2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
13 - kmod support by: Cyrus Durgin
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
58 static void autostart_arrays(int part);
61 /* pers_list is a list of registered personalities protected
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
107 static inline int speed_max(struct mddev *mddev)
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
113 static struct ctl_table_header *raid_table_header;
115 static struct ctl_table raid_table[] = {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
133 static struct ctl_table raid_dir_table[] = {
137 .mode = S_IRUGO|S_IXUGO,
143 static struct ctl_table raid_root_table[] = {
148 .child = raid_dir_table,
153 static const struct block_device_operations md_fops;
155 static int start_readonly;
158 * like bio_clone, but with a local bio set
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
187 * We have a system wide 'event count' that is incremented
188 * on any 'interesting' event, and readers of /proc/mdstat
189 * can use 'poll' or 'select' to find out when the event
193 * start array, stop array, error, add device, remove device,
194 * start build, activate spare
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
200 atomic_inc(&md_event_count);
201 wake_up(&md_event_waiters);
203 EXPORT_SYMBOL_GPL(md_new_event);
205 /* Alternate version that can be called from interrupts
206 * when calling sysfs_notify isn't needed.
208 static void md_new_event_inintr(struct mddev *mddev)
210 atomic_inc(&md_event_count);
211 wake_up(&md_event_waiters);
215 * Enables to iterate over all existing md arrays
216 * all_mddevs_lock protects this list.
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
223 * iterates through all used mddevs in the system.
224 * We take care to grab the all_mddevs_lock whenever navigating
225 * the list, and to always hold a refcount when unlocked.
226 * Any code which breaks out of this loop while own
227 * a reference to the current mddev and must mddev_put it.
229 #define for_each_mddev(_mddev,_tmp) \
231 for (({ spin_lock(&all_mddevs_lock); \
232 _tmp = all_mddevs.next; \
234 ({ if (_tmp != &all_mddevs) \
235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 spin_unlock(&all_mddevs_lock); \
237 if (_mddev) mddev_put(_mddev); \
238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
239 _tmp != &all_mddevs;}); \
240 ({ spin_lock(&all_mddevs_lock); \
241 _tmp = _tmp->next;}) \
245 /* Rather than calling directly into the personality make_request function,
246 * IO requests come here first so that we can check if the device is
247 * being suspended pending a reconfiguration.
248 * We hold a refcount over the call to ->make_request. By the time that
249 * call has finished, the bio has been linked into some internal structure
250 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 static void md_make_request(struct request_queue *q, struct bio *bio)
254 const int rw = bio_data_dir(bio);
255 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
259 if (mddev == NULL || mddev->pers == NULL
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
268 smp_rmb(); /* Ensure implications of 'active' are visible */
270 if (mddev->suspended) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
281 finish_wait(&mddev->sb_wait, &__wait);
283 atomic_inc(&mddev->active_io);
287 * save the sectors now since our bio can
288 * go away inside make_request
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
293 cpu = part_stat_lock();
294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 wake_up(&mddev->sb_wait);
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once ->stop is called and completes, the module will be completely
308 void mddev_suspend(struct mddev *mddev)
310 BUG_ON(mddev->suspended);
311 mddev->suspended = 1;
313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 mddev->pers->quiesce(mddev, 1);
316 del_timer_sync(&mddev->safemode_timer);
318 EXPORT_SYMBOL_GPL(mddev_suspend);
320 void mddev_resume(struct mddev *mddev)
322 mddev->suspended = 0;
323 wake_up(&mddev->sb_wait);
324 mddev->pers->quiesce(mddev, 0);
326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 md_wakeup_thread(mddev->thread);
328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 EXPORT_SYMBOL_GPL(mddev_resume);
332 int mddev_congested(struct mddev *mddev, int bits)
334 return mddev->suspended;
336 EXPORT_SYMBOL(mddev_congested);
339 * Generic flush handling for md
342 static void md_end_flush(struct bio *bio, int err)
344 struct md_rdev *rdev = bio->bi_private;
345 struct mddev *mddev = rdev->mddev;
347 rdev_dec_pending(rdev, mddev);
349 if (atomic_dec_and_test(&mddev->flush_pending)) {
350 /* The pre-request flush has finished */
351 queue_work(md_wq, &mddev->flush_work);
356 static void md_submit_flush_data(struct work_struct *ws);
358 static void submit_flushes(struct work_struct *ws)
360 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 struct md_rdev *rdev;
363 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 atomic_set(&mddev->flush_pending, 1);
366 rdev_for_each_rcu(rdev, mddev)
367 if (rdev->raid_disk >= 0 &&
368 !test_bit(Faulty, &rdev->flags)) {
369 /* Take two references, one is dropped
370 * when request finishes, one after
371 * we reclaim rcu_read_lock
374 atomic_inc(&rdev->nr_pending);
375 atomic_inc(&rdev->nr_pending);
377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 bi->bi_end_io = md_end_flush;
379 bi->bi_private = rdev;
380 bi->bi_bdev = rdev->bdev;
381 atomic_inc(&mddev->flush_pending);
382 submit_bio(WRITE_FLUSH, bi);
384 rdev_dec_pending(rdev, mddev);
387 if (atomic_dec_and_test(&mddev->flush_pending))
388 queue_work(md_wq, &mddev->flush_work);
391 static void md_submit_flush_data(struct work_struct *ws)
393 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 struct bio *bio = mddev->flush_bio;
396 if (bio->bi_size == 0)
397 /* an empty barrier - all done */
400 bio->bi_rw &= ~REQ_FLUSH;
401 mddev->pers->make_request(mddev, bio);
404 mddev->flush_bio = NULL;
405 wake_up(&mddev->sb_wait);
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
410 spin_lock_irq(&mddev->write_lock);
411 wait_event_lock_irq(mddev->sb_wait,
414 mddev->flush_bio = bio;
415 spin_unlock_irq(&mddev->write_lock);
417 INIT_WORK(&mddev->flush_work, submit_flushes);
418 queue_work(md_wq, &mddev->flush_work);
420 EXPORT_SYMBOL(md_flush_request);
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
424 struct mddev *mddev = cb->data;
425 md_wakeup_thread(mddev->thread);
428 EXPORT_SYMBOL(md_unplug);
430 static inline struct mddev *mddev_get(struct mddev *mddev)
432 atomic_inc(&mddev->active);
436 static void mddev_delayed_delete(struct work_struct *ws);
438 static void mddev_put(struct mddev *mddev)
440 struct bio_set *bs = NULL;
442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
444 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 mddev->ctime == 0 && !mddev->hold_active) {
446 /* Array is not configured at all, and not held active,
448 list_del_init(&mddev->all_mddevs);
450 mddev->bio_set = NULL;
451 if (mddev->gendisk) {
452 /* We did a probe so need to clean up. Call
453 * queue_work inside the spinlock so that
454 * flush_workqueue() after mddev_find will
455 * succeed in waiting for the work to be done.
457 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 queue_work(md_misc_wq, &mddev->del_work);
462 spin_unlock(&all_mddevs_lock);
467 void mddev_init(struct mddev *mddev)
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->reshape_backwards = 0;
484 mddev->last_sync_action = "none";
485 mddev->resync_min = 0;
486 mddev->resync_max = MaxSector;
487 mddev->level = LEVEL_NONE;
489 EXPORT_SYMBOL_GPL(mddev_init);
491 static struct mddev * mddev_find(dev_t unit)
493 struct mddev *mddev, *new = NULL;
495 if (unit && MAJOR(unit) != MD_MAJOR)
496 unit &= ~((1<<MdpMinorShift)-1);
499 spin_lock(&all_mddevs_lock);
502 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 if (mddev->unit == unit) {
505 spin_unlock(&all_mddevs_lock);
511 list_add(&new->all_mddevs, &all_mddevs);
512 spin_unlock(&all_mddevs_lock);
513 new->hold_active = UNTIL_IOCTL;
517 /* find an unused unit number */
518 static int next_minor = 512;
519 int start = next_minor;
523 dev = MKDEV(MD_MAJOR, next_minor);
525 if (next_minor > MINORMASK)
527 if (next_minor == start) {
528 /* Oh dear, all in use. */
529 spin_unlock(&all_mddevs_lock);
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == dev) {
542 new->md_minor = MINOR(dev);
543 new->hold_active = UNTIL_STOP;
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
548 spin_unlock(&all_mddevs_lock);
550 new = kzalloc(sizeof(*new), GFP_KERNEL);
555 if (MAJOR(unit) == MD_MAJOR)
556 new->md_minor = MINOR(unit);
558 new->md_minor = MINOR(unit) >> MdpMinorShift;
565 static inline int __must_check mddev_lock(struct mddev * mddev)
567 return mutex_lock_interruptible(&mddev->reconfig_mutex);
570 /* Sometimes we need to take the lock in a situation where
571 * failure due to interrupts is not acceptable.
573 static inline void mddev_lock_nointr(struct mddev * mddev)
575 mutex_lock(&mddev->reconfig_mutex);
578 static inline int mddev_is_locked(struct mddev *mddev)
580 return mutex_is_locked(&mddev->reconfig_mutex);
583 static inline int mddev_trylock(struct mddev * mddev)
585 return mutex_trylock(&mddev->reconfig_mutex);
588 static struct attribute_group md_redundancy_group;
590 static void mddev_unlock(struct mddev * mddev)
592 if (mddev->to_remove) {
593 /* These cannot be removed under reconfig_mutex as
594 * an access to the files will try to take reconfig_mutex
595 * while holding the file unremovable, which leads to
597 * So hold set sysfs_active while the remove in happeing,
598 * and anything else which might set ->to_remove or my
599 * otherwise change the sysfs namespace will fail with
600 * -EBUSY if sysfs_active is still set.
601 * We set sysfs_active under reconfig_mutex and elsewhere
602 * test it under the same mutex to ensure its correct value
605 struct attribute_group *to_remove = mddev->to_remove;
606 mddev->to_remove = NULL;
607 mddev->sysfs_active = 1;
608 mutex_unlock(&mddev->reconfig_mutex);
610 if (mddev->kobj.sd) {
611 if (to_remove != &md_redundancy_group)
612 sysfs_remove_group(&mddev->kobj, to_remove);
613 if (mddev->pers == NULL ||
614 mddev->pers->sync_request == NULL) {
615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 if (mddev->sysfs_action)
617 sysfs_put(mddev->sysfs_action);
618 mddev->sysfs_action = NULL;
621 mddev->sysfs_active = 0;
623 mutex_unlock(&mddev->reconfig_mutex);
625 /* As we've dropped the mutex we need a spinlock to
626 * make sure the thread doesn't disappear
628 spin_lock(&pers_lock);
629 md_wakeup_thread(mddev->thread);
630 spin_unlock(&pers_lock);
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
635 struct md_rdev *rdev;
637 rdev_for_each(rdev, mddev)
638 if (rdev->desc_nr == nr)
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
646 struct md_rdev *rdev;
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
657 struct md_rdev *rdev;
659 rdev_for_each(rdev, mddev)
660 if (rdev->bdev->bd_dev == dev)
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
668 struct md_rdev *rdev;
670 rdev_for_each_rcu(rdev, mddev)
671 if (rdev->bdev->bd_dev == dev)
677 static struct md_personality *find_pers(int level, char *clevel)
679 struct md_personality *pers;
680 list_for_each_entry(pers, &pers_list, list) {
681 if (level != LEVEL_NONE && pers->level == level)
683 if (strcmp(pers->name, clevel)==0)
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 return MD_NEW_SIZE_SECTORS(num_sectors);
696 static int alloc_disk_sb(struct md_rdev * rdev)
701 rdev->sb_page = alloc_page(GFP_KERNEL);
702 if (!rdev->sb_page) {
703 printk(KERN_ALERT "md: out of memory.\n");
710 void md_rdev_clear(struct md_rdev *rdev)
713 put_page(rdev->sb_page);
715 rdev->sb_page = NULL;
720 put_page(rdev->bb_page);
721 rdev->bb_page = NULL;
723 kfree(rdev->badblocks.page);
724 rdev->badblocks.page = NULL;
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
728 static void super_written(struct bio *bio, int error)
730 struct md_rdev *rdev = bio->bi_private;
731 struct mddev *mddev = rdev->mddev;
733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734 printk("md: super_written gets error=%d, uptodate=%d\n",
735 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737 md_error(mddev, rdev);
740 if (atomic_dec_and_test(&mddev->pending_writes))
741 wake_up(&mddev->sb_wait);
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746 sector_t sector, int size, struct page *page)
748 /* write first size bytes of page to sector of rdev
749 * Increment mddev->pending_writes before returning
750 * and decrement it on completion, waking up sb_wait
751 * if zero is reached.
752 * If an error occurred, call md_error
754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757 bio->bi_sector = sector;
758 bio_add_page(bio, page, size, 0);
759 bio->bi_private = rdev;
760 bio->bi_end_io = super_written;
762 atomic_inc(&mddev->pending_writes);
763 submit_bio(WRITE_FLUSH_FUA, bio);
766 void md_super_wait(struct mddev *mddev)
768 /* wait for all superblock writes that were scheduled to complete */
771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772 if (atomic_read(&mddev->pending_writes)==0)
776 finish_wait(&mddev->sb_wait, &wq);
779 static void bi_complete(struct bio *bio, int error)
781 complete((struct completion*)bio->bi_private);
784 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
785 struct page *page, int rw, bool metadata_op)
787 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
788 struct completion event;
793 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
794 rdev->meta_bdev : rdev->bdev;
796 bio->bi_sector = sector + rdev->sb_start;
797 else if (rdev->mddev->reshape_position != MaxSector &&
798 (rdev->mddev->reshape_backwards ==
799 (sector >= rdev->mddev->reshape_position)))
800 bio->bi_sector = sector + rdev->new_data_offset;
802 bio->bi_sector = sector + rdev->data_offset;
803 bio_add_page(bio, page, size, 0);
804 init_completion(&event);
805 bio->bi_private = &event;
806 bio->bi_end_io = bi_complete;
808 wait_for_completion(&event);
810 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
814 EXPORT_SYMBOL_GPL(sync_page_io);
816 static int read_disk_sb(struct md_rdev * rdev, int size)
818 char b[BDEVNAME_SIZE];
819 if (!rdev->sb_page) {
827 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
833 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
834 bdevname(rdev->bdev,b));
838 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
840 return sb1->set_uuid0 == sb2->set_uuid0 &&
841 sb1->set_uuid1 == sb2->set_uuid1 &&
842 sb1->set_uuid2 == sb2->set_uuid2 &&
843 sb1->set_uuid3 == sb2->set_uuid3;
846 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
849 mdp_super_t *tmp1, *tmp2;
851 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
852 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
854 if (!tmp1 || !tmp2) {
856 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
864 * nr_disks is not constant
869 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
877 static u32 md_csum_fold(u32 csum)
879 csum = (csum & 0xffff) + (csum >> 16);
880 return (csum & 0xffff) + (csum >> 16);
883 static unsigned int calc_sb_csum(mdp_super_t * sb)
886 u32 *sb32 = (u32*)sb;
888 unsigned int disk_csum, csum;
890 disk_csum = sb->sb_csum;
893 for (i = 0; i < MD_SB_BYTES/4 ; i++)
895 csum = (newcsum & 0xffffffff) + (newcsum>>32);
899 /* This used to use csum_partial, which was wrong for several
900 * reasons including that different results are returned on
901 * different architectures. It isn't critical that we get exactly
902 * the same return value as before (we always csum_fold before
903 * testing, and that removes any differences). However as we
904 * know that csum_partial always returned a 16bit value on
905 * alphas, do a fold to maximise conformity to previous behaviour.
907 sb->sb_csum = md_csum_fold(disk_csum);
909 sb->sb_csum = disk_csum;
916 * Handle superblock details.
917 * We want to be able to handle multiple superblock formats
918 * so we have a common interface to them all, and an array of
919 * different handlers.
920 * We rely on user-space to write the initial superblock, and support
921 * reading and updating of superblocks.
922 * Interface methods are:
923 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
924 * loads and validates a superblock on dev.
925 * if refdev != NULL, compare superblocks on both devices
927 * 0 - dev has a superblock that is compatible with refdev
928 * 1 - dev has a superblock that is compatible and newer than refdev
929 * so dev should be used as the refdev in future
930 * -EINVAL superblock incompatible or invalid
931 * -othererror e.g. -EIO
933 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
934 * Verify that dev is acceptable into mddev.
935 * The first time, mddev->raid_disks will be 0, and data from
936 * dev should be merged in. Subsequent calls check that dev
937 * is new enough. Return 0 or -EINVAL
939 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
940 * Update the superblock for rdev with data in mddev
941 * This does not write to disc.
947 struct module *owner;
948 int (*load_super)(struct md_rdev *rdev,
949 struct md_rdev *refdev,
951 int (*validate_super)(struct mddev *mddev,
952 struct md_rdev *rdev);
953 void (*sync_super)(struct mddev *mddev,
954 struct md_rdev *rdev);
955 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
956 sector_t num_sectors);
957 int (*allow_new_offset)(struct md_rdev *rdev,
958 unsigned long long new_offset);
962 * Check that the given mddev has no bitmap.
964 * This function is called from the run method of all personalities that do not
965 * support bitmaps. It prints an error message and returns non-zero if mddev
966 * has a bitmap. Otherwise, it returns 0.
969 int md_check_no_bitmap(struct mddev *mddev)
971 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
973 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
974 mdname(mddev), mddev->pers->name);
977 EXPORT_SYMBOL(md_check_no_bitmap);
980 * load_super for 0.90.0
982 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
984 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
989 * Calculate the position of the superblock (512byte sectors),
990 * it's at the end of the disk.
992 * It also happens to be a multiple of 4Kb.
994 rdev->sb_start = calc_dev_sboffset(rdev);
996 ret = read_disk_sb(rdev, MD_SB_BYTES);
1001 bdevname(rdev->bdev, b);
1002 sb = page_address(rdev->sb_page);
1004 if (sb->md_magic != MD_SB_MAGIC) {
1005 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1010 if (sb->major_version != 0 ||
1011 sb->minor_version < 90 ||
1012 sb->minor_version > 91) {
1013 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1014 sb->major_version, sb->minor_version,
1019 if (sb->raid_disks <= 0)
1022 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1023 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1028 rdev->preferred_minor = sb->md_minor;
1029 rdev->data_offset = 0;
1030 rdev->new_data_offset = 0;
1031 rdev->sb_size = MD_SB_BYTES;
1032 rdev->badblocks.shift = -1;
1034 if (sb->level == LEVEL_MULTIPATH)
1037 rdev->desc_nr = sb->this_disk.number;
1043 mdp_super_t *refsb = page_address(refdev->sb_page);
1044 if (!uuid_equal(refsb, sb)) {
1045 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1046 b, bdevname(refdev->bdev,b2));
1049 if (!sb_equal(refsb, sb)) {
1050 printk(KERN_WARNING "md: %s has same UUID"
1051 " but different superblock to %s\n",
1052 b, bdevname(refdev->bdev, b2));
1056 ev2 = md_event(refsb);
1062 rdev->sectors = rdev->sb_start;
1063 /* Limit to 4TB as metadata cannot record more than that.
1064 * (not needed for Linear and RAID0 as metadata doesn't
1067 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1068 rdev->sectors = (2ULL << 32) - 2;
1070 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1071 /* "this cannot possibly happen" ... */
1079 * validate_super for 0.90.0
1081 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1084 mdp_super_t *sb = page_address(rdev->sb_page);
1085 __u64 ev1 = md_event(sb);
1087 rdev->raid_disk = -1;
1088 clear_bit(Faulty, &rdev->flags);
1089 clear_bit(In_sync, &rdev->flags);
1090 clear_bit(Bitmap_sync, &rdev->flags);
1091 clear_bit(WriteMostly, &rdev->flags);
1093 if (mddev->raid_disks == 0) {
1094 mddev->major_version = 0;
1095 mddev->minor_version = sb->minor_version;
1096 mddev->patch_version = sb->patch_version;
1097 mddev->external = 0;
1098 mddev->chunk_sectors = sb->chunk_size >> 9;
1099 mddev->ctime = sb->ctime;
1100 mddev->utime = sb->utime;
1101 mddev->level = sb->level;
1102 mddev->clevel[0] = 0;
1103 mddev->layout = sb->layout;
1104 mddev->raid_disks = sb->raid_disks;
1105 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1106 mddev->events = ev1;
1107 mddev->bitmap_info.offset = 0;
1108 mddev->bitmap_info.space = 0;
1109 /* bitmap can use 60 K after the 4K superblocks */
1110 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1111 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1112 mddev->reshape_backwards = 0;
1114 if (mddev->minor_version >= 91) {
1115 mddev->reshape_position = sb->reshape_position;
1116 mddev->delta_disks = sb->delta_disks;
1117 mddev->new_level = sb->new_level;
1118 mddev->new_layout = sb->new_layout;
1119 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1120 if (mddev->delta_disks < 0)
1121 mddev->reshape_backwards = 1;
1123 mddev->reshape_position = MaxSector;
1124 mddev->delta_disks = 0;
1125 mddev->new_level = mddev->level;
1126 mddev->new_layout = mddev->layout;
1127 mddev->new_chunk_sectors = mddev->chunk_sectors;
1130 if (sb->state & (1<<MD_SB_CLEAN))
1131 mddev->recovery_cp = MaxSector;
1133 if (sb->events_hi == sb->cp_events_hi &&
1134 sb->events_lo == sb->cp_events_lo) {
1135 mddev->recovery_cp = sb->recovery_cp;
1137 mddev->recovery_cp = 0;
1140 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1141 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1142 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1143 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1145 mddev->max_disks = MD_SB_DISKS;
1147 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1148 mddev->bitmap_info.file == NULL) {
1149 mddev->bitmap_info.offset =
1150 mddev->bitmap_info.default_offset;
1151 mddev->bitmap_info.space =
1152 mddev->bitmap_info.default_space;
1155 } else if (mddev->pers == NULL) {
1156 /* Insist on good event counter while assembling, except
1157 * for spares (which don't need an event count) */
1159 if (sb->disks[rdev->desc_nr].state & (
1160 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1161 if (ev1 < mddev->events)
1163 } else if (mddev->bitmap) {
1164 /* if adding to array with a bitmap, then we can accept an
1165 * older device ... but not too old.
1167 if (ev1 < mddev->bitmap->events_cleared)
1169 if (ev1 < mddev->events)
1170 set_bit(Bitmap_sync, &rdev->flags);
1172 if (ev1 < mddev->events)
1173 /* just a hot-add of a new device, leave raid_disk at -1 */
1177 if (mddev->level != LEVEL_MULTIPATH) {
1178 desc = sb->disks + rdev->desc_nr;
1180 if (desc->state & (1<<MD_DISK_FAULTY))
1181 set_bit(Faulty, &rdev->flags);
1182 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1183 desc->raid_disk < mddev->raid_disks */) {
1184 set_bit(In_sync, &rdev->flags);
1185 rdev->raid_disk = desc->raid_disk;
1186 rdev->saved_raid_disk = desc->raid_disk;
1187 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1188 /* active but not in sync implies recovery up to
1189 * reshape position. We don't know exactly where
1190 * that is, so set to zero for now */
1191 if (mddev->minor_version >= 91) {
1192 rdev->recovery_offset = 0;
1193 rdev->raid_disk = desc->raid_disk;
1196 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1197 set_bit(WriteMostly, &rdev->flags);
1198 } else /* MULTIPATH are always insync */
1199 set_bit(In_sync, &rdev->flags);
1204 * sync_super for 0.90.0
1206 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1209 struct md_rdev *rdev2;
1210 int next_spare = mddev->raid_disks;
1213 /* make rdev->sb match mddev data..
1216 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1217 * 3/ any empty disks < next_spare become removed
1219 * disks[0] gets initialised to REMOVED because
1220 * we cannot be sure from other fields if it has
1221 * been initialised or not.
