2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
35 #include <linux/slab.h>
37 #include <net/route.h>
39 #include <net/pkt_sched.h>
41 #include "hyperv_net.h"
44 #define RING_SIZE_MIN 64
45 #define LINKCHANGE_INT (2 * HZ)
46 #define NETVSC_HW_FEATURES (NETIF_F_RXCSUM | \
51 static int ring_size = 128;
52 module_param(ring_size, int, S_IRUGO);
53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
55 static int max_num_vrss_chns = 8;
57 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
58 NETIF_MSG_LINK | NETIF_MSG_IFUP |
59 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
62 static int debug = -1;
63 module_param(debug, int, S_IRUGO);
64 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66 static void do_set_multicast(struct work_struct *w)
68 struct net_device_context *ndevctx =
69 container_of(w, struct net_device_context, work);
70 struct hv_device *device_obj = ndevctx->device_ctx;
71 struct net_device *ndev = hv_get_drvdata(device_obj);
72 struct netvsc_device *nvdev = ndevctx->nvdev;
73 struct rndis_device *rdev;
78 rdev = nvdev->extension;
82 if (ndev->flags & IFF_PROMISC)
83 rndis_filter_set_packet_filter(rdev,
84 NDIS_PACKET_TYPE_PROMISCUOUS);
86 rndis_filter_set_packet_filter(rdev,
87 NDIS_PACKET_TYPE_BROADCAST |
88 NDIS_PACKET_TYPE_ALL_MULTICAST |
89 NDIS_PACKET_TYPE_DIRECTED);
92 static void netvsc_set_multicast_list(struct net_device *net)
94 struct net_device_context *net_device_ctx = netdev_priv(net);
96 schedule_work(&net_device_ctx->work);
99 static int netvsc_open(struct net_device *net)
101 struct net_device_context *net_device_ctx = netdev_priv(net);
102 struct hv_device *device_obj = net_device_ctx->device_ctx;
103 struct netvsc_device *nvdev = net_device_ctx->nvdev;
104 struct rndis_device *rdev;
107 netif_carrier_off(net);
109 /* Open up the device */
110 ret = rndis_filter_open(device_obj);
112 netdev_err(net, "unable to open device (ret %d).\n", ret);
116 netif_tx_wake_all_queues(net);
118 rdev = nvdev->extension;
119 if (!rdev->link_state)
120 netif_carrier_on(net);
125 static int netvsc_close(struct net_device *net)
127 struct net_device_context *net_device_ctx = netdev_priv(net);
128 struct hv_device *device_obj = net_device_ctx->device_ctx;
129 struct netvsc_device *nvdev = net_device_ctx->nvdev;
131 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
132 struct vmbus_channel *chn;
134 netif_tx_disable(net);
136 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
137 cancel_work_sync(&net_device_ctx->work);
138 ret = rndis_filter_close(device_obj);
140 netdev_err(net, "unable to close device (ret %d).\n", ret);
144 /* Ensure pending bytes in ring are read */
147 for (i = 0; i < nvdev->num_chn; i++) {
148 chn = nvdev->chn_table[i];
152 hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
158 hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
166 if (retry > retry_max || aread == 0)
176 netdev_err(net, "Ring buffer not empty after closing rndis\n");
183 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
186 struct rndis_packet *rndis_pkt;
187 struct rndis_per_packet_info *ppi;
189 rndis_pkt = &msg->msg.pkt;
190 rndis_pkt->data_offset += ppi_size;
192 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
193 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
195 ppi->size = ppi_size;
196 ppi->type = pkt_type;
197 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
199 rndis_pkt->per_pkt_info_len += ppi_size;
204 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
205 void *accel_priv, select_queue_fallback_t fallback)
207 struct net_device_context *net_device_ctx = netdev_priv(ndev);
208 struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
212 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
215 hash = skb_get_hash(skb);
216 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
217 ndev->real_num_tx_queues;
219 if (!nvsc_dev->chn_table[q_idx])
225 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
226 struct hv_page_buffer *pb)
230 /* Deal with compund pages by ignoring unused part
233 page += (offset >> PAGE_SHIFT);
234 offset &= ~PAGE_MASK;
239 bytes = PAGE_SIZE - offset;
242 pb[j].pfn = page_to_pfn(page);
243 pb[j].offset = offset;
249 if (offset == PAGE_SIZE && len) {
259 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
260 struct hv_netvsc_packet *packet,
261 struct hv_page_buffer **page_buf)
263 struct hv_page_buffer *pb = *page_buf;
265 char *data = skb->data;
266 int frags = skb_shinfo(skb)->nr_frags;
269 /* The packet is laid out thus:
270 * 1. hdr: RNDIS header and PPI
272 * 3. skb fragment data
275 slots_used += fill_pg_buf(virt_to_page(hdr),
277 len, &pb[slots_used]);
279 packet->rmsg_size = len;
280 packet->rmsg_pgcnt = slots_used;
282 slots_used += fill_pg_buf(virt_to_page(data),
283 offset_in_page(data),
284 skb_headlen(skb), &pb[slots_used]);
286 for (i = 0; i < frags; i++) {
287 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
289 slots_used += fill_pg_buf(skb_frag_page(frag),
291 skb_frag_size(frag), &pb[slots_used]);
