2 * linux/kernel/power/swap.c
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
11 * This file is released under the GPLv2.
15 #define pr_fmt(fmt) "PM: " fmt
17 #include <linux/module.h>
18 #include <linux/file.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/genhd.h>
22 #include <linux/device.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
28 #include <linux/slab.h>
29 #include <linux/lzo.h>
30 #include <linux/vmalloc.h>
31 #include <linux/cpumask.h>
32 #include <linux/atomic.h>
33 #include <linux/kthread.h>
34 #include <linux/crc32.h>
35 #include <linux/ktime.h>
39 #define HIBERNATE_SIG "S1SUSPEND"
42 * When reading an {un,}compressed image, we may restore pages in place,
43 * in which case some architectures need these pages cleaning before they
44 * can be executed. We don't know which pages these may be, so clean the lot.
46 static bool clean_pages_on_read;
47 static bool clean_pages_on_decompress;
50 * The swap map is a data structure used for keeping track of each page
51 * written to a swap partition. It consists of many swap_map_page
52 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
53 * These structures are stored on the swap and linked together with the
54 * help of the .next_swap member.
56 * The swap map is created during suspend. The swap map pages are
57 * allocated and populated one at a time, so we only need one memory
58 * page to set up the entire structure.
60 * During resume we pick up all swap_map_page structures into a list.
63 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
66 * Number of free pages that are not high.
68 static inline unsigned long low_free_pages(void)
70 return nr_free_pages() - nr_free_highpages();
74 * Number of pages required to be kept free while writing the image. Always
75 * half of all available low pages before the writing starts.
77 static inline unsigned long reqd_free_pages(void)
79 return low_free_pages() / 2;
82 struct swap_map_page {
83 sector_t entries[MAP_PAGE_ENTRIES];
87 struct swap_map_page_list {
88 struct swap_map_page *map;
89 struct swap_map_page_list *next;
93 * The swap_map_handle structure is used for handling swap in
97 struct swap_map_handle {
98 struct swap_map_page *cur;
99 struct swap_map_page_list *maps;
101 sector_t first_sector;
103 unsigned long reqd_free_pages;
107 struct swsusp_header {
108 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
112 unsigned int flags; /* Flags to pass to the "boot" kernel */
117 static struct swsusp_header *swsusp_header;
120 * The following functions are used for tracing the allocated
121 * swap pages, so that they can be freed in case of an error.
124 struct swsusp_extent {
130 static struct rb_root swsusp_extents = RB_ROOT;
132 static int swsusp_extents_insert(unsigned long swap_offset)
134 struct rb_node **new = &(swsusp_extents.rb_node);
135 struct rb_node *parent = NULL;
136 struct swsusp_extent *ext;
138 /* Figure out where to put the new node */
140 ext = rb_entry(*new, struct swsusp_extent, node);
142 if (swap_offset < ext->start) {
144 if (swap_offset == ext->start - 1) {
148 new = &((*new)->rb_left);
149 } else if (swap_offset > ext->end) {
151 if (swap_offset == ext->end + 1) {
155 new = &((*new)->rb_right);
157 /* It already is in the tree */
161 /* Add the new node and rebalance the tree. */
162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
166 ext->start = swap_offset;
167 ext->end = swap_offset;
168 rb_link_node(&ext->node, parent, new);
169 rb_insert_color(&ext->node, &swsusp_extents);
174 * alloc_swapdev_block - allocate a swap page and register that it has
175 * been allocated, so that it can be freed in case of an error.
178 sector_t alloc_swapdev_block(int swap)
180 unsigned long offset;
182 offset = swp_offset(get_swap_page_of_type(swap));
184 if (swsusp_extents_insert(offset))
185 swap_free(swp_entry(swap, offset));
187 return swapdev_block(swap, offset);
193 * free_all_swap_pages - free swap pages allocated for saving image data.
