2 FUSE: Filesystem in Userspace
5 This program can be distributed under the terms of the GNU GPL.
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 struct fuse_page_desc **desc)
27 pages = kzalloc(npages * (sizeof(struct page *) +
28 sizeof(struct fuse_page_desc)), flags);
29 *desc = (void *) (pages + npages);
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 int opcode, struct fuse_open_out *outargp)
37 struct fuse_open_in inarg;
40 memset(&inarg, 0, sizeof(inarg));
41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 if (!fc->atomic_o_trunc)
43 inarg.flags &= ~O_TRUNC;
47 args.in_args[0].size = sizeof(inarg);
48 args.in_args[0].value = &inarg;
50 args.out_args[0].size = sizeof(*outargp);
51 args.out_args[0].value = outargp;
53 return fuse_simple_request(fc, &args);
56 struct fuse_release_args {
57 struct fuse_args args;
58 struct fuse_release_in inarg;
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
71 ff->release_args = kzalloc(sizeof(*ff->release_args),
73 if (!ff->release_args) {
78 INIT_LIST_HEAD(&ff->write_entry);
79 mutex_init(&ff->readdir.lock);
80 refcount_set(&ff->count, 1);
81 RB_CLEAR_NODE(&ff->polled_node);
82 init_waitqueue_head(&ff->poll_wait);
84 ff->kh = atomic64_inc_return(&fc->khctr);
89 void fuse_file_free(struct fuse_file *ff)
91 kfree(ff->release_args);
92 mutex_destroy(&ff->readdir.lock);
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 refcount_inc(&ff->count);
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 if (refcount_dec_and_test(&ff->count)) {
114 struct fuse_args *args = &ff->release_args->args;
116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 /* Do nothing when client does not implement 'open' */
118 fuse_release_end(ff->fc, args, 0);
120 fuse_simple_request(ff->fc, args);
121 fuse_release_end(ff->fc, args, 0);
123 args->end = fuse_release_end;
124 if (fuse_simple_background(ff->fc, args,
125 GFP_KERNEL | __GFP_NOFAIL))
126 fuse_release_end(ff->fc, args, -ENOTCONN);
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
135 struct fuse_file *ff;
136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138 ff = fuse_file_alloc(fc);
143 /* Default for no-open */
144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 if (isdir ? !fc->no_opendir : !fc->no_open) {
146 struct fuse_open_out outarg;
149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
152 ff->open_flags = outarg.open_flags;
154 } else if (err != -ENOSYS) {
166 ff->open_flags &= ~FOPEN_DIRECT_IO;
169 file->private_data = ff;
173 EXPORT_SYMBOL_GPL(fuse_do_open);
175 static void fuse_link_write_file(struct file *file)
177 struct inode *inode = file_inode(file);
178 struct fuse_inode *fi = get_fuse_inode(inode);
179 struct fuse_file *ff = file->private_data;
181 * file may be written through mmap, so chain it onto the
182 * inodes's write_file list
184 spin_lock(&fi->lock);
185 if (list_empty(&ff->write_entry))
186 list_add(&ff->write_entry, &fi->write_files);
187 spin_unlock(&fi->lock);
190 void fuse_finish_open(struct inode *inode, struct file *file)
192 struct fuse_file *ff = file->private_data;
193 struct fuse_conn *fc = get_fuse_conn(inode);
195 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 invalidate_inode_pages2(inode->i_mapping);
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 struct fuse_inode *fi = get_fuse_inode(inode);
204 spin_lock(&fi->lock);
205 fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 i_size_write(inode, 0);
207 spin_unlock(&fi->lock);
208 fuse_invalidate_attr(inode);
209 if (fc->writeback_cache)
210 file_update_time(file);
212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 fuse_link_write_file(file);
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
218 struct fuse_conn *fc = get_fuse_conn(inode);
220 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 fc->atomic_o_trunc &&
224 err = generic_file_open(inode, file);
228 if (is_wb_truncate) {
230 fuse_set_nowrite(inode);
233 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
236 fuse_finish_open(inode, file);
238 if (is_wb_truncate) {
239 fuse_release_nowrite(inode);
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 int flags, int opcode)
249 struct fuse_conn *fc = ff->fc;
250 struct fuse_release_args *ra = ff->release_args;
252 /* Inode is NULL on error path of fuse_create_open() */
254 spin_lock(&fi->lock);
255 list_del(&ff->write_entry);
256 spin_unlock(&fi->lock);
258 spin_lock(&fc->lock);
259 if (!RB_EMPTY_NODE(&ff->polled_node))
260 rb_erase(&ff->polled_node, &fc->polled_files);
261 spin_unlock(&fc->lock);
263 wake_up_interruptible_all(&ff->poll_wait);
265 ra->inarg.fh = ff->fh;
266 ra->inarg.flags = flags;
267 ra->args.in_numargs = 1;
268 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 ra->args.in_args[0].value = &ra->inarg;
270 ra->args.opcode = opcode;
271 ra->args.nodeid = ff->nodeid;
272 ra->args.force = true;
273 ra->args.nocreds = true;
276 void fuse_release_common(struct file *file, bool isdir)
278 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 struct fuse_file *ff = file->private_data;
280 struct fuse_release_args *ra = ff->release_args;
281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
283 fuse_prepare_release(fi, ff, file->f_flags, opcode);
286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
290 /* Hold inode until release is finished */
291 ra->inode = igrab(file_inode(file));
294 * Normally this will send the RELEASE request, however if
295 * some asynchronous READ or WRITE requests are outstanding,
296 * the sending will be delayed.
298 * Make the release synchronous if this is a fuseblk mount,
299 * synchronous RELEASE is allowed (and desirable) in this case
300 * because the server can be trusted not to screw up.
302 fuse_file_put(ff, ff->fc->destroy, isdir);
305 static int fuse_open(struct inode *inode, struct file *file)
307 return fuse_open_common(inode, file, false);
310 static int fuse_release(struct inode *inode, struct file *file)
312 struct fuse_conn *fc = get_fuse_conn(inode);
314 /* see fuse_vma_close() for !writeback_cache case */
315 if (fc->writeback_cache)
316 write_inode_now(inode, 1);
318 fuse_release_common(file, false);
320 /* return value is ignored by VFS */
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
326 WARN_ON(refcount_read(&ff->count) > 1);
327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
329 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 * synchronous, we are fine with not doing igrab() here"
332 fuse_file_put(ff, true, false);
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
337 * Scramble the ID space with XTEA, so that the value of the files_struct
338 * pointer is not exposed to userspace.
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
342 u32 *k = fc->scramble_key;
343 u64 v = (unsigned long) id;
349 for (i = 0; i < 32; i++) {
350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
355 return (u64) v0 + ((u64) v1 << 32);
358 struct fuse_writepage_args {
359 struct fuse_io_args ia;
360 struct list_head writepages_entry;
361 struct list_head queue_entry;
362 struct fuse_writepage_args *next;
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 pgoff_t idx_from, pgoff_t idx_to)
369 struct fuse_writepage_args *wpa;
371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
374 WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 curr_index <= idx_to) {
385 * Check if any page in a range is under writeback
387 * This is currently done by walking the list of writepage requests
388 * for the inode, which can be pretty inefficient.
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
393 struct fuse_inode *fi = get_fuse_inode(inode);
396 spin_lock(&fi->lock);
397 found = fuse_find_writeback(fi, idx_from, idx_to);
398 spin_unlock(&fi->lock);
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
405 return fuse_range_is_writeback(inode, index, index);
409 * Wait for page writeback to be completed.
411 * Since fuse doesn't rely on the VM writeback tracking, this has to
412 * use some other means.
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
416 struct fuse_inode *fi = get_fuse_inode(inode);
418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
422 * Wait for all pending writepages on the inode to finish.
424 * This is currently done by blocking further writes with FUSE_NOWRITE
425 * and waiting for all sent writes to complete.
427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428 * could conflict with truncation.