1224 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1226 rdev->sb_size = MD_SB_BYTES;
1228 sb = page_address(rdev->sb_page);
1230 memset(sb, 0, sizeof(*sb));
1232 sb->md_magic = MD_SB_MAGIC;
1233 sb->major_version = mddev->major_version;
1234 sb->patch_version = mddev->patch_version;
1235 sb->gvalid_words = 0; /* ignored */
1236 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1237 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1238 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1239 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1241 sb->ctime = mddev->ctime;
1242 sb->level = mddev->level;
1243 sb->size = mddev->dev_sectors / 2;
1244 sb->raid_disks = mddev->raid_disks;
1245 sb->md_minor = mddev->md_minor;
1246 sb->not_persistent = 0;
1247 sb->utime = mddev->utime;
1249 sb->events_hi = (mddev->events>>32);
1250 sb->events_lo = (u32)mddev->events;
1252 if (mddev->reshape_position == MaxSector)
1253 sb->minor_version = 90;
1255 sb->minor_version = 91;
1256 sb->reshape_position = mddev->reshape_position;
1257 sb->new_level = mddev->new_level;
1258 sb->delta_disks = mddev->delta_disks;
1259 sb->new_layout = mddev->new_layout;
1260 sb->new_chunk = mddev->new_chunk_sectors << 9;
1262 mddev->minor_version = sb->minor_version;
1265 sb->recovery_cp = mddev->recovery_cp;
1266 sb->cp_events_hi = (mddev->events>>32);
1267 sb->cp_events_lo = (u32)mddev->events;
1268 if (mddev->recovery_cp == MaxSector)
1269 sb->state = (1<< MD_SB_CLEAN);
1271 sb->recovery_cp = 0;
1273 sb->layout = mddev->layout;
1274 sb->chunk_size = mddev->chunk_sectors << 9;
1276 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1277 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1279 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1280 rdev_for_each(rdev2, mddev) {
1283 int is_active = test_bit(In_sync, &rdev2->flags);
1285 if (rdev2->raid_disk >= 0 &&
1286 sb->minor_version >= 91)
1287 /* we have nowhere to store the recovery_offset,
1288 * but if it is not below the reshape_position,
1289 * we can piggy-back on that.
1292 if (rdev2->raid_disk < 0 ||
1293 test_bit(Faulty, &rdev2->flags))
1296 desc_nr = rdev2->raid_disk;
1298 desc_nr = next_spare++;
1299 rdev2->desc_nr = desc_nr;
1300 d = &sb->disks[rdev2->desc_nr];
1302 d->number = rdev2->desc_nr;
1303 d->major = MAJOR(rdev2->bdev->bd_dev);
1304 d->minor = MINOR(rdev2->bdev->bd_dev);
1306 d->raid_disk = rdev2->raid_disk;
1308 d->raid_disk = rdev2->desc_nr; /* compatibility */
1309 if (test_bit(Faulty, &rdev2->flags))
1310 d->state = (1<<MD_DISK_FAULTY);
1311 else if (is_active) {
1312 d->state = (1<<MD_DISK_ACTIVE);
1313 if (test_bit(In_sync, &rdev2->flags))
1314 d->state |= (1<<MD_DISK_SYNC);
1322 if (test_bit(WriteMostly, &rdev2->flags))
1323 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1325 /* now set the "removed" and "faulty" bits on any missing devices */
1326 for (i=0 ; i < mddev->raid_disks ; i++) {
1327 mdp_disk_t *d = &sb->disks[i];
1328 if (d->state == 0 && d->number == 0) {
1331 d->state = (1<<MD_DISK_REMOVED);
1332 d->state |= (1<<MD_DISK_FAULTY);
1336 sb->nr_disks = nr_disks;
1337 sb->active_disks = active;
1338 sb->working_disks = working;
1339 sb->failed_disks = failed;
1340 sb->spare_disks = spare;
1342 sb->this_disk = sb->disks[rdev->desc_nr];
1343 sb->sb_csum = calc_sb_csum(sb);
1347 * rdev_size_change for 0.90.0
1349 static unsigned long long
1350 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1352 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1353 return 0; /* component must fit device */
1354 if (rdev->mddev->bitmap_info.offset)
1355 return 0; /* can't move bitmap */
1356 rdev->sb_start = calc_dev_sboffset(rdev);
1357 if (!num_sectors || num_sectors > rdev->sb_start)
1358 num_sectors = rdev->sb_start;
1359 /* Limit to 4TB as metadata cannot record more than that.
1360 * 4TB == 2^32 KB, or 2*2^32 sectors.
1362 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1363 num_sectors = (2ULL << 32) - 2;
1364 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1366 md_super_wait(rdev->mddev);
1371 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1373 /* non-zero offset changes not possible with v0.90 */
1374 return new_offset == 0;
1378 * version 1 superblock
1381 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1385 unsigned long long newcsum;
1386 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1387 __le32 *isuper = (__le32*)sb;
1389 disk_csum = sb->sb_csum;
1392 for (; size >= 4; size -= 4)
1393 newcsum += le32_to_cpu(*isuper++);
1396 newcsum += le16_to_cpu(*(__le16*) isuper);
1398 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1399 sb->sb_csum = disk_csum;
1400 return cpu_to_le32(csum);
1403 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1405 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1407 struct mdp_superblock_1 *sb;
1411 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1415 * Calculate the position of the superblock in 512byte sectors.
1416 * It is always aligned to a 4K boundary and
1417 * depeding on minor_version, it can be:
1418 * 0: At least 8K, but less than 12K, from end of device
1419 * 1: At start of device
1420 * 2: 4K from start of device.
1422 switch(minor_version) {
1424 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1426 sb_start &= ~(sector_t)(4*2-1);
1437 rdev->sb_start = sb_start;
1439 /* superblock is rarely larger than 1K, but it can be larger,
1440 * and it is safe to read 4k, so we do that
1442 ret = read_disk_sb(rdev, 4096);
1443 if (ret) return ret;
1446 sb = page_address(rdev->sb_page);
1448 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1449 sb->major_version != cpu_to_le32(1) ||
1450 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1451 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1452 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1455 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1456 printk("md: invalid superblock checksum on %s\n",
1457 bdevname(rdev->bdev,b));
1460 if (le64_to_cpu(sb->data_size) < 10) {
1461 printk("md: data_size too small on %s\n",
1462 bdevname(rdev->bdev,b));
1467 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1468 /* Some padding is non-zero, might be a new feature */
1471 rdev->preferred_minor = 0xffff;
1472 rdev->data_offset = le64_to_cpu(sb->data_offset);
1473 rdev->new_data_offset = rdev->data_offset;
1474 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1475 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1476 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1477 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1479 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1480 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1481 if (rdev->sb_size & bmask)
1482 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1485 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1488 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1491 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1494 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1496 if (!rdev->bb_page) {
1497 rdev->bb_page = alloc_page(GFP_KERNEL);
1501 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1502 rdev->badblocks.count == 0) {
1503 /* need to load the bad block list.
1504 * Currently we limit it to one page.
1510 int sectors = le16_to_cpu(sb->bblog_size);
1511 if (sectors > (PAGE_SIZE / 512))
1513 offset = le32_to_cpu(sb->bblog_offset);
1516 bb_sector = (long long)offset;
1517 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1518 rdev->bb_page, READ, true))
1520 bbp = (u64 *)page_address(rdev->bb_page);
1521 rdev->badblocks.shift = sb->bblog_shift;
1522 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1523 u64 bb = le64_to_cpu(*bbp);
1524 int count = bb & (0x3ff);
1525 u64 sector = bb >> 10;
1526 sector <<= sb->bblog_shift;
1527 count <<= sb->bblog_shift;
1530 if (md_set_badblocks(&rdev->badblocks,
1531 sector, count, 1) == 0)
1534 } else if (sb->bblog_offset != 0)
1535 rdev->badblocks.shift = 0;
1541 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1543 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1544 sb->level != refsb->level ||
1545 sb->layout != refsb->layout ||
1546 sb->chunksize != refsb->chunksize) {
1547 printk(KERN_WARNING "md: %s has strangely different"
1548 " superblock to %s\n",
1549 bdevname(rdev->bdev,b),
1550 bdevname(refdev->bdev,b2));
1553 ev1 = le64_to_cpu(sb->events);
1554 ev2 = le64_to_cpu(refsb->events);
1561 if (minor_version) {
1562 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1563 sectors -= rdev->data_offset;
1565 sectors = rdev->sb_start;
1566 if (sectors < le64_to_cpu(sb->data_size))
1568 rdev->sectors = le64_to_cpu(sb->data_size);
1572 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1574 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1575 __u64 ev1 = le64_to_cpu(sb->events);
1577 rdev->raid_disk = -1;
1578 clear_bit(Faulty, &rdev->flags);
1579 clear_bit(In_sync, &rdev->flags);
1580 clear_bit(Bitmap_sync, &rdev->flags);
1581 clear_bit(WriteMostly, &rdev->flags);
1583 if (mddev->raid_disks == 0) {
1584 mddev->major_version = 1;
1585 mddev->patch_version = 0;
1586 mddev->external = 0;
1587 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1588 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1589 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1590 mddev->level = le32_to_cpu(sb->level);
1591 mddev->clevel[0] = 0;
1592 mddev->layout = le32_to_cpu(sb->layout);
1593 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1594 mddev->dev_sectors = le64_to_cpu(sb->size);
1595 mddev->events = ev1;
1596 mddev->bitmap_info.offset = 0;
1597 mddev->bitmap_info.space = 0;
1598 /* Default location for bitmap is 1K after superblock
1599 * using 3K - total of 4K
1601 mddev->bitmap_info.default_offset = 1024 >> 9;
1602 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1603 mddev->reshape_backwards = 0;
1605 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1606 memcpy(mddev->uuid, sb->set_uuid, 16);
1608 mddev->max_disks = (4096-256)/2;
1610 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1611 mddev->bitmap_info.file == NULL) {
1612 mddev->bitmap_info.offset =
1613 (__s32)le32_to_cpu(sb->bitmap_offset);
1614 /* Metadata doesn't record how much space is available.
1615 * For 1.0, we assume we can use up to the superblock
1616 * if before, else to 4K beyond superblock.
1617 * For others, assume no change is possible.
1619 if (mddev->minor_version > 0)
1620 mddev->bitmap_info.space = 0;
1621 else if (mddev->bitmap_info.offset > 0)
1622 mddev->bitmap_info.space =
1623 8 - mddev->bitmap_info.offset;
1625 mddev->bitmap_info.space =
1626 -mddev->bitmap_info.offset;
1629 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1630 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1631 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1632 mddev->new_level = le32_to_cpu(sb->new_level);
1633 mddev->new_layout = le32_to_cpu(sb->new_layout);
1634 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1635 if (mddev->delta_disks < 0 ||
1636 (mddev->delta_disks == 0 &&
1637 (le32_to_cpu(sb->feature_map)
1638 & MD_FEATURE_RESHAPE_BACKWARDS)))
1639 mddev->reshape_backwards = 1;
1641 mddev->reshape_position = MaxSector;
1642 mddev->delta_disks = 0;
1643 mddev->new_level = mddev->level;
1644 mddev->new_layout = mddev->layout;
1645 mddev->new_chunk_sectors = mddev->chunk_sectors;
1648 } else if (mddev->pers == NULL) {
1649 /* Insist of good event counter while assembling, except for
1650 * spares (which don't need an event count) */
1652 if (rdev->desc_nr >= 0 &&
1653 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1654 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1655 if (ev1 < mddev->events)
1657 } else if (mddev->bitmap) {
1658 /* If adding to array with a bitmap, then we can accept an
1659 * older device, but not too old.
1661 if (ev1 < mddev->bitmap->events_cleared)
1663 if (ev1 < mddev->events)
1664 set_bit(Bitmap_sync, &rdev->flags);
1666 if (ev1 < mddev->events)
1667 /* just a hot-add of a new device, leave raid_disk at -1 */
1670 if (mddev->level != LEVEL_MULTIPATH) {
1672 if (rdev->desc_nr < 0 ||
1673 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1677 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1679 case 0xffff: /* spare */
1681 case 0xfffe: /* faulty */
1682 set_bit(Faulty, &rdev->flags);
1685 rdev->saved_raid_disk = role;
1686 if ((le32_to_cpu(sb->feature_map) &
1687 MD_FEATURE_RECOVERY_OFFSET)) {
1688 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1689 if (!(le32_to_cpu(sb->feature_map) &
1690 MD_FEATURE_RECOVERY_BITMAP))
1691 rdev->saved_raid_disk = -1;
1693 set_bit(In_sync, &rdev->flags);
1694 rdev->raid_disk = role;
1697 if (sb->devflags & WriteMostly1)
1698 set_bit(WriteMostly, &rdev->flags);
1699 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1700 set_bit(Replacement, &rdev->flags);
1701 } else /* MULTIPATH are always insync */
1702 set_bit(In_sync, &rdev->flags);
1707 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1709 struct mdp_superblock_1 *sb;
1710 struct md_rdev *rdev2;
1712 /* make rdev->sb match mddev and rdev data. */
1714 sb = page_address(rdev->sb_page);
1716 sb->feature_map = 0;
1718 sb->recovery_offset = cpu_to_le64(0);
1719 memset(sb->pad3, 0, sizeof(sb->pad3));
1721 sb->utime = cpu_to_le64((__u64)mddev->utime);
1722 sb->events = cpu_to_le64(mddev->events);
1724 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1726 sb->resync_offset = cpu_to_le64(0);
1728 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1730 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1731 sb->size = cpu_to_le64(mddev->dev_sectors);
1732 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1733 sb->level = cpu_to_le32(mddev->level);
1734 sb->layout = cpu_to_le32(mddev->layout);
1736 if (test_bit(WriteMostly, &rdev->flags))
1737 sb->devflags |= WriteMostly1;
1739 sb->devflags &= ~WriteMostly1;
1740 sb->data_offset = cpu_to_le64(rdev->data_offset);
1741 sb->data_size = cpu_to_le64(rdev->sectors);
1743 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1744 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1745 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1748 if (rdev->raid_disk >= 0 &&
1749 !test_bit(In_sync, &rdev->flags)) {
1751 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1752 sb->recovery_offset =
1753 cpu_to_le64(rdev->recovery_offset);
1754 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1756 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1758 if (test_bit(Replacement, &rdev->flags))
1760 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1762 if (mddev->reshape_position != MaxSector) {
1763 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1764 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1765 sb->new_layout = cpu_to_le32(mddev->new_layout);
1766 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1767 sb->new_level = cpu_to_le32(mddev->new_level);
1768 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1769 if (mddev->delta_disks == 0 &&
1770 mddev->reshape_backwards)
1772 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1773 if (rdev->new_data_offset != rdev->data_offset) {
1775 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1776 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1777 - rdev->data_offset));
1781 if (rdev->badblocks.count == 0)
1782 /* Nothing to do for bad blocks*/ ;
1783 else if (sb->bblog_offset == 0)
1784 /* Cannot record bad blocks on this device */
1785 md_error(mddev, rdev);
1787 struct badblocks *bb = &rdev->badblocks;
1788 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1790 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1795 seq = read_seqbegin(&bb->lock);
1797 memset(bbp, 0xff, PAGE_SIZE);
1799 for (i = 0 ; i < bb->count ; i++) {
1800 u64 internal_bb = p[i];
1801 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1802 | BB_LEN(internal_bb));
1803 bbp[i] = cpu_to_le64(store_bb);
1806 if (read_seqretry(&bb->lock, seq))
1809 bb->sector = (rdev->sb_start +
1810 (int)le32_to_cpu(sb->bblog_offset));
1811 bb->size = le16_to_cpu(sb->bblog_size);
1816 rdev_for_each(rdev2, mddev)
1817 if (rdev2->desc_nr+1 > max_dev)
1818 max_dev = rdev2->desc_nr+1;
1820 if (max_dev > le32_to_cpu(sb->max_dev)) {
1822 sb->max_dev = cpu_to_le32(max_dev);
1823 rdev->sb_size = max_dev * 2 + 256;
1824 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1825 if (rdev->sb_size & bmask)
1826 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1828 max_dev = le32_to_cpu(sb->max_dev);
1830 for (i=0; i<max_dev;i++)
1831 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1833 rdev_for_each(rdev2, mddev) {
1835 if (test_bit(Faulty, &rdev2->flags))
1836 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837 else if (test_bit(In_sync, &rdev2->flags))
1838 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1839 else if (rdev2->raid_disk >= 0)
1840 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 sb->dev_roles[i] = cpu_to_le16(0xffff);
1845 sb->sb_csum = calc_sb_1_csum(sb);
1848 static unsigned long long
1849 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1851 struct mdp_superblock_1 *sb;
1852 sector_t max_sectors;
1853 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1854 return 0; /* component must fit device */
1855 if (rdev->data_offset != rdev->new_data_offset)
1856 return 0; /* too confusing */
1857 if (rdev->sb_start < rdev->data_offset) {
1858 /* minor versions 1 and 2; superblock before data */
1859 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1860 max_sectors -= rdev->data_offset;
1861 if (!num_sectors || num_sectors > max_sectors)
1862 num_sectors = max_sectors;
1863 } else if (rdev->mddev->bitmap_info.offset) {
1864 /* minor version 0 with bitmap we can't move */
1867 /* minor version 0; superblock after data */
1869 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1870 sb_start &= ~(sector_t)(4*2 - 1);
1871 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1872 if (!num_sectors || num_sectors > max_sectors)
1873 num_sectors = max_sectors;
1874 rdev->sb_start = sb_start;
1876 sb = page_address(rdev->sb_page);
1877 sb->data_size = cpu_to_le64(num_sectors);
1878 sb->super_offset = rdev->sb_start;
1879 sb->sb_csum = calc_sb_1_csum(sb);
1880 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882 md_super_wait(rdev->mddev);
1888 super_1_allow_new_offset(struct md_rdev *rdev,
1889 unsigned long long new_offset)
1891 /* All necessary checks on new >= old have been done */
1892 struct bitmap *bitmap;
1893 if (new_offset >= rdev->data_offset)
1896 /* with 1.0 metadata, there is no metadata to tread on
1897 * so we can always move back */
1898 if (rdev->mddev->minor_version == 0)
1901 /* otherwise we must be sure not to step on
1902 * any metadata, so stay:
1903 * 36K beyond start of superblock
1904 * beyond end of badblocks
1905 * beyond write-intent bitmap
1907 if (rdev->sb_start + (32+4)*2 > new_offset)
1909 bitmap = rdev->mddev->bitmap;
1910 if (bitmap && !rdev->mddev->bitmap_info.file &&
1911 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1912 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1914 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1920 static struct super_type super_types[] = {
1923 .owner = THIS_MODULE,
1924 .load_super = super_90_load,
1925 .validate_super = super_90_validate,
1926 .sync_super = super_90_sync,
1927 .rdev_size_change = super_90_rdev_size_change,
1928 .allow_new_offset = super_90_allow_new_offset,
1932 .owner = THIS_MODULE,
1933 .load_super = super_1_load,
1934 .validate_super = super_1_validate,
1935 .sync_super = super_1_sync,
1936 .rdev_size_change = super_1_rdev_size_change,
1937 .allow_new_offset = super_1_allow_new_offset,
1941 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1943 if (mddev->sync_super) {
1944 mddev->sync_super(mddev, rdev);
1948 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1950 super_types[mddev->major_version].sync_super(mddev, rdev);
1953 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1955 struct md_rdev *rdev, *rdev2;
1958 rdev_for_each_rcu(rdev, mddev1)
1959 rdev_for_each_rcu(rdev2, mddev2)
1960 if (rdev->bdev->bd_contains ==
1961 rdev2->bdev->bd_contains) {
1969 static LIST_HEAD(pending_raid_disks);
1972 * Try to register data integrity profile for an mddev
1974 * This is called when an array is started and after a disk has been kicked
1975 * from the array. It only succeeds if all working and active component devices
1976 * are integrity capable with matching profiles.
1978 int md_integrity_register(struct mddev *mddev)
1980 struct md_rdev *rdev, *reference = NULL;
1982 if (list_empty(&mddev->disks))
1983 return 0; /* nothing to do */
1984 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1985 return 0; /* shouldn't register, or already is */
1986 rdev_for_each(rdev, mddev) {
1987 /* skip spares and non-functional disks */
1988 if (test_bit(Faulty, &rdev->flags))
1990 if (rdev->raid_disk < 0)
1993 /* Use the first rdev as the reference */
1997 /* does this rdev's profile match the reference profile? */
1998 if (blk_integrity_compare(reference->bdev->bd_disk,
1999 rdev->bdev->bd_disk) < 0)
2002 if (!reference || !bdev_get_integrity(reference->bdev))
2005 * All component devices are integrity capable and have matching
2006 * profiles, register the common profile for the md device.
2008 if (blk_integrity_register(mddev->gendisk,
2009 bdev_get_integrity(reference->bdev)) != 0) {
2010 printk(KERN_ERR "md: failed to register integrity for %s\n",
2014 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2015 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2016 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2022 EXPORT_SYMBOL(md_integrity_register);
2024 /* Disable data integrity if non-capable/non-matching disk is being added */
2025 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2027 struct blk_integrity *bi_rdev;
2028 struct blk_integrity *bi_mddev;
2030 if (!mddev->gendisk)
2033 bi_rdev = bdev_get_integrity(rdev->bdev);
2034 bi_mddev = blk_get_integrity(mddev->gendisk);
2036 if (!bi_mddev) /* nothing to do */
2038 if (rdev->raid_disk < 0) /* skip spares */
2040 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2041 rdev->bdev->bd_disk) >= 0)
2043 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2044 blk_integrity_unregister(mddev->gendisk);
2046 EXPORT_SYMBOL(md_integrity_add_rdev);
2048 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2050 char b[BDEVNAME_SIZE];
2060 /* prevent duplicates */
2061 if (find_rdev(mddev, rdev->bdev->bd_dev))
2064 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2065 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2066 rdev->sectors < mddev->dev_sectors)) {
2068 /* Cannot change size, so fail
2069 * If mddev->level <= 0, then we don't care
2070 * about aligning sizes (e.g. linear)
2072 if (mddev->level > 0)
2075 mddev->dev_sectors = rdev->sectors;
2078 /* Verify rdev->desc_nr is unique.
2079 * If it is -1, assign a free number, else
2080 * check number is not in use
2082 if (rdev->desc_nr < 0) {
2084 if (mddev->pers) choice = mddev->raid_disks;
2085 while (find_rdev_nr(mddev, choice))
2087 rdev->desc_nr = choice;
2089 if (find_rdev_nr(mddev, rdev->desc_nr))
2092 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2093 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2094 mdname(mddev), mddev->max_disks);
2097 bdevname(rdev->bdev,b);
2098 while ( (s=strchr(b, '/')) != NULL)
2101 rdev->mddev = mddev;
2102 printk(KERN_INFO "md: bind<%s>\n", b);
2104 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2107 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2108 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2109 /* failure here is OK */;
2110 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2112 list_add_rcu(&rdev->same_set, &mddev->disks);
2113 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2115 /* May as well allow recovery to be retried once */
2116 mddev->recovery_disabled++;
2121 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2126 static void md_delayed_delete(struct work_struct *ws)
2128 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2129 kobject_del(&rdev->kobj);
2130 kobject_put(&rdev->kobj);
2133 static void unbind_rdev_from_array(struct md_rdev * rdev)
2135 char b[BDEVNAME_SIZE];
2140 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2141 list_del_rcu(&rdev->same_set);
2142 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2144 sysfs_remove_link(&rdev->kobj, "block");
2145 sysfs_put(rdev->sysfs_state);
2146 rdev->sysfs_state = NULL;
2147 rdev->badblocks.count = 0;
2148 /* We need to delay this, otherwise we can deadlock when
2149 * writing to 'remove' to "dev/state". We also need
2150 * to delay it due to rcu usage.
2153 INIT_WORK(&rdev->del_work, md_delayed_delete);
2154 kobject_get(&rdev->kobj);
2155 queue_work(md_misc_wq, &rdev->del_work);
2159 * prevent the device from being mounted, repartitioned or
2160 * otherwise reused by a RAID array (or any other kernel
2161 * subsystem), by bd_claiming the device.