194 * It also frees the extents used to register which swap entries had been
198 void free_all_swap_pages(int swap)
200 struct rb_node *node;
202 while ((node = swsusp_extents.rb_node)) {
203 struct swsusp_extent *ext;
204 unsigned long offset;
206 ext = rb_entry(node, struct swsusp_extent, node);
207 rb_erase(node, &swsusp_extents);
208 for (offset = ext->start; offset <= ext->end; offset++)
209 swap_free(swp_entry(swap, offset));
215 int swsusp_swap_in_use(void)
217 return (swsusp_extents.rb_node != NULL);
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
227 struct hib_bio_batch {
229 wait_queue_head_t wait;
233 static void hib_init_batch(struct hib_bio_batch *hb)
235 atomic_set(&hb->count, 0);
236 init_waitqueue_head(&hb->wait);
237 hb->error = BLK_STS_OK;
240 static void hib_end_io(struct bio *bio)
242 struct hib_bio_batch *hb = bio->bi_private;
243 struct page *page = bio->bi_io_vec[0].bv_page;
245 if (bio->bi_status) {
246 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
247 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
248 (unsigned long long)bio->bi_iter.bi_sector);
251 if (bio_data_dir(bio) == WRITE)
253 else if (clean_pages_on_read)
254 flush_icache_range((unsigned long)page_address(page),
255 (unsigned long)page_address(page) + PAGE_SIZE);
257 if (bio->bi_status && !hb->error)
258 hb->error = bio->bi_status;
259 if (atomic_dec_and_test(&hb->count))
265 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
266 struct hib_bio_batch *hb)
268 struct page *page = virt_to_page(addr);
272 bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
273 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
274 bio_set_dev(bio, hib_resume_bdev);
275 bio_set_op_attrs(bio, op, op_flags);
277 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
278 pr_err("Adding page to bio failed at %llu\n",
279 (unsigned long long)bio->bi_iter.bi_sector);
285 bio->bi_end_io = hib_end_io;
286 bio->bi_private = hb;
287 atomic_inc(&hb->count);
290 error = submit_bio_wait(bio);
297 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
299 wait_event(hb->wait, atomic_read(&hb->count) == 0);
300 return blk_status_to_errno(hb->error);
307 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
311 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
312 swsusp_header, NULL);
313 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
314 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
315 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
316 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
317 swsusp_header->image = handle->first_sector;
318 swsusp_header->flags = flags;
319 if (flags & SF_CRC32_MODE)
320 swsusp_header->crc32 = handle->crc32;
321 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
322 swsusp_resume_block, swsusp_header, NULL);
324 pr_err("Swap header not found!\n");
331 * swsusp_swap_check - check if the resume device is a swap device
332 * and get its index (if so)
334 * This is called before saving image
336 static int swsusp_swap_check(void)
340 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
346 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
350 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
352 blkdev_put(hib_resume_bdev, FMODE_WRITE);
355 * Update the resume device to the one actually used,
356 * so the test_resume mode can use it in case it is
357 * invoked from hibernate() to test the snapshot.
359 swsusp_resume_device = hib_resume_bdev->bd_dev;
364 * write_page - Write one page to given swap location.
365 * @buf: Address we're writing.
366 * @offset: Offset of the swap page we're writing to.