430 static void fuse_sync_writes(struct inode *inode)
432 fuse_set_nowrite(inode);
433 fuse_release_nowrite(inode);
436 static int fuse_flush(struct file *file, fl_owner_t id)
438 struct inode *inode = file_inode(file);
439 struct fuse_conn *fc = get_fuse_conn(inode);
440 struct fuse_file *ff = file->private_data;
441 struct fuse_flush_in inarg;
445 if (is_bad_inode(inode))
451 err = write_inode_now(inode, 1);
456 fuse_sync_writes(inode);
459 err = filemap_check_errors(file->f_mapping);
463 memset(&inarg, 0, sizeof(inarg));
465 inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 args.opcode = FUSE_FLUSH;
467 args.nodeid = get_node_id(inode);
469 args.in_args[0].size = sizeof(inarg);
470 args.in_args[0].value = &inarg;
473 err = fuse_simple_request(fc, &args);
474 if (err == -ENOSYS) {
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 int datasync, int opcode)
484 struct inode *inode = file->f_mapping->host;
485 struct fuse_conn *fc = get_fuse_conn(inode);
486 struct fuse_file *ff = file->private_data;
488 struct fuse_fsync_in inarg;
490 memset(&inarg, 0, sizeof(inarg));
492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 args.opcode = opcode;
494 args.nodeid = get_node_id(inode);
496 args.in_args[0].size = sizeof(inarg);
497 args.in_args[0].value = &inarg;
498 return fuse_simple_request(fc, &args);
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
504 struct inode *inode = file->f_mapping->host;
505 struct fuse_conn *fc = get_fuse_conn(inode);
508 if (is_bad_inode(inode))
514 * Start writeback against all dirty pages of the inode, then
515 * wait for all outstanding writes, before sending the FSYNC
518 err = file_write_and_wait_range(file, start, end);
522 fuse_sync_writes(inode);
525 * Due to implementation of fuse writeback
526 * file_write_and_wait_range() does not catch errors.
527 * We have to do this directly after fuse_sync_writes()
529 err = file_check_and_advance_wb_err(file);
533 err = sync_inode_metadata(inode, 1);
540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 if (err == -ENOSYS) {
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 size_t count, int opcode)
554 struct fuse_file *ff = file->private_data;
555 struct fuse_args *args = &ia->ap.args;
557 ia->read.in.fh = ff->fh;
558 ia->read.in.offset = pos;
559 ia->read.in.size = count;
560 ia->read.in.flags = file->f_flags;
561 args->opcode = opcode;
562 args->nodeid = ff->nodeid;
563 args->in_numargs = 1;
564 args->in_args[0].size = sizeof(ia->read.in);
565 args->in_args[0].value = &ia->read.in;
566 args->out_argvar = true;
567 args->out_numargs = 1;
568 args->out_args[0].size = count;
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
576 for (i = 0; i < ap->num_pages; i++) {
578 set_page_dirty_lock(ap->pages[i]);
579 put_page(ap->pages[i]);
583 static void fuse_io_release(struct kref *kref)
585 kfree(container_of(kref, struct fuse_io_priv, refcnt));
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
593 if (io->bytes >= 0 && io->write)
596 return io->bytes < 0 ? io->size : io->bytes;
600 * In case of short read, the caller sets 'pos' to the position of
601 * actual end of fuse request in IO request. Otherwise, if bytes_requested
602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606 * both submitted asynchronously. The first of them was ACKed by userspace as
607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608 * second request was ACKed as short, e.g. only 1K was read, resulting in
611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612 * will be equal to the length of the longest contiguous fragment of
613 * transferred data starting from the beginning of IO request.
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
619 spin_lock(&io->lock);
621 io->err = io->err ? : err;
622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
626 if (!left && io->blocking)
628 spin_unlock(&io->lock);
630 if (!left && !io->blocking) {
631 ssize_t res = fuse_get_res_by_io(io);
634 struct inode *inode = file_inode(io->iocb->ki_filp);
635 struct fuse_conn *fc = get_fuse_conn(inode);
636 struct fuse_inode *fi = get_fuse_inode(inode);
638 spin_lock(&fi->lock);
639 fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 spin_unlock(&fi->lock);
643 io->iocb->ki_complete(io->iocb, res, 0);
646 kref_put(&io->refcnt, fuse_io_release);
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
652 struct fuse_io_args *ia;
654 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
667 static void fuse_io_free(struct fuse_io_args *ia)
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 struct fuse_io_priv *io = ia->io;
680 fuse_release_user_pages(&ia->ap, io->should_dirty);
684 } else if (io->write) {
685 if (ia->write.out.size > ia->write.in.size) {
687 } else if (ia->write.in.size != ia->write.out.size) {
688 pos = ia->write.in.offset - io->offset +
692 u32 outsize = args->out_args[0].size;
694 if (ia->read.in.size != outsize)
695 pos = ia->read.in.offset - io->offset + outsize;
698 fuse_aio_complete(io, err, pos);
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 struct fuse_io_args *ia, size_t num_bytes)
706 struct fuse_io_priv *io = ia->io;
708 spin_lock(&io->lock);
709 kref_get(&io->refcnt);
710 io->size += num_bytes;
712 spin_unlock(&io->lock);
714 ia->ap.args.end = fuse_aio_complete_req;
715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
717 fuse_aio_complete_req(fc, &ia->ap.args, err);
722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
725 struct file *file = ia->io->iocb->ki_filp;
726 struct fuse_file *ff = file->private_data;
727 struct fuse_conn *fc = ff->fc;
729 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
731 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
736 return fuse_async_req_send(fc, ia, count);
738 return fuse_simple_request(fc, &ia->ap.args);
741 static void fuse_read_update_size(struct inode *inode, loff_t size,
744 struct fuse_conn *fc = get_fuse_conn(inode);
745 struct fuse_inode *fi = get_fuse_inode(inode);
747 spin_lock(&fi->lock);
748 if (attr_ver == fi->attr_version && size < inode->i_size &&
749 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 i_size_write(inode, size);
753 spin_unlock(&fi->lock);
756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 struct fuse_args_pages *ap)
759 struct fuse_conn *fc = get_fuse_conn(inode);
761 if (fc->writeback_cache) {
763 * A hole in a file. Some data after the hole are in page cache,
764 * but have not reached the client fs yet. So, the hole is not
768 int start_idx = num_read >> PAGE_SHIFT;
769 size_t off = num_read & (PAGE_SIZE - 1);
771 for (i = start_idx; i < ap->num_pages; i++) {
772 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
776 loff_t pos = page_offset(ap->pages[0]) + num_read;
777 fuse_read_update_size(inode, pos, attr_ver);
781 static int fuse_do_readpage(struct file *file, struct page *page)
783 struct inode *inode = page->mapping->host;
784 struct fuse_conn *fc = get_fuse_conn(inode);
785 loff_t pos = page_offset(page);
786 struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 struct fuse_io_args ia = {
788 .ap.args.page_zeroing = true,
789 .ap.args.out_pages = true,
798 * Page writeback can extend beyond the lifetime of the
799 * page-cache page, so make sure we read a properly synced
802 fuse_wait_on_page_writeback(inode, page->index);
804 attr_ver = fuse_get_attr_version(fc);
806 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
807 res = fuse_simple_request(fc, &ia.ap.args);
811 * Short read means EOF. If file size is larger, truncate it
813 if (res < desc.length)
814 fuse_short_read(inode, attr_ver, res, &ia.ap);
816 SetPageUptodate(page);
821 static int fuse_readpage(struct file *file, struct page *page)
823 struct inode *inode = page->mapping->host;
827 if (is_bad_inode(inode))
830 err = fuse_do_readpage(file, page);
831 fuse_invalidate_atime(inode);
837 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
841 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
842 struct fuse_args_pages *ap = &ia->ap;
843 size_t count = ia->read.in.size;
844 size_t num_read = args->out_args[0].size;
845 struct address_space *mapping = NULL;
847 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
848 mapping = ap->pages[i]->mapping;
851 struct inode *inode = mapping->host;
854 * Short read means EOF. If file size is larger, truncate it
856 if (!err && num_read < count)
857 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
859 fuse_invalidate_atime(inode);
862 for (i = 0; i < ap->num_pages; i++) {
863 struct page *page = ap->pages[i];
866 SetPageUptodate(page);
873 fuse_file_put(ia->ff, false, false);
878 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
880 struct fuse_file *ff = file->private_data;
881 struct fuse_conn *fc = ff->fc;
882 struct fuse_args_pages *ap = &ia->ap;
883 loff_t pos = page_offset(ap->pages[0]);
884 size_t count = ap->num_pages << PAGE_SHIFT;
887 ap->args.out_pages = true;
888 ap->args.page_zeroing = true;
889 ap->args.page_replace = true;
890 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
891 ia->read.attr_ver = fuse_get_attr_version(fc);
892 if (fc->async_read) {
893 ia->ff = fuse_file_get(ff);
894 ap->args.end = fuse_readpages_end;
895 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
899 err = fuse_simple_request(fc, &ap->args);
901 fuse_readpages_end(fc, &ap->args, err);
904 struct fuse_fill_data {
905 struct fuse_io_args *ia;
908 unsigned int nr_pages;
909 unsigned int max_pages;
912 static int fuse_readpages_fill(void *_data, struct page *page)
914 struct fuse_fill_data *data = _data;
915 struct fuse_io_args *ia = data->ia;
916 struct fuse_args_pages *ap = &ia->ap;
917 struct inode *inode = data->inode;
918 struct fuse_conn *fc = get_fuse_conn(inode);
920 fuse_wait_on_page_writeback(inode, page->index);
923 (ap->num_pages == fc->max_pages ||
924 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
925 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
926 data->max_pages = min_t(unsigned int, data->nr_pages,
928 fuse_send_readpages(ia, data->file);
929 data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
937 if (WARN_ON(ap->num_pages >= data->max_pages)) {
944 ap->pages[ap->num_pages] = page;
945 ap->descs[ap->num_pages].length = PAGE_SIZE;
951 static int fuse_readpages(struct file *file, struct address_space *mapping,
952 struct list_head *pages, unsigned nr_pages)
954 struct inode *inode = mapping->host;
955 struct fuse_conn *fc = get_fuse_conn(inode);
956 struct fuse_fill_data data;
960 if (is_bad_inode(inode))
965 data.nr_pages = nr_pages;
966 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
968 data.ia = fuse_io_alloc(NULL, data.max_pages);
973 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
975 if (data.ia->ap.num_pages)
976 fuse_send_readpages(data.ia, file);
978 fuse_io_free(data.ia);
984 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
986 struct inode *inode = iocb->ki_filp->f_mapping->host;
987 struct fuse_conn *fc = get_fuse_conn(inode);
990 * In auto invalidate mode, always update attributes on read.