2163 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2166 struct block_device *bdev;
2167 char b[BDEVNAME_SIZE];
2169 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2170 shared ? (struct md_rdev *)lock_rdev : rdev);
2172 printk(KERN_ERR "md: could not open %s.\n",
2173 __bdevname(dev, b));
2174 return PTR_ERR(bdev);
2180 static void unlock_rdev(struct md_rdev *rdev)
2182 struct block_device *bdev = rdev->bdev;
2186 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2189 void md_autodetect_dev(dev_t dev);
2191 static void export_rdev(struct md_rdev * rdev)
2193 char b[BDEVNAME_SIZE];
2194 printk(KERN_INFO "md: export_rdev(%s)\n",
2195 bdevname(rdev->bdev,b));
2198 md_rdev_clear(rdev);
2200 if (test_bit(AutoDetected, &rdev->flags))
2201 md_autodetect_dev(rdev->bdev->bd_dev);
2204 kobject_put(&rdev->kobj);
2207 static void kick_rdev_from_array(struct md_rdev * rdev)
2209 unbind_rdev_from_array(rdev);
2213 static void export_array(struct mddev *mddev)
2215 struct md_rdev *rdev, *tmp;
2217 rdev_for_each_safe(rdev, tmp, mddev) {
2222 kick_rdev_from_array(rdev);
2224 if (!list_empty(&mddev->disks))
2226 mddev->raid_disks = 0;
2227 mddev->major_version = 0;
2230 static void print_desc(mdp_disk_t *desc)
2232 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2233 desc->major,desc->minor,desc->raid_disk,desc->state);
2236 static void print_sb_90(mdp_super_t *sb)
2241 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2242 sb->major_version, sb->minor_version, sb->patch_version,
2243 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2245 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2246 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2247 sb->md_minor, sb->layout, sb->chunk_size);
2248 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2249 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2250 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2251 sb->failed_disks, sb->spare_disks,
2252 sb->sb_csum, (unsigned long)sb->events_lo);
2255 for (i = 0; i < MD_SB_DISKS; i++) {
2258 desc = sb->disks + i;
2259 if (desc->number || desc->major || desc->minor ||
2260 desc->raid_disk || (desc->state && (desc->state != 4))) {
2261 printk(" D %2d: ", i);
2265 printk(KERN_INFO "md: THIS: ");
2266 print_desc(&sb->this_disk);
2269 static void print_sb_1(struct mdp_superblock_1 *sb)
2273 uuid = sb->set_uuid;
2275 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2276 "md: Name: \"%s\" CT:%llu\n",
2277 le32_to_cpu(sb->major_version),
2278 le32_to_cpu(sb->feature_map),
2281 (unsigned long long)le64_to_cpu(sb->ctime)
2282 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2284 uuid = sb->device_uuid;
2286 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2288 "md: Dev:%08x UUID: %pU\n"
2289 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2290 "md: (MaxDev:%u) \n",
2291 le32_to_cpu(sb->level),
2292 (unsigned long long)le64_to_cpu(sb->size),
2293 le32_to_cpu(sb->raid_disks),
2294 le32_to_cpu(sb->layout),
2295 le32_to_cpu(sb->chunksize),
2296 (unsigned long long)le64_to_cpu(sb->data_offset),
2297 (unsigned long long)le64_to_cpu(sb->data_size),
2298 (unsigned long long)le64_to_cpu(sb->super_offset),
2299 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2300 le32_to_cpu(sb->dev_number),
2303 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2304 (unsigned long long)le64_to_cpu(sb->events),
2305 (unsigned long long)le64_to_cpu(sb->resync_offset),
2306 le32_to_cpu(sb->sb_csum),
2307 le32_to_cpu(sb->max_dev)
2311 static void print_rdev(struct md_rdev *rdev, int major_version)
2313 char b[BDEVNAME_SIZE];
2314 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2315 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2316 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2318 if (rdev->sb_loaded) {
2319 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2320 switch (major_version) {
2322 print_sb_90(page_address(rdev->sb_page));
2325 print_sb_1(page_address(rdev->sb_page));
2329 printk(KERN_INFO "md: no rdev superblock!\n");
2332 static void md_print_devices(void)
2334 struct list_head *tmp;
2335 struct md_rdev *rdev;
2336 struct mddev *mddev;
2337 char b[BDEVNAME_SIZE];
2340 printk("md: **********************************\n");
2341 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2342 printk("md: **********************************\n");
2343 for_each_mddev(mddev, tmp) {
2346 bitmap_print_sb(mddev->bitmap);
2348 printk("%s: ", mdname(mddev));
2349 rdev_for_each(rdev, mddev)
2350 printk("<%s>", bdevname(rdev->bdev,b));
2353 rdev_for_each(rdev, mddev)
2354 print_rdev(rdev, mddev->major_version);
2356 printk("md: **********************************\n");
2361 static void sync_sbs(struct mddev * mddev, int nospares)
2363 /* Update each superblock (in-memory image), but
2364 * if we are allowed to, skip spares which already
2365 * have the right event counter, or have one earlier
2366 * (which would mean they aren't being marked as dirty
2367 * with the rest of the array)
2369 struct md_rdev *rdev;
2370 rdev_for_each(rdev, mddev) {
2371 if (rdev->sb_events == mddev->events ||
2373 rdev->raid_disk < 0 &&
2374 rdev->sb_events+1 == mddev->events)) {
2375 /* Don't update this superblock */
2376 rdev->sb_loaded = 2;
2378 sync_super(mddev, rdev);
2379 rdev->sb_loaded = 1;
2384 static void md_update_sb(struct mddev * mddev, int force_change)
2386 struct md_rdev *rdev;
2389 int any_badblocks_changed = 0;
2393 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2397 /* First make sure individual recovery_offsets are correct */
2398 rdev_for_each(rdev, mddev) {
2399 if (rdev->raid_disk >= 0 &&
2400 mddev->delta_disks >= 0 &&
2401 !test_bit(In_sync, &rdev->flags) &&
2402 mddev->curr_resync_completed > rdev->recovery_offset)
2403 rdev->recovery_offset = mddev->curr_resync_completed;
2406 if (!mddev->persistent) {
2407 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2408 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2409 if (!mddev->external) {
2410 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2411 rdev_for_each(rdev, mddev) {
2412 if (rdev->badblocks.changed) {
2413 rdev->badblocks.changed = 0;
2414 md_ack_all_badblocks(&rdev->badblocks);
2415 md_error(mddev, rdev);
2417 clear_bit(Blocked, &rdev->flags);
2418 clear_bit(BlockedBadBlocks, &rdev->flags);
2419 wake_up(&rdev->blocked_wait);
2422 wake_up(&mddev->sb_wait);
2426 spin_lock_irq(&mddev->write_lock);
2428 mddev->utime = get_seconds();
2430 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2432 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2433 /* just a clean<-> dirty transition, possibly leave spares alone,
2434 * though if events isn't the right even/odd, we will have to do
2440 if (mddev->degraded)
2441 /* If the array is degraded, then skipping spares is both
2442 * dangerous and fairly pointless.
2443 * Dangerous because a device that was removed from the array
2444 * might have a event_count that still looks up-to-date,
2445 * so it can be re-added without a resync.
2446 * Pointless because if there are any spares to skip,
2447 * then a recovery will happen and soon that array won't
2448 * be degraded any more and the spare can go back to sleep then.
2452 sync_req = mddev->in_sync;
2454 /* If this is just a dirty<->clean transition, and the array is clean
2455 * and 'events' is odd, we can roll back to the previous clean state */
2457 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2458 && mddev->can_decrease_events
2459 && mddev->events != 1) {
2461 mddev->can_decrease_events = 0;
2463 /* otherwise we have to go forward and ... */
2465 mddev->can_decrease_events = nospares;
2468 if (!mddev->events) {
2470 * oops, this 64-bit counter should never wrap.
2471 * Either we are in around ~1 trillion A.C., assuming
2472 * 1 reboot per second, or we have a bug:
2478 rdev_for_each(rdev, mddev) {
2479 if (rdev->badblocks.changed)
2480 any_badblocks_changed++;
2481 if (test_bit(Faulty, &rdev->flags))
2482 set_bit(FaultRecorded, &rdev->flags);
2485 sync_sbs(mddev, nospares);
2486 spin_unlock_irq(&mddev->write_lock);
2488 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2489 mdname(mddev), mddev->in_sync);
2491 bitmap_update_sb(mddev->bitmap);
2492 rdev_for_each(rdev, mddev) {
2493 char b[BDEVNAME_SIZE];
2495 if (rdev->sb_loaded != 1)
2496 continue; /* no noise on spare devices */
2498 if (!test_bit(Faulty, &rdev->flags)) {
2499 md_super_write(mddev,rdev,
2500 rdev->sb_start, rdev->sb_size,
2502 pr_debug("md: (write) %s's sb offset: %llu\n",
2503 bdevname(rdev->bdev, b),
2504 (unsigned long long)rdev->sb_start);
2505 rdev->sb_events = mddev->events;
2506 if (rdev->badblocks.size) {
2507 md_super_write(mddev, rdev,
2508 rdev->badblocks.sector,
2509 rdev->badblocks.size << 9,
2511 rdev->badblocks.size = 0;
2515 pr_debug("md: %s (skipping faulty)\n",
2516 bdevname(rdev->bdev, b));
2518 if (mddev->level == LEVEL_MULTIPATH)
2519 /* only need to write one superblock... */
2522 md_super_wait(mddev);
2523 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2525 spin_lock_irq(&mddev->write_lock);
2526 if (mddev->in_sync != sync_req ||
2527 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2528 /* have to write it out again */
2529 spin_unlock_irq(&mddev->write_lock);
2532 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2533 spin_unlock_irq(&mddev->write_lock);
2534 wake_up(&mddev->sb_wait);
2535 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2536 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2538 rdev_for_each(rdev, mddev) {
2539 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2540 clear_bit(Blocked, &rdev->flags);
2542 if (any_badblocks_changed)
2543 md_ack_all_badblocks(&rdev->badblocks);
2544 clear_bit(BlockedBadBlocks, &rdev->flags);
2545 wake_up(&rdev->blocked_wait);
2549 /* words written to sysfs files may, or may not, be \n terminated.
2550 * We want to accept with case. For this we use cmd_match.
2552 static int cmd_match(const char *cmd, const char *str)
2554 /* See if cmd, written into a sysfs file, matches
2555 * str. They must either be the same, or cmd can
2556 * have a trailing newline
2558 while (*cmd && *str && *cmd == *str) {
2569 struct rdev_sysfs_entry {
2570 struct attribute attr;
2571 ssize_t (*show)(struct md_rdev *, char *);
2572 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2576 state_show(struct md_rdev *rdev, char *page)
2581 if (test_bit(Faulty, &rdev->flags) ||
2582 rdev->badblocks.unacked_exist) {
2583 len+= sprintf(page+len, "%sfaulty",sep);
2586 if (test_bit(In_sync, &rdev->flags)) {
2587 len += sprintf(page+len, "%sin_sync",sep);
2590 if (test_bit(WriteMostly, &rdev->flags)) {
2591 len += sprintf(page+len, "%swrite_mostly",sep);
2594 if (test_bit(Blocked, &rdev->flags) ||
2595 (rdev->badblocks.unacked_exist
2596 && !test_bit(Faulty, &rdev->flags))) {
2597 len += sprintf(page+len, "%sblocked", sep);
2600 if (!test_bit(Faulty, &rdev->flags) &&
2601 !test_bit(In_sync, &rdev->flags)) {
2602 len += sprintf(page+len, "%sspare", sep);
2605 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2606 len += sprintf(page+len, "%swrite_error", sep);
2609 if (test_bit(WantReplacement, &rdev->flags)) {
2610 len += sprintf(page+len, "%swant_replacement", sep);
2613 if (test_bit(Replacement, &rdev->flags)) {
2614 len += sprintf(page+len, "%sreplacement", sep);
2618 return len+sprintf(page+len, "\n");
2622 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2625 * faulty - simulates an error
2626 * remove - disconnects the device
2627 * writemostly - sets write_mostly
2628 * -writemostly - clears write_mostly
2629 * blocked - sets the Blocked flags
2630 * -blocked - clears the Blocked and possibly simulates an error
2631 * insync - sets Insync providing device isn't active
2632 * -insync - clear Insync for a device with a slot assigned,
2633 * so that it gets rebuilt based on bitmap
2634 * write_error - sets WriteErrorSeen
2635 * -write_error - clears WriteErrorSeen
2638 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2639 md_error(rdev->mddev, rdev);
2640 if (test_bit(Faulty, &rdev->flags))
2644 } else if (cmd_match(buf, "remove")) {
2645 if (rdev->raid_disk >= 0)
2648 struct mddev *mddev = rdev->mddev;
2649 kick_rdev_from_array(rdev);
2651 md_update_sb(mddev, 1);
2652 md_new_event(mddev);
2655 } else if (cmd_match(buf, "writemostly")) {
2656 set_bit(WriteMostly, &rdev->flags);
2658 } else if (cmd_match(buf, "-writemostly")) {
2659 clear_bit(WriteMostly, &rdev->flags);
2661 } else if (cmd_match(buf, "blocked")) {
2662 set_bit(Blocked, &rdev->flags);
2664 } else if (cmd_match(buf, "-blocked")) {
2665 if (!test_bit(Faulty, &rdev->flags) &&
2666 rdev->badblocks.unacked_exist) {
2667 /* metadata handler doesn't understand badblocks,
2668 * so we need to fail the device
2670 md_error(rdev->mddev, rdev);
2672 clear_bit(Blocked, &rdev->flags);
2673 clear_bit(BlockedBadBlocks, &rdev->flags);
2674 wake_up(&rdev->blocked_wait);
2675 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2676 md_wakeup_thread(rdev->mddev->thread);
2679 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2680 set_bit(In_sync, &rdev->flags);
2682 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2683 clear_bit(In_sync, &rdev->flags);
2684 rdev->saved_raid_disk = rdev->raid_disk;
2685 rdev->raid_disk = -1;
2687 } else if (cmd_match(buf, "write_error")) {
2688 set_bit(WriteErrorSeen, &rdev->flags);
2690 } else if (cmd_match(buf, "-write_error")) {
2691 clear_bit(WriteErrorSeen, &rdev->flags);
2693 } else if (cmd_match(buf, "want_replacement")) {
2694 /* Any non-spare device that is not a replacement can
2695 * become want_replacement at any time, but we then need to
2696 * check if recovery is needed.
2698 if (rdev->raid_disk >= 0 &&
2699 !test_bit(Replacement, &rdev->flags))
2700 set_bit(WantReplacement, &rdev->flags);
2701 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2702 md_wakeup_thread(rdev->mddev->thread);
2704 } else if (cmd_match(buf, "-want_replacement")) {
2705 /* Clearing 'want_replacement' is always allowed.
2706 * Once replacements starts it is too late though.
2709 clear_bit(WantReplacement, &rdev->flags);
2710 } else if (cmd_match(buf, "replacement")) {
2711 /* Can only set a device as a replacement when array has not
2712 * yet been started. Once running, replacement is automatic
2713 * from spares, or by assigning 'slot'.
2715 if (rdev->mddev->pers)
2718 set_bit(Replacement, &rdev->flags);
2721 } else if (cmd_match(buf, "-replacement")) {
2722 /* Similarly, can only clear Replacement before start */
2723 if (rdev->mddev->pers)
2726 clear_bit(Replacement, &rdev->flags);
2731 sysfs_notify_dirent_safe(rdev->sysfs_state);
2732 return err ? err : len;
2734 static struct rdev_sysfs_entry rdev_state =
2735 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2738 errors_show(struct md_rdev *rdev, char *page)
2740 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2744 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2747 unsigned long n = simple_strtoul(buf, &e, 10);
2748 if (*buf && (*e == 0 || *e == '\n')) {
2749 atomic_set(&rdev->corrected_errors, n);
2754 static struct rdev_sysfs_entry rdev_errors =
2755 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2758 slot_show(struct md_rdev *rdev, char *page)
2760 if (rdev->raid_disk < 0)
2761 return sprintf(page, "none\n");
2763 return sprintf(page, "%d\n", rdev->raid_disk);
2767 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2771 int slot = simple_strtoul(buf, &e, 10);
2772 if (strncmp(buf, "none", 4)==0)
2774 else if (e==buf || (*e && *e!= '\n'))
2776 if (rdev->mddev->pers && slot == -1) {
2777 /* Setting 'slot' on an active array requires also
2778 * updating the 'rd%d' link, and communicating
2779 * with the personality with ->hot_*_disk.
2780 * For now we only support removing
2781 * failed/spare devices. This normally happens automatically,
2782 * but not when the metadata is externally managed.
2784 if (rdev->raid_disk == -1)
2786 /* personality does all needed checks */
2787 if (rdev->mddev->pers->hot_remove_disk == NULL)
2789 clear_bit(Blocked, &rdev->flags);
2790 remove_and_add_spares(rdev->mddev, rdev);
2791 if (rdev->raid_disk >= 0)
2793 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2794 md_wakeup_thread(rdev->mddev->thread);
2795 } else if (rdev->mddev->pers) {
2796 /* Activating a spare .. or possibly reactivating
2797 * if we ever get bitmaps working here.
2800 if (rdev->raid_disk != -1)
2803 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2806 if (rdev->mddev->pers->hot_add_disk == NULL)
2809 if (slot >= rdev->mddev->raid_disks &&
2810 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2813 rdev->raid_disk = slot;
2814 if (test_bit(In_sync, &rdev->flags))
2815 rdev->saved_raid_disk = slot;
2817 rdev->saved_raid_disk = -1;
2818 clear_bit(In_sync, &rdev->flags);
2819 clear_bit(Bitmap_sync, &rdev->flags);
2820 err = rdev->mddev->pers->
2821 hot_add_disk(rdev->mddev, rdev);
2823 rdev->raid_disk = -1;
2826 sysfs_notify_dirent_safe(rdev->sysfs_state);
2827 if (sysfs_link_rdev(rdev->mddev, rdev))
2828 /* failure here is OK */;
2829 /* don't wakeup anyone, leave that to userspace. */
2831 if (slot >= rdev->mddev->raid_disks &&
2832 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2834 rdev->raid_disk = slot;
2835 /* assume it is working */
2836 clear_bit(Faulty, &rdev->flags);
2837 clear_bit(WriteMostly, &rdev->flags);
2838 set_bit(In_sync, &rdev->flags);
2839 sysfs_notify_dirent_safe(rdev->sysfs_state);
2845 static struct rdev_sysfs_entry rdev_slot =
2846 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2849 offset_show(struct md_rdev *rdev, char *page)
2851 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2855 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 unsigned long long offset;
2858 if (kstrtoull(buf, 10, &offset) < 0)
2860 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2862 if (rdev->sectors && rdev->mddev->external)
2863 /* Must set offset before size, so overlap checks
2866 rdev->data_offset = offset;
2867 rdev->new_data_offset = offset;
2871 static struct rdev_sysfs_entry rdev_offset =
2872 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2874 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2876 return sprintf(page, "%llu\n",
2877 (unsigned long long)rdev->new_data_offset);
2880 static ssize_t new_offset_store(struct md_rdev *rdev,
2881 const char *buf, size_t len)
2883 unsigned long long new_offset;
2884 struct mddev *mddev = rdev->mddev;
2886 if (kstrtoull(buf, 10, &new_offset) < 0)
2889 if (mddev->sync_thread)
2891 if (new_offset == rdev->data_offset)
2892 /* reset is always permitted */
2894 else if (new_offset > rdev->data_offset) {
2895 /* must not push array size beyond rdev_sectors */
2896 if (new_offset - rdev->data_offset
2897 + mddev->dev_sectors > rdev->sectors)
2900 /* Metadata worries about other space details. */
2902 /* decreasing the offset is inconsistent with a backwards
2905 if (new_offset < rdev->data_offset &&
2906 mddev->reshape_backwards)
2908 /* Increasing offset is inconsistent with forwards
2909 * reshape. reshape_direction should be set to
2910 * 'backwards' first.
2912 if (new_offset > rdev->data_offset &&
2913 !mddev->reshape_backwards)
2916 if (mddev->pers && mddev->persistent &&
2917 !super_types[mddev->major_version]
2918 .allow_new_offset(rdev, new_offset))
2920 rdev->new_data_offset = new_offset;
2921 if (new_offset > rdev->data_offset)
2922 mddev->reshape_backwards = 1;
2923 else if (new_offset < rdev->data_offset)
2924 mddev->reshape_backwards = 0;
2928 static struct rdev_sysfs_entry rdev_new_offset =
2929 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2932 rdev_size_show(struct md_rdev *rdev, char *page)
2934 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2937 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2939 /* check if two start/length pairs overlap */
2947 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2949 unsigned long long blocks;
2952 if (kstrtoull(buf, 10, &blocks) < 0)
2955 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2956 return -EINVAL; /* sector conversion overflow */
2959 if (new != blocks * 2)
2960 return -EINVAL; /* unsigned long long to sector_t overflow */
2967 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2969 struct mddev *my_mddev = rdev->mddev;
2970 sector_t oldsectors = rdev->sectors;
2973 if (strict_blocks_to_sectors(buf, §ors) < 0)
2975 if (rdev->data_offset != rdev->new_data_offset)
2976 return -EINVAL; /* too confusing */
2977 if (my_mddev->pers && rdev->raid_disk >= 0) {
2978 if (my_mddev->persistent) {
2979 sectors = super_types[my_mddev->major_version].
2980 rdev_size_change(rdev, sectors);
2983 } else if (!sectors)
2984 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2986 if (!my_mddev->pers->resize)
2987 /* Cannot change size for RAID0 or Linear etc */
2990 if (sectors < my_mddev->dev_sectors)
2991 return -EINVAL; /* component must fit device */
2993 rdev->sectors = sectors;
2994 if (sectors > oldsectors && my_mddev->external) {
2995 /* need to check that all other rdevs with the same ->bdev
2996 * do not overlap. We need to unlock the mddev to avoid
2997 * a deadlock. We have already changed rdev->sectors, and if
2998 * we have to change it back, we will have the lock again.
3000 struct mddev *mddev;
3002 struct list_head *tmp;
3004 mddev_unlock(my_mddev);
3005 for_each_mddev(mddev, tmp) {
3006 struct md_rdev *rdev2;
3008 mddev_lock_nointr(mddev);
3009 rdev_for_each(rdev2, mddev)
3010 if (rdev->bdev == rdev2->bdev &&
3012 overlaps(rdev->data_offset, rdev->sectors,
3018 mddev_unlock(mddev);
3024 mddev_lock_nointr(my_mddev);
3026 /* Someone else could have slipped in a size
3027 * change here, but doing so is just silly.
3028 * We put oldsectors back because we *know* it is
3029 * safe, and trust userspace not to race with
3032 rdev->sectors = oldsectors;
3039 static struct rdev_sysfs_entry rdev_size =
3040 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3043 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3045 unsigned long long recovery_start = rdev->recovery_offset;
3047 if (test_bit(In_sync, &rdev->flags) ||
3048 recovery_start == MaxSector)
3049 return sprintf(page, "none\n");
3051 return sprintf(page, "%llu\n", recovery_start);
3054 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3056 unsigned long long recovery_start;
3058 if (cmd_match(buf, "none"))
3059 recovery_start = MaxSector;
3060 else if (kstrtoull(buf, 10, &recovery_start))
3063 if (rdev->mddev->pers &&
3064 rdev->raid_disk >= 0)
3067 rdev->recovery_offset = recovery_start;
3068 if (recovery_start == MaxSector)
3069 set_bit(In_sync, &rdev->flags);
3071 clear_bit(In_sync, &rdev->flags);
3075 static struct rdev_sysfs_entry rdev_recovery_start =
3076 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3080 badblocks_show(struct badblocks *bb, char *page, int unack);
3082 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3084 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3086 return badblocks_show(&rdev->badblocks, page, 0);
3088 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3090 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3091 /* Maybe that ack was all we needed */
3092 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3093 wake_up(&rdev->blocked_wait);
3096 static struct rdev_sysfs_entry rdev_bad_blocks =
3097 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3100 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3102 return badblocks_show(&rdev->badblocks, page, 1);
3104 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3106 return badblocks_store(&rdev->badblocks, page, len, 1);
3108 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3109 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3111 static struct attribute *rdev_default_attrs[] = {
3116 &rdev_new_offset.attr,
3118 &rdev_recovery_start.attr,
3119 &rdev_bad_blocks.attr,
3120 &rdev_unack_bad_blocks.attr,
3124 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3126 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3127 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3128 struct mddev *mddev = rdev->mddev;
3134 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3136 if (rdev->mddev == NULL)
3139 rv = entry->show(rdev, page);
3140 mddev_unlock(mddev);
3146 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3147 const char *page, size_t length)
3149 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3150 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3152 struct mddev *mddev = rdev->mddev;
3156 if (!capable(CAP_SYS_ADMIN))
3158 rv = mddev ? mddev_lock(mddev): -EBUSY;
3160 if (rdev->mddev == NULL)
3163 rv = entry->store(rdev, page, length);
3164 mddev_unlock(mddev);
3169 static void rdev_free(struct kobject *ko)
3171 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3174 static const struct sysfs_ops rdev_sysfs_ops = {
3175 .show = rdev_attr_show,
3176 .store = rdev_attr_store,
3178 static struct kobj_type rdev_ktype = {
3179 .release = rdev_free,
3180 .sysfs_ops = &rdev_sysfs_ops,
3181 .default_attrs = rdev_default_attrs,
3184 int md_rdev_init(struct md_rdev *rdev)
3187 rdev->saved_raid_disk = -1;
3188 rdev->raid_disk = -1;
3190 rdev->data_offset = 0;
3191 rdev->new_data_offset = 0;
3192 rdev->sb_events = 0;
3193 rdev->last_read_error.tv_sec = 0;
3194 rdev->last_read_error.tv_nsec = 0;
3195 rdev->sb_loaded = 0;
3196 rdev->bb_page = NULL;
3197 atomic_set(&rdev->nr_pending, 0);
3198 atomic_set(&rdev->read_errors, 0);
3199 atomic_set(&rdev->corrected_errors, 0);
3201 INIT_LIST_HEAD(&rdev->same_set);
3202 init_waitqueue_head(&rdev->blocked_wait);
3204 /* Add space to store bad block list.