296 static int count_skb_frag_slots(struct sk_buff *skb)
298 int i, frags = skb_shinfo(skb)->nr_frags;
301 for (i = 0; i < frags; i++) {
302 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
303 unsigned long size = skb_frag_size(frag);
304 unsigned long offset = frag->page_offset;
306 /* Skip unused frames from start of page */
307 offset &= ~PAGE_MASK;
308 pages += PFN_UP(offset + size);
313 static int netvsc_get_slots(struct sk_buff *skb)
315 char *data = skb->data;
316 unsigned int offset = offset_in_page(data);
317 unsigned int len = skb_headlen(skb);
321 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
322 frag_slots = count_skb_frag_slots(skb);
323 return slots + frag_slots;
326 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
328 u32 ret_val = TRANSPORT_INFO_NOT_IP;
330 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
331 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
335 *trans_off = skb_transport_offset(skb);
337 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
338 struct iphdr *iphdr = ip_hdr(skb);
340 if (iphdr->protocol == IPPROTO_TCP)
341 ret_val = TRANSPORT_INFO_IPV4_TCP;
342 else if (iphdr->protocol == IPPROTO_UDP)
343 ret_val = TRANSPORT_INFO_IPV4_UDP;
345 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
346 ret_val = TRANSPORT_INFO_IPV6_TCP;
347 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
348 ret_val = TRANSPORT_INFO_IPV6_UDP;
355 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
357 struct net_device_context *net_device_ctx = netdev_priv(net);
358 struct hv_netvsc_packet *packet = NULL;
360 unsigned int num_data_pgs;
361 struct rndis_message *rndis_msg;
362 struct rndis_packet *rndis_pkt;
366 struct rndis_per_packet_info *ppi;
367 struct ndis_tcp_ip_checksum_info *csum_info;
368 struct ndis_tcp_lso_info *lso_info;
373 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
374 struct hv_page_buffer *pb = page_buf;
375 struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
377 /* We will atmost need two pages to describe the rndis
378 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
379 * of pages in a single packet. If skb is scattered around
380 * more pages we try linearizing it.
384 skb_length = skb->len;
385 num_data_pgs = netvsc_get_slots(skb) + 2;
386 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
387 net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
388 num_data_pgs, skb->len);
391 } else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
392 if (skb_linearize(skb)) {
393 net_alert_ratelimited("failed to linearize skb\n");
402 * Place the rndis header in the skb head room and
403 * the skb->cb will be used for hv_netvsc_packet
406 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
408 netdev_err(net, "unable to alloc hv_netvsc_packet\n");
412 /* Use the skb control buffer for building up the packet */
413 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
414 FIELD_SIZEOF(struct sk_buff, cb));
415 packet = (struct hv_netvsc_packet *)skb->cb;
418 packet->q_idx = skb_get_queue_mapping(skb);
420 packet->total_data_buflen = skb->len;
422 rndis_msg = (struct rndis_message *)skb->head;
424 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
426 isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
428 /* Add the rndis header */
429 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
430 rndis_msg->msg_len = packet->total_data_buflen;
431 rndis_pkt = &rndis_msg->msg.pkt;
432 rndis_pkt->data_offset = sizeof(struct rndis_packet);
433 rndis_pkt->data_len = packet->total_data_buflen;
434 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
436 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
438 hash = skb_get_hash_raw(skb);
439 if (hash != 0 && net->real_num_tx_queues > 1) {
440 rndis_msg_size += NDIS_HASH_PPI_SIZE;
441 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
443 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
447 struct ndis_pkt_8021q_info *vlan;
449 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
450 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
452 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
454 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
455 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
459 net_trans_info = get_net_transport_info(skb, &hdr_offset);
460 if (net_trans_info == TRANSPORT_INFO_NOT_IP)
464 * Setup the sendside checksum offload only if this is not a
470 if ((skb->ip_summed == CHECKSUM_NONE) ||
471 (skb->ip_summed == CHECKSUM_UNNECESSARY))
474 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
475 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
476 TCPIP_CHKSUM_PKTINFO);
478 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
481 if (net_trans_info & (INFO_IPV4 << 16))
482 csum_info->transmit.is_ipv4 = 1;
484 csum_info->transmit.is_ipv6 = 1;
486 if (net_trans_info & INFO_TCP) {
487 csum_info->transmit.tcp_checksum = 1;
488 csum_info->transmit.tcp_header_offset = hdr_offset;
489 } else if (net_trans_info & INFO_UDP) {
490 /* UDP checksum offload is not supported on ws2008r2.