991 * Otherwise, only update if we attempt to read past EOF (to ensure
992 * i_size is up to date).
994 if (fc->auto_inval_data ||
995 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
997 err = fuse_update_attributes(inode, iocb->ki_filp);
1002 return generic_file_read_iter(iocb, to);
1005 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1006 loff_t pos, size_t count)
1008 struct fuse_args *args = &ia->ap.args;
1010 ia->write.in.fh = ff->fh;
1011 ia->write.in.offset = pos;
1012 ia->write.in.size = count;
1013 args->opcode = FUSE_WRITE;
1014 args->nodeid = ff->nodeid;
1015 args->in_numargs = 2;
1016 if (ff->fc->minor < 9)
1017 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1019 args->in_args[0].size = sizeof(ia->write.in);
1020 args->in_args[0].value = &ia->write.in;
1021 args->in_args[1].size = count;
1022 args->out_numargs = 1;
1023 args->out_args[0].size = sizeof(ia->write.out);
1024 args->out_args[0].value = &ia->write.out;
1027 static unsigned int fuse_write_flags(struct kiocb *iocb)
1029 unsigned int flags = iocb->ki_filp->f_flags;
1031 if (iocb->ki_flags & IOCB_DSYNC)
1033 if (iocb->ki_flags & IOCB_SYNC)
1039 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1040 size_t count, fl_owner_t owner)
1042 struct kiocb *iocb = ia->io->iocb;
1043 struct file *file = iocb->ki_filp;
1044 struct fuse_file *ff = file->private_data;
1045 struct fuse_conn *fc = ff->fc;
1046 struct fuse_write_in *inarg = &ia->write.in;
1049 fuse_write_args_fill(ia, ff, pos, count);
1050 inarg->flags = fuse_write_flags(iocb);
1051 if (owner != NULL) {
1052 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1053 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1057 return fuse_async_req_send(fc, ia, count);
1059 err = fuse_simple_request(fc, &ia->ap.args);
1060 if (!err && ia->write.out.size > count)
1063 return err ?: ia->write.out.size;
1066 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1068 struct fuse_conn *fc = get_fuse_conn(inode);
1069 struct fuse_inode *fi = get_fuse_inode(inode);
1072 spin_lock(&fi->lock);
1073 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1074 if (pos > inode->i_size) {
1075 i_size_write(inode, pos);
1078 spin_unlock(&fi->lock);
1083 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1084 struct kiocb *iocb, struct inode *inode,
1085 loff_t pos, size_t count)
1087 struct fuse_args_pages *ap = &ia->ap;
1088 struct file *file = iocb->ki_filp;
1089 struct fuse_file *ff = file->private_data;
1090 struct fuse_conn *fc = ff->fc;
1091 unsigned int offset, i;
1094 for (i = 0; i < ap->num_pages; i++)
1095 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1097 fuse_write_args_fill(ia, ff, pos, count);
1098 ia->write.in.flags = fuse_write_flags(iocb);
1100 err = fuse_simple_request(fc, &ap->args);
1101 if (!err && ia->write.out.size > count)
1104 offset = ap->descs[0].offset;
1105 count = ia->write.out.size;
1106 for (i = 0; i < ap->num_pages; i++) {
1107 struct page *page = ap->pages[i];
1109 if (!err && !offset && count >= PAGE_SIZE)
1110 SetPageUptodate(page);
1112 if (count > PAGE_SIZE - offset)
1113 count -= PAGE_SIZE - offset;
1125 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1126 struct address_space *mapping,
1127 struct iov_iter *ii, loff_t pos,
1128 unsigned int max_pages)
1130 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1131 unsigned offset = pos & (PAGE_SIZE - 1);
1135 ap->args.in_pages = true;
1136 ap->descs[0].offset = offset;
1141 pgoff_t index = pos >> PAGE_SHIFT;
1142 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1143 iov_iter_count(ii));
1145 bytes = min_t(size_t, bytes, fc->max_write - count);
1149 if (iov_iter_fault_in_readable(ii, bytes))
1153 page = grab_cache_page_write_begin(mapping, index, 0);
1157 if (mapping_writably_mapped(mapping))
1158 flush_dcache_page(page);
1160 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1161 flush_dcache_page(page);
1163 iov_iter_advance(ii, tmp);
1167 bytes = min(bytes, iov_iter_single_seg_count(ii));
1172 ap->pages[ap->num_pages] = page;
1173 ap->descs[ap->num_pages].length = tmp;
1179 if (offset == PAGE_SIZE)
1182 if (!fc->big_writes)
1184 } while (iov_iter_count(ii) && count < fc->max_write &&
1185 ap->num_pages < max_pages && offset == 0);
1187 return count > 0 ? count : err;
1190 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1191 unsigned int max_pages)
1193 return min_t(unsigned int,
1194 ((pos + len - 1) >> PAGE_SHIFT) -
1195 (pos >> PAGE_SHIFT) + 1,
1199 static ssize_t fuse_perform_write(struct kiocb *iocb,
1200 struct address_space *mapping,
1201 struct iov_iter *ii, loff_t pos)
1203 struct inode *inode = mapping->host;
1204 struct fuse_conn *fc = get_fuse_conn(inode);
1205 struct fuse_inode *fi = get_fuse_inode(inode);
1209 if (inode->i_size < pos + iov_iter_count(ii))
1210 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1214 struct fuse_io_args ia = {};
1215 struct fuse_args_pages *ap = &ia.ap;
1216 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1219 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1225 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1229 err = fuse_send_write_pages(&ia, iocb, inode,
1232 size_t num_written = ia.write.out.size;
1237 /* break out of the loop on short write */
1238 if (num_written != count)
1243 } while (!err && iov_iter_count(ii));
1246 fuse_write_update_size(inode, pos);
1248 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1249 fuse_invalidate_attr(inode);
1251 return res > 0 ? res : err;
1254 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1256 struct file *file = iocb->ki_filp;
1257 struct address_space *mapping = file->f_mapping;
1258 ssize_t written = 0;
1259 ssize_t written_buffered = 0;
1260 struct inode *inode = mapping->host;
1264 if (get_fuse_conn(inode)->writeback_cache) {
1265 /* Update size (EOF optimization) and mode (SUID clearing) */
1266 err = fuse_update_attributes(mapping->host, file);
1270 return generic_file_write_iter(iocb, from);
1275 /* We can write back this queue in page reclaim */
1276 current->backing_dev_info = inode_to_bdi(inode);
1278 err = generic_write_checks(iocb, from);
1282 err = file_remove_privs(file);
1286 err = file_update_time(file);
1290 if (iocb->ki_flags & IOCB_DIRECT) {
1291 loff_t pos = iocb->ki_pos;
1292 written = generic_file_direct_write(iocb, from);
1293 if (written < 0 || !iov_iter_count(from))
1298 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1299 if (written_buffered < 0) {
1300 err = written_buffered;
1303 endbyte = pos + written_buffered - 1;
1305 err = filemap_write_and_wait_range(file->f_mapping, pos,
1310 invalidate_mapping_pages(file->f_mapping,
1312 endbyte >> PAGE_SHIFT);
1314 written += written_buffered;
1315 iocb->ki_pos = pos + written_buffered;
1317 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1319 iocb->ki_pos += written;
1322 current->backing_dev_info = NULL;
1323 inode_unlock(inode);
1325 written = generic_write_sync(iocb, written);
1327 return written ? written : err;
1330 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1332 unsigned int nr_pages)
1336 for (i = index; i < index + nr_pages; i++)
1337 descs[i].length = PAGE_SIZE - descs[i].offset;
1340 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1342 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1345 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1348 return min(iov_iter_single_seg_count(ii), max_size);
1351 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1352 size_t *nbytesp, int write,
1353 unsigned int max_pages)
1355 size_t nbytes = 0; /* # bytes already packed in req */
1358 /* Special case for kernel I/O: can copy directly into the buffer */
1359 if (iov_iter_is_kvec(ii)) {
1360 unsigned long user_addr = fuse_get_user_addr(ii);
1361 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1364 ap->args.in_args[1].value = (void *) user_addr;
1366 ap->args.out_args[0].value = (void *) user_addr;
1368 iov_iter_advance(ii, frag_size);
1369 *nbytesp = frag_size;
