf, "%s\n", outstr);
771 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
772 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
773 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
775 static struct attribute *lpss_attrs[] = {
776 &dev_attr_auto_ltr.attr,
777 &dev_attr_sw_ltr.attr,
778 &dev_attr_ltr_mode.attr,
782 static const struct attribute_group lpss_attr_group = {
787 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
789 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
790 u32 ltr_mode, ltr_val;
792 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
794 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
795 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
796 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
800 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
801 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
802 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
803 val = LPSS_LTR_MAX_VAL;
804 } else if (val > LPSS_LTR_MAX_VAL) {
805 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
806 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
808 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
811 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
812 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
813 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
814 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
820 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
822 * @pdata: pointer to the private data of the LPSS device
824 * Most LPSS devices have private registers which may loose their context when
825 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
828 static void acpi_lpss_save_ctx(struct device *dev,
829 struct lpss_private_data *pdata)
833 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
834 unsigned long offset = i * sizeof(u32);
836 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
837 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
838 pdata->prv_reg_ctx[i], offset);
843 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
845 * @pdata: pointer to the private data of the LPSS device
847 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
849 static void acpi_lpss_restore_ctx(struct device *dev,
850 struct lpss_private_data *pdata)
854 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
855 unsigned long offset = i * sizeof(u32);
857 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
858 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
859 pdata->prv_reg_ctx[i], offset);
863 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
866 * The following delay is needed or the subsequent write operations may
867 * fail. The LPSS devices are actually PCI devices and the PCI spec
868 * expects 10ms delay before the device can be accessed after D3 to D0
869 * transition. However some platforms like BSW does not need this delay.
871 unsigned int delay = 10; /* default 10ms delay */
873 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
879 static int acpi_lpss_activate(struct device *dev)
881 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
884 ret = acpi_dev_resume(dev);
888 acpi_lpss_d3_to_d0_delay(pdata);
891 * This is called only on ->probe() stage where a device is either in
892 * known state defined by BIOS or most likely powered off. Due to this
893 * we have to deassert reset line to be sure that ->probe() will
894 * recognize the device.
896 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
897 lpss_deassert_reset(pdata);
900 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
901 acpi_lpss_save_ctx(dev, pdata);
907 static void acpi_lpss_dismiss(struct device *dev)
909 acpi_dev_suspend(dev, false);
912 /* IOSF SB for LPSS island */
913 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
914 #define LPSS_IOSF_UNIT_LPIO1 0xAB
915 #define LPSS_IOSF_UNIT_LPIO2 0xAC
917 #define LPSS_IOSF_PMCSR 0x84
918 #define LPSS_PMCSR_D0 0
919 #define LPSS_PMCSR_D3hot 3
920 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
922 #define LPSS_IOSF_GPIODEF0 0x154
923 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
924 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
925 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
926 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
928 static DEFINE_MUTEX(lpss_iosf_mutex);
929 static bool lpss_iosf_d3_entered = true;
931 static void lpss_iosf_enter_d3_state(void)
934 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
935 u32 value2 = LPSS_PMCSR_D3hot;
936 u32 mask2 = LPSS_PMCSR_Dx_MASK;
938 * PMC provides an information about actual status of the LPSS devices.
939 * Here we read the values related to LPSS power island, i.e. LPSS
940 * devices, excluding both LPSS DMA controllers, along with SCC domain.
942 u32 func_dis, d3_sts_0, pmc_status;
945 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
949 mutex_lock(&lpss_iosf_mutex);
951 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
956 * Get the status of entire LPSS power island per device basis.
957 * Shutdown both LPSS DMA controllers if and only if all other devices
958 * are already in D3hot.
960 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
964 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
965 LPSS_IOSF_PMCSR, value2, mask2);
967 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
968 LPSS_IOSF_PMCSR, value2, mask2);
970 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
971 LPSS_IOSF_GPIODEF0, value1, mask1);
973 lpss_iosf_d3_entered = true;
976 mutex_unlock(&lpss_iosf_mutex);
979 static void lpss_iosf_exit_d3_state(void)
981 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
982 LPSS_GPIODEF0_DMA_LLP;
983 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
984 u32 value2 = LPSS_PMCSR_D0;
985 u32 mask2 = LPSS_PMCSR_Dx_MASK;
987 mutex_lock(&lpss_iosf_mutex);
989 if (!lpss_iosf_d3_entered)
992 lpss_iosf_d3_entered = false;
994 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
995 LPSS_IOSF_GPIODEF0, value1, mask1);
997 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
998 LPSS_IOSF_PMCSR, value2, mask2);
1000 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1001 LPSS_IOSF_PMCSR, value2, mask2);
1004 mutex_unlock(&lpss_iosf_mutex);
1007 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1009 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1012 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1013 acpi_lpss_save_ctx(dev, pdata);
1015 ret = acpi_dev_suspend(dev, wakeup);
1018 * This call must be last in the sequence, otherwise PMC will return
1019 * wrong status for devices being about to be powered off. See
1020 * lpss_iosf_enter_d3_state() for further information.