491 * Furthermore, on ws2012 and ws2012r2, there are some
492 * issues with udp checksum offload from Linux guests.
493 * (these are host issues).
494 * For now compute the checksum here.
499 ret = skb_cow_head(skb, 0);
504 udp_len = ntohs(uh->len);
506 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
508 udp_len, IPPROTO_UDP,
509 csum_partial(uh, udp_len, 0));
511 uh->check = CSUM_MANGLED_0;
513 csum_info->transmit.udp_checksum = 0;
518 rndis_msg_size += NDIS_LSO_PPI_SIZE;
519 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
520 TCP_LARGESEND_PKTINFO);
522 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
525 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
526 if (net_trans_info & (INFO_IPV4 << 16)) {
527 lso_info->lso_v2_transmit.ip_version =
528 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
529 ip_hdr(skb)->tot_len = 0;
530 ip_hdr(skb)->check = 0;
531 tcp_hdr(skb)->check =
532 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
533 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
535 lso_info->lso_v2_transmit.ip_version =
536 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
537 ipv6_hdr(skb)->payload_len = 0;
538 tcp_hdr(skb)->check =
539 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
540 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
542 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
543 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
546 /* Start filling in the page buffers with the rndis hdr */
547 rndis_msg->msg_len += rndis_msg_size;
548 packet->total_data_buflen = rndis_msg->msg_len;
549 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
552 /* timestamp packet in software */
553 skb_tx_timestamp(skb);
554 ret = netvsc_send(net_device_ctx->device_ctx, packet,
555 rndis_msg, &pb, skb);
559 u64_stats_update_begin(&tx_stats->syncp);
561 tx_stats->bytes += skb_length;
562 u64_stats_update_end(&tx_stats->syncp);
564 if (ret != -EAGAIN) {
565 dev_kfree_skb_any(skb);
566 net->stats.tx_dropped++;
570 return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
574 * netvsc_linkstatus_callback - Link up/down notification
576 void netvsc_linkstatus_callback(struct hv_device *device_obj,
577 struct rndis_message *resp)
579 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
580 struct net_device *net;
581 struct net_device_context *ndev_ctx;
582 struct netvsc_reconfig *event;
585 /* Handle link change statuses only */
586 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
587 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
588 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
591 net = hv_get_drvdata(device_obj);
593 if (!net || net->reg_state != NETREG_REGISTERED)
596 ndev_ctx = netdev_priv(net);
598 event = kzalloc(sizeof(*event), GFP_ATOMIC);
601 event->event = indicate->status;
603 spin_lock_irqsave(&ndev_ctx->lock, flags);
604 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
605 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
607 schedule_delayed_work(&ndev_ctx->dwork, 0);
611 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
612 struct hv_netvsc_packet *packet,
613 struct ndis_tcp_ip_checksum_info *csum_info,
614 void *data, u16 vlan_tci)
618 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
623 * Copy to skb. This copy is needed here since the memory pointed by
624 * hv_netvsc_packet cannot be deallocated
626 memcpy(skb_put(skb, packet->total_data_buflen), data,
627 packet->total_data_buflen);
629 skb->protocol = eth_type_trans(skb, net);
631 /* We only look at the IP checksum here.
632 * Should we be dropping the packet if checksum
633 * failed? How do we deal with other checksums - TCP/UDP?
635 if (csum_info->receive.ip_checksum_succeeded)
636 skb->ip_summed = CHECKSUM_UNNECESSARY;
638 skb->ip_summed = CHECKSUM_NONE;
641 if (vlan_tci & VLAN_TAG_PRESENT)
642 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
649 * netvsc_recv_callback - Callback when we receive a packet from the
650 * "wire" on the specified device.
