2 * Linux Socket Filter - Kernel level socket filtering
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
35 #include <asm/unaligned.h>
38 #define BPF_R0 regs[BPF_REG_0]
39 #define BPF_R1 regs[BPF_REG_1]
40 #define BPF_R2 regs[BPF_REG_2]
41 #define BPF_R3 regs[BPF_REG_3]
42 #define BPF_R4 regs[BPF_REG_4]
43 #define BPF_R5 regs[BPF_REG_5]
44 #define BPF_R6 regs[BPF_REG_6]
45 #define BPF_R7 regs[BPF_REG_7]
46 #define BPF_R8 regs[BPF_REG_8]
47 #define BPF_R9 regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
51 #define DST regs[insn->dst_reg]
52 #define SRC regs[insn->src_reg]
53 #define FP regs[BPF_REG_FP]
54 #define ARG1 regs[BPF_REG_ARG1]
55 #define CTX regs[BPF_REG_CTX]
58 /* No hurry in this branch
60 * Exported for the bpf jit load helper.
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 else if (k >= SKF_LL_OFF)
69 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80 struct bpf_prog_aux *aux;
83 size = round_up(size, PAGE_SIZE);
84 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
88 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
94 fp->pages = size / PAGE_SIZE;
98 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
102 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
104 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
105 gfp_t gfp_extra_flags)
107 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
112 BUG_ON(fp_old == NULL);
114 size = round_up(size, PAGE_SIZE);
115 pages = size / PAGE_SIZE;
116 if (pages <= fp_old->pages)
119 delta = pages - fp_old->pages;
120 ret = __bpf_prog_charge(fp_old->aux->user, delta);
124 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
126 __bpf_prog_uncharge(fp_old->aux->user, delta);
128 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
132 /* We keep fp->aux from fp_old around in the new
133 * reallocated structure.
136 __bpf_prog_free(fp_old);
142 void __bpf_prog_free(struct bpf_prog *fp)
148 int bpf_prog_calc_tag(struct bpf_prog *fp)
150 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
151 u32 raw_size = bpf_prog_tag_scratch_size(fp);
152 u32 digest[SHA_DIGEST_WORDS];
153 u32 ws[SHA_WORKSPACE_WORDS];
154 u32 i, bsize, psize, blocks;
155 struct bpf_insn *dst;
161 raw = vmalloc(raw_size);
166 memset(ws, 0, sizeof(ws));
168 /* We need to take out the map fd for the digest calculation
169 * since they are unstable from user space side.
172 for (i = 0, was_ld_map = false; i < fp->len; i++) {
173 dst[i] = fp->insnsi[i];
175 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
176 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
179 } else if (was_ld_map &&
181 dst[i].dst_reg == 0 &&
182 dst[i].src_reg == 0 &&
191 psize = bpf_prog_insn_size(fp);
192 memset(&raw[psize], 0, raw_size - psize);
195 bsize = round_up(psize, SHA_MESSAGE_BYTES);
196 blocks = bsize / SHA_MESSAGE_BYTES;
198 if (bsize - psize >= sizeof(__be64)) {
199 bits = (__be64 *)(todo + bsize - sizeof(__be64));
201 bits = (__be64 *)(todo + bsize + bits_offset);
204 *bits = cpu_to_be64((psize - 1) << 3);
207 sha_transform(digest, todo, ws);
208 todo += SHA_MESSAGE_BYTES;
211 result = (__force __be32 *)digest;
212 for (i = 0; i < SHA_DIGEST_WORDS; i++)
213 result[i] = cpu_to_be32(digest[i]);
214 memcpy(fp->tag, result, sizeof(fp->tag));
220 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
222 return BPF_CLASS(insn->code) == BPF_JMP &&
223 /* Call and Exit are both special jumps with no
224 * target inside the BPF instruction image.
