1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
34 * The max size that a non-root user is allowed to grow the pipe. Can
35 * be set by root in /proc/sys/fs/pipe-max-size
37 unsigned int pipe_max_size = 1048576;
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40 * matches default values.
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
46 * We use head and tail indices that aren't masked off, except at the point of
47 * dereference, but rather they're allowed to wrap naturally. This means there
48 * isn't a dead spot in the buffer, but the ring has to be a power of two and
50 * -- David Howells 2019-09-23.
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
58 * pipe_read & write cleanup
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
65 mutex_lock_nested(&pipe->mutex, subclass);
68 void pipe_lock(struct pipe_inode_info *pipe)
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 EXPORT_SYMBOL(pipe_lock);
77 void pipe_unlock(struct pipe_inode_info *pipe)
80 mutex_unlock(&pipe->mutex);
82 EXPORT_SYMBOL(pipe_unlock);
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 mutex_unlock(&pipe->mutex);
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95 struct pipe_inode_info *pipe2)
97 BUG_ON(pipe1 == pipe2);
100 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
114 * Pipes are system-local resources, so sleeping on them
115 * is considered a noninteractive wait:
117 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
120 finish_wait(&pipe->wait, &wait);
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 struct pipe_buffer *buf)
127 struct page *page = buf->page;
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
134 if (page_count(page) == 1 && !pipe->tmp_page)
135 pipe->tmp_page = page;
140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
143 struct page *page = buf->page;
145 if (page_count(page) == 1) {
146 memcg_kmem_uncharge(page, 0);
147 __SetPageLocked(page);
154 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
168 struct page *page = buf->page;
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
175 if (page_count(page) == 1) {
182 EXPORT_SYMBOL(generic_pipe_buf_steal);
185 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186 * @pipe: the pipe that the buffer belongs to
187 * @buf: the buffer to get a reference to
190 * This function grabs an extra reference to @buf. It's used in
191 * in the tee() system call, when we duplicate the buffers in one
194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
196 return try_get_page(buf->page);
198 EXPORT_SYMBOL(generic_pipe_buf_get);
201 * generic_pipe_buf_confirm - verify contents of the pipe buffer
202 * @info: the pipe that the buffer belongs to
203 * @buf: the buffer to confirm
206 * This function does nothing, because the generic pipe code uses
207 * pages that are always good when inserted into the pipe.
209 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210 struct pipe_buffer *buf)
214 EXPORT_SYMBOL(generic_pipe_buf_confirm);
217 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218 * @pipe: the pipe that the buffer belongs to
219 * @buf: the buffer to put a reference to
222 * This function releases a reference to @buf.
224 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225 struct pipe_buffer *buf)
229 EXPORT_SYMBOL(generic_pipe_buf_release);
231 /* New data written to a pipe may be appended to a buffer with this type. */
232 static const struct pipe_buf_operations anon_pipe_buf_ops = {
233 .confirm = generic_pipe_buf_confirm,
234 .release = anon_pipe_buf_release,
235 .steal = anon_pipe_buf_steal,
236 .get = generic_pipe_buf_get,
239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240 .confirm = generic_pipe_buf_confirm,
241 .release = anon_pipe_buf_release,
242 .steal = anon_pipe_buf_steal,
243 .get = generic_pipe_buf_get,
246 static const struct pipe_buf_operations packet_pipe_buf_ops = {
247 .confirm = generic_pipe_buf_confirm,
248 .release = anon_pipe_buf_release,
249 .steal = anon_pipe_buf_steal,
250 .get = generic_pipe_buf_get,
254 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255 * @buf: the buffer to mark
258 * This function ensures that no future writes will be merged into the
259 * given &struct pipe_buffer. This is necessary when multiple pipe buffers
260 * share the same backing page.
262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
264 if (buf->ops == &anon_pipe_buf_ops)
265 buf->ops = &anon_pipe_buf_nomerge_ops;
268 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
270 return buf->ops == &anon_pipe_buf_ops;
274 pipe_read(struct kiocb *iocb, struct iov_iter *to)
276 size_t total_len = iov_iter_count(to);
277 struct file *filp = iocb->ki_filp;
278 struct pipe_inode_info *pipe = filp->private_data;
282 /* Null read succeeds. */
283 if (unlikely(total_len == 0))
290 * We only wake up writers if the pipe was full when we started
291 * reading in order to avoid unnecessary wakeups.