367 * @hb: bio completion batch
370 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
379 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
384 ret = hib_wait_io(hb); /* Free pages */
387 src = (void *)__get_free_page(__GFP_RECLAIM |
394 hb = NULL; /* Go synchronous */
401 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
404 static void release_swap_writer(struct swap_map_handle *handle)
407 free_page((unsigned long)handle->cur);
411 static int get_swap_writer(struct swap_map_handle *handle)
415 ret = swsusp_swap_check();
418 pr_err("Cannot find swap device, try swapon -a\n");
421 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
426 handle->cur_swap = alloc_swapdev_block(root_swap);
427 if (!handle->cur_swap) {
432 handle->reqd_free_pages = reqd_free_pages();
433 handle->first_sector = handle->cur_swap;
436 release_swap_writer(handle);
438 swsusp_close(FMODE_WRITE);
442 static int swap_write_page(struct swap_map_handle *handle, void *buf,
443 struct hib_bio_batch *hb)
450 offset = alloc_swapdev_block(root_swap);
451 error = write_page(buf, offset, hb);
454 handle->cur->entries[handle->k++] = offset;
455 if (handle->k >= MAP_PAGE_ENTRIES) {
456 offset = alloc_swapdev_block(root_swap);
459 handle->cur->next_swap = offset;
460 error = write_page(handle->cur, handle->cur_swap, hb);
463 clear_page(handle->cur);
464 handle->cur_swap = offset;
467 if (hb && low_free_pages() <= handle->reqd_free_pages) {
468 error = hib_wait_io(hb);
472 * Recalculate the number of required free pages, to
473 * make sure we never take more than half.
475 handle->reqd_free_pages = reqd_free_pages();
482 static int flush_swap_writer(struct swap_map_handle *handle)
484 if (handle->cur && handle->cur_swap)
485 return write_page(handle->cur, handle->cur_swap, NULL);
490 static int swap_writer_finish(struct swap_map_handle *handle,
491 unsigned int flags, int error)
494 flush_swap_writer(handle);
496 error = mark_swapfiles(handle, flags);
501 free_all_swap_pages(root_swap);
502 release_swap_writer(handle);
503 swsusp_close(FMODE_WRITE);
508 /* We need to remember how much compressed data we need to read. */
509 #define LZO_HEADER sizeof(size_t)
511 /* Number of pages/bytes we'll compress at one time. */
512 #define LZO_UNC_PAGES 32
513 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
515 /* Number of pages/bytes we need for compressed data (worst case). */
516 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
517 LZO_HEADER, PAGE_SIZE)
518 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
520 /* Maximum number of threads for compression/decompression. */
521 #define LZO_THREADS 3
523 /* Minimum/maximum number of pages for read buffering. */
524 #define LZO_MIN_RD_PAGES 1024
525 #define LZO_MAX_RD_PAGES 8192
529 * save_image - save the suspend image data
532 static int save_image(struct swap_map_handle *handle,
533 struct snapshot_handle *snapshot,
534 unsigned int nr_to_write)
540 struct hib_bio_batch hb;
546 pr_info("Saving image data pages (%u pages)...\n",
548 m = nr_to_write / 10;
554 ret = snapshot_read_next(snapshot);
557 ret = swap_write_page(handle, data_of(*snapshot), &hb);
561 pr_info("Image saving progress: %3d%%\n",
565 err2 = hib_wait_io(&hb);
570 pr_info("Image saving done\n");
571 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
576 * Structure used for CRC32.
579 struct task_struct *thr; /* thread */
580 atomic_t ready; /* ready to start flag */
581 atomic_t stop; /* ready to stop flag */
582 unsigned run_threads; /* nr current threads */
583 wait_queue_head_t go; /* start crc update */
584 wait_queue_head_t done; /* crc update done */
585 u32 *crc32; /* points to handle's crc32 */
586 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
587 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
591 * CRC32 update function that runs in its own thread.
593 static int crc32_threadfn(void *data)
595 struct crc_data *d = data;
599 wait_event(d->go, atomic_read(&d->ready) ||
600 kthread_should_stop());
601 if (kthread_should_stop()) {
603 atomic_set(&d->stop, 1);
607 atomic_set(&d->ready, 0);
609 for (i = 0; i < d->run_threads; i++)
610 *d->crc32 = crc32_le(*d->crc32,
611 d->unc[i], *d->unc_len[i]);
612 atomic_set(&d->stop, 1);
618 * Structure used for LZO data compression.