652 int netvsc_recv_callback(struct hv_device *device_obj,
653 struct hv_netvsc_packet *packet,
655 struct ndis_tcp_ip_checksum_info *csum_info,
656 struct vmbus_channel *channel,
659 struct net_device *net = hv_get_drvdata(device_obj);
660 struct net_device_context *net_device_ctx = netdev_priv(net);
662 struct sk_buff *vf_skb;
663 struct netvsc_stats *rx_stats;
664 struct netvsc_device *netvsc_dev = net_device_ctx->nvdev;
665 u32 bytes_recvd = packet->total_data_buflen;
668 if (!net || net->reg_state != NETREG_REGISTERED)
669 return NVSP_STAT_FAIL;
671 if (READ_ONCE(netvsc_dev->vf_inject)) {
672 atomic_inc(&netvsc_dev->vf_use_cnt);
673 if (!READ_ONCE(netvsc_dev->vf_inject)) {
675 * We raced; just move on.
677 atomic_dec(&netvsc_dev->vf_use_cnt);
678 goto vf_injection_done;
682 * Inject this packet into the VF inerface.
683 * On Hyper-V, multicast and brodcast packets
684 * are only delivered on the synthetic interface
685 * (after subjecting these to policy filters on
686 * the host). Deliver these via the VF interface
689 vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
690 csum_info, *data, vlan_tci);
691 if (vf_skb != NULL) {
692 ++netvsc_dev->vf_netdev->stats.rx_packets;
693 netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
694 netif_receive_skb(vf_skb);
696 ++net->stats.rx_dropped;
697 ret = NVSP_STAT_FAIL;
699 atomic_dec(&netvsc_dev->vf_use_cnt);
704 net_device_ctx = netdev_priv(net);
705 rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
707 /* Allocate a skb - TODO direct I/O to pages? */
708 skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
709 if (unlikely(!skb)) {
710 ++net->stats.rx_dropped;
711 return NVSP_STAT_FAIL;
713 skb_record_rx_queue(skb, channel->
714 offermsg.offer.sub_channel_index);
716 u64_stats_update_begin(&rx_stats->syncp);
718 rx_stats->bytes += packet->total_data_buflen;
719 u64_stats_update_end(&rx_stats->syncp);
722 * Pass the skb back up. Network stack will deallocate the skb when it
731 static void netvsc_get_drvinfo(struct net_device *net,
732 struct ethtool_drvinfo *info)
734 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
735 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
738 static void netvsc_get_channels(struct net_device *net,
739 struct ethtool_channels *channel)
741 struct net_device_context *net_device_ctx = netdev_priv(net);
742 struct netvsc_device *nvdev = net_device_ctx->nvdev;
745 channel->max_combined = nvdev->max_chn;
746 channel->combined_count = nvdev->num_chn;
750 static int netvsc_set_channels(struct net_device *net,
751 struct ethtool_channels *channels)
753 struct net_device_context *net_device_ctx = netdev_priv(net);
754 struct hv_device *dev = net_device_ctx->device_ctx;
755 struct netvsc_device *nvdev = net_device_ctx->nvdev;
756 struct netvsc_device_info device_info;
760 bool recovering = false;
762 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
765 num_chn = nvdev->num_chn;
766 max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
768 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
769 pr_info("vRSS unsupported before NVSP Version 5\n");
773 /* We do not support rx, tx, or other */
775 channels->rx_count ||
776 channels->tx_count ||
777 channels->other_count ||
778 (channels->combined_count < 1))
781 if (channels->combined_count > max_chn) {
782 pr_info("combined channels too high, using %d\n", max_chn);
783 channels->combined_count = max_chn;
786 ret = netvsc_close(net);
791 net_device_ctx->start_remove = true;
792 rndis_filter_device_remove(dev);
794 nvdev->num_chn = channels->combined_count;
796 memset(&device_info, 0, sizeof(device_info));
797 device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
798 device_info.ring_size = ring_size;
799 device_info.max_num_vrss_chns = max_num_vrss_chns;
801 ret = rndis_filter_device_add(dev, &device_info);
804 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
810 nvdev = net_device_ctx->nvdev;
812 ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
815 netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
821 ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
824 netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
832 net_device_ctx->start_remove = false;
833 /* We may have missed link change notifications */
834 schedule_delayed_work(&net_device_ctx->dwork, 0);
839 /* If the above failed, we attempt to recover through the same
840 * process but with the original number of channels.