293 * But when we do wake up writers, we do so using a sync wakeup
294 * (WF_SYNC), because we want them to get going and generate more
297 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
299 unsigned int head = pipe->head;
300 unsigned int tail = pipe->tail;
301 unsigned int mask = pipe->ring_size - 1;
303 if (!pipe_empty(head, tail)) {
304 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
305 size_t chars = buf->len;
309 if (chars > total_len)
312 error = pipe_buf_confirm(pipe, buf);
319 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
320 if (unlikely(written < chars)) {
326 buf->offset += chars;
329 /* Was it a packet buffer? Clean up and exit */
330 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
336 pipe_buf_release(pipe, buf);
337 spin_lock_irq(&pipe->wait.lock);
340 spin_unlock_irq(&pipe->wait.lock);
344 break; /* common path: read succeeded */
345 if (!pipe_empty(head, tail)) /* More to do? */
351 if (!pipe->waiting_writers) {
352 /* syscall merging: Usually we must not sleep
353 * if O_NONBLOCK is set, or if we got some data.
354 * But if a writer sleeps in kernel space, then
355 * we can wait for that data without violating POSIX.
359 if (filp->f_flags & O_NONBLOCK) {
364 if (signal_pending(current)) {
370 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
371 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
379 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
380 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
387 static inline int is_packetized(struct file *file)
389 return (file->f_flags & O_DIRECT) != 0;
393 pipe_write(struct kiocb *iocb, struct iov_iter *from)
395 struct file *filp = iocb->ki_filp;
396 struct pipe_inode_info *pipe = filp->private_data;
399 size_t total_len = iov_iter_count(from);
401 bool was_empty = false;
403 /* Null write succeeds. */
404 if (unlikely(total_len == 0))
409 if (!pipe->readers) {
410 send_sig(SIGPIPE, current, 0);
416 * Only wake up if the pipe started out empty, since
417 * otherwise there should be no readers waiting.
419 * If it wasn't empty we try to merge new data into
422 * That naturally merges small writes, but it also
423 * page-aligs the rest of the writes for large writes
424 * spanning multiple pages.
427 was_empty = pipe_empty(head, pipe->tail);
428 chars = total_len & (PAGE_SIZE-1);
429 if (chars && !was_empty) {
430 unsigned int mask = pipe->ring_size - 1;
431 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
432 int offset = buf->offset + buf->len;
434 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
435 ret = pipe_buf_confirm(pipe, buf);
439 ret = copy_page_from_iter(buf->page, offset, chars, from);
440 if (unlikely(ret < chars)) {
446 if (!iov_iter_count(from))
452 if (!pipe->readers) {
453 send_sig(SIGPIPE, current, 0);
460 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
461 unsigned int mask = pipe->ring_size - 1;
462 struct pipe_buffer *buf = &pipe->bufs[head & mask];
463 struct page *page = pipe->tmp_page;
467 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
468 if (unlikely(!page)) {
469 ret = ret ? : -ENOMEM;
472 pipe->tmp_page = page;
475 /* Allocate a slot in the ring in advance and attach an
476 * empty buffer. If we fault or otherwise fail to use
477 * it, either the reader will consume it or it'll still
478 * be there for the next write.
480 spin_lock_irq(&pipe->wait.lock);
483 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
484 spin_unlock_irq(&pipe->wait.lock);
488 pipe->head = head + 1;
489 spin_unlock_irq(&pipe->wait.lock);
491 /* Insert it into the buffer array */
492 buf = &pipe->bufs[head & mask];
494 buf->ops = &anon_pipe_buf_ops;
498 if (is_packetized(filp)) {
499 buf->ops = &packet_pipe_buf_ops;
500 buf->flags = PIPE_BUF_FLAG_PACKET;
502 pipe->tmp_page = NULL;
504 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
505 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
514 if (!iov_iter_count(from))
518 if (!pipe_full(head, pipe->tail, pipe->max_usage))
521 /* Wait for buffer space to become available. */
522 if (filp->f_flags & O_NONBLOCK) {
527 if (signal_pending(current)) {
534 * We're going to release the pipe lock and wait for more
535 * space. We wake up any readers if necessary, and then
536 * after waiting we need to re-check whether the pipe
537 * become empty while we dropped the lock.
540 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
541 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
543 pipe->waiting_writers++;
545 pipe->waiting_writers--;
547 was_empty = pipe_empty(head, pipe->tail);
553 * If we do do a wakeup event, we do a 'sync' wakeup, because we
554 * want the reader to start processing things asap, rather than
555 * leave the data pending.