621 struct task_struct *thr; /* thread */
622 atomic_t ready; /* ready to start flag */
623 atomic_t stop; /* ready to stop flag */
624 int ret; /* return code */
625 wait_queue_head_t go; /* start compression */
626 wait_queue_head_t done; /* compression done */
627 size_t unc_len; /* uncompressed length */
628 size_t cmp_len; /* compressed length */
629 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
630 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
631 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
635 * Compression function that runs in its own thread.
637 static int lzo_compress_threadfn(void *data)
639 struct cmp_data *d = data;
642 wait_event(d->go, atomic_read(&d->ready) ||
643 kthread_should_stop());
644 if (kthread_should_stop()) {
647 atomic_set(&d->stop, 1);
651 atomic_set(&d->ready, 0);
653 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
654 d->cmp + LZO_HEADER, &d->cmp_len,
656 atomic_set(&d->stop, 1);
663 * save_image_lzo - Save the suspend image data compressed with LZO.
664 * @handle: Swap map handle to use for saving the image.
665 * @snapshot: Image to read data from.
666 * @nr_to_write: Number of pages to save.
668 static int save_image_lzo(struct swap_map_handle *handle,
669 struct snapshot_handle *snapshot,
670 unsigned int nr_to_write)
676 struct hib_bio_batch hb;
680 unsigned thr, run_threads, nr_threads;
681 unsigned char *page = NULL;
682 struct cmp_data *data = NULL;
683 struct crc_data *crc = NULL;
688 * We'll limit the number of threads for compression to limit memory
691 nr_threads = num_online_cpus() - 1;
692 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
694 page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
696 pr_err("Failed to allocate LZO page\n");
701 data = vmalloc(sizeof(*data) * nr_threads);
703 pr_err("Failed to allocate LZO data\n");
707 for (thr = 0; thr < nr_threads; thr++)
708 memset(&data[thr], 0, offsetof(struct cmp_data, go));
710 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
712 pr_err("Failed to allocate crc\n");
716 memset(crc, 0, offsetof(struct crc_data, go));
719 * Start the compression threads.
721 for (thr = 0; thr < nr_threads; thr++) {
722 init_waitqueue_head(&data[thr].go);
723 init_waitqueue_head(&data[thr].done);
725 data[thr].thr = kthread_run(lzo_compress_threadfn,
727 "image_compress/%u", thr);
728 if (IS_ERR(data[thr].thr)) {
729 data[thr].thr = NULL;
730 pr_err("Cannot start compression threads\n");
737 * Start the CRC32 thread.
739 init_waitqueue_head(&crc->go);
740 init_waitqueue_head(&crc->done);
743 crc->crc32 = &handle->crc32;
744 for (thr = 0; thr < nr_threads; thr++) {
745 crc->unc[thr] = data[thr].unc;
746 crc->unc_len[thr] = &data[thr].unc_len;
749 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750 if (IS_ERR(crc->thr)) {
752 pr_err("Cannot start CRC32 thread\n");
758 * Adjust the number of required free pages after all allocations have
759 * been done. We don't want to run out of pages when writing.
761 handle->reqd_free_pages = reqd_free_pages();
763 pr_info("Using %u thread(s) for compression\n", nr_threads);
764 pr_info("Compressing and saving image data (%u pages)...\n",
766 m = nr_to_write / 10;
772 for (thr = 0; thr < nr_threads; thr++) {
773 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
774 ret = snapshot_read_next(snapshot);
781 memcpy(data[thr].unc + off,
782 data_of(*snapshot), PAGE_SIZE);
785 pr_info("Image saving progress: %3d%%\n",
792 data[thr].unc_len = off;
794 atomic_set(&data[thr].ready, 1);
795 wake_up(&data[thr].go);
801 crc->run_threads = thr;
802 atomic_set(&crc->ready, 1);
805 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
806 wait_event(data[thr].done,
807 atomic_read(&data[thr].stop));
808 atomic_set(&data[thr].stop, 0);
813 pr_err("LZO compression failed\n");
817 if (unlikely(!data[thr].cmp_len ||
819 lzo1x_worst_compress(data[thr].unc_len))) {
820 pr_err("Invalid LZO compressed length\n");
825 *(size_t *)data[thr].cmp = data[thr].cmp_len;
828 * Given we are writing one page at a time to disk, we
829 * copy that much from the buffer, although the last
830 * bit will likely be smaller than full page. This is
831 * OK - we saved the length of the compressed data, so
832 * any garbage at the end will be discarded when we
836 off < LZO_HEADER + data[thr].cmp_len;
838 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
840 ret = swap_write_page(handle, page, &hb);
846 wait_event(crc->done, atomic_read(&crc->stop));
847 atomic_set(&crc->stop, 0);
851 err2 = hib_wait_io(&hb);
856 pr_info("Image saving done\n");
857 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
861 kthread_stop(crc->thr);
865 for (thr = 0; thr < nr_threads; thr++)
867 kthread_stop(data[thr].thr);
870 if (page) free_page((unsigned long)page);
876 * enough_swap - Make sure we have enough swap to save the image.