1373 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1376 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1378 max_pages - ap->num_pages,
1383 iov_iter_advance(ii, ret);
1387 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1389 ap->descs[ap->num_pages].offset = start;
1390 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1392 ap->num_pages += npages;
1393 ap->descs[ap->num_pages - 1].length -=
1394 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1398 ap->args.in_pages = 1;
1400 ap->args.out_pages = 1;
1404 return ret < 0 ? ret : 0;
1407 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1408 loff_t *ppos, int flags)
1410 int write = flags & FUSE_DIO_WRITE;
1411 int cuse = flags & FUSE_DIO_CUSE;
1412 struct file *file = io->iocb->ki_filp;
1413 struct inode *inode = file->f_mapping->host;
1414 struct fuse_file *ff = file->private_data;
1415 struct fuse_conn *fc = ff->fc;
1416 size_t nmax = write ? fc->max_write : fc->max_read;
1418 size_t count = iov_iter_count(iter);
1419 pgoff_t idx_from = pos >> PAGE_SHIFT;
1420 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1423 struct fuse_io_args *ia;
1424 unsigned int max_pages;
1426 max_pages = iov_iter_npages(iter, fc->max_pages);
1427 ia = fuse_io_alloc(io, max_pages);
1432 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1435 fuse_sync_writes(inode);
1437 inode_unlock(inode);
1440 io->should_dirty = !write && iter_is_iovec(iter);
1443 fl_owner_t owner = current->files;
1444 size_t nbytes = min(count, nmax);
1446 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1452 if (!capable(CAP_FSETID))
1453 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1455 nres = fuse_send_write(ia, pos, nbytes, owner);
1457 nres = fuse_send_read(ia, pos, nbytes, owner);
1460 if (!io->async || nres < 0) {
1461 fuse_release_user_pages(&ia->ap, io->should_dirty);
1469 WARN_ON(nres > nbytes);
1477 max_pages = iov_iter_npages(iter, fc->max_pages);
1478 ia = fuse_io_alloc(io, max_pages);
1488 return res > 0 ? res : err;
1490 EXPORT_SYMBOL_GPL(fuse_direct_io);
1492 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1493 struct iov_iter *iter,
1497 struct inode *inode = file_inode(io->iocb->ki_filp);
1499 res = fuse_direct_io(io, iter, ppos, 0);
1501 fuse_invalidate_atime(inode);
1506 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1508 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1512 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1513 res = fuse_direct_IO(iocb, to);
1515 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1517 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1523 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1525 struct inode *inode = file_inode(iocb->ki_filp);
1526 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1529 /* Don't allow parallel writes to the same file */
1531 res = generic_write_checks(iocb, from);
1533 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1534 res = fuse_direct_IO(iocb, from);
1536 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1540 fuse_invalidate_attr(inode);
1542 fuse_write_update_size(inode, iocb->ki_pos);
1543 inode_unlock(inode);
1548 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1550 struct file *file = iocb->ki_filp;
1551 struct fuse_file *ff = file->private_data;
1553 if (is_bad_inode(file_inode(file)))
1556 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1557 return fuse_cache_read_iter(iocb, to);
1559 return fuse_direct_read_iter(iocb, to);
1562 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1564 struct file *file = iocb->ki_filp;
1565 struct fuse_file *ff = file->private_data;
1567 if (is_bad_inode(file_inode(file)))
1570 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1571 return fuse_cache_write_iter(iocb, from);
1573 return fuse_direct_write_iter(iocb, from);
1576 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1578 struct fuse_args_pages *ap = &wpa->ia.ap;
1581 for (i = 0; i < ap->num_pages; i++)
1582 __free_page(ap->pages[i]);
1585 fuse_file_put(wpa->ia.ff, false, false);
1591 static void fuse_writepage_finish(struct fuse_conn *fc,
1592 struct fuse_writepage_args *wpa)
1594 struct fuse_args_pages *ap = &wpa->ia.ap;
1595 struct inode *inode = wpa->inode;
1596 struct fuse_inode *fi = get_fuse_inode(inode);
1597 struct backing_dev_info *bdi = inode_to_bdi(inode);
1600 list_del(&wpa->writepages_entry);
1601 for (i = 0; i < ap->num_pages; i++) {
1602 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1603 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1604 wb_writeout_inc(&bdi->wb);
1606 wake_up(&fi->page_waitq);
1609 /* Called under fi->lock, may release and reacquire it */
1610 static void fuse_send_writepage(struct fuse_conn *fc,
1611 struct fuse_writepage_args *wpa, loff_t size)
1612 __releases(fi->lock)
1613 __acquires(fi->lock)
1615 struct fuse_writepage_args *aux, *next;
1616 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1617 struct fuse_write_in *inarg = &wpa->ia.write.in;
1618 struct fuse_args *args = &wpa->ia.ap.args;
1619 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1623 if (inarg->offset + data_size <= size) {
1624 inarg->size = data_size;
1625 } else if (inarg->offset < size) {
1626 inarg->size = size - inarg->offset;
1628 /* Got truncated off completely */
1632 args->in_args[1].size = inarg->size;
1634 args->nocreds = true;
1636 err = fuse_simple_background(fc, args, GFP_ATOMIC);
1637 if (err == -ENOMEM) {
1638 spin_unlock(&fi->lock);
1639 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1640 spin_lock(&fi->lock);
1643 /* Fails on broken connection only */
1651 fuse_writepage_finish(fc, wpa);
1652 spin_unlock(&fi->lock);
1654 /* After fuse_writepage_finish() aux request list is private */
1655 for (aux = wpa->next; aux; aux = next) {
1658 fuse_writepage_free(aux);
1661 fuse_writepage_free(wpa);
1662 spin_lock(&fi->lock);
1666 * If fi->writectr is positive (no truncate or fsync going on) send
1667 * all queued writepage requests.
1669 * Called with fi->lock
1671 void fuse_flush_writepages(struct inode *inode)
1672 __releases(fi->lock)
1673 __acquires(fi->lock)
1675 struct fuse_conn *fc = get_fuse_conn(inode);
1676 struct fuse_inode *fi = get_fuse_inode(inode);
1677 loff_t crop = i_size_read(inode);
1678 struct fuse_writepage_args *wpa;
1680 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1681 wpa = list_entry(fi->queued_writes.next,
1682 struct fuse_writepage_args, queue_entry);
1683 list_del_init(&wpa->queue_entry);
1684 fuse_send_writepage(fc, wpa, crop);
1688 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1691 struct fuse_writepage_args *wpa =
1692 container_of(args, typeof(*wpa), ia.ap.args);
1693 struct inode *inode = wpa->inode;
1694 struct fuse_inode *fi = get_fuse_inode(inode);
1696 mapping_set_error(inode->i_mapping, error);
1697 spin_lock(&fi->lock);
1699 struct fuse_conn *fc = get_fuse_conn(inode);
1700 struct fuse_write_in *inarg = &wpa->ia.write.in;
1701 struct fuse_writepage_args *next = wpa->next;
1703 wpa->next = next->next;
1705 next->ia.ff = fuse_file_get(wpa->ia.ff);
1706 list_add(&next->writepages_entry, &fi->writepages);
1709 * Skip fuse_flush_writepages() to make it easy to crop requests
1710 * based on primary request size.
1712 * 1st case (trivial): there are no concurrent activities using
1713 * fuse_set/release_nowrite. Then we're on safe side because
1714 * fuse_flush_writepages() would call fuse_send_writepage()
1717 * 2nd case: someone called fuse_set_nowrite and it is waiting
1718 * now for completion of all in-flight requests. This happens
1719 * rarely and no more than once per page, so this should be
1722 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1723 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1724 * that fuse_set_nowrite returned implies that all in-flight
1725 * requests were completed along with all of their secondary
1726 * requests. Further primary requests are blocked by negative
1727 * writectr. Hence there cannot be any in-flight requests and
1728 * no invocations of fuse_writepage_end() while we're in
1729 * fuse_set_nowrite..fuse_release_nowrite section.