557 * This is particularly important for small writes, because of
558 * how (for example) the GNU make jobserver uses small writes to
559 * wake up pending jobs
562 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
563 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
565 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
566 int err = file_update_time(filp);
569 sb_end_write(file_inode(filp)->i_sb);
574 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
576 struct pipe_inode_info *pipe = filp->private_data;
577 int count, head, tail, mask;
585 mask = pipe->ring_size - 1;
587 while (tail != head) {
588 count += pipe->bufs[tail & mask].len;
593 return put_user(count, (int __user *)arg);
599 /* No kernel lock held - fine */
601 pipe_poll(struct file *filp, poll_table *wait)
604 struct pipe_inode_info *pipe = filp->private_data;
605 unsigned int head, tail;
608 * Reading only -- no need for acquiring the semaphore.
610 * But because this is racy, the code has to add the
611 * entry to the poll table _first_ ..
613 poll_wait(filp, &pipe->wait, wait);
616 * .. and only then can you do the racy tests. That way,
617 * if something changes and you got it wrong, the poll
618 * table entry will wake you up and fix it.
620 head = READ_ONCE(pipe->head);
621 tail = READ_ONCE(pipe->tail);
624 if (filp->f_mode & FMODE_READ) {
625 if (!pipe_empty(head, tail))
626 mask |= EPOLLIN | EPOLLRDNORM;
627 if (!pipe->writers && filp->f_version != pipe->w_counter)
631 if (filp->f_mode & FMODE_WRITE) {
632 if (!pipe_full(head, tail, pipe->max_usage))
633 mask |= EPOLLOUT | EPOLLWRNORM;
635 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
636 * behave exactly like pipes for poll().
645 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
649 spin_lock(&inode->i_lock);
650 if (!--pipe->files) {
651 inode->i_pipe = NULL;
654 spin_unlock(&inode->i_lock);
657 free_pipe_info(pipe);
661 pipe_release(struct inode *inode, struct file *file)
663 struct pipe_inode_info *pipe = file->private_data;
666 if (file->f_mode & FMODE_READ)
668 if (file->f_mode & FMODE_WRITE)
671 if (pipe->readers || pipe->writers) {
672 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
673 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
674 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
678 put_pipe_info(inode, pipe);
683 pipe_fasync(int fd, struct file *filp, int on)
685 struct pipe_inode_info *pipe = filp->private_data;
689 if (filp->f_mode & FMODE_READ)
690 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
691 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
692 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
693 if (retval < 0 && (filp->f_mode & FMODE_READ))
694 /* this can happen only if on == T */
695 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
701 static unsigned long account_pipe_buffers(struct user_struct *user,
702 unsigned long old, unsigned long new)
704 return atomic_long_add_return(new - old, &user->pipe_bufs);
707 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
709 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
711 return soft_limit && user_bufs > soft_limit;
714 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
716 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
718 return hard_limit && user_bufs > hard_limit;
721 static bool is_unprivileged_user(void)
723 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
726 struct pipe_inode_info *alloc_pipe_info(void)
728 struct pipe_inode_info *pipe;
729 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
730 struct user_struct *user = get_current_user();
731 unsigned long user_bufs;
732 unsigned int max_size = READ_ONCE(pipe_max_size);
734 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
738 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
739 pipe_bufs = max_size >> PAGE_SHIFT;
741 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
743 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
744 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
748 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
749 goto out_revert_acct;
751 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
755 init_waitqueue_head(&pipe->wait);
756 pipe->r_counter = pipe->w_counter = 1;
757 pipe->max_usage = pipe_bufs;
758 pipe->ring_size = pipe_bufs;
760 mutex_init(&pipe->mutex);
765 (void) account_pipe_buffers(user, pipe_bufs, 0);
772 void free_pipe_info(struct pipe_inode_info *pipe)
776 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
777 free_uid(pipe->user);
778 for (i = 0; i < pipe->ring_size; i++) {
779 struct pipe_buffer *buf = pipe->bufs + i;
781 pipe_buf_release(pipe, buf);
784 __free_page(pipe->tmp_page);
789 static struct vfsmount *pipe_mnt __read_mostly;
792 * pipefs_dname() is called from d_path().
794 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
796 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
797 d_inode(dentry)->i_ino);
800 static const struct dentry_operations pipefs_dentry_operations = {
801 .d_dname = pipefs_dname,
804 static struct inode * get_pipe_inode(void)
806 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
807 struct pipe_inode_info *pipe;
812 inode->i_ino = get_next_ino();
814 pipe = alloc_pipe_info();
818 inode->i_pipe = pipe;
820 pipe->readers = pipe->writers = 1;
821 inode->i_fop = &pipefifo_fops;
824 * Mark the inode dirty from the very beginning,
825 * that way it will never be moved to the dirty
826 * list because "mark_inode_dirty()" will think
827 * that it already _is_ on the dirty list.