878 * Returns TRUE or FALSE after checking the total amount of swap
879 * space avaiable from the resume partition.
882 static int enough_swap(unsigned int nr_pages, unsigned int flags)
884 unsigned int free_swap = count_swap_pages(root_swap, 1);
885 unsigned int required;
887 pr_debug("Free swap pages: %u\n", free_swap);
889 required = PAGES_FOR_IO + nr_pages;
890 return free_swap > required;
894 * swsusp_write - Write entire image and metadata.
895 * @flags: flags to pass to the "boot" kernel in the image header
897 * It is important _NOT_ to umount filesystems at this point. We want
898 * them synced (in case something goes wrong) but we DO not want to mark
899 * filesystem clean: it is not. (And it does not matter, if we resume
900 * correctly, we'll mark system clean, anyway.)
903 int swsusp_write(unsigned int flags)
905 struct swap_map_handle handle;
906 struct snapshot_handle snapshot;
907 struct swsusp_info *header;
911 pages = snapshot_get_image_size();
912 error = get_swap_writer(&handle);
914 pr_err("Cannot get swap writer\n");
917 if (flags & SF_NOCOMPRESS_MODE) {
918 if (!enough_swap(pages, flags)) {
919 pr_err("Not enough free swap\n");
924 memset(&snapshot, 0, sizeof(struct snapshot_handle));
925 error = snapshot_read_next(&snapshot);
926 if (error < PAGE_SIZE) {
932 header = (struct swsusp_info *)data_of(snapshot);
933 error = swap_write_page(&handle, header, NULL);
935 error = (flags & SF_NOCOMPRESS_MODE) ?
936 save_image(&handle, &snapshot, pages - 1) :
937 save_image_lzo(&handle, &snapshot, pages - 1);
940 error = swap_writer_finish(&handle, flags, error);
945 * The following functions allow us to read data using a swap map
946 * in a file-alike way
949 static void release_swap_reader(struct swap_map_handle *handle)
951 struct swap_map_page_list *tmp;
953 while (handle->maps) {
954 if (handle->maps->map)
955 free_page((unsigned long)handle->maps->map);
957 handle->maps = handle->maps->next;
963 static int get_swap_reader(struct swap_map_handle *handle,
964 unsigned int *flags_p)
967 struct swap_map_page_list *tmp, *last;
970 *flags_p = swsusp_header->flags;
972 if (!swsusp_header->image) /* how can this happen? */
976 last = handle->maps = NULL;
977 offset = swsusp_header->image;
979 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
981 release_swap_reader(handle);
984 memset(tmp, 0, sizeof(*tmp));
991 tmp->map = (struct swap_map_page *)
992 __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
994 release_swap_reader(handle);
998 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1000 release_swap_reader(handle);
1003 offset = tmp->map->next_swap;
1006 handle->cur = handle->maps->map;
1010 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1011 struct hib_bio_batch *hb)
1015 struct swap_map_page_list *tmp;
1019 offset = handle->cur->entries[handle->k];
1022 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1025 if (++handle->k >= MAP_PAGE_ENTRIES) {
1027 free_page((unsigned long)handle->maps->map);
1029 handle->maps = handle->maps->next;
1032 release_swap_reader(handle);
1034 handle->cur = handle->maps->map;
1039 static int swap_reader_finish(struct swap_map_handle *handle)
1041 release_swap_reader(handle);
1047 * load_image - load the image using the swap map handle
1048 * @handle and the snapshot handle @snapshot