842 netdev_err(net, "could not set channels, recovering\n");
844 channels->combined_count = num_chn;
848 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
850 struct ethtool_cmd diff1 = *cmd;
851 struct ethtool_cmd diff2 = {};
853 ethtool_cmd_speed_set(&diff1, 0);
855 /* advertising and cmd are usually set */
856 diff1.advertising = 0;
858 /* We set port to PORT_OTHER */
859 diff2.port = PORT_OTHER;
861 return !memcmp(&diff1, &diff2, sizeof(diff1));
864 static void netvsc_init_settings(struct net_device *dev)
866 struct net_device_context *ndc = netdev_priv(dev);
868 ndc->speed = SPEED_UNKNOWN;
869 ndc->duplex = DUPLEX_UNKNOWN;
872 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
874 struct net_device_context *ndc = netdev_priv(dev);
876 ethtool_cmd_speed_set(cmd, ndc->speed);
877 cmd->duplex = ndc->duplex;
878 cmd->port = PORT_OTHER;
883 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
885 struct net_device_context *ndc = netdev_priv(dev);
888 speed = ethtool_cmd_speed(cmd);
889 if (!ethtool_validate_speed(speed) ||
890 !ethtool_validate_duplex(cmd->duplex) ||
891 !netvsc_validate_ethtool_ss_cmd(cmd))
895 ndc->duplex = cmd->duplex;
900 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
902 struct net_device_context *ndevctx = netdev_priv(ndev);
903 struct netvsc_device *nvdev = ndevctx->nvdev;
904 struct hv_device *hdev = ndevctx->device_ctx;
905 struct netvsc_device_info device_info;
906 int limit = ETH_DATA_LEN;
910 if (ndevctx->start_remove || !nvdev || nvdev->destroy)
913 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
914 limit = NETVSC_MTU - ETH_HLEN;
916 if (mtu < NETVSC_MTU_MIN || mtu > limit)
919 ret = netvsc_close(ndev);
923 num_chn = nvdev->num_chn;
925 ndevctx->start_remove = true;
926 rndis_filter_device_remove(hdev);
930 memset(&device_info, 0, sizeof(device_info));
931 device_info.ring_size = ring_size;
932 device_info.num_chn = num_chn;
933 device_info.max_num_vrss_chns = max_num_vrss_chns;
934 rndis_filter_device_add(hdev, &device_info);
938 ndevctx->start_remove = false;
940 /* We may have missed link change notifications */
941 schedule_delayed_work(&ndevctx->dwork, 0);
946 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
947 struct rtnl_link_stats64 *t)
949 struct net_device_context *ndev_ctx = netdev_priv(net);
952 for_each_possible_cpu(cpu) {
953 struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
955 struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
957 u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
961 start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
962 tx_packets = tx_stats->packets;
963 tx_bytes = tx_stats->bytes;
964 } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
967 start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
968 rx_packets = rx_stats->packets;
969 rx_bytes = rx_stats->bytes;
970 } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
972 t->tx_bytes += tx_bytes;
973 t->tx_packets += tx_packets;
974 t->rx_bytes += rx_bytes;
975 t->rx_packets += rx_packets;
978 t->tx_dropped = net->stats.tx_dropped;
979 t->tx_errors = net->stats.tx_dropped;
981 t->rx_dropped = net->stats.rx_dropped;
982 t->rx_errors = net->stats.rx_errors;
987 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
989 struct net_device_context *ndevctx = netdev_priv(ndev);
990 struct hv_device *hdev = ndevctx->device_ctx;
991 struct sockaddr *addr = p;
992 char save_adr[ETH_ALEN];
993 unsigned char save_aatype;
996 memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
997 save_aatype = ndev->addr_assign_type;
999 err = eth_mac_addr(ndev, p);
1003 err = rndis_filter_set_device_mac(hdev, addr->sa_data);
1005 /* roll back to saved MAC */
1006 memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
1007 ndev->addr_assign_type = save_aatype;
1013 #ifdef CONFIG_NET_POLL_CONTROLLER
1014 static void netvsc_poll_controller(struct net_device *net)
1016 /* As netvsc_start_xmit() works synchronous we don't have to
1017 * trigger anything here.