3205 * This reserves the space even on arrays where it cannot
3206 * be used - I wonder if that matters
3208 rdev->badblocks.count = 0;
3209 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3210 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3211 seqlock_init(&rdev->badblocks.lock);
3212 if (rdev->badblocks.page == NULL)
3217 EXPORT_SYMBOL_GPL(md_rdev_init);
3219 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3221 * mark the device faulty if:
3223 * - the device is nonexistent (zero size)
3224 * - the device has no valid superblock
3226 * a faulty rdev _never_ has rdev->sb set.
3228 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3230 char b[BDEVNAME_SIZE];
3232 struct md_rdev *rdev;
3235 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3237 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3238 return ERR_PTR(-ENOMEM);
3241 err = md_rdev_init(rdev);
3244 err = alloc_disk_sb(rdev);
3248 err = lock_rdev(rdev, newdev, super_format == -2);
3252 kobject_init(&rdev->kobj, &rdev_ktype);
3254 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3257 "md: %s has zero or unknown size, marking faulty!\n",
3258 bdevname(rdev->bdev,b));
3263 if (super_format >= 0) {
3264 err = super_types[super_format].
3265 load_super(rdev, NULL, super_minor);
3266 if (err == -EINVAL) {
3268 "md: %s does not have a valid v%d.%d "
3269 "superblock, not importing!\n",
3270 bdevname(rdev->bdev,b),
3271 super_format, super_minor);
3276 "md: could not read %s's sb, not importing!\n",
3277 bdevname(rdev->bdev,b));
3287 md_rdev_clear(rdev);
3289 return ERR_PTR(err);
3293 * Check a full RAID array for plausibility
3297 static void analyze_sbs(struct mddev * mddev)
3300 struct md_rdev *rdev, *freshest, *tmp;
3301 char b[BDEVNAME_SIZE];
3304 rdev_for_each_safe(rdev, tmp, mddev)
3305 switch (super_types[mddev->major_version].
3306 load_super(rdev, freshest, mddev->minor_version)) {
3314 "md: fatal superblock inconsistency in %s"
3315 " -- removing from array\n",
3316 bdevname(rdev->bdev,b));
3317 kick_rdev_from_array(rdev);
3321 super_types[mddev->major_version].
3322 validate_super(mddev, freshest);
3325 rdev_for_each_safe(rdev, tmp, mddev) {
3326 if (mddev->max_disks &&
3327 (rdev->desc_nr >= mddev->max_disks ||
3328 i > mddev->max_disks)) {
3330 "md: %s: %s: only %d devices permitted\n",
3331 mdname(mddev), bdevname(rdev->bdev, b),
3333 kick_rdev_from_array(rdev);
3336 if (rdev != freshest)
3337 if (super_types[mddev->major_version].
3338 validate_super(mddev, rdev)) {
3339 printk(KERN_WARNING "md: kicking non-fresh %s"
3341 bdevname(rdev->bdev,b));
3342 kick_rdev_from_array(rdev);
3345 if (mddev->level == LEVEL_MULTIPATH) {
3346 rdev->desc_nr = i++;
3347 rdev->raid_disk = rdev->desc_nr;
3348 set_bit(In_sync, &rdev->flags);
3349 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3350 rdev->raid_disk = -1;
3351 clear_bit(In_sync, &rdev->flags);
3356 /* Read a fixed-point number.
3357 * Numbers in sysfs attributes should be in "standard" units where
3358 * possible, so time should be in seconds.
3359 * However we internally use a a much smaller unit such as
3360 * milliseconds or jiffies.
3361 * This function takes a decimal number with a possible fractional
3362 * component, and produces an integer which is the result of
3363 * multiplying that number by 10^'scale'.
3364 * all without any floating-point arithmetic.
3366 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3368 unsigned long result = 0;
3370 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3373 else if (decimals < scale) {
3376 result = result * 10 + value;
3388 while (decimals < scale) {
3397 static void md_safemode_timeout(unsigned long data);
3400 safe_delay_show(struct mddev *mddev, char *page)
3402 int msec = (mddev->safemode_delay*1000)/HZ;
3403 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3406 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3410 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3413 mddev->safemode_delay = 0;
3415 unsigned long old_delay = mddev->safemode_delay;
3416 mddev->safemode_delay = (msec*HZ)/1000;
3417 if (mddev->safemode_delay == 0)
3418 mddev->safemode_delay = 1;
3419 if (mddev->safemode_delay < old_delay || old_delay == 0)
3420 md_safemode_timeout((unsigned long)mddev);
3424 static struct md_sysfs_entry md_safe_delay =
3425 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3428 level_show(struct mddev *mddev, char *page)
3430 struct md_personality *p = mddev->pers;
3432 return sprintf(page, "%s\n", p->name);
3433 else if (mddev->clevel[0])
3434 return sprintf(page, "%s\n", mddev->clevel);
3435 else if (mddev->level != LEVEL_NONE)
3436 return sprintf(page, "%d\n", mddev->level);
3442 level_store(struct mddev *mddev, const char *buf, size_t len)
3446 struct md_personality *pers;
3449 struct md_rdev *rdev;
3451 if (mddev->pers == NULL) {
3454 if (len >= sizeof(mddev->clevel))
3456 strncpy(mddev->clevel, buf, len);
3457 if (mddev->clevel[len-1] == '\n')
3459 mddev->clevel[len] = 0;
3460 mddev->level = LEVEL_NONE;
3464 /* request to change the personality. Need to ensure:
3465 * - array is not engaged in resync/recovery/reshape
3466 * - old personality can be suspended
3467 * - new personality will access other array.
3470 if (mddev->sync_thread ||
3471 mddev->reshape_position != MaxSector ||
3472 mddev->sysfs_active)
3475 if (!mddev->pers->quiesce) {
3476 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3477 mdname(mddev), mddev->pers->name);
3481 /* Now find the new personality */
3482 if (len == 0 || len >= sizeof(clevel))
3484 strncpy(clevel, buf, len);
3485 if (clevel[len-1] == '\n')
3488 if (kstrtol(clevel, 10, &level))
3491 if (request_module("md-%s", clevel) != 0)
3492 request_module("md-level-%s", clevel);
3493 spin_lock(&pers_lock);
3494 pers = find_pers(level, clevel);
3495 if (!pers || !try_module_get(pers->owner)) {
3496 spin_unlock(&pers_lock);
3497 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3500 spin_unlock(&pers_lock);
3502 if (pers == mddev->pers) {
3503 /* Nothing to do! */
3504 module_put(pers->owner);
3507 if (!pers->takeover) {
3508 module_put(pers->owner);
3509 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3510 mdname(mddev), clevel);
3514 rdev_for_each(rdev, mddev)
3515 rdev->new_raid_disk = rdev->raid_disk;
3517 /* ->takeover must set new_* and/or delta_disks
3518 * if it succeeds, and may set them when it fails.
3520 priv = pers->takeover(mddev);
3522 mddev->new_level = mddev->level;
3523 mddev->new_layout = mddev->layout;
3524 mddev->new_chunk_sectors = mddev->chunk_sectors;
3525 mddev->raid_disks -= mddev->delta_disks;
3526 mddev->delta_disks = 0;
3527 mddev->reshape_backwards = 0;
3528 module_put(pers->owner);
3529 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3530 mdname(mddev), clevel);
3531 return PTR_ERR(priv);
3534 /* Looks like we have a winner */
3535 mddev_suspend(mddev);
3536 mddev->pers->stop(mddev);
3538 if (mddev->pers->sync_request == NULL &&
3539 pers->sync_request != NULL) {
3540 /* need to add the md_redundancy_group */
3541 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3543 "md: cannot register extra attributes for %s\n",
3545 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3547 if (mddev->pers->sync_request != NULL &&
3548 pers->sync_request == NULL) {
3549 /* need to remove the md_redundancy_group */
3550 if (mddev->to_remove == NULL)
3551 mddev->to_remove = &md_redundancy_group;
3554 if (mddev->pers->sync_request == NULL &&
3556 /* We are converting from a no-redundancy array
3557 * to a redundancy array and metadata is managed
3558 * externally so we need to be sure that writes
3559 * won't block due to a need to transition
3561 * until external management is started.
3564 mddev->safemode_delay = 0;
3565 mddev->safemode = 0;
3568 rdev_for_each(rdev, mddev) {
3569 if (rdev->raid_disk < 0)
3571 if (rdev->new_raid_disk >= mddev->raid_disks)
3572 rdev->new_raid_disk = -1;
3573 if (rdev->new_raid_disk == rdev->raid_disk)
3575 sysfs_unlink_rdev(mddev, rdev);
3577 rdev_for_each(rdev, mddev) {
3578 if (rdev->raid_disk < 0)
3580 if (rdev->new_raid_disk == rdev->raid_disk)
3582 rdev->raid_disk = rdev->new_raid_disk;
3583 if (rdev->raid_disk < 0)
3584 clear_bit(In_sync, &rdev->flags);
3586 if (sysfs_link_rdev(mddev, rdev))
3587 printk(KERN_WARNING "md: cannot register rd%d"
3588 " for %s after level change\n",
3589 rdev->raid_disk, mdname(mddev));
3593 module_put(mddev->pers->owner);
3595 mddev->private = priv;
3596 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3597 mddev->level = mddev->new_level;
3598 mddev->layout = mddev->new_layout;
3599 mddev->chunk_sectors = mddev->new_chunk_sectors;
3600 mddev->delta_disks = 0;
3601 mddev->reshape_backwards = 0;
3602 mddev->degraded = 0;
3603 if (mddev->pers->sync_request == NULL) {
3604 /* this is now an array without redundancy, so
3605 * it must always be in_sync
3608 del_timer_sync(&mddev->safemode_timer);
3610 blk_set_stacking_limits(&mddev->queue->limits);
3612 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3613 mddev_resume(mddev);
3614 sysfs_notify(&mddev->kobj, NULL, "level");
3615 md_new_event(mddev);
3619 static struct md_sysfs_entry md_level =
3620 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3624 layout_show(struct mddev *mddev, char *page)
3626 /* just a number, not meaningful for all levels */
3627 if (mddev->reshape_position != MaxSector &&
3628 mddev->layout != mddev->new_layout)
3629 return sprintf(page, "%d (%d)\n",
3630 mddev->new_layout, mddev->layout);
3631 return sprintf(page, "%d\n", mddev->layout);
3635 layout_store(struct mddev *mddev, const char *buf, size_t len)
3638 unsigned long n = simple_strtoul(buf, &e, 10);
3640 if (!*buf || (*e && *e != '\n'))
3645 if (mddev->pers->check_reshape == NULL)
3647 mddev->new_layout = n;
3648 err = mddev->pers->check_reshape(mddev);
3650 mddev->new_layout = mddev->layout;
3654 mddev->new_layout = n;
3655 if (mddev->reshape_position == MaxSector)
3660 static struct md_sysfs_entry md_layout =
3661 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3665 raid_disks_show(struct mddev *mddev, char *page)
3667 if (mddev->raid_disks == 0)
3669 if (mddev->reshape_position != MaxSector &&
3670 mddev->delta_disks != 0)
3671 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3672 mddev->raid_disks - mddev->delta_disks);
3673 return sprintf(page, "%d\n", mddev->raid_disks);
3676 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3679 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3683 unsigned long n = simple_strtoul(buf, &e, 10);
3685 if (!*buf || (*e && *e != '\n'))
3689 rv = update_raid_disks(mddev, n);
3690 else if (mddev->reshape_position != MaxSector) {
3691 struct md_rdev *rdev;
3692 int olddisks = mddev->raid_disks - mddev->delta_disks;
3694 rdev_for_each(rdev, mddev) {
3696 rdev->data_offset < rdev->new_data_offset)
3699 rdev->data_offset > rdev->new_data_offset)
3702 mddev->delta_disks = n - olddisks;
3703 mddev->raid_disks = n;
3704 mddev->reshape_backwards = (mddev->delta_disks < 0);
3706 mddev->raid_disks = n;
3707 return rv ? rv : len;
3709 static struct md_sysfs_entry md_raid_disks =
3710 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3713 chunk_size_show(struct mddev *mddev, char *page)
3715 if (mddev->reshape_position != MaxSector &&
3716 mddev->chunk_sectors != mddev->new_chunk_sectors)
3717 return sprintf(page, "%d (%d)\n",
3718 mddev->new_chunk_sectors << 9,
3719 mddev->chunk_sectors << 9);
3720 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3724 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3727 unsigned long n = simple_strtoul(buf, &e, 10);
3729 if (!*buf || (*e && *e != '\n'))
3734 if (mddev->pers->check_reshape == NULL)
3736 mddev->new_chunk_sectors = n >> 9;
3737 err = mddev->pers->check_reshape(mddev);
3739 mddev->new_chunk_sectors = mddev->chunk_sectors;
3743 mddev->new_chunk_sectors = n >> 9;
3744 if (mddev->reshape_position == MaxSector)
3745 mddev->chunk_sectors = n >> 9;
3749 static struct md_sysfs_entry md_chunk_size =
3750 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3753 resync_start_show(struct mddev *mddev, char *page)
3755 if (mddev->recovery_cp == MaxSector)
3756 return sprintf(page, "none\n");
3757 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3761 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3764 unsigned long long n = simple_strtoull(buf, &e, 10);
3766 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3768 if (cmd_match(buf, "none"))
3770 else if (!*buf || (*e && *e != '\n'))
3773 mddev->recovery_cp = n;
3775 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3778 static struct md_sysfs_entry md_resync_start =
3779 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3782 * The array state can be:
3785 * No devices, no size, no level
3786 * Equivalent to STOP_ARRAY ioctl
3788 * May have some settings, but array is not active
3789 * all IO results in error
3790 * When written, doesn't tear down array, but just stops it
3791 * suspended (not supported yet)
3792 * All IO requests will block. The array can be reconfigured.
3793 * Writing this, if accepted, will block until array is quiescent
3795 * no resync can happen. no superblocks get written.
3796 * write requests fail
3798 * like readonly, but behaves like 'clean' on a write request.
3800 * clean - no pending writes, but otherwise active.
3801 * When written to inactive array, starts without resync
3802 * If a write request arrives then
3803 * if metadata is known, mark 'dirty' and switch to 'active'.
3804 * if not known, block and switch to write-pending
3805 * If written to an active array that has pending writes, then fails.
3807 * fully active: IO and resync can be happening.
3808 * When written to inactive array, starts with resync
3811 * clean, but writes are blocked waiting for 'active' to be written.
3814 * like active, but no writes have been seen for a while (100msec).
3817 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3818 write_pending, active_idle, bad_word};
3819 static char *array_states[] = {
3820 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3821 "write-pending", "active-idle", NULL };
3823 static int match_word(const char *word, char **list)
3826 for (n=0; list[n]; n++)
3827 if (cmd_match(word, list[n]))
3833 array_state_show(struct mddev *mddev, char *page)
3835 enum array_state st = inactive;
3848 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3850 else if (mddev->safemode)
3856 if (list_empty(&mddev->disks) &&
3857 mddev->raid_disks == 0 &&
3858 mddev->dev_sectors == 0)
3863 return sprintf(page, "%s\n", array_states[st]);
3866 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3867 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3868 static int do_md_run(struct mddev * mddev);
3869 static int restart_array(struct mddev *mddev);
3872 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3875 enum array_state st = match_word(buf, array_states);
3880 /* stopping an active array */
3881 err = do_md_stop(mddev, 0, NULL);
3884 /* stopping an active array */
3886 err = do_md_stop(mddev, 2, NULL);
3888 err = 0; /* already inactive */
3891 break; /* not supported yet */
3894 err = md_set_readonly(mddev, NULL);
3897 set_disk_ro(mddev->gendisk, 1);
3898 err = do_md_run(mddev);
3904 err = md_set_readonly(mddev, NULL);
3905 else if (mddev->ro == 1)
3906 err = restart_array(mddev);
3909 set_disk_ro(mddev->gendisk, 0);
3913 err = do_md_run(mddev);
3918 restart_array(mddev);
3919 spin_lock_irq(&mddev->write_lock);
3920 if (atomic_read(&mddev->writes_pending) == 0) {
3921 if (mddev->in_sync == 0) {
3923 if (mddev->safemode == 1)
3924 mddev->safemode = 0;
3925 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3930 spin_unlock_irq(&mddev->write_lock);
3936 restart_array(mddev);
3937 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3938 wake_up(&mddev->sb_wait);
3942 set_disk_ro(mddev->gendisk, 0);
3943 err = do_md_run(mddev);
3948 /* these cannot be set */
3954 if (mddev->hold_active == UNTIL_IOCTL)
3955 mddev->hold_active = 0;
3956 sysfs_notify_dirent_safe(mddev->sysfs_state);
3960 static struct md_sysfs_entry md_array_state =
3961 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3964 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3965 return sprintf(page, "%d\n",
3966 atomic_read(&mddev->max_corr_read_errors));
3970 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3973 unsigned long n = simple_strtoul(buf, &e, 10);
3975 if (*buf && (*e == 0 || *e == '\n')) {
3976 atomic_set(&mddev->max_corr_read_errors, n);
3982 static struct md_sysfs_entry max_corr_read_errors =
3983 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3984 max_corrected_read_errors_store);
3987 null_show(struct mddev *mddev, char *page)
3993 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3995 /* buf must be %d:%d\n? giving major and minor numbers */
3996 /* The new device is added to the array.
3997 * If the array has a persistent superblock, we read the
3998 * superblock to initialise info and check validity.
3999 * Otherwise, only checking done is that in bind_rdev_to_array,
4000 * which mainly checks size.
4003 int major = simple_strtoul(buf, &e, 10);
4006 struct md_rdev *rdev;
4009 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4011 minor = simple_strtoul(e+1, &e, 10);
4012 if (*e && *e != '\n')
4014 dev = MKDEV(major, minor);
4015 if (major != MAJOR(dev) ||
4016 minor != MINOR(dev))
4020 if (mddev->persistent) {
4021 rdev = md_import_device(dev, mddev->major_version,
4022 mddev->minor_version);
4023 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4024 struct md_rdev *rdev0
4025 = list_entry(mddev->disks.next,
4026 struct md_rdev, same_set);
4027 err = super_types[mddev->major_version]
4028 .load_super(rdev, rdev0, mddev->minor_version);
4032 } else if (mddev->external)
4033 rdev = md_import_device(dev, -2, -1);
4035 rdev = md_import_device(dev, -1, -1);
4038 return PTR_ERR(rdev);
4039 err = bind_rdev_to_array(rdev, mddev);
4043 return err ? err : len;
4046 static struct md_sysfs_entry md_new_device =
4047 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4050 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4053 unsigned long chunk, end_chunk;
4057 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4059 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4060 if (buf == end) break;
4061 if (*end == '-') { /* range */
4063 end_chunk = simple_strtoul(buf, &end, 0);
4064 if (buf == end) break;
4066 if (*end && !isspace(*end)) break;
4067 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4068 buf = skip_spaces(end);
4070 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4075 static struct md_sysfs_entry md_bitmap =
4076 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4079 size_show(struct mddev *mddev, char *page)
4081 return sprintf(page, "%llu\n",
4082 (unsigned long long)mddev->dev_sectors / 2);
4085 static int update_size(struct mddev *mddev, sector_t num_sectors);
4088 size_store(struct mddev *mddev, const char *buf, size_t len)
4090 /* If array is inactive, we can reduce the component size, but
4091 * not increase it (except from 0).
4092 * If array is active, we can try an on-line resize
4095 int err = strict_blocks_to_sectors(buf, §ors);
4100 err = update_size(mddev, sectors);
4101 md_update_sb(mddev, 1);
4103 if (mddev->dev_sectors == 0 ||
4104 mddev->dev_sectors > sectors)
4105 mddev->dev_sectors = sectors;
4109 return err ? err : len;
4112 static struct md_sysfs_entry md_size =
4113 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4116 /* Metadata version.
4118 * 'none' for arrays with no metadata (good luck...)
4119 * 'external' for arrays with externally managed metadata,
4120 * or N.M for internally known formats
4123 metadata_show(struct mddev *mddev, char *page)
4125 if (mddev->persistent)
4126 return sprintf(page, "%d.%d\n",
4127 mddev->major_version, mddev->minor_version);
4128 else if (mddev->external)
4129 return sprintf(page, "external:%s\n", mddev->metadata_type);
4131 return sprintf(page, "none\n");
4135 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4139 /* Changing the details of 'external' metadata is
4140 * always permitted. Otherwise there must be
4141 * no devices attached to the array.
4143 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4145 else if (!list_empty(&mddev->disks))
4148 if (cmd_match(buf, "none")) {
4149 mddev->persistent = 0;
4150 mddev->external = 0;
4151 mddev->major_version = 0;
4152 mddev->minor_version = 90;
4155 if (strncmp(buf, "external:", 9) == 0) {
4156 size_t namelen = len-9;
4157 if (namelen >= sizeof(mddev->metadata_type))
4158 namelen = sizeof(mddev->metadata_type)-1;
4159 strncpy(mddev->metadata_type, buf+9, namelen);
4160 mddev->metadata_type[namelen] = 0;
4161 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162 mddev->metadata_type[--namelen] = 0;
4163 mddev->persistent = 0;
4164 mddev->external = 1;
4165 mddev->major_version = 0;
4166 mddev->minor_version = 90;
4169 major = simple_strtoul(buf, &e, 10);
4170 if (e==buf || *e != '.')