226 BPF_OP(insn->code) != BPF_CALL &&
227 BPF_OP(insn->code) != BPF_EXIT;
230 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
232 struct bpf_insn *insn = prog->insnsi;
233 u32 i, insn_cnt = prog->len;
235 for (i = 0; i < insn_cnt; i++, insn++) {
236 if (!bpf_is_jmp_and_has_target(insn))
239 /* Adjust offset of jmps if we cross boundaries. */
240 if (i < pos && i + insn->off + 1 > pos)
242 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
247 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
248 const struct bpf_insn *patch, u32 len)
250 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
251 struct bpf_prog *prog_adj;
253 /* Since our patchlet doesn't expand the image, we're done. */
254 if (insn_delta == 0) {
255 memcpy(prog->insnsi + off, patch, sizeof(*patch));
259 insn_adj_cnt = prog->len + insn_delta;
261 /* Several new instructions need to be inserted. Make room
262 * for them. Likely, there's no need for a new allocation as
263 * last page could have large enough tailroom.
265 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
270 prog_adj->len = insn_adj_cnt;
272 /* Patching happens in 3 steps:
274 * 1) Move over tail of insnsi from next instruction onwards,
275 * so we can patch the single target insn with one or more
276 * new ones (patching is always from 1 to n insns, n > 0).
277 * 2) Inject new instructions at the target location.
278 * 3) Adjust branch offsets if necessary.
280 insn_rest = insn_adj_cnt - off - len;
282 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
283 sizeof(*patch) * insn_rest);
284 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
286 bpf_adj_branches(prog_adj, off, insn_delta);
291 #ifdef CONFIG_BPF_JIT
292 static __always_inline void
293 bpf_get_prog_addr_region(const struct bpf_prog *prog,
294 unsigned long *symbol_start,
295 unsigned long *symbol_end)
297 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
298 unsigned long addr = (unsigned long)hdr;
300 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
302 *symbol_start = addr;
303 *symbol_end = addr + hdr->pages * PAGE_SIZE;
306 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
308 const char *end = sym + KSYM_NAME_LEN;
310 BUILD_BUG_ON(sizeof("bpf_prog_") +
311 sizeof(prog->tag) * 2 +
312 /* name has been null terminated.
313 * We should need +1 for the '_' preceding
314 * the name. However, the null character
315 * is double counted between the name and the
316 * sizeof("bpf_prog_") above, so we omit
319 sizeof(prog->aux->name) > KSYM_NAME_LEN);
321 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
322 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
323 if (prog->aux->name[0])
324 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
329 static __always_inline unsigned long
330 bpf_get_prog_addr_start(struct latch_tree_node *n)
332 unsigned long symbol_start, symbol_end;
333 const struct bpf_prog_aux *aux;
335 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
336 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
341 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
342 struct latch_tree_node *b)
344 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
347 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
349 unsigned long val = (unsigned long)key;
350 unsigned long symbol_start, symbol_end;
351 const struct bpf_prog_aux *aux;
353 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
354 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
356 if (val < symbol_start)
358 if (val >= symbol_end)
364 static const struct latch_tree_ops bpf_tree_ops = {
365 .less = bpf_tree_less,
366 .comp = bpf_tree_comp,
369 static DEFINE_SPINLOCK(bpf_lock);
370 static LIST_HEAD(bpf_kallsyms);
371 static struct latch_tree_root bpf_tree __cacheline_aligned;
373 int bpf_jit_kallsyms __read_mostly;
375 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
377 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
378 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
379 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
382 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
384 if (list_empty(&aux->ksym_lnode))
387 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
388 list_del_rcu(&aux->ksym_lnode);
391 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
393 return fp->jited && !bpf_prog_was_classic(fp);
396 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
398 return list_empty(&fp->aux->ksym_lnode) ||