1049 * (assume there are @nr_pages pages to load)
1052 static int load_image(struct swap_map_handle *handle,
1053 struct snapshot_handle *snapshot,
1054 unsigned int nr_to_read)
1060 struct hib_bio_batch hb;
1064 hib_init_batch(&hb);
1066 clean_pages_on_read = true;
1067 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1068 m = nr_to_read / 10;
1072 start = ktime_get();
1074 ret = snapshot_write_next(snapshot);
1077 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1080 if (snapshot->sync_read)
1081 ret = hib_wait_io(&hb);
1084 if (!(nr_pages % m))
1085 pr_info("Image loading progress: %3d%%\n",
1089 err2 = hib_wait_io(&hb);
1094 pr_info("Image loading done\n");
1095 snapshot_write_finalize(snapshot);
1096 if (!snapshot_image_loaded(snapshot))
1099 swsusp_show_speed(start, stop, nr_to_read, "Read");
1104 * Structure used for LZO data decompression.
1107 struct task_struct *thr; /* thread */
1108 atomic_t ready; /* ready to start flag */
1109 atomic_t stop; /* ready to stop flag */
1110 int ret; /* return code */
1111 wait_queue_head_t go; /* start decompression */
1112 wait_queue_head_t done; /* decompression done */
1113 size_t unc_len; /* uncompressed length */
1114 size_t cmp_len; /* compressed length */
1115 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1116 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1120 * Deompression function that runs in its own thread.
1122 static int lzo_decompress_threadfn(void *data)
1124 struct dec_data *d = data;
1127 wait_event(d->go, atomic_read(&d->ready) ||
1128 kthread_should_stop());
1129 if (kthread_should_stop()) {
1132 atomic_set(&d->stop, 1);
1136 atomic_set(&d->ready, 0);
1138 d->unc_len = LZO_UNC_SIZE;
1139 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1140 d->unc, &d->unc_len);
1141 if (clean_pages_on_decompress)
1142 flush_icache_range((unsigned long)d->unc,
1143 (unsigned long)d->unc + d->unc_len);
1145 atomic_set(&d->stop, 1);
1152 * load_image_lzo - Load compressed image data and decompress them with LZO.
1153 * @handle: Swap map handle to use for loading data.
1154 * @snapshot: Image to copy uncompressed data into.
1155 * @nr_to_read: Number of pages to load.
1157 static int load_image_lzo(struct swap_map_handle *handle,
1158 struct snapshot_handle *snapshot,
1159 unsigned int nr_to_read)
1164 struct hib_bio_batch hb;
1169 unsigned i, thr, run_threads, nr_threads;
1170 unsigned ring = 0, pg = 0, ring_size = 0,
1171 have = 0, want, need, asked = 0;
1172 unsigned long read_pages = 0;
1173 unsigned char **page = NULL;
1174 struct dec_data *data = NULL;
1175 struct crc_data *crc = NULL;
1177 hib_init_batch(&hb);
1180 * We'll limit the number of threads for decompression to limit memory
1183 nr_threads = num_online_cpus() - 1;
1184 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1186 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1188 pr_err("Failed to allocate LZO page\n");
1193 data = vmalloc(sizeof(*data) * nr_threads);
1195 pr_err("Failed to allocate LZO data\n");
1199 for (thr = 0; thr < nr_threads; thr++)
1200 memset(&data[thr], 0, offsetof(struct dec_data, go));
1202 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1204 pr_err("Failed to allocate crc\n");
1208 memset(crc, 0, offsetof(struct crc_data, go));
1210 clean_pages_on_decompress = true;
1213 * Start the decompression threads.