4173 minor = simple_strtoul(buf, &e, 10);
4174 if (e==buf || (*e && *e != '\n') )
4176 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4178 mddev->major_version = major;
4179 mddev->minor_version = minor;
4180 mddev->persistent = 1;
4181 mddev->external = 0;
4185 static struct md_sysfs_entry md_metadata =
4186 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4189 action_show(struct mddev *mddev, char *page)
4191 char *type = "idle";
4192 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4194 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4195 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4196 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4198 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4199 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4201 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4205 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4208 return sprintf(page, "%s\n", type);
4212 action_store(struct mddev *mddev, const char *page, size_t len)
4214 if (!mddev->pers || !mddev->pers->sync_request)
4217 if (cmd_match(page, "frozen"))
4218 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4220 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4222 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4223 if (mddev->sync_thread) {
4224 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4225 md_reap_sync_thread(mddev);
4227 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4228 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4230 else if (cmd_match(page, "resync"))
4231 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4232 else if (cmd_match(page, "recover")) {
4233 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4235 } else if (cmd_match(page, "reshape")) {
4237 if (mddev->pers->start_reshape == NULL)
4239 err = mddev->pers->start_reshape(mddev);
4242 sysfs_notify(&mddev->kobj, NULL, "degraded");
4244 if (cmd_match(page, "check"))
4245 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4246 else if (!cmd_match(page, "repair"))
4248 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4249 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4251 if (mddev->ro == 2) {
4252 /* A write to sync_action is enough to justify
4253 * canceling read-auto mode
4256 md_wakeup_thread(mddev->sync_thread);
4258 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4259 md_wakeup_thread(mddev->thread);
4260 sysfs_notify_dirent_safe(mddev->sysfs_action);
4264 static struct md_sysfs_entry md_scan_mode =
4265 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4268 last_sync_action_show(struct mddev *mddev, char *page)
4270 return sprintf(page, "%s\n", mddev->last_sync_action);
4273 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4278 return sprintf(page, "%llu\n",
4279 (unsigned long long)
4280 atomic64_read(&mddev->resync_mismatches));
4283 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4286 sync_min_show(struct mddev *mddev, char *page)
4288 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4289 mddev->sync_speed_min ? "local": "system");
4293 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4297 if (strncmp(buf, "system", 6)==0) {
4298 mddev->sync_speed_min = 0;
4301 min = simple_strtoul(buf, &e, 10);
4302 if (buf == e || (*e && *e != '\n') || min <= 0)
4304 mddev->sync_speed_min = min;
4308 static struct md_sysfs_entry md_sync_min =
4309 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4312 sync_max_show(struct mddev *mddev, char *page)
4314 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4315 mddev->sync_speed_max ? "local": "system");
4319 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4323 if (strncmp(buf, "system", 6)==0) {
4324 mddev->sync_speed_max = 0;
4327 max = simple_strtoul(buf, &e, 10);
4328 if (buf == e || (*e && *e != '\n') || max <= 0)
4330 mddev->sync_speed_max = max;
4334 static struct md_sysfs_entry md_sync_max =
4335 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4338 degraded_show(struct mddev *mddev, char *page)
4340 return sprintf(page, "%d\n", mddev->degraded);
4342 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4345 sync_force_parallel_show(struct mddev *mddev, char *page)
4347 return sprintf(page, "%d\n", mddev->parallel_resync);
4351 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4355 if (kstrtol(buf, 10, &n))
4358 if (n != 0 && n != 1)
4361 mddev->parallel_resync = n;
4363 if (mddev->sync_thread)
4364 wake_up(&resync_wait);
4369 /* force parallel resync, even with shared block devices */
4370 static struct md_sysfs_entry md_sync_force_parallel =
4371 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4372 sync_force_parallel_show, sync_force_parallel_store);
4375 sync_speed_show(struct mddev *mddev, char *page)
4377 unsigned long resync, dt, db;
4378 if (mddev->curr_resync == 0)
4379 return sprintf(page, "none\n");
4380 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4381 dt = (jiffies - mddev->resync_mark) / HZ;
4383 db = resync - mddev->resync_mark_cnt;
4384 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4387 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4390 sync_completed_show(struct mddev *mddev, char *page)
4392 unsigned long long max_sectors, resync;
4394 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4395 return sprintf(page, "none\n");
4397 if (mddev->curr_resync == 1 ||
4398 mddev->curr_resync == 2)
4399 return sprintf(page, "delayed\n");
4401 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4402 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4403 max_sectors = mddev->resync_max_sectors;
4405 max_sectors = mddev->dev_sectors;
4407 resync = mddev->curr_resync_completed;
4408 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4411 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4414 min_sync_show(struct mddev *mddev, char *page)
4416 return sprintf(page, "%llu\n",
4417 (unsigned long long)mddev->resync_min);
4420 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4422 unsigned long long min;
4423 if (kstrtoull(buf, 10, &min))
4425 if (min > mddev->resync_max)
4427 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4430 /* Must be a multiple of chunk_size */
4431 if (mddev->chunk_sectors) {
4432 sector_t temp = min;
4433 if (sector_div(temp, mddev->chunk_sectors))
4436 mddev->resync_min = min;
4441 static struct md_sysfs_entry md_min_sync =
4442 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4445 max_sync_show(struct mddev *mddev, char *page)
4447 if (mddev->resync_max == MaxSector)
4448 return sprintf(page, "max\n");
4450 return sprintf(page, "%llu\n",
4451 (unsigned long long)mddev->resync_max);
4454 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4456 if (strncmp(buf, "max", 3) == 0)
4457 mddev->resync_max = MaxSector;
4459 unsigned long long max;
4460 if (kstrtoull(buf, 10, &max))
4462 if (max < mddev->resync_min)
4464 if (max < mddev->resync_max &&
4466 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4469 /* Must be a multiple of chunk_size */
4470 if (mddev->chunk_sectors) {
4471 sector_t temp = max;
4472 if (sector_div(temp, mddev->chunk_sectors))
4475 mddev->resync_max = max;
4477 wake_up(&mddev->recovery_wait);
4481 static struct md_sysfs_entry md_max_sync =
4482 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4485 suspend_lo_show(struct mddev *mddev, char *page)
4487 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4491 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4494 unsigned long long new = simple_strtoull(buf, &e, 10);
4495 unsigned long long old = mddev->suspend_lo;
4497 if (mddev->pers == NULL ||
4498 mddev->pers->quiesce == NULL)
4500 if (buf == e || (*e && *e != '\n'))
4503 mddev->suspend_lo = new;
4505 /* Shrinking suspended region */
4506 mddev->pers->quiesce(mddev, 2);
4508 /* Expanding suspended region - need to wait */
4509 mddev->pers->quiesce(mddev, 1);
4510 mddev->pers->quiesce(mddev, 0);
4514 static struct md_sysfs_entry md_suspend_lo =
4515 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4519 suspend_hi_show(struct mddev *mddev, char *page)
4521 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4525 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4528 unsigned long long new = simple_strtoull(buf, &e, 10);
4529 unsigned long long old = mddev->suspend_hi;
4531 if (mddev->pers == NULL ||
4532 mddev->pers->quiesce == NULL)
4534 if (buf == e || (*e && *e != '\n'))
4537 mddev->suspend_hi = new;
4539 /* Shrinking suspended region */
4540 mddev->pers->quiesce(mddev, 2);
4542 /* Expanding suspended region - need to wait */
4543 mddev->pers->quiesce(mddev, 1);
4544 mddev->pers->quiesce(mddev, 0);
4548 static struct md_sysfs_entry md_suspend_hi =
4549 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4552 reshape_position_show(struct mddev *mddev, char *page)
4554 if (mddev->reshape_position != MaxSector)
4555 return sprintf(page, "%llu\n",
4556 (unsigned long long)mddev->reshape_position);
4557 strcpy(page, "none\n");
4562 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4564 struct md_rdev *rdev;
4566 unsigned long long new = simple_strtoull(buf, &e, 10);
4569 if (buf == e || (*e && *e != '\n'))
4571 mddev->reshape_position = new;
4572 mddev->delta_disks = 0;
4573 mddev->reshape_backwards = 0;
4574 mddev->new_level = mddev->level;
4575 mddev->new_layout = mddev->layout;
4576 mddev->new_chunk_sectors = mddev->chunk_sectors;
4577 rdev_for_each(rdev, mddev)
4578 rdev->new_data_offset = rdev->data_offset;
4582 static struct md_sysfs_entry md_reshape_position =
4583 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4584 reshape_position_store);
4587 reshape_direction_show(struct mddev *mddev, char *page)
4589 return sprintf(page, "%s\n",
4590 mddev->reshape_backwards ? "backwards" : "forwards");
4594 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4597 if (cmd_match(buf, "forwards"))
4599 else if (cmd_match(buf, "backwards"))
4603 if (mddev->reshape_backwards == backwards)
4606 /* check if we are allowed to change */
4607 if (mddev->delta_disks)
4610 if (mddev->persistent &&
4611 mddev->major_version == 0)
4614 mddev->reshape_backwards = backwards;
4618 static struct md_sysfs_entry md_reshape_direction =
4619 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4620 reshape_direction_store);
4623 array_size_show(struct mddev *mddev, char *page)
4625 if (mddev->external_size)
4626 return sprintf(page, "%llu\n",
4627 (unsigned long long)mddev->array_sectors/2);
4629 return sprintf(page, "default\n");
4633 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4637 if (strncmp(buf, "default", 7) == 0) {
4639 sectors = mddev->pers->size(mddev, 0, 0);
4641 sectors = mddev->array_sectors;
4643 mddev->external_size = 0;
4645 if (strict_blocks_to_sectors(buf, §ors) < 0)
4647 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4650 mddev->external_size = 1;
4653 mddev->array_sectors = sectors;
4655 set_capacity(mddev->gendisk, mddev->array_sectors);
4656 revalidate_disk(mddev->gendisk);
4661 static struct md_sysfs_entry md_array_size =
4662 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4665 static struct attribute *md_default_attrs[] = {
4668 &md_raid_disks.attr,
4669 &md_chunk_size.attr,
4671 &md_resync_start.attr,
4673 &md_new_device.attr,
4674 &md_safe_delay.attr,
4675 &md_array_state.attr,
4676 &md_reshape_position.attr,
4677 &md_reshape_direction.attr,
4678 &md_array_size.attr,
4679 &max_corr_read_errors.attr,
4683 static struct attribute *md_redundancy_attrs[] = {
4685 &md_last_scan_mode.attr,
4686 &md_mismatches.attr,
4689 &md_sync_speed.attr,
4690 &md_sync_force_parallel.attr,
4691 &md_sync_completed.attr,
4694 &md_suspend_lo.attr,
4695 &md_suspend_hi.attr,
4700 static struct attribute_group md_redundancy_group = {
4702 .attrs = md_redundancy_attrs,
4707 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4709 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4710 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4715 spin_lock(&all_mddevs_lock);
4716 if (list_empty(&mddev->all_mddevs)) {
4717 spin_unlock(&all_mddevs_lock);
4721 spin_unlock(&all_mddevs_lock);
4723 rv = mddev_lock(mddev);
4725 rv = entry->show(mddev, page);
4726 mddev_unlock(mddev);
4733 md_attr_store(struct kobject *kobj, struct attribute *attr,
4734 const char *page, size_t length)
4736 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4737 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4742 if (!capable(CAP_SYS_ADMIN))
4744 spin_lock(&all_mddevs_lock);
4745 if (list_empty(&mddev->all_mddevs)) {
4746 spin_unlock(&all_mddevs_lock);
4750 spin_unlock(&all_mddevs_lock);
4751 if (entry->store == new_dev_store)
4752 flush_workqueue(md_misc_wq);
4753 rv = mddev_lock(mddev);
4755 rv = entry->store(mddev, page, length);
4756 mddev_unlock(mddev);
4762 static void md_free(struct kobject *ko)
4764 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4766 if (mddev->sysfs_state)
4767 sysfs_put(mddev->sysfs_state);
4769 if (mddev->gendisk) {
4770 del_gendisk(mddev->gendisk);
4771 put_disk(mddev->gendisk);
4774 blk_cleanup_queue(mddev->queue);
4779 static const struct sysfs_ops md_sysfs_ops = {
4780 .show = md_attr_show,
4781 .store = md_attr_store,
4783 static struct kobj_type md_ktype = {
4785 .sysfs_ops = &md_sysfs_ops,
4786 .default_attrs = md_default_attrs,
4791 static void mddev_delayed_delete(struct work_struct *ws)
4793 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4795 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4796 kobject_del(&mddev->kobj);
4797 kobject_put(&mddev->kobj);
4800 static int md_alloc(dev_t dev, char *name)
4802 static DEFINE_MUTEX(disks_mutex);
4803 struct mddev *mddev = mddev_find(dev);
4804 struct gendisk *disk;
4813 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4814 shift = partitioned ? MdpMinorShift : 0;
4815 unit = MINOR(mddev->unit) >> shift;
4817 /* wait for any previous instance of this device to be
4818 * completely removed (mddev_delayed_delete).
4820 flush_workqueue(md_misc_wq);
4822 mutex_lock(&disks_mutex);
4828 /* Need to ensure that 'name' is not a duplicate.
4830 struct mddev *mddev2;
4831 spin_lock(&all_mddevs_lock);
4833 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4834 if (mddev2->gendisk &&
4835 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4836 spin_unlock(&all_mddevs_lock);
4839 spin_unlock(&all_mddevs_lock);
4843 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4846 mddev->queue->queuedata = mddev;
4848 blk_queue_make_request(mddev->queue, md_make_request);
4849 blk_set_stacking_limits(&mddev->queue->limits);
4851 disk = alloc_disk(1 << shift);
4853 blk_cleanup_queue(mddev->queue);
4854 mddev->queue = NULL;
4857 disk->major = MAJOR(mddev->unit);
4858 disk->first_minor = unit << shift;
4860 strcpy(disk->disk_name, name);
4861 else if (partitioned)
4862 sprintf(disk->disk_name, "md_d%d", unit);
4864 sprintf(disk->disk_name, "md%d", unit);
4865 disk->fops = &md_fops;
4866 disk->private_data = mddev;
4867 disk->queue = mddev->queue;
4868 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4869 /* Allow extended partitions. This makes the
4870 * 'mdp' device redundant, but we can't really
4873 disk->flags |= GENHD_FL_EXT_DEVT;
4874 mddev->gendisk = disk;
4875 /* As soon as we call add_disk(), another thread could get
4876 * through to md_open, so make sure it doesn't get too far
4878 mutex_lock(&mddev->open_mutex);
4881 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4882 &disk_to_dev(disk)->kobj, "%s", "md");
4884 /* This isn't possible, but as kobject_init_and_add is marked
4885 * __must_check, we must do something with the result
4887 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891 if (mddev->kobj.sd &&
4892 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4893 printk(KERN_DEBUG "pointless warning\n");
4894 mutex_unlock(&mddev->open_mutex);
4896 mutex_unlock(&disks_mutex);
4897 if (!error && mddev->kobj.sd) {
4898 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4899 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4905 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4907 md_alloc(dev, NULL);
4911 static int add_named_array(const char *val, struct kernel_param *kp)
4913 /* val must be "md_*" where * is not all digits.
4914 * We allocate an array with a large free minor number, and
4915 * set the name to val. val must not already be an active name.
4917 int len = strlen(val);
4918 char buf[DISK_NAME_LEN];
4920 while (len && val[len-1] == '\n')
4922 if (len >= DISK_NAME_LEN)
4924 strlcpy(buf, val, len+1);
4925 if (strncmp(buf, "md_", 3) != 0)
4927 return md_alloc(0, buf);
4930 static void md_safemode_timeout(unsigned long data)
4932 struct mddev *mddev = (struct mddev *) data;
4934 if (!atomic_read(&mddev->writes_pending)) {
4935 mddev->safemode = 1;
4936 if (mddev->external)
4937 sysfs_notify_dirent_safe(mddev->sysfs_state);
4939 md_wakeup_thread(mddev->thread);
4942 static int start_dirty_degraded;
4944 int md_run(struct mddev *mddev)
4947 struct md_rdev *rdev;
4948 struct md_personality *pers;
4950 if (list_empty(&mddev->disks))
4951 /* cannot run an array with no devices.. */
4956 /* Cannot run until previous stop completes properly */
4957 if (mddev->sysfs_active)
4961 * Analyze all RAID superblock(s)
4963 if (!mddev->raid_disks) {
4964 if (!mddev->persistent)
4969 if (mddev->level != LEVEL_NONE)
4970 request_module("md-level-%d", mddev->level);
4971 else if (mddev->clevel[0])
4972 request_module("md-%s", mddev->clevel);
4975 * Drop all container device buffers, from now on
4976 * the only valid external interface is through the md
4979 rdev_for_each(rdev, mddev) {
4980 if (test_bit(Faulty, &rdev->flags))
4982 sync_blockdev(rdev->bdev);
4983 invalidate_bdev(rdev->bdev);
4985 /* perform some consistency tests on the device.
4986 * We don't want the data to overlap the metadata,
4987 * Internal Bitmap issues have been handled elsewhere.
4989 if (rdev->meta_bdev) {
4990 /* Nothing to check */;
4991 } else if (rdev->data_offset < rdev->sb_start) {
4992 if (mddev->dev_sectors &&
4993 rdev->data_offset + mddev->dev_sectors
4995 printk("md: %s: data overlaps metadata\n",
5000 if (rdev->sb_start + rdev->sb_size/512
5001 > rdev->data_offset) {
5002 printk("md: %s: metadata overlaps data\n",
5007 sysfs_notify_dirent_safe(rdev->sysfs_state);
5010 if (mddev->bio_set == NULL)
5011 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5013 spin_lock(&pers_lock);
5014 pers = find_pers(mddev->level, mddev->clevel);
5015 if (!pers || !try_module_get(pers->owner)) {
5016 spin_unlock(&pers_lock);
5017 if (mddev->level != LEVEL_NONE)
5018 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5021 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5026 spin_unlock(&pers_lock);
5027 if (mddev->level != pers->level) {
5028 mddev->level = pers->level;
5029 mddev->new_level = pers->level;
5031 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5033 if (mddev->reshape_position != MaxSector &&
5034 pers->start_reshape == NULL) {
5035 /* This personality cannot handle reshaping... */
5037 module_put(pers->owner);
5041 if (pers->sync_request) {
5042 /* Warn if this is a potentially silly
5045 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5046 struct md_rdev *rdev2;
5049 rdev_for_each(rdev, mddev)
5050 rdev_for_each(rdev2, mddev) {
5052 rdev->bdev->bd_contains ==
5053 rdev2->bdev->bd_contains) {
5055 "%s: WARNING: %s appears to be"
5056 " on the same physical disk as"
5059 bdevname(rdev->bdev,b),
5060 bdevname(rdev2->bdev,b2));
5067 "True protection against single-disk"
5068 " failure might be compromised.\n");
5071 mddev->recovery = 0;
5072 /* may be over-ridden by personality */
5073 mddev->resync_max_sectors = mddev->dev_sectors;
5075 mddev->ok_start_degraded = start_dirty_degraded;
5077 if (start_readonly && mddev->ro == 0)
5078 mddev->ro = 2; /* read-only, but switch on first write */
5080 err = mddev->pers->run(mddev);
5082 printk(KERN_ERR "md: pers->run() failed ...\n");
5083 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5084 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5085 " but 'external_size' not in effect?\n", __func__);
5087 "md: invalid array_size %llu > default size %llu\n",
5088 (unsigned long long)mddev->array_sectors / 2,
5089 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5091 mddev->pers->stop(mddev);
5093 if (err == 0 && mddev->pers->sync_request &&
5094 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5095 err = bitmap_create(mddev);
5097 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5098 mdname(mddev), err);
5099 mddev->pers->stop(mddev);
5103 module_put(mddev->pers->owner);
5105 bitmap_destroy(mddev);
5108 if (mddev->pers->sync_request) {
5109 if (mddev->kobj.sd &&
5110 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5112 "md: cannot register extra attributes for %s\n",
5114 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5115 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5118 atomic_set(&mddev->writes_pending,0);
5119 atomic_set(&mddev->max_corr_read_errors,
5120 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5121 mddev->safemode = 0;
5122 mddev->safemode_timer.function = md_safemode_timeout;
5123 mddev->safemode_timer.data = (unsigned long) mddev;
5124 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128 rdev_for_each(rdev, mddev)
5129 if (rdev->raid_disk >= 0)
5130 if (sysfs_link_rdev(mddev, rdev))
5131 /* failure here is OK */;
5133 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5135 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5136 md_update_sb(mddev, 0);
5138 md_new_event(mddev);
5139 sysfs_notify_dirent_safe(mddev->sysfs_state);
5140 sysfs_notify_dirent_safe(mddev->sysfs_action);
5141 sysfs_notify(&mddev->kobj, NULL, "degraded");
5144 EXPORT_SYMBOL_GPL(md_run);
5146 static int do_md_run(struct mddev *mddev)
5150 err = md_run(mddev);
5153 err = bitmap_load(mddev);
5155 bitmap_destroy(mddev);
5159 md_wakeup_thread(mddev->thread);
5160 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5162 set_capacity(mddev->gendisk, mddev->array_sectors);
5163 revalidate_disk(mddev->gendisk);
5165 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5170 static int restart_array(struct mddev *mddev)
5172 struct gendisk *disk = mddev->gendisk;
5174 /* Complain if it has no devices */
5175 if (list_empty(&mddev->disks))
5181 mddev->safemode = 0;
5183 set_disk_ro(disk, 0);
5184 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5186 /* Kick recovery or resync if necessary */
5187 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5188 md_wakeup_thread(mddev->thread);
5189 md_wakeup_thread(mddev->sync_thread);
5190 sysfs_notify_dirent_safe(mddev->sysfs_state);
5194 /* similar to deny_write_access, but accounts for our holding a reference
5195 * to the file ourselves */
5196 static int deny_bitmap_write_access(struct file * file)
5198 struct inode *inode = file->f_mapping->host;
5200 spin_lock(&inode->i_lock);
5201 if (atomic_read(&inode->i_writecount) > 1) {
5202 spin_unlock(&inode->i_lock);
5205 atomic_set(&inode->i_writecount, -1);
5206 spin_unlock(&inode->i_lock);
5211 void restore_bitmap_write_access(struct file *file)
5213 struct inode *inode = file->f_mapping->host;
5215 spin_lock(&inode->i_lock);
5216 atomic_set(&inode->i_writecount, 1);
5217 spin_unlock(&inode->i_lock);
5220 static void md_clean(struct mddev *mddev)
5222 mddev->array_sectors = 0;
5223 mddev->external_size = 0;
5224 mddev->dev_sectors = 0;
5225 mddev->raid_disks = 0;
5226 mddev->recovery_cp = 0;
5227 mddev->resync_min = 0;
5228 mddev->resync_max = MaxSector;
5229 mddev->reshape_position = MaxSector;
5230 mddev->external = 0;
5231 mddev->persistent = 0;
5232 mddev->level = LEVEL_NONE;
5233 mddev->clevel[0] = 0;
5236 mddev->metadata_type[0] = 0;
5237 mddev->chunk_sectors = 0;
5238 mddev->ctime = mddev->utime = 0;
5240 mddev->max_disks = 0;
5242 mddev->can_decrease_events = 0;
5243 mddev->delta_disks = 0;
5244 mddev->reshape_backwards = 0;
5245 mddev->new_level = LEVEL_NONE;
5246 mddev->new_layout = 0;
5247 mddev->new_chunk_sectors = 0;
5248 mddev->curr_resync = 0;
5249 atomic64_set(&mddev->resync_mismatches, 0);
5250 mddev->suspend_lo = mddev->suspend_hi = 0;
5251 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5252 mddev->recovery = 0;
5255 mddev->degraded = 0;
5256 mddev->safemode = 0;
5257 mddev->merge_check_needed = 0;
5258 mddev->bitmap_info.offset = 0;
5259 mddev->bitmap_info.default_offset = 0;
5260 mddev->bitmap_info.default_space = 0;
5261 mddev->bitmap_info.chunksize = 0;
5262 mddev->bitmap_info.daemon_sleep = 0;
5263 mddev->bitmap_info.max_write_behind = 0;
5266 static void __md_stop_writes(struct mddev *mddev)
5268 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5269 if (mddev->sync_thread) {
5270 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5271 md_reap_sync_thread(mddev);
5274 del_timer_sync(&mddev->safemode_timer);
5276 bitmap_flush(mddev);
5277 md_super_wait(mddev);
5279 if (mddev->ro == 0 &&
5280 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5281 /* mark array as shutdown cleanly */
5283 md_update_sb(mddev, 1);
5287 void md_stop_writes(struct mddev *mddev)
5289 mddev_lock_nointr(mddev);
5290 __md_stop_writes(mddev);
5291 mddev_unlock(mddev);
5293 EXPORT_SYMBOL_GPL(md_stop_writes);
5295 static void __md_stop(struct mddev *mddev)
5298 mddev->pers->stop(mddev);
5299 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5300 mddev->to_remove = &md_redundancy_group;
5301 module_put(mddev->pers->owner);
5303 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5306 void md_stop(struct mddev *mddev)
5308 /* stop the array and free an attached data structures.
5309 * This is called from dm-raid
5312 bitmap_destroy(mddev);
5314 bioset_free(mddev->bio_set);
5317 EXPORT_SYMBOL_GPL(md_stop);
5319 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5324 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5326 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5327 md_wakeup_thread(mddev->thread);
5329 if (mddev->sync_thread) {
5330 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5331 /* Thread might be blocked waiting for metadata update
5332 * which will now never happen */
5333 wake_up_process(mddev->sync_thread->tsk);
5335 mddev_unlock(mddev);
5336 wait_event(resync_wait, mddev->sync_thread == NULL);
5337 mddev_lock_nointr(mddev);
5339 mutex_lock(&mddev->open_mutex);
5340 if (atomic_read(&mddev->openers) > !!bdev ||
5341 mddev->sync_thread ||
5342 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5343 printk("md: %s still in use.\n",mdname(mddev));
5345 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5346 md_wakeup_thread(mddev->thread);
5352 __md_stop_writes(mddev);
5358 set_disk_ro(mddev->gendisk, 1);
5359 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5360 sysfs_notify_dirent_safe(mddev->sysfs_state);
5364 mutex_unlock(&mddev->open_mutex);
5369 * 0 - completely stop and dis-assemble array
5370 * 2 - stop but do not disassemble array
5372 static int do_md_stop(struct mddev * mddev, int mode,
5373 struct block_device *bdev)
5375 struct gendisk *disk = mddev->gendisk;
5376 struct md_rdev *rdev;
5379 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5381 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5382 md_wakeup_thread(mddev->thread);
5384 if (mddev->sync_thread) {
5385 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5386 /* Thread might be blocked waiting for metadata update
5387 * which will now never happen */
5388 wake_up_process(mddev->sync_thread->tsk);
5390 mddev_unlock(mddev);
5391 wait_event(resync_wait, mddev->sync_thread == NULL);
5392 mddev_lock_nointr(mddev);
5394 mutex_lock(&mddev->open_mutex);
5395 if (atomic_read(&mddev->openers) > !!bdev ||
5396 mddev->sysfs_active ||
5397 mddev->sync_thread ||
5398 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5399 printk("md: %s still in use.\n",mdname(mddev));
5400 mutex_unlock(&mddev->open_mutex);
5402 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5403 md_wakeup_thread(mddev->thread);
5409 set_disk_ro(disk, 0);
5411 __md_stop_writes(mddev);
5413 mddev->queue->merge_bvec_fn = NULL;
5414 mddev->queue->backing_dev_info.congested_fn = NULL;
5416 /* tell userspace to handle 'inactive' */
5417 sysfs_notify_dirent_safe(mddev->sysfs_state);
5419 rdev_for_each(rdev, mddev)
5420 if (rdev->raid_disk >= 0)
5421 sysfs_unlink_rdev(mddev, rdev);
5423 set_capacity(disk, 0);
5424 mutex_unlock(&mddev->open_mutex);
5426 revalidate_disk(disk);
5431 mutex_unlock(&mddev->open_mutex);
5433 * Free resources if final stop
5436 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5438 bitmap_destroy(mddev);
5439 if (mddev->bitmap_info.file) {
5440 restore_bitmap_write_access(mddev->bitmap_info.file);
5441 fput(mddev->bitmap_info.file);
5442 mddev->bitmap_info.file = NULL;
5444 mddev->bitmap_info.offset = 0;
5446 export_array(mddev);
5449 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5450 if (mddev->hold_active == UNTIL_STOP)
5451 mddev->hold_active = 0;
5453 blk_integrity_unregister(disk);
5454 md_new_event(mddev);
5455 sysfs_notify_dirent_safe(mddev->sysfs_state);
5460 static void autorun_array(struct mddev *mddev)
5462 struct md_rdev *rdev;
5465 if (list_empty(&mddev->disks))
5468 printk(KERN_INFO "md: running: ");
5470 rdev_for_each(rdev, mddev) {
5471 char b[BDEVNAME_SIZE];
5472 printk("<%s>", bdevname(rdev->bdev,b));
5476 err = do_md_run(mddev);
5478 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5479 do_md_stop(mddev, 0, NULL);
5484 * lets try to run arrays based on all disks that have arrived
5485 * until now. (those are in pending_raid_disks)
5487 * the method: pick the first pending disk, collect all disks with
5488 * the same UUID, remove all from the pending list and put them into
5489 * the 'same_array' list. Then order this list based on superblock
5490 * update time (freshest comes first), kick out 'old' disks and
5491 * compare superblocks. If everything's fine then run it.