1731 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1734 fuse_writepage_finish(fc, wpa);
1735 spin_unlock(&fi->lock);
1736 fuse_writepage_free(wpa);
1739 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1740 struct fuse_inode *fi)
1742 struct fuse_file *ff = NULL;
1744 spin_lock(&fi->lock);
1745 if (!list_empty(&fi->write_files)) {
1746 ff = list_entry(fi->write_files.next, struct fuse_file,
1750 spin_unlock(&fi->lock);
1755 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1756 struct fuse_inode *fi)
1758 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1763 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1765 struct fuse_conn *fc = get_fuse_conn(inode);
1766 struct fuse_inode *fi = get_fuse_inode(inode);
1767 struct fuse_file *ff;
1770 ff = __fuse_write_file_get(fc, fi);
1771 err = fuse_flush_times(inode, ff);
1773 fuse_file_put(ff, false, false);
1778 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1780 struct fuse_writepage_args *wpa;
1781 struct fuse_args_pages *ap;
1783 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1787 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1797 static int fuse_writepage_locked(struct page *page)
1799 struct address_space *mapping = page->mapping;
1800 struct inode *inode = mapping->host;
1801 struct fuse_conn *fc = get_fuse_conn(inode);
1802 struct fuse_inode *fi = get_fuse_inode(inode);
1803 struct fuse_writepage_args *wpa;
1804 struct fuse_args_pages *ap;
1805 struct page *tmp_page;
1806 int error = -ENOMEM;
1808 set_page_writeback(page);
1810 wpa = fuse_writepage_args_alloc();
1815 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1820 wpa->ia.ff = fuse_write_file_get(fc, fi);
1824 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1826 copy_highpage(tmp_page, page);
1827 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1829 ap->args.in_pages = true;
1831 ap->pages[0] = tmp_page;
1832 ap->descs[0].offset = 0;
1833 ap->descs[0].length = PAGE_SIZE;
1834 ap->args.end = fuse_writepage_end;
1837 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1838 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1840 spin_lock(&fi->lock);
1841 list_add(&wpa->writepages_entry, &fi->writepages);
1842 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1843 fuse_flush_writepages(inode);
1844 spin_unlock(&fi->lock);
1846 end_page_writeback(page);
1851 __free_page(tmp_page);
1855 mapping_set_error(page->mapping, error);
1856 end_page_writeback(page);
1860 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1864 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1866 * ->writepages() should be called for sync() and friends. We
1867 * should only get here on direct reclaim and then we are
1868 * allowed to skip a page which is already in flight
1870 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1872 redirty_page_for_writepage(wbc, page);
1877 err = fuse_writepage_locked(page);
1883 struct fuse_fill_wb_data {
1884 struct fuse_writepage_args *wpa;
1885 struct fuse_file *ff;
1886 struct inode *inode;
1887 struct page **orig_pages;
1888 unsigned int max_pages;
1891 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1893 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1894 struct fuse_conn *fc = get_fuse_conn(data->inode);
1895 struct page **pages;
1896 struct fuse_page_desc *descs;
1897 unsigned int npages = min_t(unsigned int,
1898 max_t(unsigned int, data->max_pages * 2,
1899 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1901 WARN_ON(npages <= data->max_pages);
1903 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1907 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1908 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1912 data->max_pages = npages;
1917 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1919 struct fuse_writepage_args *wpa = data->wpa;
1920 struct inode *inode = data->inode;
1921 struct fuse_inode *fi = get_fuse_inode(inode);
1922 int num_pages = wpa->ia.ap.num_pages;
1925 wpa->ia.ff = fuse_file_get(data->ff);
1926 spin_lock(&fi->lock);
1927 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1928 fuse_flush_writepages(inode);
1929 spin_unlock(&fi->lock);
1931 for (i = 0; i < num_pages; i++)
1932 end_page_writeback(data->orig_pages[i]);
1936 * First recheck under fi->lock if the offending offset is still under
1937 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1938 * one already added for a page at this offset. If there's none, then insert
1939 * this new request onto the auxiliary list, otherwise reuse the existing one by
1940 * copying the new page contents over to the old temporary page.
1942 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1945 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1946 struct fuse_writepage_args *tmp;
1947 struct fuse_writepage_args *old_wpa;
1948 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1950 WARN_ON(new_ap->num_pages != 0);
1952 spin_lock(&fi->lock);
1953 list_del(&new_wpa->writepages_entry);
1954 old_wpa = fuse_find_writeback(fi, page->index, page->index);
1956 list_add(&new_wpa->writepages_entry, &fi->writepages);
1957 spin_unlock(&fi->lock);
1961 new_ap->num_pages = 1;
1962 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1965 WARN_ON(tmp->inode != new_wpa->inode);
1966 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1967 if (curr_index == page->index) {
1968 WARN_ON(tmp->ia.ap.num_pages != 1);
1969 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1975 new_wpa->next = old_wpa->next;
1976 old_wpa->next = new_wpa;
1979 spin_unlock(&fi->lock);
1982 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1984 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1985 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1986 wb_writeout_inc(&bdi->wb);
1987 fuse_writepage_free(new_wpa);
1993 static int fuse_writepages_fill(struct page *page,
1994 struct writeback_control *wbc, void *_data)
1996 struct fuse_fill_wb_data *data = _data;
1997 struct fuse_writepage_args *wpa = data->wpa;
1998 struct fuse_args_pages *ap = &wpa->ia.ap;
1999 struct inode *inode = data->inode;
2000 struct fuse_inode *fi = get_fuse_inode(inode);
2001 struct fuse_conn *fc = get_fuse_conn(inode);
2002 struct page *tmp_page;
2008 data->ff = fuse_write_file_get(fc, fi);
2014 * Being under writeback is unlikely but possible. For example direct
2015 * read to an mmaped fuse file will set the page dirty twice; once when
2016 * the pages are faulted with get_user_pages(), and then after the read
2019 is_writeback = fuse_page_is_writeback(inode, page->index);
2021 if (wpa && ap->num_pages &&
2022 (is_writeback || ap->num_pages == fc->max_pages ||
2023 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2024 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2025 fuse_writepages_send(data);
2027 } else if (wpa && ap->num_pages == data->max_pages) {
2028 if (!fuse_pages_realloc(data)) {
2029 fuse_writepages_send(data);
2035 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2040 * The page must not be redirtied until the writeout is completed
2041 * (i.e. userspace has sent a reply to the write request). Otherwise
2042 * there could be more than one temporary page instance for each real
2045 * This is ensured by holding the page lock in page_mkwrite() while
2046 * checking fuse_page_is_writeback(). We already hold the page lock
2047 * since clear_page_dirty_for_io() and keep it held until we add the
2048 * request to the fi->writepages list and increment ap->num_pages.
2049 * After this fuse_page_is_writeback() will indicate that the page is
2050 * under writeback, so we can release the page lock.
2052 if (data->wpa == NULL) {
2054 wpa = fuse_writepage_args_alloc();
2056 __free_page(tmp_page);
2059 data->max_pages = 1;
2062 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2063 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2065 ap->args.in_pages = true;
2066 ap->args.end = fuse_writepage_end;
2070 spin_lock(&fi->lock);
2071 list_add(&wpa->writepages_entry, &fi->writepages);
2072 spin_unlock(&fi->lock);
2076 set_page_writeback(page);
2078 copy_highpage(tmp_page, page);
2079 ap->pages[ap->num_pages] = tmp_page;
2080 ap->descs[ap->num_pages].offset = 0;
2081 ap->descs[ap->num_pages].length = PAGE_SIZE;
2083 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2084 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2087 if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2088 end_page_writeback(page);
2092 data->orig_pages[ap->num_pages] = page;
2095 * Protected by fi->lock against concurrent access by
2096 * fuse_page_is_writeback().
2098 spin_lock(&fi->lock);
2100 spin_unlock(&fi->lock);
2108 static int fuse_writepages(struct address_space *mapping,
2109 struct writeback_control *wbc)
2111 struct inode *inode = mapping->host;
2112 struct fuse_conn *fc = get_fuse_conn(inode);
2113 struct fuse_fill_wb_data data;
2117 if (is_bad_inode(inode))
2125 data.orig_pages = kcalloc(fc->max_pages,
2126 sizeof(struct page *),
2128 if (!data.orig_pages)
2131 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2133 /* Ignore errors if we can write at least one page */
2134 WARN_ON(!data.wpa->ia.ap.num_pages);
2135 fuse_writepages_send(&data);
2139 fuse_file_put(data.ff, false, false);
2141 kfree(data.orig_pages);
2147 * It's worthy to make sure that space is reserved on disk for the write,
2148 * but how to implement it without killing performance need more thinking.
2150 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2151 loff_t pos, unsigned len, unsigned flags,
2152 struct page **pagep, void **fsdata)
2154 pgoff_t index = pos >> PAGE_SHIFT;
2155 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2160 WARN_ON(!fc->writeback_cache);
2162 page = grab_cache_page_write_begin(mapping, index, flags);
2166 fuse_wait_on_page_writeback(mapping->host, page->index);
2168 if (PageUptodate(page) || len == PAGE_SIZE)
2171 * Check if the start this page comes after the end of file, in which
2172 * case the readpage can be optimized away.