1022 static const struct ethtool_ops ethtool_ops = {
1023 .get_drvinfo = netvsc_get_drvinfo,
1024 .get_link = ethtool_op_get_link,
1025 .get_channels = netvsc_get_channels,
1026 .set_channels = netvsc_set_channels,
1027 .get_ts_info = ethtool_op_get_ts_info,
1028 .get_settings = netvsc_get_settings,
1029 .set_settings = netvsc_set_settings,
1032 static const struct net_device_ops device_ops = {
1033 .ndo_open = netvsc_open,
1034 .ndo_stop = netvsc_close,
1035 .ndo_start_xmit = netvsc_start_xmit,
1036 .ndo_set_rx_mode = netvsc_set_multicast_list,
1037 .ndo_change_mtu = netvsc_change_mtu,
1038 .ndo_validate_addr = eth_validate_addr,
1039 .ndo_set_mac_address = netvsc_set_mac_addr,
1040 .ndo_select_queue = netvsc_select_queue,
1041 .ndo_get_stats64 = netvsc_get_stats64,
1042 #ifdef CONFIG_NET_POLL_CONTROLLER
1043 .ndo_poll_controller = netvsc_poll_controller,
1048 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1049 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1050 * present send GARP packet to network peers with netif_notify_peers().
1052 static void netvsc_link_change(struct work_struct *w)
1054 struct net_device_context *ndev_ctx =
1055 container_of(w, struct net_device_context, dwork.work);
1056 struct hv_device *device_obj = ndev_ctx->device_ctx;
1057 struct net_device *net = hv_get_drvdata(device_obj);
1058 struct netvsc_device *net_device;
1059 struct rndis_device *rdev;
1060 struct netvsc_reconfig *event = NULL;
1061 bool notify = false, reschedule = false;
1062 unsigned long flags, next_reconfig, delay;
1065 if (ndev_ctx->start_remove)
1068 net_device = ndev_ctx->nvdev;
1069 rdev = net_device->extension;
1071 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1072 if (time_is_after_jiffies(next_reconfig)) {
1073 /* link_watch only sends one notification with current state
1074 * per second, avoid doing reconfig more frequently. Handle
1077 delay = next_reconfig - jiffies;
1078 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1079 schedule_delayed_work(&ndev_ctx->dwork, delay);
1082 ndev_ctx->last_reconfig = jiffies;
1084 spin_lock_irqsave(&ndev_ctx->lock, flags);
1085 if (!list_empty(&ndev_ctx->reconfig_events)) {
1086 event = list_first_entry(&ndev_ctx->reconfig_events,
1087 struct netvsc_reconfig, list);
1088 list_del(&event->list);
1089 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1091 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1096 switch (event->event) {
1097 /* Only the following events are possible due to the check in
1098 * netvsc_linkstatus_callback()
1100 case RNDIS_STATUS_MEDIA_CONNECT:
1101 if (rdev->link_state) {
1102 rdev->link_state = false;
1103 netif_carrier_on(net);
1104 netif_tx_wake_all_queues(net);
1110 case RNDIS_STATUS_MEDIA_DISCONNECT:
1111 if (!rdev->link_state) {
1112 rdev->link_state = true;
1113 netif_carrier_off(net);
1114 netif_tx_stop_all_queues(net);
1118 case RNDIS_STATUS_NETWORK_CHANGE:
1119 /* Only makes sense if carrier is present */
1120 if (!rdev->link_state) {
1121 rdev->link_state = true;
1122 netif_carrier_off(net);
1123 netif_tx_stop_all_queues(net);
1124 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1125 spin_lock_irqsave(&ndev_ctx->lock, flags);
1126 list_add(&event->list, &ndev_ctx->reconfig_events);
1127 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1136 netdev_notify_peers(net);
1138 /* link_watch only sends one notification with current state per
1139 * second, handle next reconfig event in 2 seconds.