1022 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1023 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024 lpss_iosf_enter_d3_state();
1029 static int acpi_lpss_resume(struct device *dev)
1031 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1035 * This call is kept first to be in symmetry with
1036 * acpi_lpss_runtime_suspend() one.
1038 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1039 lpss_iosf_exit_d3_state();
1041 ret = acpi_dev_resume(dev);
1045 acpi_lpss_d3_to_d0_delay(pdata);
1047 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1048 acpi_lpss_restore_ctx(dev, pdata);
1053 #ifdef CONFIG_PM_SLEEP
1054 static int acpi_lpss_do_suspend_late(struct device *dev)
1058 if (dev_pm_skip_suspend(dev))
1061 ret = pm_generic_suspend_late(dev);
1062 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1065 static int acpi_lpss_suspend_late(struct device *dev)
1067 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1069 if (pdata->dev_desc->resume_from_noirq)
1072 return acpi_lpss_do_suspend_late(dev);
1075 static int acpi_lpss_suspend_noirq(struct device *dev)
1077 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1080 if (pdata->dev_desc->resume_from_noirq) {
1082 * The driver's ->suspend_late callback will be invoked by
1083 * acpi_lpss_do_suspend_late(), with the assumption that the
1084 * driver really wanted to run that code in ->suspend_noirq, but
1085 * it could not run after acpi_dev_suspend() and the driver
1086 * expected the latter to be called in the "late" phase.
1088 ret = acpi_lpss_do_suspend_late(dev);
1093 return acpi_subsys_suspend_noirq(dev);
1096 static int acpi_lpss_do_resume_early(struct device *dev)
1098 int ret = acpi_lpss_resume(dev);
1100 return ret ? ret : pm_generic_resume_early(dev);
1103 static int acpi_lpss_resume_early(struct device *dev)
1105 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1107 if (pdata->dev_desc->resume_from_noirq)
1110 if (dev_pm_skip_resume(dev))
1113 return acpi_lpss_do_resume_early(dev);
1116 static int acpi_lpss_resume_noirq(struct device *dev)
1118 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1121 /* Follow acpi_subsys_resume_noirq(). */
1122 if (dev_pm_skip_resume(dev))
1125 ret = pm_generic_resume_noirq(dev);
1129 if (!pdata->dev_desc->resume_from_noirq)
1133 * The driver's ->resume_early callback will be invoked by
1134 * acpi_lpss_do_resume_early(), with the assumption that the driver
1135 * really wanted to run that code in ->resume_noirq, but it could not
1136 * run before acpi_dev_resume() and the driver expected the latter to be
1137 * called in the "early" phase.