399 fp->aux->ksym_lnode.prev == LIST_POISON2;
402 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
404 if (!bpf_prog_kallsyms_candidate(fp) ||
405 !capable(CAP_SYS_ADMIN))
408 spin_lock_bh(&bpf_lock);
409 bpf_prog_ksym_node_add(fp->aux);
410 spin_unlock_bh(&bpf_lock);
413 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
415 if (!bpf_prog_kallsyms_candidate(fp))
418 spin_lock_bh(&bpf_lock);
419 bpf_prog_ksym_node_del(fp->aux);
420 spin_unlock_bh(&bpf_lock);
423 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
425 struct latch_tree_node *n;
427 if (!bpf_jit_kallsyms_enabled())
430 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
432 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
436 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
437 unsigned long *off, char *sym)
439 unsigned long symbol_start, symbol_end;
440 struct bpf_prog *prog;
444 prog = bpf_prog_kallsyms_find(addr);
446 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
447 bpf_get_prog_name(prog, sym);
451 *size = symbol_end - symbol_start;
453 *off = addr - symbol_start;
460 bool is_bpf_text_address(unsigned long addr)
465 ret = bpf_prog_kallsyms_find(addr) != NULL;
471 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
474 unsigned long symbol_start, symbol_end;
475 struct bpf_prog_aux *aux;
479 if (!bpf_jit_kallsyms_enabled())
483 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
487 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
488 bpf_get_prog_name(aux->prog, sym);
490 *value = symbol_start;
491 *type = BPF_SYM_ELF_TYPE;
501 struct bpf_binary_header *
502 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
503 unsigned int alignment,
504 bpf_jit_fill_hole_t bpf_fill_ill_insns)
506 struct bpf_binary_header *hdr;
507 unsigned int size, hole, start;
509 /* Most of BPF filters are really small, but if some of them
510 * fill a page, allow at least 128 extra bytes to insert a
511 * random section of illegal instructions.
513 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
514 hdr = module_alloc(size);
518 /* Fill space with illegal/arch-dep instructions. */
519 bpf_fill_ill_insns(hdr, size);
521 hdr->pages = size / PAGE_SIZE;
522 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
523 PAGE_SIZE - sizeof(*hdr));
524 start = (get_random_int() % hole) & ~(alignment - 1);
526 /* Leave a random number of instructions before BPF code. */
527 *image_ptr = &hdr->image[start];
532 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
537 /* This symbol is only overridden by archs that have different
538 * requirements than the usual eBPF JITs, f.e. when they only
539 * implement cBPF JIT, do not set images read-only, etc.
541 void __weak bpf_jit_free(struct bpf_prog *fp)
544 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
546 bpf_jit_binary_unlock_ro(hdr);
547 bpf_jit_binary_free(hdr);
549 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
552 bpf_prog_unlock_free(fp);
555 int bpf_jit_harden __read_mostly;
557 static int bpf_jit_blind_insn(const struct bpf_insn *from,
558 const struct bpf_insn *aux,
559 struct bpf_insn *to_buff)
561 struct bpf_insn *to = to_buff;
562 u32 imm_rnd = get_random_int();
565 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
566 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
568 if (from->imm == 0 &&
569 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
570 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
571 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
575 switch (from->code) {
576 case BPF_ALU | BPF_ADD | BPF_K:
577 case BPF_ALU | BPF_SUB | BPF_K:
578 case BPF_ALU | BPF_AND | BPF_K:
579 case BPF_ALU | BPF_OR | BPF_K:
580 case BPF_ALU | BPF_XOR | BPF_K:
581 case BPF_ALU | BPF_MUL | BPF_K:
582 case BPF_ALU | BPF_MOV | BPF_K:
583 case BPF_ALU | BPF_DIV | BPF_K:
584 case BPF_ALU | BPF_MOD | BPF_K:
585 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
586 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
587 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
590 case BPF_ALU64 | BPF_ADD | BPF_K:
591 case BPF_ALU64 | BPF_SUB | BPF_K:
592 case BPF_ALU64 | BPF_AND | BPF_K:
593 case BPF_ALU64 | BPF_OR | BPF_K:
594 case BPF_ALU64 | BPF_XOR | BPF_K:
595 case BPF_ALU64 | BPF_MUL | BPF_K:
596 case BPF_ALU64 | BPF_MOV | BPF_K:
597 case BPF_ALU64 | BPF_DIV | BPF_K:
598 case BPF_ALU64 | BPF_MOD | BPF_K:
599 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
600 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