829 inode->i_state = I_DIRTY;
830 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
831 inode->i_uid = current_fsuid();
832 inode->i_gid = current_fsgid();
833 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
844 int create_pipe_files(struct file **res, int flags)
846 struct inode *inode = get_pipe_inode();
852 f = alloc_file_pseudo(inode, pipe_mnt, "",
853 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
856 free_pipe_info(inode->i_pipe);
861 f->private_data = inode->i_pipe;
863 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
865 if (IS_ERR(res[0])) {
866 put_pipe_info(inode, inode->i_pipe);
868 return PTR_ERR(res[0]);
870 res[0]->private_data = inode->i_pipe;
872 stream_open(inode, res[0]);
873 stream_open(inode, res[1]);
877 static int __do_pipe_flags(int *fd, struct file **files, int flags)
882 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
885 error = create_pipe_files(files, flags);
889 error = get_unused_fd_flags(flags);
894 error = get_unused_fd_flags(flags);
899 audit_fd_pair(fdr, fdw);
912 int do_pipe_flags(int *fd, int flags)
914 struct file *files[2];
915 int error = __do_pipe_flags(fd, files, flags);
917 fd_install(fd[0], files[0]);
918 fd_install(fd[1], files[1]);
924 * sys_pipe() is the normal C calling standard for creating
925 * a pipe. It's not the way Unix traditionally does this, though.
927 static int do_pipe2(int __user *fildes, int flags)
929 struct file *files[2];
933 error = __do_pipe_flags(fd, files, flags);
935 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
938 put_unused_fd(fd[0]);
939 put_unused_fd(fd[1]);
942 fd_install(fd[0], files[0]);
943 fd_install(fd[1], files[1]);
949 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
951 return do_pipe2(fildes, flags);
954 SYSCALL_DEFINE1(pipe, int __user *, fildes)
956 return do_pipe2(fildes, 0);
959 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
963 while (cur == *cnt) {
965 if (signal_pending(current))
968 return cur == *cnt ? -ERESTARTSYS : 0;
971 static void wake_up_partner(struct pipe_inode_info *pipe)
973 wake_up_interruptible(&pipe->wait);
976 static int fifo_open(struct inode *inode, struct file *filp)
978 struct pipe_inode_info *pipe;
979 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
984 spin_lock(&inode->i_lock);
986 pipe = inode->i_pipe;
988 spin_unlock(&inode->i_lock);
990 spin_unlock(&inode->i_lock);
991 pipe = alloc_pipe_info();
995 spin_lock(&inode->i_lock);
996 if (unlikely(inode->i_pipe)) {
997 inode->i_pipe->files++;
998 spin_unlock(&inode->i_lock);
999 free_pipe_info(pipe);
1000 pipe = inode->i_pipe;
1002 inode->i_pipe = pipe;
1003 spin_unlock(&inode->i_lock);
1006 filp->private_data = pipe;
1007 /* OK, we have a pipe and it's pinned down */
1011 /* We can only do regular read/write on fifos */
1012 stream_open(inode, filp);
1014 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1018 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1019 * opened, even when there is no process writing the FIFO.
1022 if (pipe->readers++ == 0)
1023 wake_up_partner(pipe);
1025 if (!is_pipe && !pipe->writers) {
1026 if ((filp->f_flags & O_NONBLOCK)) {
1027 /* suppress EPOLLHUP until we have
1029 filp->f_version = pipe->w_counter;
1031 if (wait_for_partner(pipe, &pipe->w_counter))
1040 * POSIX.1 says that O_NONBLOCK means return -1 with
1041 * errno=ENXIO when there is no process reading the FIFO.
1044 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1048 if (!pipe->writers++)
1049 wake_up_partner(pipe);
1051 if (!is_pipe && !pipe->readers) {
1052 if (wait_for_partner(pipe, &pipe->r_counter))
1057 case FMODE_READ | FMODE_WRITE:
1060 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1061 * This implementation will NEVER block on a O_RDWR open, since
1062 * the process can at least talk to itself.
1069 if (pipe->readers == 1 || pipe->writers == 1)
1070 wake_up_partner(pipe);
1079 __pipe_unlock(pipe);
1083 if (!--pipe->readers)
1084 wake_up_interruptible(&pipe->wait);
1089 if (!--pipe->writers)
1090 wake_up_interruptible(&pipe->wait);
1095 __pipe_unlock(pipe);
1097 put_pipe_info(inode, pipe);
1101 const struct file_operations pipefifo_fops = {
1103 .llseek = no_llseek,
1104 .read_iter = pipe_read,
1105 .write_iter = pipe_write,
1107 .unlocked_ioctl = pipe_ioctl,
1108 .release = pipe_release,
1109 .fasync = pipe_fasync,
1113 * Currently we rely on the pipe array holding a power-of-2 number
1114 * of pages. Returns 0 on error.