2174 fsize = i_size_read(mapping->host);
2175 if (fsize <= (pos & PAGE_MASK)) {
2176 size_t off = pos & ~PAGE_MASK;
2178 zero_user_segment(page, 0, off);
2181 err = fuse_do_readpage(file, page);
2195 static int fuse_write_end(struct file *file, struct address_space *mapping,
2196 loff_t pos, unsigned len, unsigned copied,
2197 struct page *page, void *fsdata)
2199 struct inode *inode = page->mapping->host;
2201 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2205 if (!PageUptodate(page)) {
2206 /* Zero any unwritten bytes at the end of the page */
2207 size_t endoff = (pos + copied) & ~PAGE_MASK;
2209 zero_user_segment(page, endoff, PAGE_SIZE);
2210 SetPageUptodate(page);
2213 fuse_write_update_size(inode, pos + copied);
2214 set_page_dirty(page);
2223 static int fuse_launder_page(struct page *page)
2226 if (clear_page_dirty_for_io(page)) {
2227 struct inode *inode = page->mapping->host;
2228 err = fuse_writepage_locked(page);
2230 fuse_wait_on_page_writeback(inode, page->index);
2236 * Write back dirty pages now, because there may not be any suitable
2239 static void fuse_vma_close(struct vm_area_struct *vma)
2241 filemap_write_and_wait(vma->vm_file->f_mapping);
2245 * Wait for writeback against this page to complete before allowing it
2246 * to be marked dirty again, and hence written back again, possibly
2247 * before the previous writepage completed.
2249 * Block here, instead of in ->writepage(), so that the userspace fs
2250 * can only block processes actually operating on the filesystem.
2252 * Otherwise unprivileged userspace fs would be able to block
2257 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2259 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2261 struct page *page = vmf->page;
2262 struct inode *inode = file_inode(vmf->vma->vm_file);
2264 file_update_time(vmf->vma->vm_file);
2266 if (page->mapping != inode->i_mapping) {
2268 return VM_FAULT_NOPAGE;
2271 fuse_wait_on_page_writeback(inode, page->index);
2272 return VM_FAULT_LOCKED;
2275 static const struct vm_operations_struct fuse_file_vm_ops = {
2276 .close = fuse_vma_close,
2277 .fault = filemap_fault,
2278 .map_pages = filemap_map_pages,
2279 .page_mkwrite = fuse_page_mkwrite,
2282 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2284 struct fuse_file *ff = file->private_data;
2286 if (ff->open_flags & FOPEN_DIRECT_IO) {
2287 /* Can't provide the coherency needed for MAP_SHARED */
2288 if (vma->vm_flags & VM_MAYSHARE)
2291 invalidate_inode_pages2(file->f_mapping);
2293 return generic_file_mmap(file, vma);
2296 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2297 fuse_link_write_file(file);
2299 file_accessed(file);
2300 vma->vm_ops = &fuse_file_vm_ops;
2304 static int convert_fuse_file_lock(struct fuse_conn *fc,
2305 const struct fuse_file_lock *ffl,
2306 struct file_lock *fl)
2308 switch (ffl->type) {
2314 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2315 ffl->end < ffl->start)
2318 fl->fl_start = ffl->start;
2319 fl->fl_end = ffl->end;
2322 * Convert pid into init's pid namespace. The locks API will
2323 * translate it into the caller's pid namespace.
2326 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2333 fl->fl_type = ffl->type;
2337 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2338 const struct file_lock *fl, int opcode, pid_t pid,
2339 int flock, struct fuse_lk_in *inarg)
2341 struct inode *inode = file_inode(file);
2342 struct fuse_conn *fc = get_fuse_conn(inode);
2343 struct fuse_file *ff = file->private_data;
2345 memset(inarg, 0, sizeof(*inarg));
2347 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2348 inarg->lk.start = fl->fl_start;
2349 inarg->lk.end = fl->fl_end;
2350 inarg->lk.type = fl->fl_type;
2351 inarg->lk.pid = pid;
2353 inarg->lk_flags |= FUSE_LK_FLOCK;
2354 args->opcode = opcode;
2355 args->nodeid = get_node_id(inode);
2356 args->in_numargs = 1;
2357 args->in_args[0].size = sizeof(*inarg);
2358 args->in_args[0].value = inarg;
2361 static int fuse_getlk(struct file *file, struct file_lock *fl)
2363 struct inode *inode = file_inode(file);
2364 struct fuse_conn *fc = get_fuse_conn(inode);
2366 struct fuse_lk_in inarg;
2367 struct fuse_lk_out outarg;
2370 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2371 args.out_numargs = 1;
2372 args.out_args[0].size = sizeof(outarg);
2373 args.out_args[0].value = &outarg;
2374 err = fuse_simple_request(fc, &args);
2376 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2381 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2383 struct inode *inode = file_inode(file);
2384 struct fuse_conn *fc = get_fuse_conn(inode);
2386 struct fuse_lk_in inarg;
2387 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2388 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2389 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2392 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2393 /* NLM needs asynchronous locks, which we don't support yet */
2397 /* Unlock on close is handled by the flush method */
2398 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2401 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2402 err = fuse_simple_request(fc, &args);
2404 /* locking is restartable */
2411 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2413 struct inode *inode = file_inode(file);
2414 struct fuse_conn *fc = get_fuse_conn(inode);
2417 if (cmd == F_CANCELLK) {
2419 } else if (cmd == F_GETLK) {
2421 posix_test_lock(file, fl);
2424 err = fuse_getlk(file, fl);
2427 err = posix_lock_file(file, fl, NULL);
2429 err = fuse_setlk(file, fl, 0);
2434 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2436 struct inode *inode = file_inode(file);
2437 struct fuse_conn *fc = get_fuse_conn(inode);
2441 err = locks_lock_file_wait(file, fl);
2443 struct fuse_file *ff = file->private_data;
2445 /* emulate flock with POSIX locks */
2447 err = fuse_setlk(file, fl, 1);
2453 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2455 struct inode *inode = mapping->host;
2456 struct fuse_conn *fc = get_fuse_conn(inode);
2458 struct fuse_bmap_in inarg;
2459 struct fuse_bmap_out outarg;
2462 if (!inode->i_sb->s_bdev || fc->no_bmap)
2465 memset(&inarg, 0, sizeof(inarg));
2466 inarg.block = block;
2467 inarg.blocksize = inode->i_sb->s_blocksize;
2468 args.opcode = FUSE_BMAP;
2469 args.nodeid = get_node_id(inode);
2470 args.in_numargs = 1;
2471 args.in_args[0].size = sizeof(inarg);
2472 args.in_args[0].value = &inarg;
2473 args.out_numargs = 1;
2474 args.out_args[0].size = sizeof(outarg);
2475 args.out_args[0].value = &outarg;
2476 err = fuse_simple_request(fc, &args);
2480 return err ? 0 : outarg.block;
2483 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2485 struct inode *inode = file->f_mapping->host;
2486 struct fuse_conn *fc = get_fuse_conn(inode);
2487 struct fuse_file *ff = file->private_data;
2489 struct fuse_lseek_in inarg = {
2494 struct fuse_lseek_out outarg;
2500 args.opcode = FUSE_LSEEK;
2501 args.nodeid = ff->nodeid;
2502 args.in_numargs = 1;
2503 args.in_args[0].size = sizeof(inarg);
2504 args.in_args[0].value = &inarg;
2505 args.out_numargs = 1;
2506 args.out_args[0].size = sizeof(outarg);
2507 args.out_args[0].value = &outarg;
2508 err = fuse_simple_request(fc, &args);
2510 if (err == -ENOSYS) {
2517 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2520 err = fuse_update_attributes(inode, file);
2522 return generic_file_llseek(file, offset, whence);
2527 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2530 struct inode *inode = file_inode(file);
2535 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2536 retval = generic_file_llseek(file, offset, whence);
2540 retval = fuse_update_attributes(inode, file);
2542 retval = generic_file_llseek(file, offset, whence);
2543 inode_unlock(inode);
2548 retval = fuse_lseek(file, offset, whence);
2549 inode_unlock(inode);
2559 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2560 * ABI was defined to be 'struct iovec' which is different on 32bit
2561 * and 64bit. Fortunately we can determine which structure the server
2562 * used from the size of the reply.