1215 for (thr = 0; thr < nr_threads; thr++) {
1216 init_waitqueue_head(&data[thr].go);
1217 init_waitqueue_head(&data[thr].done);
1219 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1221 "image_decompress/%u", thr);
1222 if (IS_ERR(data[thr].thr)) {
1223 data[thr].thr = NULL;
1224 pr_err("Cannot start decompression threads\n");
1231 * Start the CRC32 thread.
1233 init_waitqueue_head(&crc->go);
1234 init_waitqueue_head(&crc->done);
1237 crc->crc32 = &handle->crc32;
1238 for (thr = 0; thr < nr_threads; thr++) {
1239 crc->unc[thr] = data[thr].unc;
1240 crc->unc_len[thr] = &data[thr].unc_len;
1243 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244 if (IS_ERR(crc->thr)) {
1246 pr_err("Cannot start CRC32 thread\n");
1252 * Set the number of pages for read buffering.
1253 * This is complete guesswork, because we'll only know the real
1254 * picture once prepare_image() is called, which is much later on
1255 * during the image load phase. We'll assume the worst case and
1256 * say that none of the image pages are from high memory.
1258 if (low_free_pages() > snapshot_get_image_size())
1259 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1262 for (i = 0; i < read_pages; i++) {
1263 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264 __GFP_RECLAIM | __GFP_HIGH :
1265 __GFP_RECLAIM | __GFP_NOWARN |
1269 if (i < LZO_CMP_PAGES) {
1271 pr_err("Failed to allocate LZO pages\n");
1279 want = ring_size = i;
1281 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1282 pr_info("Loading and decompressing image data (%u pages)...\n",
1284 m = nr_to_read / 10;
1288 start = ktime_get();
1290 ret = snapshot_write_next(snapshot);
1295 for (i = 0; !eof && i < want; i++) {
1296 ret = swap_read_page(handle, page[ring], &hb);
1299 * On real read error, finish. On end of data,
1300 * set EOF flag and just exit the read loop.
1303 handle->cur->entries[handle->k]) {
1310 if (++ring >= ring_size)
1317 * We are out of data, wait for some more.
1323 ret = hib_wait_io(&hb);
1332 if (crc->run_threads) {
1333 wait_event(crc->done, atomic_read(&crc->stop));
1334 atomic_set(&crc->stop, 0);
1335 crc->run_threads = 0;
1338 for (thr = 0; have && thr < nr_threads; thr++) {
1339 data[thr].cmp_len = *(size_t *)page[pg];
1340 if (unlikely(!data[thr].cmp_len ||
1342 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1343 pr_err("Invalid LZO compressed length\n");
1348 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1359 off < LZO_HEADER + data[thr].cmp_len;
1361 memcpy(data[thr].cmp + off,
1362 page[pg], PAGE_SIZE);
1365 if (++pg >= ring_size)
1369 atomic_set(&data[thr].ready, 1);
1370 wake_up(&data[thr].go);
1374 * Wait for more data while we are decompressing.