5493 * If "unit" is allocated, then bump its reference count
5495 static void autorun_devices(int part)
5497 struct md_rdev *rdev0, *rdev, *tmp;
5498 struct mddev *mddev;
5499 char b[BDEVNAME_SIZE];
5501 printk(KERN_INFO "md: autorun ...\n");
5502 while (!list_empty(&pending_raid_disks)) {
5505 LIST_HEAD(candidates);
5506 rdev0 = list_entry(pending_raid_disks.next,
5507 struct md_rdev, same_set);
5509 printk(KERN_INFO "md: considering %s ...\n",
5510 bdevname(rdev0->bdev,b));
5511 INIT_LIST_HEAD(&candidates);
5512 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5513 if (super_90_load(rdev, rdev0, 0) >= 0) {
5514 printk(KERN_INFO "md: adding %s ...\n",
5515 bdevname(rdev->bdev,b));
5516 list_move(&rdev->same_set, &candidates);
5519 * now we have a set of devices, with all of them having
5520 * mostly sane superblocks. It's time to allocate the
5524 dev = MKDEV(mdp_major,
5525 rdev0->preferred_minor << MdpMinorShift);
5526 unit = MINOR(dev) >> MdpMinorShift;
5528 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5531 if (rdev0->preferred_minor != unit) {
5532 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5533 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5537 md_probe(dev, NULL, NULL);
5538 mddev = mddev_find(dev);
5539 if (!mddev || !mddev->gendisk) {
5543 "md: cannot allocate memory for md drive.\n");
5546 if (mddev_lock(mddev))
5547 printk(KERN_WARNING "md: %s locked, cannot run\n",
5549 else if (mddev->raid_disks || mddev->major_version
5550 || !list_empty(&mddev->disks)) {
5552 "md: %s already running, cannot run %s\n",
5553 mdname(mddev), bdevname(rdev0->bdev,b));
5554 mddev_unlock(mddev);
5556 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5557 mddev->persistent = 1;
5558 rdev_for_each_list(rdev, tmp, &candidates) {
5559 list_del_init(&rdev->same_set);
5560 if (bind_rdev_to_array(rdev, mddev))
5563 autorun_array(mddev);
5564 mddev_unlock(mddev);
5566 /* on success, candidates will be empty, on error
5569 rdev_for_each_list(rdev, tmp, &candidates) {
5570 list_del_init(&rdev->same_set);
5575 printk(KERN_INFO "md: ... autorun DONE.\n");
5577 #endif /* !MODULE */
5579 static int get_version(void __user * arg)
5583 ver.major = MD_MAJOR_VERSION;
5584 ver.minor = MD_MINOR_VERSION;
5585 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5587 if (copy_to_user(arg, &ver, sizeof(ver)))
5593 static int get_array_info(struct mddev * mddev, void __user * arg)
5595 mdu_array_info_t info;
5596 int nr,working,insync,failed,spare;
5597 struct md_rdev *rdev;
5599 nr = working = insync = failed = spare = 0;
5601 rdev_for_each_rcu(rdev, mddev) {
5603 if (test_bit(Faulty, &rdev->flags))
5607 if (test_bit(In_sync, &rdev->flags))
5615 info.major_version = mddev->major_version;
5616 info.minor_version = mddev->minor_version;
5617 info.patch_version = MD_PATCHLEVEL_VERSION;
5618 info.ctime = mddev->ctime;
5619 info.level = mddev->level;
5620 info.size = mddev->dev_sectors / 2;
5621 if (info.size != mddev->dev_sectors / 2) /* overflow */
5624 info.raid_disks = mddev->raid_disks;
5625 info.md_minor = mddev->md_minor;
5626 info.not_persistent= !mddev->persistent;
5628 info.utime = mddev->utime;
5631 info.state = (1<<MD_SB_CLEAN);
5632 if (mddev->bitmap && mddev->bitmap_info.offset)
5633 info.state = (1<<MD_SB_BITMAP_PRESENT);
5634 info.active_disks = insync;
5635 info.working_disks = working;
5636 info.failed_disks = failed;
5637 info.spare_disks = spare;
5639 info.layout = mddev->layout;
5640 info.chunk_size = mddev->chunk_sectors << 9;
5642 if (copy_to_user(arg, &info, sizeof(info)))
5648 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5650 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5651 char *ptr, *buf = NULL;
5654 file = kmalloc(sizeof(*file), GFP_NOIO);
5659 /* bitmap disabled, zero the first byte and copy out */
5660 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5661 file->pathname[0] = '\0';
5665 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5669 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5670 buf, sizeof(file->pathname));
5674 strcpy(file->pathname, ptr);
5678 if (copy_to_user(arg, file, sizeof(*file)))
5686 static int get_disk_info(struct mddev * mddev, void __user * arg)
5688 mdu_disk_info_t info;
5689 struct md_rdev *rdev;
5691 if (copy_from_user(&info, arg, sizeof(info)))
5695 rdev = find_rdev_nr_rcu(mddev, info.number);
5697 info.major = MAJOR(rdev->bdev->bd_dev);
5698 info.minor = MINOR(rdev->bdev->bd_dev);
5699 info.raid_disk = rdev->raid_disk;
5701 if (test_bit(Faulty, &rdev->flags))
5702 info.state |= (1<<MD_DISK_FAULTY);
5703 else if (test_bit(In_sync, &rdev->flags)) {
5704 info.state |= (1<<MD_DISK_ACTIVE);
5705 info.state |= (1<<MD_DISK_SYNC);
5707 if (test_bit(WriteMostly, &rdev->flags))
5708 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5710 info.major = info.minor = 0;
5711 info.raid_disk = -1;
5712 info.state = (1<<MD_DISK_REMOVED);
5716 if (copy_to_user(arg, &info, sizeof(info)))
5722 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5724 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5725 struct md_rdev *rdev;
5726 dev_t dev = MKDEV(info->major,info->minor);
5728 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5731 if (!mddev->raid_disks) {
5733 /* expecting a device which has a superblock */
5734 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5737 "md: md_import_device returned %ld\n",
5739 return PTR_ERR(rdev);
5741 if (!list_empty(&mddev->disks)) {
5742 struct md_rdev *rdev0
5743 = list_entry(mddev->disks.next,
5744 struct md_rdev, same_set);
5745 err = super_types[mddev->major_version]
5746 .load_super(rdev, rdev0, mddev->minor_version);
5749 "md: %s has different UUID to %s\n",
5750 bdevname(rdev->bdev,b),
5751 bdevname(rdev0->bdev,b2));
5756 err = bind_rdev_to_array(rdev, mddev);
5763 * add_new_disk can be used once the array is assembled
5764 * to add "hot spares". They must already have a superblock
5769 if (!mddev->pers->hot_add_disk) {
5771 "%s: personality does not support diskops!\n",
5775 if (mddev->persistent)
5776 rdev = md_import_device(dev, mddev->major_version,
5777 mddev->minor_version);
5779 rdev = md_import_device(dev, -1, -1);
5782 "md: md_import_device returned %ld\n",
5784 return PTR_ERR(rdev);
5786 /* set saved_raid_disk if appropriate */
5787 if (!mddev->persistent) {
5788 if (info->state & (1<<MD_DISK_SYNC) &&
5789 info->raid_disk < mddev->raid_disks) {
5790 rdev->raid_disk = info->raid_disk;
5791 set_bit(In_sync, &rdev->flags);
5792 clear_bit(Bitmap_sync, &rdev->flags);
5794 rdev->raid_disk = -1;
5795 rdev->saved_raid_disk = rdev->raid_disk;
5797 super_types[mddev->major_version].
5798 validate_super(mddev, rdev);
5799 if ((info->state & (1<<MD_DISK_SYNC)) &&
5800 rdev->raid_disk != info->raid_disk) {
5801 /* This was a hot-add request, but events doesn't
5802 * match, so reject it.
5808 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5809 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5810 set_bit(WriteMostly, &rdev->flags);
5812 clear_bit(WriteMostly, &rdev->flags);
5814 rdev->raid_disk = -1;
5815 err = bind_rdev_to_array(rdev, mddev);
5816 if (!err && !mddev->pers->hot_remove_disk) {
5817 /* If there is hot_add_disk but no hot_remove_disk
5818 * then added disks for geometry changes,
5819 * and should be added immediately.
5821 super_types[mddev->major_version].
5822 validate_super(mddev, rdev);
5823 err = mddev->pers->hot_add_disk(mddev, rdev);
5825 unbind_rdev_from_array(rdev);
5830 sysfs_notify_dirent_safe(rdev->sysfs_state);
5832 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5833 if (mddev->degraded)
5834 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5837 md_new_event(mddev);
5838 md_wakeup_thread(mddev->thread);
5842 /* otherwise, add_new_disk is only allowed
5843 * for major_version==0 superblocks
5845 if (mddev->major_version != 0) {
5846 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5851 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5853 rdev = md_import_device(dev, -1, 0);
5856 "md: error, md_import_device() returned %ld\n",
5858 return PTR_ERR(rdev);
5860 rdev->desc_nr = info->number;
5861 if (info->raid_disk < mddev->raid_disks)
5862 rdev->raid_disk = info->raid_disk;
5864 rdev->raid_disk = -1;
5866 if (rdev->raid_disk < mddev->raid_disks)
5867 if (info->state & (1<<MD_DISK_SYNC))
5868 set_bit(In_sync, &rdev->flags);
5870 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5871 set_bit(WriteMostly, &rdev->flags);
5873 if (!mddev->persistent) {
5874 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5875 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5877 rdev->sb_start = calc_dev_sboffset(rdev);
5878 rdev->sectors = rdev->sb_start;
5880 err = bind_rdev_to_array(rdev, mddev);
5890 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5892 char b[BDEVNAME_SIZE];
5893 struct md_rdev *rdev;
5895 rdev = find_rdev(mddev, dev);
5899 clear_bit(Blocked, &rdev->flags);
5900 remove_and_add_spares(mddev, rdev);
5902 if (rdev->raid_disk >= 0)
5905 kick_rdev_from_array(rdev);
5906 md_update_sb(mddev, 1);
5907 md_new_event(mddev);
5911 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5912 bdevname(rdev->bdev,b), mdname(mddev));
5916 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5918 char b[BDEVNAME_SIZE];
5920 struct md_rdev *rdev;
5925 if (mddev->major_version != 0) {
5926 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5927 " version-0 superblocks.\n",
5931 if (!mddev->pers->hot_add_disk) {
5933 "%s: personality does not support diskops!\n",
5938 rdev = md_import_device(dev, -1, 0);
5941 "md: error, md_import_device() returned %ld\n",
5946 if (mddev->persistent)
5947 rdev->sb_start = calc_dev_sboffset(rdev);
5949 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5951 rdev->sectors = rdev->sb_start;
5953 if (test_bit(Faulty, &rdev->flags)) {
5955 "md: can not hot-add faulty %s disk to %s!\n",
5956 bdevname(rdev->bdev,b), mdname(mddev));
5960 clear_bit(In_sync, &rdev->flags);
5962 rdev->saved_raid_disk = -1;
5963 err = bind_rdev_to_array(rdev, mddev);
5968 * The rest should better be atomic, we can have disk failures
5969 * noticed in interrupt contexts ...
5972 rdev->raid_disk = -1;
5974 md_update_sb(mddev, 1);
5977 * Kick recovery, maybe this spare has to be added to the
5978 * array immediately.
5980 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5981 md_wakeup_thread(mddev->thread);
5982 md_new_event(mddev);
5990 static int set_bitmap_file(struct mddev *mddev, int fd)
5995 if (!mddev->pers->quiesce)
5997 if (mddev->recovery || mddev->sync_thread)
5999 /* we should be able to change the bitmap.. */
6005 return -EEXIST; /* cannot add when bitmap is present */
6006 mddev->bitmap_info.file = fget(fd);
6008 if (mddev->bitmap_info.file == NULL) {
6009 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6014 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6016 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6018 fput(mddev->bitmap_info.file);
6019 mddev->bitmap_info.file = NULL;
6022 mddev->bitmap_info.offset = 0; /* file overrides offset */
6023 } else if (mddev->bitmap == NULL)
6024 return -ENOENT; /* cannot remove what isn't there */
6027 mddev->pers->quiesce(mddev, 1);
6029 err = bitmap_create(mddev);
6031 err = bitmap_load(mddev);
6033 if (fd < 0 || err) {
6034 bitmap_destroy(mddev);
6035 fd = -1; /* make sure to put the file */
6037 mddev->pers->quiesce(mddev, 0);
6040 if (mddev->bitmap_info.file) {
6041 restore_bitmap_write_access(mddev->bitmap_info.file);
6042 fput(mddev->bitmap_info.file);
6044 mddev->bitmap_info.file = NULL;
6051 * set_array_info is used two different ways
6052 * The original usage is when creating a new array.
6053 * In this usage, raid_disks is > 0 and it together with
6054 * level, size, not_persistent,layout,chunksize determine the
6055 * shape of the array.
6056 * This will always create an array with a type-0.90.0 superblock.
6057 * The newer usage is when assembling an array.
6058 * In this case raid_disks will be 0, and the major_version field is
6059 * use to determine which style super-blocks are to be found on the devices.
6060 * The minor and patch _version numbers are also kept incase the
6061 * super_block handler wishes to interpret them.
6063 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6066 if (info->raid_disks == 0) {
6067 /* just setting version number for superblock loading */
6068 if (info->major_version < 0 ||
6069 info->major_version >= ARRAY_SIZE(super_types) ||
6070 super_types[info->major_version].name == NULL) {
6071 /* maybe try to auto-load a module? */
6073 "md: superblock version %d not known\n",
6074 info->major_version);
6077 mddev->major_version = info->major_version;
6078 mddev->minor_version = info->minor_version;
6079 mddev->patch_version = info->patch_version;
6080 mddev->persistent = !info->not_persistent;
6081 /* ensure mddev_put doesn't delete this now that there
6082 * is some minimal configuration.
6084 mddev->ctime = get_seconds();
6087 mddev->major_version = MD_MAJOR_VERSION;
6088 mddev->minor_version = MD_MINOR_VERSION;
6089 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6090 mddev->ctime = get_seconds();
6092 mddev->level = info->level;
6093 mddev->clevel[0] = 0;
6094 mddev->dev_sectors = 2 * (sector_t)info->size;
6095 mddev->raid_disks = info->raid_disks;
6096 /* don't set md_minor, it is determined by which /dev/md* was
6099 if (info->state & (1<<MD_SB_CLEAN))
6100 mddev->recovery_cp = MaxSector;
6102 mddev->recovery_cp = 0;
6103 mddev->persistent = ! info->not_persistent;
6104 mddev->external = 0;
6106 mddev->layout = info->layout;
6107 mddev->chunk_sectors = info->chunk_size >> 9;
6109 mddev->max_disks = MD_SB_DISKS;
6111 if (mddev->persistent)
6113 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6115 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6116 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6117 mddev->bitmap_info.offset = 0;
6119 mddev->reshape_position = MaxSector;
6122 * Generate a 128 bit UUID
6124 get_random_bytes(mddev->uuid, 16);
6126 mddev->new_level = mddev->level;
6127 mddev->new_chunk_sectors = mddev->chunk_sectors;
6128 mddev->new_layout = mddev->layout;
6129 mddev->delta_disks = 0;
6130 mddev->reshape_backwards = 0;
6135 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6137 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6139 if (mddev->external_size)
6142 mddev->array_sectors = array_sectors;
6144 EXPORT_SYMBOL(md_set_array_sectors);
6146 static int update_size(struct mddev *mddev, sector_t num_sectors)
6148 struct md_rdev *rdev;
6150 int fit = (num_sectors == 0);
6152 if (mddev->pers->resize == NULL)
6154 /* The "num_sectors" is the number of sectors of each device that
6155 * is used. This can only make sense for arrays with redundancy.
6156 * linear and raid0 always use whatever space is available. We can only
6157 * consider changing this number if no resync or reconstruction is
6158 * happening, and if the new size is acceptable. It must fit before the
6159 * sb_start or, if that is <data_offset, it must fit before the size
6160 * of each device. If num_sectors is zero, we find the largest size
6163 if (mddev->sync_thread)
6166 rdev_for_each(rdev, mddev) {
6167 sector_t avail = rdev->sectors;
6169 if (fit && (num_sectors == 0 || num_sectors > avail))
6170 num_sectors = avail;
6171 if (avail < num_sectors)
6174 rv = mddev->pers->resize(mddev, num_sectors);
6176 revalidate_disk(mddev->gendisk);
6180 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6183 struct md_rdev *rdev;
6184 /* change the number of raid disks */
6185 if (mddev->pers->check_reshape == NULL)
6187 if (raid_disks <= 0 ||
6188 (mddev->max_disks && raid_disks >= mddev->max_disks))
6190 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6193 rdev_for_each(rdev, mddev) {
6194 if (mddev->raid_disks < raid_disks &&
6195 rdev->data_offset < rdev->new_data_offset)
6197 if (mddev->raid_disks > raid_disks &&
6198 rdev->data_offset > rdev->new_data_offset)
6202 mddev->delta_disks = raid_disks - mddev->raid_disks;
6203 if (mddev->delta_disks < 0)
6204 mddev->reshape_backwards = 1;
6205 else if (mddev->delta_disks > 0)
6206 mddev->reshape_backwards = 0;
6208 rv = mddev->pers->check_reshape(mddev);
6210 mddev->delta_disks = 0;
6211 mddev->reshape_backwards = 0;
6218 * update_array_info is used to change the configuration of an
6220 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6221 * fields in the info are checked against the array.
6222 * Any differences that cannot be handled will cause an error.
6223 * Normally, only one change can be managed at a time.
6225 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6231 /* calculate expected state,ignoring low bits */
6232 if (mddev->bitmap && mddev->bitmap_info.offset)
6233 state |= (1 << MD_SB_BITMAP_PRESENT);
6235 if (mddev->major_version != info->major_version ||
6236 mddev->minor_version != info->minor_version ||
6237 /* mddev->patch_version != info->patch_version || */
6238 mddev->ctime != info->ctime ||
6239 mddev->level != info->level ||
6240 /* mddev->layout != info->layout || */
6241 !mddev->persistent != info->not_persistent||
6242 mddev->chunk_sectors != info->chunk_size >> 9 ||
6243 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6244 ((state^info->state) & 0xfffffe00)
6247 /* Check there is only one change */
6248 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6250 if (mddev->raid_disks != info->raid_disks)
6252 if (mddev->layout != info->layout)
6254 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6261 if (mddev->layout != info->layout) {
6263 * we don't need to do anything at the md level, the
6264 * personality will take care of it all.
6266 if (mddev->pers->check_reshape == NULL)
6269 mddev->new_layout = info->layout;
6270 rv = mddev->pers->check_reshape(mddev);
6272 mddev->new_layout = mddev->layout;
6276 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6277 rv = update_size(mddev, (sector_t)info->size * 2);
6279 if (mddev->raid_disks != info->raid_disks)
6280 rv = update_raid_disks(mddev, info->raid_disks);
6282 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6283 if (mddev->pers->quiesce == NULL)
6285 if (mddev->recovery || mddev->sync_thread)
6287 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6288 /* add the bitmap */
6291 if (mddev->bitmap_info.default_offset == 0)
6293 mddev->bitmap_info.offset =
6294 mddev->bitmap_info.default_offset;
6295 mddev->bitmap_info.space =
6296 mddev->bitmap_info.default_space;
6297 mddev->pers->quiesce(mddev, 1);
6298 rv = bitmap_create(mddev);
6300 rv = bitmap_load(mddev);
6302 bitmap_destroy(mddev);
6303 mddev->pers->quiesce(mddev, 0);
6305 /* remove the bitmap */
6308 if (mddev->bitmap->storage.file)
6310 mddev->pers->quiesce(mddev, 1);
6311 bitmap_destroy(mddev);
6312 mddev->pers->quiesce(mddev, 0);
6313 mddev->bitmap_info.offset = 0;
6316 md_update_sb(mddev, 1);
6320 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6322 struct md_rdev *rdev;
6325 if (mddev->pers == NULL)
6329 rdev = find_rdev_rcu(mddev, dev);
6333 md_error(mddev, rdev);
6334 if (!test_bit(Faulty, &rdev->flags))
6342 * We have a problem here : there is no easy way to give a CHS
6343 * virtual geometry. We currently pretend that we have a 2 heads
6344 * 4 sectors (with a BIG number of cylinders...). This drives
6345 * dosfs just mad... ;-)
6347 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6349 struct mddev *mddev = bdev->bd_disk->private_data;
6353 geo->cylinders = mddev->array_sectors / 8;
6357 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6358 unsigned int cmd, unsigned long arg)
6361 void __user *argp = (void __user *)arg;
6362 struct mddev *mddev = NULL;
6367 case GET_ARRAY_INFO:
6371 if (!capable(CAP_SYS_ADMIN))
6376 * Commands dealing with the RAID driver but not any
6381 err = get_version(argp);
6384 case PRINT_RAID_DEBUG:
6392 autostart_arrays(arg);
6399 * Commands creating/starting a new array:
6402 mddev = bdev->bd_disk->private_data;
6409 /* Some actions do not requires the mutex */
6411 case GET_ARRAY_INFO:
6412 if (!mddev->raid_disks && !mddev->external)
6415 err = get_array_info(mddev, argp);
6419 if (!mddev->raid_disks && !mddev->external)
6422 err = get_disk_info(mddev, argp);
6425 case SET_DISK_FAULTY:
6426 err = set_disk_faulty(mddev, new_decode_dev(arg));
6430 if (cmd == ADD_NEW_DISK)
6431 /* need to ensure md_delayed_delete() has completed */
6432 flush_workqueue(md_misc_wq);
6434 if (cmd == HOT_REMOVE_DISK)
6435 /* need to ensure recovery thread has run */
6436 wait_event_interruptible_timeout(mddev->sb_wait,
6437 !test_bit(MD_RECOVERY_NEEDED,
6439 msecs_to_jiffies(5000));
6440 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6441 /* Need to flush page cache, and ensure no-one else opens
6444 mutex_lock(&mddev->open_mutex);
6445 if (atomic_read(&mddev->openers) > 1) {
6446 mutex_unlock(&mddev->open_mutex);
6450 set_bit(MD_STILL_CLOSED, &mddev->flags);
6451 mutex_unlock(&mddev->open_mutex);
6452 sync_blockdev(bdev);
6454 err = mddev_lock(mddev);
6457 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6462 if (cmd == SET_ARRAY_INFO) {
6463 mdu_array_info_t info;
6465 memset(&info, 0, sizeof(info));
6466 else if (copy_from_user(&info, argp, sizeof(info))) {
6471 err = update_array_info(mddev, &info);
6473 printk(KERN_WARNING "md: couldn't update"
6474 " array info. %d\n", err);
6479 if (!list_empty(&mddev->disks)) {
6481 "md: array %s already has disks!\n",
6486 if (mddev->raid_disks) {
6488 "md: array %s already initialised!\n",
6493 err = set_array_info(mddev, &info);
6495 printk(KERN_WARNING "md: couldn't set"
6496 " array info. %d\n", err);
6503 * Commands querying/configuring an existing array:
6505 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6506 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6507 if ((!mddev->raid_disks && !mddev->external)
6508 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6509 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6510 && cmd != GET_BITMAP_FILE) {
6516 * Commands even a read-only array can execute:
6519 case GET_BITMAP_FILE:
6520 err = get_bitmap_file(mddev, argp);
6523 case RESTART_ARRAY_RW:
6524 err = restart_array(mddev);
6528 err = do_md_stop(mddev, 0, bdev);
6532 err = md_set_readonly(mddev, bdev);
6535 case HOT_REMOVE_DISK:
6536 err = hot_remove_disk(mddev, new_decode_dev(arg));
6540 /* We can support ADD_NEW_DISK on read-only arrays
6541 * on if we are re-adding a preexisting device.