601 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
604 case BPF_JMP | BPF_JEQ | BPF_K:
605 case BPF_JMP | BPF_JNE | BPF_K:
606 case BPF_JMP | BPF_JGT | BPF_K:
607 case BPF_JMP | BPF_JLT | BPF_K:
608 case BPF_JMP | BPF_JGE | BPF_K:
609 case BPF_JMP | BPF_JLE | BPF_K:
610 case BPF_JMP | BPF_JSGT | BPF_K:
611 case BPF_JMP | BPF_JSLT | BPF_K:
612 case BPF_JMP | BPF_JSGE | BPF_K:
613 case BPF_JMP | BPF_JSLE | BPF_K:
614 case BPF_JMP | BPF_JSET | BPF_K:
615 /* Accommodate for extra offset in case of a backjump. */
619 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
620 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
621 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
624 case BPF_LD | BPF_ABS | BPF_W:
625 case BPF_LD | BPF_ABS | BPF_H:
626 case BPF_LD | BPF_ABS | BPF_B:
627 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
628 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
629 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
632 case BPF_LD | BPF_IND | BPF_W:
633 case BPF_LD | BPF_IND | BPF_H:
634 case BPF_LD | BPF_IND | BPF_B:
635 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
636 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
637 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
638 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
641 case BPF_LD | BPF_IMM | BPF_DW:
642 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
643 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
644 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
645 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
647 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
648 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
649 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
650 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
653 case BPF_ST | BPF_MEM | BPF_DW:
654 case BPF_ST | BPF_MEM | BPF_W:
655 case BPF_ST | BPF_MEM | BPF_H:
656 case BPF_ST | BPF_MEM | BPF_B:
657 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
658 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
659 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
666 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
667 gfp_t gfp_extra_flags)
669 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
672 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
674 /* aux->prog still points to the fp_other one, so
675 * when promoting the clone to the real program,
676 * this still needs to be adapted.
678 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
684 static void bpf_prog_clone_free(struct bpf_prog *fp)
686 /* aux was stolen by the other clone, so we cannot free
687 * it from this path! It will be freed eventually by the
688 * other program on release.
690 * At this point, we don't need a deferred release since
691 * clone is guaranteed to not be locked.
697 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
699 /* We have to repoint aux->prog to self, as we don't
700 * know whether fp here is the clone or the original.
703 bpf_prog_clone_free(fp_other);
706 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
708 struct bpf_insn insn_buff[16], aux[2];
709 struct bpf_prog *clone, *tmp;
710 int insn_delta, insn_cnt;
711 struct bpf_insn *insn;
714 if (!bpf_jit_blinding_enabled())
717 clone = bpf_prog_clone_create(prog, GFP_USER);
719 return ERR_PTR(-ENOMEM);
721 insn_cnt = clone->len;
722 insn = clone->insnsi;
724 for (i = 0; i < insn_cnt; i++, insn++) {
725 /* We temporarily need to hold the original ld64 insn
726 * so that we can still access the first part in the
727 * second blinding run.
729 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
731 memcpy(aux, insn, sizeof(aux));
733 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
737 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
739 /* Patching may have repointed aux->prog during
740 * realloc from the original one, so we need to
741 * fix it up here on error.
743 bpf_jit_prog_release_other(prog, clone);
744 return ERR_PTR(-ENOMEM);
748 insn_delta = rewritten - 1;
750 /* Walk new program and skip insns we just inserted. */
751 insn = clone->insnsi + i + insn_delta;
752 insn_cnt += insn_delta;
758 #endif /* CONFIG_BPF_JIT */
760 /* Base function for offset calculation. Needs to go into .text section,
761 * therefore keeping it non-static as well; will also be used by JITs
762 * anyway later on, so do not let the compiler omit it.