1116 unsigned int round_pipe_size(unsigned long size)
1118 if (size > (1U << 31))
1121 /* Minimum pipe size, as required by POSIX */
1122 if (size < PAGE_SIZE)
1125 return roundup_pow_of_two(size);
1129 * Allocate a new array of pipe buffers and copy the info over. Returns the
1130 * pipe size if successful, or return -ERROR on error.
1132 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1134 struct pipe_buffer *bufs;
1135 unsigned int size, nr_slots, head, tail, mask, n;
1136 unsigned long user_bufs;
1139 size = round_pipe_size(arg);
1140 nr_slots = size >> PAGE_SHIFT;
1146 * If trying to increase the pipe capacity, check that an
1147 * unprivileged user is not trying to exceed various limits
1148 * (soft limit check here, hard limit check just below).
1149 * Decreasing the pipe capacity is always permitted, even
1150 * if the user is currently over a limit.
1152 if (nr_slots > pipe->ring_size &&
1153 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1156 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1158 if (nr_slots > pipe->ring_size &&
1159 (too_many_pipe_buffers_hard(user_bufs) ||
1160 too_many_pipe_buffers_soft(user_bufs)) &&
1161 is_unprivileged_user()) {
1163 goto out_revert_acct;
1167 * We can shrink the pipe, if arg is greater than the ring occupancy.
1168 * Since we don't expect a lot of shrink+grow operations, just free and
1169 * allocate again like we would do for growing. If the pipe currently
1170 * contains more buffers than arg, then return busy.
1172 mask = pipe->ring_size - 1;
1175 n = pipe_occupancy(pipe->head, pipe->tail);
1178 goto out_revert_acct;
1181 bufs = kcalloc(nr_slots, sizeof(*bufs),
1182 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1183 if (unlikely(!bufs)) {
1185 goto out_revert_acct;
1189 * The pipe array wraps around, so just start the new one at zero
1190 * and adjust the indices.
1193 unsigned int h = head & mask;
1194 unsigned int t = tail & mask;
1196 memcpy(bufs, pipe->bufs + t,
1197 n * sizeof(struct pipe_buffer));
1199 unsigned int tsize = pipe->ring_size - t;
1201 memcpy(bufs + tsize, pipe->bufs,
1202 h * sizeof(struct pipe_buffer));
1203 memcpy(bufs, pipe->bufs + t,
1204 tsize * sizeof(struct pipe_buffer));
1213 pipe->ring_size = nr_slots;
1214 pipe->max_usage = nr_slots;
1217 wake_up_interruptible_all(&pipe->wait);
1218 return pipe->max_usage * PAGE_SIZE;
1221 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1226 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1227 * location, so checking ->i_pipe is not enough to verify that this is a
1230 struct pipe_inode_info *get_pipe_info(struct file *file)
1232 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1235 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1237 struct pipe_inode_info *pipe;
1240 pipe = get_pipe_info(file);
1248 ret = pipe_set_size(pipe, arg);
1251 ret = pipe->max_usage * PAGE_SIZE;
1258 __pipe_unlock(pipe);
1262 static const struct super_operations pipefs_ops = {
1263 .destroy_inode = free_inode_nonrcu,
1264 .statfs = simple_statfs,
1268 * pipefs should _never_ be mounted by userland - too much of security hassle,
1269 * no real gain from having the whole whorehouse mounted. So we don't need
1270 * any operations on the root directory. However, we need a non-trivial
1271 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1274 static int pipefs_init_fs_context(struct fs_context *fc)
1276 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1279 ctx->ops = &pipefs_ops;
1280 ctx->dops = &pipefs_dentry_operations;
1284 static struct file_system_type pipe_fs_type = {
1286 .init_fs_context = pipefs_init_fs_context,
1287 .kill_sb = kill_anon_super,
1290 static int __init init_pipe_fs(void)
1292 int err = register_filesystem(&pipe_fs_type);
1295 pipe_mnt = kern_mount(&pipe_fs_type);
1296 if (IS_ERR(pipe_mnt)) {
1297 err = PTR_ERR(pipe_mnt);
1298 unregister_filesystem(&pipe_fs_type);
1304 fs_initcall(init_pipe_fs);