6542 * So require mddev->pers and MD_DISK_SYNC.
6545 mdu_disk_info_t info;
6546 if (copy_from_user(&info, argp, sizeof(info)))
6548 else if (!(info.state & (1<<MD_DISK_SYNC)))
6549 /* Need to clear read-only for this */
6552 err = add_new_disk(mddev, &info);
6558 if (get_user(ro, (int __user *)(arg))) {
6564 /* if the bdev is going readonly the value of mddev->ro
6565 * does not matter, no writes are coming
6570 /* are we are already prepared for writes? */
6574 /* transitioning to readauto need only happen for
6575 * arrays that call md_write_start
6578 err = restart_array(mddev);
6581 set_disk_ro(mddev->gendisk, 0);
6588 * The remaining ioctls are changing the state of the
6589 * superblock, so we do not allow them on read-only arrays.
6590 * However non-MD ioctls (e.g. get-size) will still come through
6591 * here and hit the 'default' below, so only disallow
6592 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6594 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6595 if (mddev->ro == 2) {
6597 sysfs_notify_dirent_safe(mddev->sysfs_state);
6598 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6599 /* mddev_unlock will wake thread */
6600 /* If a device failed while we were read-only, we
6601 * need to make sure the metadata is updated now.
6603 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6604 mddev_unlock(mddev);
6605 wait_event(mddev->sb_wait,
6606 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6607 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6608 mddev_lock_nointr(mddev);
6619 mdu_disk_info_t info;
6620 if (copy_from_user(&info, argp, sizeof(info)))
6623 err = add_new_disk(mddev, &info);
6628 err = hot_add_disk(mddev, new_decode_dev(arg));
6632 err = do_md_run(mddev);
6635 case SET_BITMAP_FILE:
6636 err = set_bitmap_file(mddev, (int)arg);
6646 if (mddev->hold_active == UNTIL_IOCTL &&
6648 mddev->hold_active = 0;
6649 mddev_unlock(mddev);
6658 #ifdef CONFIG_COMPAT
6659 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6660 unsigned int cmd, unsigned long arg)
6663 case HOT_REMOVE_DISK:
6665 case SET_DISK_FAULTY:
6666 case SET_BITMAP_FILE:
6667 /* These take in integer arg, do not convert */
6670 arg = (unsigned long)compat_ptr(arg);
6674 return md_ioctl(bdev, mode, cmd, arg);
6676 #endif /* CONFIG_COMPAT */
6678 static int md_open(struct block_device *bdev, fmode_t mode)
6681 * Succeed if we can lock the mddev, which confirms that
6682 * it isn't being stopped right now.
6684 struct mddev *mddev = mddev_find(bdev->bd_dev);
6690 if (mddev->gendisk != bdev->bd_disk) {
6691 /* we are racing with mddev_put which is discarding this
6695 /* Wait until bdev->bd_disk is definitely gone */
6696 flush_workqueue(md_misc_wq);
6697 /* Then retry the open from the top */
6698 return -ERESTARTSYS;
6700 BUG_ON(mddev != bdev->bd_disk->private_data);
6702 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6706 atomic_inc(&mddev->openers);
6707 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6708 mutex_unlock(&mddev->open_mutex);
6710 check_disk_change(bdev);
6715 static void md_release(struct gendisk *disk, fmode_t mode)
6717 struct mddev *mddev = disk->private_data;
6720 atomic_dec(&mddev->openers);
6724 static int md_media_changed(struct gendisk *disk)
6726 struct mddev *mddev = disk->private_data;
6728 return mddev->changed;
6731 static int md_revalidate(struct gendisk *disk)
6733 struct mddev *mddev = disk->private_data;
6738 static const struct block_device_operations md_fops =
6740 .owner = THIS_MODULE,
6742 .release = md_release,
6744 #ifdef CONFIG_COMPAT
6745 .compat_ioctl = md_compat_ioctl,
6747 .getgeo = md_getgeo,
6748 .media_changed = md_media_changed,
6749 .revalidate_disk= md_revalidate,
6752 static int md_thread(void * arg)
6754 struct md_thread *thread = arg;
6757 * md_thread is a 'system-thread', it's priority should be very
6758 * high. We avoid resource deadlocks individually in each
6759 * raid personality. (RAID5 does preallocation) We also use RR and
6760 * the very same RT priority as kswapd, thus we will never get
6761 * into a priority inversion deadlock.
6763 * we definitely have to have equal or higher priority than
6764 * bdflush, otherwise bdflush will deadlock if there are too
6765 * many dirty RAID5 blocks.
6768 allow_signal(SIGKILL);
6769 while (!kthread_should_stop()) {
6771 /* We need to wait INTERRUPTIBLE so that
6772 * we don't add to the load-average.
6773 * That means we need to be sure no signals are
6776 if (signal_pending(current))
6777 flush_signals(current);
6779 wait_event_interruptible_timeout
6781 test_bit(THREAD_WAKEUP, &thread->flags)
6782 || kthread_should_stop(),
6785 clear_bit(THREAD_WAKEUP, &thread->flags);
6786 if (!kthread_should_stop())
6787 thread->run(thread);
6793 void md_wakeup_thread(struct md_thread *thread)
6796 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6797 set_bit(THREAD_WAKEUP, &thread->flags);
6798 wake_up(&thread->wqueue);
6802 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6803 struct mddev *mddev, const char *name)
6805 struct md_thread *thread;
6807 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6811 init_waitqueue_head(&thread->wqueue);
6814 thread->mddev = mddev;
6815 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6816 thread->tsk = kthread_run(md_thread, thread,
6818 mdname(thread->mddev),
6820 if (IS_ERR(thread->tsk)) {
6827 void md_unregister_thread(struct md_thread **threadp)
6829 struct md_thread *thread = *threadp;
6832 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6833 /* Locking ensures that mddev_unlock does not wake_up a
6834 * non-existent thread
6836 spin_lock(&pers_lock);
6838 spin_unlock(&pers_lock);
6840 kthread_stop(thread->tsk);
6844 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6851 if (!rdev || test_bit(Faulty, &rdev->flags))
6854 if (!mddev->pers || !mddev->pers->error_handler)
6856 mddev->pers->error_handler(mddev,rdev);
6857 if (mddev->degraded)
6858 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6859 sysfs_notify_dirent_safe(rdev->sysfs_state);
6860 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6861 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6862 md_wakeup_thread(mddev->thread);
6863 if (mddev->event_work.func)
6864 queue_work(md_misc_wq, &mddev->event_work);
6865 md_new_event_inintr(mddev);
6868 /* seq_file implementation /proc/mdstat */
6870 static void status_unused(struct seq_file *seq)
6873 struct md_rdev *rdev;
6875 seq_printf(seq, "unused devices: ");
6877 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6878 char b[BDEVNAME_SIZE];
6880 seq_printf(seq, "%s ",
6881 bdevname(rdev->bdev,b));
6884 seq_printf(seq, "<none>");
6886 seq_printf(seq, "\n");
6890 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6892 sector_t max_sectors, resync, res;
6893 unsigned long dt, db;
6896 unsigned int per_milli;
6898 if (mddev->curr_resync <= 3)
6901 resync = mddev->curr_resync
6902 - atomic_read(&mddev->recovery_active);
6904 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6905 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6906 max_sectors = mddev->resync_max_sectors;
6908 max_sectors = mddev->dev_sectors;
6911 * Should not happen.
6917 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6918 * in a sector_t, and (max_sectors>>scale) will fit in a
6919 * u32, as those are the requirements for sector_div.
6920 * Thus 'scale' must be at least 10
6923 if (sizeof(sector_t) > sizeof(unsigned long)) {
6924 while ( max_sectors/2 > (1ULL<<(scale+32)))
6927 res = (resync>>scale)*1000;
6928 sector_div(res, (u32)((max_sectors>>scale)+1));
6932 int i, x = per_milli/50, y = 20-x;
6933 seq_printf(seq, "[");
6934 for (i = 0; i < x; i++)
6935 seq_printf(seq, "=");
6936 seq_printf(seq, ">");
6937 for (i = 0; i < y; i++)
6938 seq_printf(seq, ".");
6939 seq_printf(seq, "] ");
6941 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6942 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6944 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6946 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6947 "resync" : "recovery"))),
6948 per_milli/10, per_milli % 10,
6949 (unsigned long long) resync/2,
6950 (unsigned long long) max_sectors/2);
6953 * dt: time from mark until now
6954 * db: blocks written from mark until now
6955 * rt: remaining time
6957 * rt is a sector_t, so could be 32bit or 64bit.
6958 * So we divide before multiply in case it is 32bit and close
6960 * We scale the divisor (db) by 32 to avoid losing precision
6961 * near the end of resync when the number of remaining sectors
6963 * We then divide rt by 32 after multiplying by db to compensate.
6964 * The '+1' avoids division by zero if db is very small.
6966 dt = ((jiffies - mddev->resync_mark) / HZ);
6968 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6969 - mddev->resync_mark_cnt;
6971 rt = max_sectors - resync; /* number of remaining sectors */
6972 sector_div(rt, db/32+1);
6976 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6977 ((unsigned long)rt % 60)/6);
6979 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6982 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6984 struct list_head *tmp;
6986 struct mddev *mddev;
6994 spin_lock(&all_mddevs_lock);
6995 list_for_each(tmp,&all_mddevs)
6997 mddev = list_entry(tmp, struct mddev, all_mddevs);
6999 spin_unlock(&all_mddevs_lock);
7002 spin_unlock(&all_mddevs_lock);
7004 return (void*)2;/* tail */
7008 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7010 struct list_head *tmp;
7011 struct mddev *next_mddev, *mddev = v;
7017 spin_lock(&all_mddevs_lock);
7019 tmp = all_mddevs.next;
7021 tmp = mddev->all_mddevs.next;
7022 if (tmp != &all_mddevs)
7023 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7025 next_mddev = (void*)2;
7028 spin_unlock(&all_mddevs_lock);
7036 static void md_seq_stop(struct seq_file *seq, void *v)
7038 struct mddev *mddev = v;
7040 if (mddev && v != (void*)1 && v != (void*)2)
7044 static int md_seq_show(struct seq_file *seq, void *v)
7046 struct mddev *mddev = v;
7048 struct md_rdev *rdev;
7050 if (v == (void*)1) {
7051 struct md_personality *pers;
7052 seq_printf(seq, "Personalities : ");
7053 spin_lock(&pers_lock);
7054 list_for_each_entry(pers, &pers_list, list)
7055 seq_printf(seq, "[%s] ", pers->name);
7057 spin_unlock(&pers_lock);
7058 seq_printf(seq, "\n");
7059 seq->poll_event = atomic_read(&md_event_count);
7062 if (v == (void*)2) {
7067 if (mddev_lock(mddev) < 0)
7070 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7071 seq_printf(seq, "%s : %sactive", mdname(mddev),
7072 mddev->pers ? "" : "in");
7075 seq_printf(seq, " (read-only)");
7077 seq_printf(seq, " (auto-read-only)");
7078 seq_printf(seq, " %s", mddev->pers->name);
7082 rdev_for_each(rdev, mddev) {
7083 char b[BDEVNAME_SIZE];
7084 seq_printf(seq, " %s[%d]",
7085 bdevname(rdev->bdev,b), rdev->desc_nr);
7086 if (test_bit(WriteMostly, &rdev->flags))
7087 seq_printf(seq, "(W)");
7088 if (test_bit(Faulty, &rdev->flags)) {
7089 seq_printf(seq, "(F)");
7092 if (rdev->raid_disk < 0)
7093 seq_printf(seq, "(S)"); /* spare */
7094 if (test_bit(Replacement, &rdev->flags))
7095 seq_printf(seq, "(R)");
7096 sectors += rdev->sectors;
7099 if (!list_empty(&mddev->disks)) {
7101 seq_printf(seq, "\n %llu blocks",
7102 (unsigned long long)
7103 mddev->array_sectors / 2);
7105 seq_printf(seq, "\n %llu blocks",
7106 (unsigned long long)sectors / 2);
7108 if (mddev->persistent) {
7109 if (mddev->major_version != 0 ||
7110 mddev->minor_version != 90) {
7111 seq_printf(seq," super %d.%d",
7112 mddev->major_version,
7113 mddev->minor_version);
7115 } else if (mddev->external)
7116 seq_printf(seq, " super external:%s",
7117 mddev->metadata_type);
7119 seq_printf(seq, " super non-persistent");
7122 mddev->pers->status(seq, mddev);
7123 seq_printf(seq, "\n ");
7124 if (mddev->pers->sync_request) {
7125 if (mddev->curr_resync > 2) {
7126 status_resync(seq, mddev);
7127 seq_printf(seq, "\n ");
7128 } else if (mddev->curr_resync >= 1)
7129 seq_printf(seq, "\tresync=DELAYED\n ");
7130 else if (mddev->recovery_cp < MaxSector)
7131 seq_printf(seq, "\tresync=PENDING\n ");
7134 seq_printf(seq, "\n ");
7136 bitmap_status(seq, mddev->bitmap);
7138 seq_printf(seq, "\n");
7140 mddev_unlock(mddev);
7145 static const struct seq_operations md_seq_ops = {
7146 .start = md_seq_start,
7147 .next = md_seq_next,
7148 .stop = md_seq_stop,
7149 .show = md_seq_show,
7152 static int md_seq_open(struct inode *inode, struct file *file)
7154 struct seq_file *seq;
7157 error = seq_open(file, &md_seq_ops);
7161 seq = file->private_data;
7162 seq->poll_event = atomic_read(&md_event_count);
7166 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7168 struct seq_file *seq = filp->private_data;
7171 poll_wait(filp, &md_event_waiters, wait);
7173 /* always allow read */
7174 mask = POLLIN | POLLRDNORM;
7176 if (seq->poll_event != atomic_read(&md_event_count))
7177 mask |= POLLERR | POLLPRI;
7181 static const struct file_operations md_seq_fops = {
7182 .owner = THIS_MODULE,
7183 .open = md_seq_open,
7185 .llseek = seq_lseek,
7186 .release = seq_release_private,
7187 .poll = mdstat_poll,
7190 int register_md_personality(struct md_personality *p)
7192 spin_lock(&pers_lock);
7193 list_add_tail(&p->list, &pers_list);
7194 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7195 spin_unlock(&pers_lock);
7199 int unregister_md_personality(struct md_personality *p)
7201 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7202 spin_lock(&pers_lock);
7203 list_del_init(&p->list);
7204 spin_unlock(&pers_lock);
7208 static int is_mddev_idle(struct mddev *mddev, int init)
7210 struct md_rdev * rdev;
7216 rdev_for_each_rcu(rdev, mddev) {
7217 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7218 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7219 (int)part_stat_read(&disk->part0, sectors[1]) -
7220 atomic_read(&disk->sync_io);
7221 /* sync IO will cause sync_io to increase before the disk_stats
7222 * as sync_io is counted when a request starts, and
7223 * disk_stats is counted when it completes.
7224 * So resync activity will cause curr_events to be smaller than
7225 * when there was no such activity.
7226 * non-sync IO will cause disk_stat to increase without
7227 * increasing sync_io so curr_events will (eventually)
7228 * be larger than it was before. Once it becomes
7229 * substantially larger, the test below will cause
7230 * the array to appear non-idle, and resync will slow
7232 * If there is a lot of outstanding resync activity when
7233 * we set last_event to curr_events, then all that activity
7234 * completing might cause the array to appear non-idle
7235 * and resync will be slowed down even though there might
7236 * not have been non-resync activity. This will only
7237 * happen once though. 'last_events' will soon reflect
7238 * the state where there is little or no outstanding
7239 * resync requests, and further resync activity will
7240 * always make curr_events less than last_events.
7243 if (init || curr_events - rdev->last_events > 64) {
7244 rdev->last_events = curr_events;
7252 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7254 /* another "blocks" (512byte) blocks have been synced */
7255 atomic_sub(blocks, &mddev->recovery_active);
7256 wake_up(&mddev->recovery_wait);
7258 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7259 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7260 md_wakeup_thread(mddev->thread);
7261 // stop recovery, signal do_sync ....
7266 /* md_write_start(mddev, bi)
7267 * If we need to update some array metadata (e.g. 'active' flag
7268 * in superblock) before writing, schedule a superblock update
7269 * and wait for it to complete.
7271 void md_write_start(struct mddev *mddev, struct bio *bi)
7274 if (bio_data_dir(bi) != WRITE)
7277 BUG_ON(mddev->ro == 1);
7278 if (mddev->ro == 2) {
7279 /* need to switch to read/write */
7281 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7282 md_wakeup_thread(mddev->thread);
7283 md_wakeup_thread(mddev->sync_thread);
7286 atomic_inc(&mddev->writes_pending);
7287 if (mddev->safemode == 1)
7288 mddev->safemode = 0;
7289 if (mddev->in_sync) {
7290 spin_lock_irq(&mddev->write_lock);
7291 if (mddev->in_sync) {
7293 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7294 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7295 md_wakeup_thread(mddev->thread);
7298 spin_unlock_irq(&mddev->write_lock);
7301 sysfs_notify_dirent_safe(mddev->sysfs_state);
7302 wait_event(mddev->sb_wait,
7303 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7306 void md_write_end(struct mddev *mddev)
7308 if (atomic_dec_and_test(&mddev->writes_pending)) {
7309 if (mddev->safemode == 2)
7310 md_wakeup_thread(mddev->thread);
7311 else if (mddev->safemode_delay)
7312 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7316 /* md_allow_write(mddev)
7317 * Calling this ensures that the array is marked 'active' so that writes
7318 * may proceed without blocking. It is important to call this before
7319 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7320 * Must be called with mddev_lock held.
7322 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7323 * is dropped, so return -EAGAIN after notifying userspace.
7325 int md_allow_write(struct mddev *mddev)
7331 if (!mddev->pers->sync_request)
7334 spin_lock_irq(&mddev->write_lock);
7335 if (mddev->in_sync) {
7337 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7338 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7339 if (mddev->safemode_delay &&
7340 mddev->safemode == 0)
7341 mddev->safemode = 1;
7342 spin_unlock_irq(&mddev->write_lock);
7343 md_update_sb(mddev, 0);
7344 sysfs_notify_dirent_safe(mddev->sysfs_state);
7346 spin_unlock_irq(&mddev->write_lock);
7348 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7353 EXPORT_SYMBOL_GPL(md_allow_write);
7355 #define SYNC_MARKS 10
7356 #define SYNC_MARK_STEP (3*HZ)
7357 #define UPDATE_FREQUENCY (5*60*HZ)
7358 void md_do_sync(struct md_thread *thread)
7360 struct mddev *mddev = thread->mddev;
7361 struct mddev *mddev2;
7362 unsigned int currspeed = 0,
7364 sector_t max_sectors,j, io_sectors;
7365 unsigned long mark[SYNC_MARKS];
7366 unsigned long update_time;
7367 sector_t mark_cnt[SYNC_MARKS];
7369 struct list_head *tmp;
7370 sector_t last_check;
7372 struct md_rdev *rdev;
7373 char *desc, *action = NULL;
7374 struct blk_plug plug;
7376 /* just incase thread restarts... */
7377 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7379 if (mddev->ro) /* never try to sync a read-only array */
7382 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7383 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7384 desc = "data-check";
7386 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7387 desc = "requested-resync";
7391 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7396 mddev->last_sync_action = action ?: desc;
7398 /* we overload curr_resync somewhat here.
7399 * 0 == not engaged in resync at all
7400 * 2 == checking that there is no conflict with another sync
7401 * 1 == like 2, but have yielded to allow conflicting resync to
7403 * other == active in resync - this many blocks
7405 * Before starting a resync we must have set curr_resync to
7406 * 2, and then checked that every "conflicting" array has curr_resync
7407 * less than ours. When we find one that is the same or higher
7408 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7409 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7410 * This will mean we have to start checking from the beginning again.
7415 mddev->curr_resync = 2;
7418 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7420 for_each_mddev(mddev2, tmp) {
7421 if (mddev2 == mddev)
7423 if (!mddev->parallel_resync
7424 && mddev2->curr_resync
7425 && match_mddev_units(mddev, mddev2)) {
7427 if (mddev < mddev2 && mddev->curr_resync == 2) {
7428 /* arbitrarily yield */
7429 mddev->curr_resync = 1;
7430 wake_up(&resync_wait);
7432 if (mddev > mddev2 && mddev->curr_resync == 1)
7433 /* no need to wait here, we can wait the next
7434 * time 'round when curr_resync == 2
7437 /* We need to wait 'interruptible' so as not to
7438 * contribute to the load average, and not to
7439 * be caught by 'softlockup'
7441 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7442 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7443 mddev2->curr_resync >= mddev->curr_resync) {
7444 printk(KERN_INFO "md: delaying %s of %s"
7445 " until %s has finished (they"
7446 " share one or more physical units)\n",
7447 desc, mdname(mddev), mdname(mddev2));
7449 if (signal_pending(current))
7450 flush_signals(current);
7452 finish_wait(&resync_wait, &wq);
7455 finish_wait(&resync_wait, &wq);
7458 } while (mddev->curr_resync < 2);
7461 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7462 /* resync follows the size requested by the personality,
7463 * which defaults to physical size, but can be virtual size
7465 max_sectors = mddev->resync_max_sectors;
7466 atomic64_set(&mddev->resync_mismatches, 0);
7467 /* we don't use the checkpoint if there's a bitmap */
7468 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7469 j = mddev->resync_min;
7470 else if (!mddev->bitmap)
7471 j = mddev->recovery_cp;
7473 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7474 max_sectors = mddev->resync_max_sectors;
7476 /* recovery follows the physical size of devices */
7477 max_sectors = mddev->dev_sectors;
7480 rdev_for_each_rcu(rdev, mddev)
7481 if (rdev->raid_disk >= 0 &&
7482 !test_bit(Faulty, &rdev->flags) &&
7483 !test_bit(In_sync, &rdev->flags) &&
7484 rdev->recovery_offset < j)
7485 j = rdev->recovery_offset;
7489 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7490 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7491 " %d KB/sec/disk.\n", speed_min(mddev));
7492 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7493 "(but not more than %d KB/sec) for %s.\n",
7494 speed_max(mddev), desc);
7496 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7499 for (m = 0; m < SYNC_MARKS; m++) {
7501 mark_cnt[m] = io_sectors;
7504 mddev->resync_mark = mark[last_mark];
7505 mddev->resync_mark_cnt = mark_cnt[last_mark];
7508 * Tune reconstruction:
7510 window = 32*(PAGE_SIZE/512);
7511 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7512 window/2, (unsigned long long)max_sectors/2);
7514 atomic_set(&mddev->recovery_active, 0);
7519 "md: resuming %s of %s from checkpoint.\n",
7520 desc, mdname(mddev));
7521 mddev->curr_resync = j;
7523 mddev->curr_resync = 3; /* no longer delayed */
7524 mddev->curr_resync_completed = j;
7525 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7526 md_new_event(mddev);
7527 update_time = jiffies;
7529 blk_start_plug(&plug);
7530 while (j < max_sectors) {
7535 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7536 ((mddev->curr_resync > mddev->curr_resync_completed &&
7537 (mddev->curr_resync - mddev->curr_resync_completed)
7538 > (max_sectors >> 4)) ||
7539 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7540 (j - mddev->curr_resync_completed)*2
7541 >= mddev->resync_max - mddev->curr_resync_completed
7543 /* time to update curr_resync_completed */
7544 wait_event(mddev->recovery_wait,
7545 atomic_read(&mddev->recovery_active) == 0);
7546 mddev->curr_resync_completed = j;
7547 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7548 j > mddev->recovery_cp)
7549 mddev->recovery_cp = j;
7550 update_time = jiffies;
7551 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7552 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7555 while (j >= mddev->resync_max &&
7556 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7557 /* As this condition is controlled by user-space,
7558 * we can block indefinitely, so use '_interruptible'
7559 * to avoid triggering warnings.