764 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
768 EXPORT_SYMBOL_GPL(__bpf_call_base);
771 * __bpf_prog_run - run eBPF program on a given context
772 * @ctx: is the data we are operating on
773 * @insn: is the array of eBPF instructions
775 * Decode and execute eBPF instructions.
777 static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
781 static const void *jumptable[256] = {
782 [0 ... 255] = &&default_label,
783 /* Now overwrite non-defaults ... */
784 /* 32 bit ALU operations */
785 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
786 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
787 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
788 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
789 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
790 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
791 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
792 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
793 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
794 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
795 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
796 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
797 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
798 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
799 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
800 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
801 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
802 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
803 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
804 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
805 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
806 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
807 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
808 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
809 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
810 /* 64 bit ALU operations */
811 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
812 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
813 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
814 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
815 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
816 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
817 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
818 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
819 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
820 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
821 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
822 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
823 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
824 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
825 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
826 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
827 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
828 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
829 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
830 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
831 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
832 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
833 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
834 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
835 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
836 /* Call instruction */
837 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
838 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
840 [BPF_JMP | BPF_JA] = &&JMP_JA,
841 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
842 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
843 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
844 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
845 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
846 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
847 [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
848 [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
849 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
850 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
851 [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
852 [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
853 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
854 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
855 [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
856 [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
857 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
858 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
859 [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
860 [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
861 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
862 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
864 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
865 /* Store instructions */
866 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
867 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
868 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
869 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
870 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
871 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
872 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
873 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
874 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
875 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
876 /* Load instructions */
877 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
878 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
879 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
880 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
881 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
882 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
883 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
884 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
885 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
886 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
887 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
889 u32 tail_call_cnt = 0;
893 #define CONT ({ insn++; goto select_insn; })
894 #define CONT_JMP ({ insn++; goto select_insn; })
897 goto *jumptable[insn->code];
900 #define ALU(OPCODE, OP) \
901 ALU64_##OPCODE##_X: \
905 DST = (u32) DST OP (u32) SRC; \
907 ALU64_##OPCODE##_K: \
911 DST = (u32) DST OP (u32) IMM; \
942 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
946 (*(s64 *) &DST) >>= SRC;
949 (*(s64 *) &DST) >>= IMM;
952 if (unlikely(SRC == 0))
954 div64_u64_rem(DST, SRC, &tmp);
958 if (unlikely(SRC == 0))
961 DST = do_div(tmp, (u32) SRC);
964 div64_u64_rem(DST, IMM, &tmp);
969 DST = do_div(tmp, (u32) IMM);
972 if (unlikely(SRC == 0))
974 DST = div64_u64(DST, SRC);
977 if (unlikely(SRC == 0))
980 do_div(tmp, (u32) SRC);
984 DST = div64_u64(DST, IMM);
988 do_div(tmp, (u32) IMM);
994 DST = (__force u16) cpu_to_be16(DST);
997 DST = (__force u32) cpu_to_be32(DST);
1000 DST = (__force u64) cpu_to_be64(DST);
1007 DST = (__force u16) cpu_to_le16(DST);
1010 DST = (__force u32) cpu_to_le32(DST);
1013 DST = (__force u64) cpu_to_le64(DST);
1020 /* Function call scratches BPF_R1-BPF_R5 registers,
1021 * preserves BPF_R6-BPF_R9, and stores return value
1024 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1029 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1030 struct bpf_array *array = container_of(map, struct bpf_array, map);
1031 struct bpf_prog *prog;
1034 if (unlikely(index >= array->map.max_entries))
1036 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1041 prog = READ_ONCE(array->ptrs[index]);
1045 /* ARG1 at this point is guaranteed to point to CTX from
1046 * the verifier side due to the fact that the tail call is
1047 * handeled like a helper, that is, bpf_tail_call_proto,
1048 * where arg1_type is ARG_PTR_TO_CTX.