1142 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1150 static void netvsc_free_netdev(struct net_device *netdev)
1152 struct net_device_context *net_device_ctx = netdev_priv(netdev);
1154 free_percpu(net_device_ctx->tx_stats);
1155 free_percpu(net_device_ctx->rx_stats);
1156 free_netdev(netdev);
1159 static void netvsc_notify_peers(struct work_struct *wrk)
1161 struct garp_wrk *gwrk;
1163 gwrk = container_of(wrk, struct garp_wrk, dwrk);
1165 netdev_notify_peers(gwrk->netdev);
1167 atomic_dec(&gwrk->netvsc_dev->vf_use_cnt);
1170 static struct net_device *get_netvsc_net_device(char *mac)
1172 struct net_device *dev, *found = NULL;
1175 rtnl_locked = rtnl_trylock();
1177 for_each_netdev(&init_net, dev) {
1178 if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) {
1179 if (dev->netdev_ops != &device_ops)
1191 static int netvsc_register_vf(struct net_device *vf_netdev)
1193 struct net_device *ndev;
1194 struct net_device_context *net_device_ctx;
1195 struct netvsc_device *netvsc_dev;
1196 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1198 if (eth_ops == NULL || eth_ops == ðtool_ops)
1202 * We will use the MAC address to locate the synthetic interface to
1203 * associate with the VF interface. If we don't find a matching
1204 * synthetic interface, move on.
1206 ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1210 net_device_ctx = netdev_priv(ndev);
1211 netvsc_dev = net_device_ctx->nvdev;
1212 if (netvsc_dev == NULL)
1215 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1217 * Take a reference on the module.
1219 try_module_get(THIS_MODULE);
1220 netvsc_dev->vf_netdev = vf_netdev;
1225 static int netvsc_vf_up(struct net_device *vf_netdev)
1227 struct net_device *ndev;
1228 struct netvsc_device *netvsc_dev;
1229 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1230 struct net_device_context *net_device_ctx;
1232 if (eth_ops == ðtool_ops)
1235 ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1239 net_device_ctx = netdev_priv(ndev);
1240 netvsc_dev = net_device_ctx->nvdev;
1242 if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1245 netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1246 netvsc_dev->vf_inject = true;
1249 * Open the device before switching data path.
1251 rndis_filter_open(net_device_ctx->device_ctx);
1254 * notify the host to switch the data path.
1256 netvsc_switch_datapath(ndev, true);
1257 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1259 netif_carrier_off(ndev);
1262 * Now notify peers. We are scheduling work to
1263 * notify peers; take a reference to prevent
1264 * the VF interface from vanishing.
1266 atomic_inc(&netvsc_dev->vf_use_cnt);
1267 net_device_ctx->gwrk.netdev = vf_netdev;
1268 net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1269 schedule_work(&net_device_ctx->gwrk.dwrk);
1275 static int netvsc_vf_down(struct net_device *vf_netdev)
1277 struct net_device *ndev;
1278 struct netvsc_device *netvsc_dev;
1279 struct net_device_context *net_device_ctx;
1280 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1282 if (eth_ops == ðtool_ops)
1285 ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1289 net_device_ctx = netdev_priv(ndev);
1290 netvsc_dev = net_device_ctx->nvdev;
1292 if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1295 netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1296 netvsc_dev->vf_inject = false;
1298 * Wait for currently active users to
1302 while (atomic_read(&netvsc_dev->vf_use_cnt) != 0)
1304 netvsc_switch_datapath(ndev, false);
1305 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1306 rndis_filter_close(net_device_ctx->device_ctx);
1307 netif_carrier_on(ndev);
1311 atomic_inc(&netvsc_dev->vf_use_cnt);
1312 net_device_ctx->gwrk.netdev = ndev;
1313 net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1314 schedule_work(&net_device_ctx->gwrk.dwrk);
1320 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1322 struct net_device *ndev;
1323 struct netvsc_device *netvsc_dev;
1324 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1325 struct net_device_context *net_device_ctx;
1327 if (eth_ops == ðtool_ops)
1330 ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1334 net_device_ctx = netdev_priv(ndev);
1335 netvsc_dev = net_device_ctx->nvdev;
1336 if (netvsc_dev == NULL)
1338 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1340 netvsc_dev->vf_netdev = NULL;
1341 module_put(THIS_MODULE);
1345 static int netvsc_probe(struct hv_device *dev,
1346 const struct hv_vmbus_device_id *dev_id)
1348 struct net_device *net = NULL;