7561 flush_signals(current); /* just in case */
7562 wait_event_interruptible(mddev->recovery_wait,
7563 mddev->resync_max > j
7564 || test_bit(MD_RECOVERY_INTR,
7568 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7571 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7572 currspeed < speed_min(mddev));
7574 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7578 if (!skipped) { /* actual IO requested */
7579 io_sectors += sectors;
7580 atomic_add(sectors, &mddev->recovery_active);
7583 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7588 mddev->curr_resync = j;
7589 mddev->curr_mark_cnt = io_sectors;
7590 if (last_check == 0)
7591 /* this is the earliest that rebuild will be
7592 * visible in /proc/mdstat
7594 md_new_event(mddev);
7596 if (last_check + window > io_sectors || j == max_sectors)
7599 last_check = io_sectors;
7601 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7603 int next = (last_mark+1) % SYNC_MARKS;
7605 mddev->resync_mark = mark[next];
7606 mddev->resync_mark_cnt = mark_cnt[next];
7607 mark[next] = jiffies;
7608 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7612 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7616 * this loop exits only if either when we are slower than
7617 * the 'hard' speed limit, or the system was IO-idle for
7619 * the system might be non-idle CPU-wise, but we only care
7620 * about not overloading the IO subsystem. (things like an
7621 * e2fsck being done on the RAID array should execute fast)
7625 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7626 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7628 if (currspeed > speed_min(mddev)) {
7629 if ((currspeed > speed_max(mddev)) ||
7630 !is_mddev_idle(mddev, 0)) {
7636 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7637 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7638 ? "interrupted" : "done");
7640 * this also signals 'finished resyncing' to md_stop
7642 blk_finish_plug(&plug);
7643 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7645 /* tell personality that we are finished */
7646 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7648 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7649 mddev->curr_resync > 2) {
7650 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7651 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7652 if (mddev->curr_resync >= mddev->recovery_cp) {
7654 "md: checkpointing %s of %s.\n",
7655 desc, mdname(mddev));
7656 if (test_bit(MD_RECOVERY_ERROR,
7658 mddev->recovery_cp =
7659 mddev->curr_resync_completed;
7661 mddev->recovery_cp =
7665 mddev->recovery_cp = MaxSector;
7667 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7668 mddev->curr_resync = MaxSector;
7670 rdev_for_each_rcu(rdev, mddev)
7671 if (rdev->raid_disk >= 0 &&
7672 mddev->delta_disks >= 0 &&
7673 !test_bit(Faulty, &rdev->flags) &&
7674 !test_bit(In_sync, &rdev->flags) &&
7675 rdev->recovery_offset < mddev->curr_resync)
7676 rdev->recovery_offset = mddev->curr_resync;
7681 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7683 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7684 /* We completed so min/max setting can be forgotten if used. */
7685 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7686 mddev->resync_min = 0;
7687 mddev->resync_max = MaxSector;
7688 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7689 mddev->resync_min = mddev->curr_resync_completed;
7690 mddev->curr_resync = 0;
7691 wake_up(&resync_wait);
7692 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7693 md_wakeup_thread(mddev->thread);
7696 EXPORT_SYMBOL_GPL(md_do_sync);
7698 static int remove_and_add_spares(struct mddev *mddev,
7699 struct md_rdev *this)
7701 struct md_rdev *rdev;
7705 rdev_for_each(rdev, mddev)
7706 if ((this == NULL || rdev == this) &&
7707 rdev->raid_disk >= 0 &&
7708 !test_bit(Blocked, &rdev->flags) &&
7709 (test_bit(Faulty, &rdev->flags) ||
7710 ! test_bit(In_sync, &rdev->flags)) &&
7711 atomic_read(&rdev->nr_pending)==0) {
7712 if (mddev->pers->hot_remove_disk(
7713 mddev, rdev) == 0) {
7714 sysfs_unlink_rdev(mddev, rdev);
7715 rdev->raid_disk = -1;
7719 if (removed && mddev->kobj.sd)
7720 sysfs_notify(&mddev->kobj, NULL, "degraded");
7725 rdev_for_each(rdev, mddev) {
7726 if (rdev->raid_disk >= 0 &&
7727 !test_bit(In_sync, &rdev->flags) &&
7728 !test_bit(Faulty, &rdev->flags))
7730 if (rdev->raid_disk >= 0)
7732 if (test_bit(Faulty, &rdev->flags))
7735 ! (rdev->saved_raid_disk >= 0 &&
7736 !test_bit(Bitmap_sync, &rdev->flags)))
7739 rdev->recovery_offset = 0;
7741 hot_add_disk(mddev, rdev) == 0) {
7742 if (sysfs_link_rdev(mddev, rdev))
7743 /* failure here is OK */;
7745 md_new_event(mddev);
7746 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7751 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7756 * This routine is regularly called by all per-raid-array threads to
7757 * deal with generic issues like resync and super-block update.
7758 * Raid personalities that don't have a thread (linear/raid0) do not
7759 * need this as they never do any recovery or update the superblock.
7761 * It does not do any resync itself, but rather "forks" off other threads
7762 * to do that as needed.
7763 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7764 * "->recovery" and create a thread at ->sync_thread.
7765 * When the thread finishes it sets MD_RECOVERY_DONE
7766 * and wakeups up this thread which will reap the thread and finish up.
7767 * This thread also removes any faulty devices (with nr_pending == 0).
7769 * The overall approach is:
7770 * 1/ if the superblock needs updating, update it.
7771 * 2/ If a recovery thread is running, don't do anything else.
7772 * 3/ If recovery has finished, clean up, possibly marking spares active.
7773 * 4/ If there are any faulty devices, remove them.
7774 * 5/ If array is degraded, try to add spares devices
7775 * 6/ If array has spares or is not in-sync, start a resync thread.
7777 void md_check_recovery(struct mddev *mddev)
7779 if (mddev->suspended)
7783 bitmap_daemon_work(mddev);
7785 if (signal_pending(current)) {
7786 if (mddev->pers->sync_request && !mddev->external) {
7787 printk(KERN_INFO "md: %s in immediate safe mode\n",
7789 mddev->safemode = 2;
7791 flush_signals(current);
7794 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7797 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7798 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7799 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7800 (mddev->external == 0 && mddev->safemode == 1) ||
7801 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7802 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7806 if (mddev_trylock(mddev)) {
7810 /* On a read-only array we can:
7811 * - remove failed devices
7812 * - add already-in_sync devices if the array itself
7814 * As we only add devices that are already in-sync,
7815 * we can activate the spares immediately.
7817 remove_and_add_spares(mddev, NULL);
7818 /* There is no thread, but we need to call
7819 * ->spare_active and clear saved_raid_disk
7821 md_reap_sync_thread(mddev);
7822 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7826 if (!mddev->external) {
7828 spin_lock_irq(&mddev->write_lock);
7829 if (mddev->safemode &&
7830 !atomic_read(&mddev->writes_pending) &&
7832 mddev->recovery_cp == MaxSector) {
7835 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7837 if (mddev->safemode == 1)
7838 mddev->safemode = 0;
7839 spin_unlock_irq(&mddev->write_lock);
7841 sysfs_notify_dirent_safe(mddev->sysfs_state);
7844 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7845 md_update_sb(mddev, 0);
7847 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7848 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7849 /* resync/recovery still happening */
7850 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7853 if (mddev->sync_thread) {
7854 md_reap_sync_thread(mddev);
7857 /* Set RUNNING before clearing NEEDED to avoid
7858 * any transients in the value of "sync_action".
7860 mddev->curr_resync_completed = 0;
7861 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7862 /* Clear some bits that don't mean anything, but
7865 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7866 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7868 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7869 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7871 /* no recovery is running.
7872 * remove any failed drives, then
7873 * add spares if possible.
7874 * Spares are also removed and re-added, to allow
7875 * the personality to fail the re-add.
7878 if (mddev->reshape_position != MaxSector) {
7879 if (mddev->pers->check_reshape == NULL ||
7880 mddev->pers->check_reshape(mddev) != 0)
7881 /* Cannot proceed */
7883 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7884 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7885 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7886 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7887 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7888 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7889 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7890 } else if (mddev->recovery_cp < MaxSector) {
7891 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7892 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7893 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7894 /* nothing to be done ... */
7897 if (mddev->pers->sync_request) {
7899 /* We are adding a device or devices to an array
7900 * which has the bitmap stored on all devices.
7901 * So make sure all bitmap pages get written
7903 bitmap_write_all(mddev->bitmap);
7905 mddev->sync_thread = md_register_thread(md_do_sync,
7908 if (!mddev->sync_thread) {
7909 printk(KERN_ERR "%s: could not start resync"
7912 /* leave the spares where they are, it shouldn't hurt */
7913 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7914 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7915 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7916 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7917 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7919 md_wakeup_thread(mddev->sync_thread);
7920 sysfs_notify_dirent_safe(mddev->sysfs_action);
7921 md_new_event(mddev);
7924 wake_up(&mddev->sb_wait);
7926 if (!mddev->sync_thread) {
7927 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7928 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7930 if (mddev->sysfs_action)
7931 sysfs_notify_dirent_safe(mddev->sysfs_action);
7933 mddev_unlock(mddev);
7937 void md_reap_sync_thread(struct mddev *mddev)
7939 struct md_rdev *rdev;
7941 /* resync has finished, collect result */
7942 md_unregister_thread(&mddev->sync_thread);
7943 wake_up(&resync_wait);
7944 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7945 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7947 /* activate any spares */
7948 if (mddev->pers->spare_active(mddev)) {
7949 sysfs_notify(&mddev->kobj, NULL,
7951 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7954 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7955 mddev->pers->finish_reshape)
7956 mddev->pers->finish_reshape(mddev);
7958 /* If array is no-longer degraded, then any saved_raid_disk
7959 * information must be scrapped.
7961 if (!mddev->degraded)
7962 rdev_for_each(rdev, mddev)
7963 rdev->saved_raid_disk = -1;
7965 md_update_sb(mddev, 1);
7966 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7967 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7968 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7969 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7970 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7971 /* flag recovery needed just to double check */
7972 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7973 sysfs_notify_dirent_safe(mddev->sysfs_action);
7974 md_new_event(mddev);
7975 if (mddev->event_work.func)
7976 queue_work(md_misc_wq, &mddev->event_work);
7979 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7981 sysfs_notify_dirent_safe(rdev->sysfs_state);
7982 wait_event_timeout(rdev->blocked_wait,
7983 !test_bit(Blocked, &rdev->flags) &&
7984 !test_bit(BlockedBadBlocks, &rdev->flags),
7985 msecs_to_jiffies(5000));
7986 rdev_dec_pending(rdev, mddev);
7988 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7990 void md_finish_reshape(struct mddev *mddev)
7992 /* called be personality module when reshape completes. */
7993 struct md_rdev *rdev;
7995 rdev_for_each(rdev, mddev) {
7996 if (rdev->data_offset > rdev->new_data_offset)
7997 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7999 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8000 rdev->data_offset = rdev->new_data_offset;
8003 EXPORT_SYMBOL(md_finish_reshape);
8005 /* Bad block management.
8006 * We can record which blocks on each device are 'bad' and so just
8007 * fail those blocks, or that stripe, rather than the whole device.
8008 * Entries in the bad-block table are 64bits wide. This comprises:
8009 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8010 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8011 * A 'shift' can be set so that larger blocks are tracked and
8012 * consequently larger devices can be covered.
8013 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8015 * Locking of the bad-block table uses a seqlock so md_is_badblock
8016 * might need to retry if it is very unlucky.
8017 * We will sometimes want to check for bad blocks in a bi_end_io function,
8018 * so we use the write_seqlock_irq variant.
8020 * When looking for a bad block we specify a range and want to
8021 * know if any block in the range is bad. So we binary-search
8022 * to the last range that starts at-or-before the given endpoint,
8023 * (or "before the sector after the target range")
8024 * then see if it ends after the given start.
8026 * 0 if there are no known bad blocks in the range
8027 * 1 if there are known bad block which are all acknowledged
8028 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8029 * plus the start/length of the first bad section we overlap.
8031 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8032 sector_t *first_bad, int *bad_sectors)
8038 sector_t target = s + sectors;
8041 if (bb->shift > 0) {
8042 /* round the start down, and the end up */
8044 target += (1<<bb->shift) - 1;
8045 target >>= bb->shift;
8046 sectors = target - s;
8048 /* 'target' is now the first block after the bad range */
8051 seq = read_seqbegin(&bb->lock);
8056 /* Binary search between lo and hi for 'target'
8057 * i.e. for the last range that starts before 'target'
8059 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8060 * are known not to be the last range before target.
8061 * VARIANT: hi-lo is the number of possible
8062 * ranges, and decreases until it reaches 1
8064 while (hi - lo > 1) {
8065 int mid = (lo + hi) / 2;
8066 sector_t a = BB_OFFSET(p[mid]);
8068 /* This could still be the one, earlier ranges
8072 /* This and later ranges are definitely out. */
8075 /* 'lo' might be the last that started before target, but 'hi' isn't */
8077 /* need to check all range that end after 's' to see if
8078 * any are unacknowledged.
8081 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8082 if (BB_OFFSET(p[lo]) < target) {
8083 /* starts before the end, and finishes after
8084 * the start, so they must overlap
8086 if (rv != -1 && BB_ACK(p[lo]))
8090 *first_bad = BB_OFFSET(p[lo]);
8091 *bad_sectors = BB_LEN(p[lo]);
8097 if (read_seqretry(&bb->lock, seq))
8102 EXPORT_SYMBOL_GPL(md_is_badblock);
8105 * Add a range of bad blocks to the table.
8106 * This might extend the table, or might contract it
8107 * if two adjacent ranges can be merged.
8108 * We binary-search to find the 'insertion' point, then
8109 * decide how best to handle it.
8111 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8117 unsigned long flags;
8120 /* badblocks are disabled */
8124 /* round the start down, and the end up */
8125 sector_t next = s + sectors;
8127 next += (1<<bb->shift) - 1;
8132 write_seqlock_irqsave(&bb->lock, flags);
8137 /* Find the last range that starts at-or-before 's' */
8138 while (hi - lo > 1) {
8139 int mid = (lo + hi) / 2;
8140 sector_t a = BB_OFFSET(p[mid]);
8146 if (hi > lo && BB_OFFSET(p[lo]) > s)
8150 /* we found a range that might merge with the start
8153 sector_t a = BB_OFFSET(p[lo]);
8154 sector_t e = a + BB_LEN(p[lo]);
8155 int ack = BB_ACK(p[lo]);
8157 /* Yes, we can merge with a previous range */
8158 if (s == a && s + sectors >= e)
8159 /* new range covers old */
8162 ack = ack && acknowledged;
8164 if (e < s + sectors)
8166 if (e - a <= BB_MAX_LEN) {
8167 p[lo] = BB_MAKE(a, e-a, ack);
8170 /* does not all fit in one range,
8171 * make p[lo] maximal
8173 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8174 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8180 if (sectors && hi < bb->count) {
8181 /* 'hi' points to the first range that starts after 's'.
8182 * Maybe we can merge with the start of that range */
8183 sector_t a = BB_OFFSET(p[hi]);
8184 sector_t e = a + BB_LEN(p[hi]);
8185 int ack = BB_ACK(p[hi]);
8186 if (a <= s + sectors) {
8187 /* merging is possible */
8188 if (e <= s + sectors) {
8193 ack = ack && acknowledged;
8196 if (e - a <= BB_MAX_LEN) {
8197 p[hi] = BB_MAKE(a, e-a, ack);
8200 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8208 if (sectors == 0 && hi < bb->count) {
8209 /* we might be able to combine lo and hi */
8210 /* Note: 's' is at the end of 'lo' */
8211 sector_t a = BB_OFFSET(p[hi]);
8212 int lolen = BB_LEN(p[lo]);
8213 int hilen = BB_LEN(p[hi]);
8214 int newlen = lolen + hilen - (s - a);
8215 if (s >= a && newlen < BB_MAX_LEN) {
8216 /* yes, we can combine them */
8217 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8218 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8219 memmove(p + hi, p + hi + 1,
8220 (bb->count - hi - 1) * 8);
8225 /* didn't merge (it all).
8226 * Need to add a range just before 'hi' */
8227 if (bb->count >= MD_MAX_BADBLOCKS) {
8228 /* No room for more */
8232 int this_sectors = sectors;
8233 memmove(p + hi + 1, p + hi,
8234 (bb->count - hi) * 8);
8237 if (this_sectors > BB_MAX_LEN)
8238 this_sectors = BB_MAX_LEN;
8239 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8240 sectors -= this_sectors;
8247 bb->unacked_exist = 1;
8248 write_sequnlock_irqrestore(&bb->lock, flags);
8253 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8258 s += rdev->new_data_offset;
8260 s += rdev->data_offset;
8261 rv = md_set_badblocks(&rdev->badblocks,
8264 /* Make sure they get written out promptly */
8265 sysfs_notify_dirent_safe(rdev->sysfs_state);
8266 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8267 md_wakeup_thread(rdev->mddev->thread);
8271 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8274 * Remove a range of bad blocks from the table.
8275 * This may involve extending the table if we spilt a region,
8276 * but it must not fail. So if the table becomes full, we just
8277 * drop the remove request.
8279 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8283 sector_t target = s + sectors;
8286 if (bb->shift > 0) {
8287 /* When clearing we round the start up and the end down.
8288 * This should not matter as the shift should align with
8289 * the block size and no rounding should ever be needed.
8290 * However it is better the think a block is bad when it
8291 * isn't than to think a block is not bad when it is.
8293 s += (1<<bb->shift) - 1;
8295 target >>= bb->shift;
8296 sectors = target - s;
8299 write_seqlock_irq(&bb->lock);
8304 /* Find the last range that starts before 'target' */
8305 while (hi - lo > 1) {
8306 int mid = (lo + hi) / 2;
8307 sector_t a = BB_OFFSET(p[mid]);
8314 /* p[lo] is the last range that could overlap the
8315 * current range. Earlier ranges could also overlap,
8316 * but only this one can overlap the end of the range.
8318 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8319 /* Partial overlap, leave the tail of this range */
8320 int ack = BB_ACK(p[lo]);
8321 sector_t a = BB_OFFSET(p[lo]);
8322 sector_t end = a + BB_LEN(p[lo]);
8325 /* we need to split this range */
8326 if (bb->count >= MD_MAX_BADBLOCKS) {
8330 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8332 p[lo] = BB_MAKE(a, s-a, ack);
8335 p[lo] = BB_MAKE(target, end - target, ack);
8336 /* there is no longer an overlap */
8341 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8342 /* This range does overlap */
8343 if (BB_OFFSET(p[lo]) < s) {
8344 /* Keep the early parts of this range. */
8345 int ack = BB_ACK(p[lo]);
8346 sector_t start = BB_OFFSET(p[lo]);
8347 p[lo] = BB_MAKE(start, s - start, ack);
8348 /* now low doesn't overlap, so.. */
8353 /* 'lo' is strictly before, 'hi' is strictly after,
8354 * anything between needs to be discarded
8357 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8358 bb->count -= (hi - lo - 1);
8364 write_sequnlock_irq(&bb->lock);
8368 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8372 s += rdev->new_data_offset;
8374 s += rdev->data_offset;
8375 return md_clear_badblocks(&rdev->badblocks,
8378 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8381 * Acknowledge all bad blocks in a list.
8382 * This only succeeds if ->changed is clear. It is used by
8383 * in-kernel metadata updates
8385 void md_ack_all_badblocks(struct badblocks *bb)
8387 if (bb->page == NULL || bb->changed)
8388 /* no point even trying */
8390 write_seqlock_irq(&bb->lock);
8392 if (bb->changed == 0 && bb->unacked_exist) {
8395 for (i = 0; i < bb->count ; i++) {
8396 if (!BB_ACK(p[i])) {
8397 sector_t start = BB_OFFSET(p[i]);
8398 int len = BB_LEN(p[i]);
8399 p[i] = BB_MAKE(start, len, 1);
8402 bb->unacked_exist = 0;
8404 write_sequnlock_irq(&bb->lock);
8406 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8408 /* sysfs access to bad-blocks list.
8409 * We present two files.
8410 * 'bad-blocks' lists sector numbers and lengths of ranges that
8411 * are recorded as bad. The list is truncated to fit within
8412 * the one-page limit of sysfs.
8413 * Writing "sector length" to this file adds an acknowledged
8415 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8416 * been acknowledged. Writing to this file adds bad blocks
8417 * without acknowledging them. This is largely for testing.
8421 badblocks_show(struct badblocks *bb, char *page, int unack)
8432 seq = read_seqbegin(&bb->lock);
8437 while (len < PAGE_SIZE && i < bb->count) {
8438 sector_t s = BB_OFFSET(p[i]);
8439 unsigned int length = BB_LEN(p[i]);
8440 int ack = BB_ACK(p[i]);
8446 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8447 (unsigned long long)s << bb->shift,
8448 length << bb->shift);
8450 if (unack && len == 0)
8451 bb->unacked_exist = 0;
8453 if (read_seqretry(&bb->lock, seq))
8462 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8464 unsigned long long sector;
8468 /* Allow clearing via sysfs *only* for testing/debugging.
8469 * Normally only a successful write may clear a badblock
8472 if (page[0] == '-') {
8476 #endif /* DO_DEBUG */
8478 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8480 if (newline != '\n')
8492 md_clear_badblocks(bb, sector, length);
8495 #endif /* DO_DEBUG */
8496 if (md_set_badblocks(bb, sector, length, !unack))
8502 static int md_notify_reboot(struct notifier_block *this,
8503 unsigned long code, void *x)
8505 struct list_head *tmp;
8506 struct mddev *mddev;
8509 for_each_mddev(mddev, tmp) {
8510 if (mddev_trylock(mddev)) {
8512 __md_stop_writes(mddev);
8513 mddev->safemode = 2;
8514 mddev_unlock(mddev);
8519 * certain more exotic SCSI devices are known to be
8520 * volatile wrt too early system reboots. While the
8521 * right place to handle this issue is the given
8522 * driver, we do want to have a safe RAID driver ...
8530 static struct notifier_block md_notifier = {
8531 .notifier_call = md_notify_reboot,
8533 .priority = INT_MAX, /* before any real devices */
8536 static void md_geninit(void)
8538 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8540 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8543 static int __init md_init(void)
8547 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8551 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8555 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8558 if ((ret = register_blkdev(0, "mdp")) < 0)
8562 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8563 md_probe, NULL, NULL);
8564 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8565 md_probe, NULL, NULL);
8567 register_reboot_notifier(&md_notifier);
8568 raid_table_header = register_sysctl_table(raid_root_table);
8574 unregister_blkdev(MD_MAJOR, "md");
8576 destroy_workqueue(md_misc_wq);
8578 destroy_workqueue(md_wq);
8586 * Searches all registered partitions for autorun RAID arrays
8590 static LIST_HEAD(all_detected_devices);
8591 struct detected_devices_node {
8592 struct list_head list;
8596 void md_autodetect_dev(dev_t dev)
8598 struct detected_devices_node *node_detected_dev;
8600 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8601 if (node_detected_dev) {
8602 node_detected_dev->dev = dev;
8603 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8605 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8606 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8611 static void autostart_arrays(int part)
8613 struct md_rdev *rdev;
8614 struct detected_devices_node *node_detected_dev;
8616 int i_scanned, i_passed;
8621 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8623 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8625 node_detected_dev = list_entry(all_detected_devices.next,
8626 struct detected_devices_node, list);
8627 list_del(&node_detected_dev->list);
8628 dev = node_detected_dev->dev;
8629 kfree(node_detected_dev);
8630 rdev = md_import_device(dev,0, 90);
8634 if (test_bit(Faulty, &rdev->flags)) {
8638 set_bit(AutoDetected, &rdev->flags);
8639 list_add(&rdev->same_set, &pending_raid_disks);
8643 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8644 i_scanned, i_passed);
8646 autorun_devices(part);
8649 #endif /* !MODULE */
8651 static __exit void md_exit(void)
8653 struct mddev *mddev;
8654 struct list_head *tmp;
8656 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8657 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8659 unregister_blkdev(MD_MAJOR,"md");
8660 unregister_blkdev(mdp_major, "mdp");
8661 unregister_reboot_notifier(&md_notifier);
8662 unregister_sysctl_table(raid_table_header);
8663 remove_proc_entry("mdstat", NULL);
8664 for_each_mddev(mddev, tmp) {
8665 export_array(mddev);
8666 mddev->hold_active = 0;
8668 destroy_workqueue(md_misc_wq);
8669 destroy_workqueue(md_wq);
8672 subsys_initcall(md_init);
8673 module_exit(md_exit)
8675 static int get_ro(char *buffer, struct kernel_param *kp)
8677 return sprintf(buffer, "%d", start_readonly);
8679 static int set_ro(const char *val, struct kernel_param *kp)
8682 int num = simple_strtoul(val, &e, 10);
8683 if (*val && (*e == '\0' || *e == '\n')) {
8684 start_readonly = num;
8690 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8691 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8693 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8695 EXPORT_SYMBOL(register_md_personality);
8696 EXPORT_SYMBOL(unregister_md_personality);
8697 EXPORT_SYMBOL(md_error);
8698 EXPORT_SYMBOL(md_done_sync);
8699 EXPORT_SYMBOL(md_write_start);
8700 EXPORT_SYMBOL(md_write_end);
8701 EXPORT_SYMBOL(md_register_thread);
8702 EXPORT_SYMBOL(md_unregister_thread);
8703 EXPORT_SYMBOL(md_wakeup_thread);
8704 EXPORT_SYMBOL(md_check_recovery);
8705 EXPORT_SYMBOL(md_reap_sync_thread);
8706 MODULE_LICENSE("GPL");
8707 MODULE_DESCRIPTION("MD RAID framework");
8709 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);