1050 insn = prog->insnsi;
1132 if (((s64) DST) > ((s64) SRC)) {
1138 if (((s64) DST) > ((s64) IMM)) {
1144 if (((s64) DST) < ((s64) SRC)) {
1150 if (((s64) DST) < ((s64) IMM)) {
1156 if (((s64) DST) >= ((s64) SRC)) {
1162 if (((s64) DST) >= ((s64) IMM)) {
1168 if (((s64) DST) <= ((s64) SRC)) {
1174 if (((s64) DST) <= ((s64) IMM)) {
1194 /* STX and ST and LDX*/
1195 #define LDST(SIZEOP, SIZE) \
1197 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1200 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1203 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1211 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1212 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1215 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1216 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1219 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1222 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1223 * appearing in the programs where ctx == skb
1224 * (see may_access_skb() in the verifier). All programs
1225 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1226 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1227 * verifier will check that BPF_R6 == ctx.
1229 * BPF_ABS and BPF_IND are wrappers of function calls,
1230 * so they scratch BPF_R1-BPF_R5 registers, preserve
1231 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1234 * ctx == skb == BPF_R6 == CTX
1237 * SRC == any register
1238 * IMM == 32-bit immediate
1241 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1244 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1245 if (likely(ptr != NULL)) {
1246 BPF_R0 = get_unaligned_be32(ptr);
1251 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1254 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1255 if (likely(ptr != NULL)) {
1256 BPF_R0 = get_unaligned_be16(ptr);
1261 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1264 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1265 if (likely(ptr != NULL)) {
1266 BPF_R0 = *(u8 *)ptr;
1271 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1274 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1277 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1282 /* If we ever reach this, we have a bug somewhere. */
1283 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1286 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1288 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1289 #define DEFINE_BPF_PROG_RUN(stack_size) \
1290 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1292 u64 stack[stack_size / sizeof(u64)]; \
1293 u64 regs[MAX_BPF_REG]; \
1295 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1296 ARG1 = (u64) (unsigned long) ctx; \
1297 return ___bpf_prog_run(regs, insn, stack); \
1300 #define EVAL1(FN, X) FN(X)
1301 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1302 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1303 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1304 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1305 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1307 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1308 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1309 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1311 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1313 static unsigned int (*interpreters[])(const void *ctx,
1314 const struct bpf_insn *insn) = {
1315 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1316 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1317 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1320 bool bpf_prog_array_compatible(struct bpf_array *array,
1321 const struct bpf_prog *fp)
1323 if (!array->owner_prog_type) {
1324 /* There's no owner yet where we could check for
1327 array->owner_prog_type = fp->type;
1328 array->owner_jited = fp->jited;
1333 return array->owner_prog_type == fp->type &&
1334 array->owner_jited == fp->jited;
1337 static int bpf_check_tail_call(const struct bpf_prog *fp)
1339 struct bpf_prog_aux *aux = fp->aux;
1342 for (i = 0; i < aux->used_map_cnt; i++) {
1343 struct bpf_map *map = aux->used_maps[i];
1344 struct bpf_array *array;
1346 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1349 array = container_of(map, struct bpf_array, map);
1350 if (!bpf_prog_array_compatible(array, fp))
1358 * bpf_prog_select_runtime - select exec runtime for BPF program
1359 * @fp: bpf_prog populated with internal BPF program
1360 * @err: pointer to error variable
1362 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1363 * The BPF program will be executed via BPF_PROG_RUN() macro.
1365 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1367 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1369 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1371 /* eBPF JITs can rewrite the program in case constant
1372 * blinding is active. However, in case of error during
1373 * blinding, bpf_int_jit_compile() must always return a
1374 * valid program, which in this case would simply not
1375 * be JITed, but falls back to the interpreter.
1377 if (!bpf_prog_is_dev_bound(fp->aux)) {
1378 fp = bpf_int_jit_compile(fp);
1380 *err = bpf_prog_offload_compile(fp);
1384 bpf_prog_lock_ro(fp);
1386 /* The tail call compatibility check can only be done at
1387 * this late stage as we need to determine, if we deal
1388 * with JITed or non JITed program concatenations and not
1389 * all eBPF JITs might immediately support all features.