2564 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2565 size_t transferred, unsigned count,
2568 #ifdef CONFIG_COMPAT
2569 if (count * sizeof(struct compat_iovec) == transferred) {
2570 struct compat_iovec *ciov = src;
2574 * With this interface a 32bit server cannot support
2575 * non-compat (i.e. ones coming from 64bit apps) ioctl
2581 for (i = 0; i < count; i++) {
2582 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2583 dst[i].iov_len = ciov[i].iov_len;
2589 if (count * sizeof(struct iovec) != transferred)
2592 memcpy(dst, src, transferred);
2596 /* Make sure iov_length() won't overflow */
2597 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2601 u32 max = fc->max_pages << PAGE_SHIFT;
2603 for (n = 0; n < count; n++, iov++) {
2604 if (iov->iov_len > (size_t) max)
2606 max -= iov->iov_len;
2611 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2612 void *src, size_t transferred, unsigned count,
2616 struct fuse_ioctl_iovec *fiov = src;
2618 if (fc->minor < 16) {
2619 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2623 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2626 for (i = 0; i < count; i++) {
2627 /* Did the server supply an inappropriate value? */
2628 if (fiov[i].base != (unsigned long) fiov[i].base ||
2629 fiov[i].len != (unsigned long) fiov[i].len)
2632 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2633 dst[i].iov_len = (size_t) fiov[i].len;
2635 #ifdef CONFIG_COMPAT
2637 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2638 (compat_size_t) dst[i].iov_len != fiov[i].len))
2648 * For ioctls, there is no generic way to determine how much memory
2649 * needs to be read and/or written. Furthermore, ioctls are allowed
2650 * to dereference the passed pointer, so the parameter requires deep
2651 * copying but FUSE has no idea whatsoever about what to copy in or
2654 * This is solved by allowing FUSE server to retry ioctl with
2655 * necessary in/out iovecs. Let's assume the ioctl implementation
2656 * needs to read in the following structure.
2663 * On the first callout to FUSE server, inarg->in_size and
2664 * inarg->out_size will be NULL; then, the server completes the ioctl
2665 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2666 * the actual iov array to
2668 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2670 * which tells FUSE to copy in the requested area and retry the ioctl.
2671 * On the second round, the server has access to the structure and
2672 * from that it can tell what to look for next, so on the invocation,
2673 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2675 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2676 * { .iov_base = a.buf, .iov_len = a.buflen } }
2678 * FUSE will copy both struct a and the pointed buffer from the
2679 * process doing the ioctl and retry ioctl with both struct a and the
2682 * This time, FUSE server has everything it needs and completes ioctl
2683 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2685 * Copying data out works the same way.
2687 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2688 * automatically initializes in and out iovs by decoding @cmd with
2689 * _IOC_* macros and the server is not allowed to request RETRY. This
2690 * limits ioctl data transfers to well-formed ioctls and is the forced
2691 * behavior for all FUSE servers.
2693 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2696 struct fuse_file *ff = file->private_data;
2697 struct fuse_conn *fc = ff->fc;
2698 struct fuse_ioctl_in inarg = {
2704 struct fuse_ioctl_out outarg;
2705 struct iovec *iov_page = NULL;
2706 struct iovec *in_iov = NULL, *out_iov = NULL;
2707 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2708 size_t in_size, out_size, c;
2709 ssize_t transferred;
2712 struct fuse_args_pages ap = {};
2714 #if BITS_PER_LONG == 32
2715 inarg.flags |= FUSE_IOCTL_32BIT;
2717 if (flags & FUSE_IOCTL_COMPAT) {
2718 inarg.flags |= FUSE_IOCTL_32BIT;
2719 #ifdef CONFIG_X86_X32
2720 if (in_x32_syscall())
2721 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2726 /* assume all the iovs returned by client always fits in a page */
2727 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2730 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2731 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2732 if (!ap.pages || !iov_page)
2735 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2738 * If restricted, initialize IO parameters as encoded in @cmd.
2739 * RETRY from server is not allowed.
2741 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2742 struct iovec *iov = iov_page;
2744 iov->iov_base = (void __user *)arg;
2745 iov->iov_len = _IOC_SIZE(cmd);
2747 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2752 if (_IOC_DIR(cmd) & _IOC_READ) {
2759 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2760 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2763 * Out data can be used either for actual out data or iovs,
2764 * make sure there always is at least one page.
2766 out_size = max_t(size_t, out_size, PAGE_SIZE);
2767 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2769 /* make sure there are enough buffer pages and init request with them */
2771 if (max_pages > fc->max_pages)
2773 while (ap.num_pages < max_pages) {
2774 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2775 if (!ap.pages[ap.num_pages])
2781 /* okay, let's send it to the client */
2782 ap.args.opcode = FUSE_IOCTL;
2783 ap.args.nodeid = ff->nodeid;
2784 ap.args.in_numargs = 1;
2785 ap.args.in_args[0].size = sizeof(inarg);
2786 ap.args.in_args[0].value = &inarg;
2788 ap.args.in_numargs++;
2789 ap.args.in_args[1].size = in_size;
2790 ap.args.in_pages = true;
2793 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2794 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2795 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2796 if (c != PAGE_SIZE && iov_iter_count(&ii))
2801 ap.args.out_numargs = 2;
2802 ap.args.out_args[0].size = sizeof(outarg);
2803 ap.args.out_args[0].value = &outarg;
2804 ap.args.out_args[1].size = out_size;
2805 ap.args.out_pages = true;
2806 ap.args.out_argvar = true;
2808 transferred = fuse_simple_request(fc, &ap.args);
2810 if (transferred < 0)
2813 /* did it ask for retry? */
2814 if (outarg.flags & FUSE_IOCTL_RETRY) {
2817 /* no retry if in restricted mode */
2819 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2822 in_iovs = outarg.in_iovs;
2823 out_iovs = outarg.out_iovs;
2826 * Make sure things are in boundary, separate checks
2827 * are to protect against overflow.
2830 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2831 out_iovs > FUSE_IOCTL_MAX_IOV ||
2832 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2835 vaddr = kmap_atomic(ap.pages[0]);
2836 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2837 transferred, in_iovs + out_iovs,
2838 (flags & FUSE_IOCTL_COMPAT) != 0);
2839 kunmap_atomic(vaddr);
2844 out_iov = in_iov + in_iovs;
2846 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2850 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2858 if (transferred > inarg.out_size)
2862 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2863 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2864 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2865 if (c != PAGE_SIZE && iov_iter_count(&ii))
2870 free_page((unsigned long) iov_page);
2871 while (ap.num_pages)
2872 __free_page(ap.pages[--ap.num_pages]);
2875 return err ? err : outarg.result;
2877 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2879 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2880 unsigned long arg, unsigned int flags)
2882 struct inode *inode = file_inode(file);
2883 struct fuse_conn *fc = get_fuse_conn(inode);
2885 if (!fuse_allow_current_process(fc))
2888 if (is_bad_inode(inode))
2891 return fuse_do_ioctl(file, cmd, arg, flags);
2894 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2897 return fuse_ioctl_common(file, cmd, arg, 0);
2900 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2903 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2907 * All files which have been polled are linked to RB tree
2908 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2909 * find the matching one.
2911 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2912 struct rb_node **parent_out)
2914 struct rb_node **link = &fc->polled_files.rb_node;
2915 struct rb_node *last = NULL;
2918 struct fuse_file *ff;
2921 ff = rb_entry(last, struct fuse_file, polled_node);
2924 link = &last->rb_left;
2925 else if (kh > ff->kh)
2926 link = &last->rb_right;
2937 * The file is about to be polled. Make sure it's on the polled_files
2938 * RB tree. Note that files once added to the polled_files tree are
2939 * not removed before the file is released. This is because a file
2940 * polled once is likely to be polled again.
2942 static void fuse_register_polled_file(struct fuse_conn *fc,
2943 struct fuse_file *ff)
2945 spin_lock(&fc->lock);
2946 if (RB_EMPTY_NODE(&ff->polled_node)) {
2947 struct rb_node **link, *uninitialized_var(parent);
2949 link = fuse_find_polled_node(fc, ff->kh, &parent);
2951 rb_link_node(&ff->polled_node, parent, link);
2952 rb_insert_color(&ff->polled_node, &fc->polled_files);
2954 spin_unlock(&fc->lock);
2957 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2959 struct fuse_file *ff = file->private_data;
2960 struct fuse_conn *fc = ff->fc;
2961 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2962 struct fuse_poll_out outarg;
2967 return DEFAULT_POLLMASK;
2969 poll_wait(file, &ff->poll_wait, wait);
2970 inarg.events = mangle_poll(poll_requested_events(wait));
2973 * Ask for notification iff there's someone waiting for it.
2974 * The client may ignore the flag and always notify.
2976 if (waitqueue_active(&ff->poll_wait)) {
2977 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2978 fuse_register_polled_file(fc, ff);
2981 args.opcode = FUSE_POLL;
2982 args.nodeid = ff->nodeid;
2983 args.in_numargs = 1;
2984 args.in_args[0].size = sizeof(inarg);
2985 args.in_args[0].value = &inarg;
2986 args.out_numargs = 1;
2987 args.out_args[0].size = sizeof(outarg);
2988 args.out_args[0].value = &outarg;
2989 err = fuse_simple_request(fc, &args);
2992 return demangle_poll(outarg.revents);
2993 if (err == -ENOSYS) {
2995 return DEFAULT_POLLMASK;
2999 EXPORT_SYMBOL_GPL(fuse_file_poll);
3002 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3003 * wakes up the poll waiters.