1139 return acpi_lpss_do_resume_early(dev);
1142 static int acpi_lpss_do_restore_early(struct device *dev)
1144 int ret = acpi_lpss_resume(dev);
1146 return ret ? ret : pm_generic_restore_early(dev);
1149 static int acpi_lpss_restore_early(struct device *dev)
1151 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1153 if (pdata->dev_desc->resume_from_noirq)
1156 return acpi_lpss_do_restore_early(dev);
1159 static int acpi_lpss_restore_noirq(struct device *dev)
1161 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1164 ret = pm_generic_restore_noirq(dev);
1168 if (!pdata->dev_desc->resume_from_noirq)
1171 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1172 return acpi_lpss_do_restore_early(dev);
1175 static int acpi_lpss_do_poweroff_late(struct device *dev)
1177 int ret = pm_generic_poweroff_late(dev);
1179 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1182 static int acpi_lpss_poweroff_late(struct device *dev)
1184 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1186 if (dev_pm_skip_suspend(dev))
1189 if (pdata->dev_desc->resume_from_noirq)
1192 return acpi_lpss_do_poweroff_late(dev);
1195 static int acpi_lpss_poweroff_noirq(struct device *dev)
1197 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1199 if (dev_pm_skip_suspend(dev))
1202 if (pdata->dev_desc->resume_from_noirq) {
1203 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1204 int ret = acpi_lpss_do_poweroff_late(dev);
1210 return pm_generic_poweroff_noirq(dev);
1212 #endif /* CONFIG_PM_SLEEP */
1214 static int acpi_lpss_runtime_suspend(struct device *dev)
1216 int ret = pm_generic_runtime_suspend(dev);
1218 return ret ? ret : acpi_lpss_suspend(dev, true);
1221 static int acpi_lpss_runtime_resume(struct device *dev)
1223 int ret = acpi_lpss_resume(dev);
1225 return ret ? ret : pm_generic_runtime_resume(dev);
1227 #endif /* CONFIG_PM */
1229 static struct dev_pm_domain acpi_lpss_pm_domain = {
1231 .activate = acpi_lpss_activate,
1232 .dismiss = acpi_lpss_dismiss,
1236 #ifdef CONFIG_PM_SLEEP
1237 .prepare = acpi_subsys_prepare,
1238 .complete = acpi_subsys_complete,
1239 .suspend = acpi_subsys_suspend,
1240 .suspend_late = acpi_lpss_suspend_late,
1241 .suspend_noirq = acpi_lpss_suspend_noirq,
1242 .resume_noirq = acpi_lpss_resume_noirq,
1243 .resume_early = acpi_lpss_resume_early,
1244 .freeze = acpi_subsys_freeze,
1245 .poweroff = acpi_subsys_poweroff,
1246 .poweroff_late = acpi_lpss_poweroff_late,
1247 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1248 .restore_noirq = acpi_lpss_restore_noirq,
1249 .restore_early = acpi_lpss_restore_early,
1251 .runtime_suspend = acpi_lpss_runtime_suspend,
1252 .runtime_resume = acpi_lpss_runtime_resume,
1257 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1258 unsigned long action, void *data)
1260 struct platform_device *pdev = to_platform_device(data);
1261 struct lpss_private_data *pdata;
1262 struct acpi_device *adev;
1263 const struct acpi_device_id *id;
1265 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1266 if (!id || !id->driver_data)
1269 adev = ACPI_COMPANION(&pdev->dev);
1273 pdata = acpi_driver_data(adev);
1277 if (pdata->mmio_base &&
1278 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1279 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1284 case BUS_NOTIFY_BIND_DRIVER:
1285 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1287 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1288 case BUS_NOTIFY_UNBOUND_DRIVER:
1289 dev_pm_domain_set(&pdev->dev, NULL);
1291 case BUS_NOTIFY_ADD_DEVICE:
1292 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1293 if (pdata->dev_desc->flags & LPSS_LTR)
1294 return sysfs_create_group(&pdev->dev.kobj,
1297 case BUS_NOTIFY_DEL_DEVICE:
1298 if (pdata->dev_desc->flags & LPSS_LTR)
1299 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1300 dev_pm_domain_set(&pdev->dev, NULL);
1309 static struct notifier_block acpi_lpss_nb = {
1310 .notifier_call = acpi_lpss_platform_notify,
1313 static void acpi_lpss_bind(struct device *dev)
1315 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1317 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1320 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1321 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1323 dev_err(dev, "MMIO size insufficient to access LTR\n");
1326 static void acpi_lpss_unbind(struct device *dev)
1328 dev->power.set_latency_tolerance = NULL;
1331 static struct acpi_scan_handler lpss_handler = {
1332 .ids = acpi_lpss_device_ids,
1333 .attach = acpi_lpss_create_device,
1334 .bind = acpi_lpss_bind,
1335 .unbind = acpi_lpss_unbind,
1338 void __init acpi_lpss_init(void)
1340 const struct x86_cpu_id *id;
1343 ret = lpss_atom_clk_init();
1347 id = x86_match_cpu(lpss_cpu_ids);
1349 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1351 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1352 acpi_scan_add_handler(&lpss_handler);
1357 static struct acpi_scan_handler lpss_handler = {
1358 .ids = acpi_lpss_device_ids,
1361 void __init acpi_lpss_init(void)
1363 acpi_scan_add_handler(&lpss_handler);
1366 #endif /* CONFIG_X86_INTEL_LPSS */