1376 if (have < LZO_CMP_PAGES && asked) {
1377 ret = hib_wait_io(&hb);
1386 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1387 wait_event(data[thr].done,
1388 atomic_read(&data[thr].stop));
1389 atomic_set(&data[thr].stop, 0);
1391 ret = data[thr].ret;
1394 pr_err("LZO decompression failed\n");
1398 if (unlikely(!data[thr].unc_len ||
1399 data[thr].unc_len > LZO_UNC_SIZE ||
1400 data[thr].unc_len & (PAGE_SIZE - 1))) {
1401 pr_err("Invalid LZO uncompressed length\n");
1407 off < data[thr].unc_len; off += PAGE_SIZE) {
1408 memcpy(data_of(*snapshot),
1409 data[thr].unc + off, PAGE_SIZE);
1411 if (!(nr_pages % m))
1412 pr_info("Image loading progress: %3d%%\n",
1416 ret = snapshot_write_next(snapshot);
1418 crc->run_threads = thr + 1;
1419 atomic_set(&crc->ready, 1);
1426 crc->run_threads = thr;
1427 atomic_set(&crc->ready, 1);
1432 if (crc->run_threads) {
1433 wait_event(crc->done, atomic_read(&crc->stop));
1434 atomic_set(&crc->stop, 0);
1438 pr_info("Image loading done\n");
1439 snapshot_write_finalize(snapshot);
1440 if (!snapshot_image_loaded(snapshot))
1443 if (swsusp_header->flags & SF_CRC32_MODE) {
1444 if(handle->crc32 != swsusp_header->crc32) {
1445 pr_err("Invalid image CRC32!\n");
1451 swsusp_show_speed(start, stop, nr_to_read, "Read");
1453 for (i = 0; i < ring_size; i++)
1454 free_page((unsigned long)page[i]);
1457 kthread_stop(crc->thr);
1461 for (thr = 0; thr < nr_threads; thr++)
1463 kthread_stop(data[thr].thr);
1472 * swsusp_read - read the hibernation image.
1473 * @flags_p: flags passed by the "frozen" kernel in the image header should
1474 * be written into this memory location
1477 int swsusp_read(unsigned int *flags_p)
1480 struct swap_map_handle handle;
1481 struct snapshot_handle snapshot;
1482 struct swsusp_info *header;
1484 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1485 error = snapshot_write_next(&snapshot);
1486 if (error < PAGE_SIZE)
1487 return error < 0 ? error : -EFAULT;
1488 header = (struct swsusp_info *)data_of(snapshot);
1489 error = get_swap_reader(&handle, flags_p);
1493 error = swap_read_page(&handle, header, NULL);
1495 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1496 load_image(&handle, &snapshot, header->pages - 1) :
1497 load_image_lzo(&handle, &snapshot, header->pages - 1);
1499 swap_reader_finish(&handle);
1502 pr_debug("Image successfully loaded\n");
1504 pr_debug("Error %d resuming\n", error);
1509 * swsusp_check - Check for swsusp signature in the resume device
1512 int swsusp_check(void)
1516 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1518 if (!IS_ERR(hib_resume_bdev)) {
1519 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1520 clear_page(swsusp_header);
1521 error = hib_submit_io(REQ_OP_READ, 0,
1522 swsusp_resume_block,
1523 swsusp_header, NULL);
1527 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1528 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1529 /* Reset swap signature now */
1530 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1531 swsusp_resume_block,
1532 swsusp_header, NULL);
1539 blkdev_put(hib_resume_bdev, FMODE_READ);
1541 pr_debug("Image signature found, resuming\n");
1543 error = PTR_ERR(hib_resume_bdev);
1547 pr_debug("Image not found (code %d)\n", error);
1553 * swsusp_close - close swap device.
1556 void swsusp_close(fmode_t mode)
1558 if (IS_ERR(hib_resume_bdev)) {
1559 pr_debug("Image device not initialised\n");
1563 blkdev_put(hib_resume_bdev, mode);
1567 * swsusp_unmark - Unmark swsusp signature in the resume device
1570 #ifdef CONFIG_SUSPEND
1571 int swsusp_unmark(void)
1575 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1576 swsusp_header, NULL);
1577 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1578 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1579 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1580 swsusp_resume_block,
1581 swsusp_header, NULL);
1583 pr_err("Cannot find swsusp signature!\n");
1588 * We just returned from suspend, we don't need the image any more.
1590 free_all_swap_pages(root_swap);
1596 static int swsusp_header_init(void)
1598 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1600 panic("Could not allocate memory for swsusp_header\n");
1604 core_initcall(swsusp_header_init);