3005 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3006 struct fuse_notify_poll_wakeup_out *outarg)
3008 u64 kh = outarg->kh;
3009 struct rb_node **link;
3011 spin_lock(&fc->lock);
3013 link = fuse_find_polled_node(fc, kh, NULL);
3015 struct fuse_file *ff;
3017 ff = rb_entry(*link, struct fuse_file, polled_node);
3018 wake_up_interruptible_sync(&ff->poll_wait);
3021 spin_unlock(&fc->lock);
3025 static void fuse_do_truncate(struct file *file)
3027 struct inode *inode = file->f_mapping->host;
3030 attr.ia_valid = ATTR_SIZE;
3031 attr.ia_size = i_size_read(inode);
3033 attr.ia_file = file;
3034 attr.ia_valid |= ATTR_FILE;
3036 fuse_do_setattr(file_dentry(file), &attr, file);
3039 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3041 return round_up(off, fc->max_pages << PAGE_SHIFT);
3045 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3047 DECLARE_COMPLETION_ONSTACK(wait);
3049 struct file *file = iocb->ki_filp;
3050 struct fuse_file *ff = file->private_data;
3051 bool async_dio = ff->fc->async_dio;
3053 struct inode *inode;
3055 size_t count = iov_iter_count(iter);
3056 loff_t offset = iocb->ki_pos;
3057 struct fuse_io_priv *io;
3060 inode = file->f_mapping->host;
3061 i_size = i_size_read(inode);
3063 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3066 /* optimization for short read */
3067 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3068 if (offset >= i_size)
3070 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3071 count = iov_iter_count(iter);
3074 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3077 spin_lock_init(&io->lock);
3078 kref_init(&io->refcnt);
3082 io->offset = offset;
3083 io->write = (iov_iter_rw(iter) == WRITE);
3086 * By default, we want to optimize all I/Os with async request
3087 * submission to the client filesystem if supported.
3089 io->async = async_dio;
3091 io->blocking = is_sync_kiocb(iocb);
3094 * We cannot asynchronously extend the size of a file.
3095 * In such case the aio will behave exactly like sync io.
3097 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3098 io->blocking = true;
3100 if (io->async && io->blocking) {
3102 * Additional reference to keep io around after
3103 * calling fuse_aio_complete()
3105 kref_get(&io->refcnt);
3109 if (iov_iter_rw(iter) == WRITE) {
3110 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3111 fuse_invalidate_attr(inode);
3113 ret = __fuse_direct_read(io, iter, &pos);
3117 bool blocking = io->blocking;
3119 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3121 /* we have a non-extending, async request, so return */
3123 return -EIOCBQUEUED;
3125 wait_for_completion(&wait);
3126 ret = fuse_get_res_by_io(io);
3129 kref_put(&io->refcnt, fuse_io_release);
3131 if (iov_iter_rw(iter) == WRITE) {
3133 fuse_write_update_size(inode, pos);
3134 else if (ret < 0 && offset + count > i_size)
3135 fuse_do_truncate(file);
3141 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3143 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3146 fuse_sync_writes(inode);
3151 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3154 struct fuse_file *ff = file->private_data;
3155 struct inode *inode = file_inode(file);
3156 struct fuse_inode *fi = get_fuse_inode(inode);
3157 struct fuse_conn *fc = ff->fc;
3159 struct fuse_fallocate_in inarg = {
3166 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3167 (mode & FALLOC_FL_PUNCH_HOLE);
3169 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3172 if (fc->no_fallocate)
3177 if (mode & FALLOC_FL_PUNCH_HOLE) {
3178 loff_t endbyte = offset + length - 1;
3180 err = fuse_writeback_range(inode, offset, endbyte);
3186 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3187 offset + length > i_size_read(inode)) {
3188 err = inode_newsize_ok(inode, offset + length);
3193 if (!(mode & FALLOC_FL_KEEP_SIZE))
3194 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3196 args.opcode = FUSE_FALLOCATE;
3197 args.nodeid = ff->nodeid;
3198 args.in_numargs = 1;
3199 args.in_args[0].size = sizeof(inarg);
3200 args.in_args[0].value = &inarg;
3201 err = fuse_simple_request(fc, &args);
3202 if (err == -ENOSYS) {
3203 fc->no_fallocate = 1;
3209 /* we could have extended the file */
3210 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3211 bool changed = fuse_write_update_size(inode, offset + length);
3213 if (changed && fc->writeback_cache)
3214 file_update_time(file);
3217 if (mode & FALLOC_FL_PUNCH_HOLE)
3218 truncate_pagecache_range(inode, offset, offset + length - 1);
3220 fuse_invalidate_attr(inode);
3223 if (!(mode & FALLOC_FL_KEEP_SIZE))
3224 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3227 inode_unlock(inode);
3232 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3233 struct file *file_out, loff_t pos_out,
3234 size_t len, unsigned int flags)
3236 struct fuse_file *ff_in = file_in->private_data;
3237 struct fuse_file *ff_out = file_out->private_data;
3238 struct inode *inode_in = file_inode(file_in);
3239 struct inode *inode_out = file_inode(file_out);
3240 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3241 struct fuse_conn *fc = ff_in->fc;
3243 struct fuse_copy_file_range_in inarg = {
3246 .nodeid_out = ff_out->nodeid,
3247 .fh_out = ff_out->fh,
3252 struct fuse_write_out outarg;
3254 /* mark unstable when write-back is not used, and file_out gets
3256 bool is_unstable = (!fc->writeback_cache) &&
3257 ((pos_out + len) > inode_out->i_size);
3259 if (fc->no_copy_file_range)
3262 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3265 if (fc->writeback_cache) {
3266 inode_lock(inode_in);
3267 err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3268 inode_unlock(inode_in);
3273 inode_lock(inode_out);
3275 err = file_modified(file_out);
3279 if (fc->writeback_cache) {
3280 err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3286 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3288 args.opcode = FUSE_COPY_FILE_RANGE;
3289 args.nodeid = ff_in->nodeid;
3290 args.in_numargs = 1;
3291 args.in_args[0].size = sizeof(inarg);
3292 args.in_args[0].value = &inarg;
3293 args.out_numargs = 1;
3294 args.out_args[0].size = sizeof(outarg);
3295 args.out_args[0].value = &outarg;
3296 err = fuse_simple_request(fc, &args);
3297 if (err == -ENOSYS) {
3298 fc->no_copy_file_range = 1;
3304 if (fc->writeback_cache) {
3305 fuse_write_update_size(inode_out, pos_out + outarg.size);
3306 file_update_time(file_out);
3309 fuse_invalidate_attr(inode_out);
3314 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3316 inode_unlock(inode_out);
3317 file_accessed(file_in);
3322 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3323 struct file *dst_file, loff_t dst_off,
3324 size_t len, unsigned int flags)
3328 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3331 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3332 ret = generic_copy_file_range(src_file, src_off, dst_file,
3333 dst_off, len, flags);
3337 static const struct file_operations fuse_file_operations = {
3338 .llseek = fuse_file_llseek,
3339 .read_iter = fuse_file_read_iter,
3340 .write_iter = fuse_file_write_iter,
3341 .mmap = fuse_file_mmap,
3343 .flush = fuse_flush,
3344 .release = fuse_release,
3345 .fsync = fuse_fsync,
3346 .lock = fuse_file_lock,
3347 .flock = fuse_file_flock,
3348 .splice_read = generic_file_splice_read,
3349 .splice_write = iter_file_splice_write,
3350 .unlocked_ioctl = fuse_file_ioctl,
3351 .compat_ioctl = fuse_file_compat_ioctl,
3352 .poll = fuse_file_poll,
3353 .fallocate = fuse_file_fallocate,
3354 .copy_file_range = fuse_copy_file_range,
3357 static const struct address_space_operations fuse_file_aops = {
3358 .readpage = fuse_readpage,
3359 .writepage = fuse_writepage,
3360 .writepages = fuse_writepages,
3361 .launder_page = fuse_launder_page,
3362 .readpages = fuse_readpages,
3363 .set_page_dirty = __set_page_dirty_nobuffers,
3365 .direct_IO = fuse_direct_IO,
3366 .write_begin = fuse_write_begin,
3367 .write_end = fuse_write_end,
3370 void fuse_init_file_inode(struct inode *inode)
3372 struct fuse_inode *fi = get_fuse_inode(inode);
3374 inode->i_fop = &fuse_file_operations;
3375 inode->i_data.a_ops = &fuse_file_aops;
3377 INIT_LIST_HEAD(&fi->write_files);
3378 INIT_LIST_HEAD(&fi->queued_writes);
3380 init_waitqueue_head(&fi->page_waitq);
3381 INIT_LIST_HEAD(&fi->writepages);