1349 struct net_device_context *net_device_ctx;
1350 struct netvsc_device_info device_info;
1351 struct netvsc_device *nvdev;
1354 net = alloc_etherdev_mq(sizeof(struct net_device_context),
1359 netif_carrier_off(net);
1361 net_device_ctx = netdev_priv(net);
1362 net_device_ctx->device_ctx = dev;
1363 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1364 if (netif_msg_probe(net_device_ctx))
1365 netdev_dbg(net, "netvsc msg_enable: %d\n",
1366 net_device_ctx->msg_enable);
1368 net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1369 if (!net_device_ctx->tx_stats) {
1373 net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1374 if (!net_device_ctx->rx_stats) {
1375 free_percpu(net_device_ctx->tx_stats);
1380 hv_set_drvdata(dev, net);
1382 net_device_ctx->start_remove = false;
1384 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1385 INIT_WORK(&net_device_ctx->work, do_set_multicast);
1386 INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers);
1388 spin_lock_init(&net_device_ctx->lock);
1389 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1391 net->netdev_ops = &device_ops;
1393 net->hw_features = NETVSC_HW_FEATURES;
1394 net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1396 net->ethtool_ops = ðtool_ops;
1397 SET_NETDEV_DEV(net, &dev->device);
1399 /* We always need headroom for rndis header */
1400 net->needed_headroom = RNDIS_AND_PPI_SIZE;
1402 /* Notify the netvsc driver of the new device */
1403 memset(&device_info, 0, sizeof(device_info));
1404 device_info.ring_size = ring_size;
1405 device_info.max_num_vrss_chns = max_num_vrss_chns;
1406 ret = rndis_filter_device_add(dev, &device_info);
1408 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1409 netvsc_free_netdev(net);
1410 hv_set_drvdata(dev, NULL);
1413 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1415 nvdev = net_device_ctx->nvdev;
1416 netif_set_real_num_tx_queues(net, nvdev->num_chn);
1417 netif_set_real_num_rx_queues(net, nvdev->num_chn);
1419 netvsc_init_settings(net);
1421 ret = register_netdev(net);
1423 pr_err("Unable to register netdev.\n");
1424 rndis_filter_device_remove(dev);
1425 netvsc_free_netdev(net);
1431 static int netvsc_remove(struct hv_device *dev)
1433 struct net_device *net;
1434 struct net_device_context *ndev_ctx;
1435 struct netvsc_device *net_device;
1437 net = hv_get_drvdata(dev);
1440 dev_err(&dev->device, "No net device to remove\n");
1445 ndev_ctx = netdev_priv(net);
1446 net_device = ndev_ctx->nvdev;
1448 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
1449 * removing the device.
1452 ndev_ctx->start_remove = true;
1455 cancel_delayed_work_sync(&ndev_ctx->dwork);
1456 cancel_work_sync(&ndev_ctx->work);
1458 /* Stop outbound asap */
1459 netif_tx_disable(net);
1461 unregister_netdev(net);
1464 * Call to the vsc driver to let it know that the device is being
1467 rndis_filter_device_remove(dev);
1469 hv_set_drvdata(dev, NULL);
1471 netvsc_free_netdev(net);
1475 static const struct hv_vmbus_device_id id_table[] = {
1481 MODULE_DEVICE_TABLE(vmbus, id_table);
1483 /* The one and only one */
1484 static struct hv_driver netvsc_drv = {
1485 .name = KBUILD_MODNAME,
1486 .id_table = id_table,
1487 .probe = netvsc_probe,
1488 .remove = netvsc_remove,
1493 * On Hyper-V, every VF interface is matched with a corresponding
1494 * synthetic interface. The synthetic interface is presented first
1495 * to the guest. When the corresponding VF instance is registered,
1496 * we will take care of switching the data path.
1498 static int netvsc_netdev_event(struct notifier_block *this,
1499 unsigned long event, void *ptr)
1501 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1504 case NETDEV_REGISTER:
1505 return netvsc_register_vf(event_dev);
1506 case NETDEV_UNREGISTER:
1507 return netvsc_unregister_vf(event_dev);
1509 return netvsc_vf_up(event_dev);
1511 return netvsc_vf_down(event_dev);
1517 static struct notifier_block netvsc_netdev_notifier = {
1518 .notifier_call = netvsc_netdev_event,
1521 static void __exit netvsc_drv_exit(void)
1523 unregister_netdevice_notifier(&netvsc_netdev_notifier);
1524 vmbus_driver_unregister(&netvsc_drv);
1527 static int __init netvsc_drv_init(void)
1531 if (ring_size < RING_SIZE_MIN) {
1532 ring_size = RING_SIZE_MIN;
1533 pr_info("Increased ring_size to %d (min allowed)\n",
1536 ret = vmbus_driver_register(&netvsc_drv);
1541 register_netdevice_notifier(&netvsc_netdev_notifier);
1545 MODULE_LICENSE("GPL");
1546 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1548 module_init(netvsc_drv_init);
1549 module_exit(netvsc_drv_exit);