1391 *err = bpf_check_tail_call(fp);
1395 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1397 static unsigned int __bpf_prog_ret1(const void *ctx,
1398 const struct bpf_insn *insn)
1403 static struct bpf_prog_dummy {
1404 struct bpf_prog prog;
1405 } dummy_bpf_prog = {
1407 .bpf_func = __bpf_prog_ret1,
1411 /* to avoid allocating empty bpf_prog_array for cgroups that
1412 * don't have bpf program attached use one global 'empty_prog_array'
1413 * It will not be modified the caller of bpf_prog_array_alloc()
1414 * (since caller requested prog_cnt == 0)
1415 * that pointer should be 'freed' by bpf_prog_array_free()
1418 struct bpf_prog_array hdr;
1419 struct bpf_prog *null_prog;
1420 } empty_prog_array = {
1424 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1427 return kzalloc(sizeof(struct bpf_prog_array) +
1428 sizeof(struct bpf_prog *) * (prog_cnt + 1),
1431 return &empty_prog_array.hdr;
1434 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1437 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1439 kfree_rcu(progs, rcu);
1442 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1444 struct bpf_prog **prog;
1448 prog = rcu_dereference(progs)->progs;
1449 for (; *prog; prog++)
1455 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1456 __u32 __user *prog_ids, u32 cnt)
1458 struct bpf_prog **prog;
1462 prog = rcu_dereference(progs)->progs;
1463 for (; *prog; prog++) {
1464 id = (*prog)->aux->id;
1465 if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
1480 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1481 struct bpf_prog *old_prog)
1483 struct bpf_prog **prog = progs->progs;
1485 for (; *prog; prog++)
1486 if (*prog == old_prog) {
1487 WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1492 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1493 struct bpf_prog *exclude_prog,
1494 struct bpf_prog *include_prog,
1495 struct bpf_prog_array **new_array)
1497 int new_prog_cnt, carry_prog_cnt = 0;
1498 struct bpf_prog **existing_prog;
1499 struct bpf_prog_array *array;
1500 int new_prog_idx = 0;
1502 /* Figure out how many existing progs we need to carry over to
1506 existing_prog = old_array->progs;
1507 for (; *existing_prog; existing_prog++) {
1508 if (*existing_prog != exclude_prog &&
1509 *existing_prog != &dummy_bpf_prog.prog)
1511 if (*existing_prog == include_prog)
1516 /* How many progs (not NULL) will be in the new array? */
1517 new_prog_cnt = carry_prog_cnt;
1521 /* Do we have any prog (not NULL) in the new array? */
1522 if (!new_prog_cnt) {
1527 /* +1 as the end of prog_array is marked with NULL */
1528 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1532 /* Fill in the new prog array */
1533 if (carry_prog_cnt) {
1534 existing_prog = old_array->progs;
1535 for (; *existing_prog; existing_prog++)
1536 if (*existing_prog != exclude_prog &&
1537 *existing_prog != &dummy_bpf_prog.prog)
1538 array->progs[new_prog_idx++] = *existing_prog;
1541 array->progs[new_prog_idx++] = include_prog;
1542 array->progs[new_prog_idx] = NULL;
1547 static void bpf_prog_free_deferred(struct work_struct *work)
1549 struct bpf_prog_aux *aux;
1551 aux = container_of(work, struct bpf_prog_aux, work);
1552 if (bpf_prog_is_dev_bound(aux))
1553 bpf_prog_offload_destroy(aux->prog);
1554 bpf_jit_free(aux->prog);
1557 /* Free internal BPF program */
1558 void bpf_prog_free(struct bpf_prog *fp)
1560 struct bpf_prog_aux *aux = fp->aux;
1562 INIT_WORK(&aux->work, bpf_prog_free_deferred);
1563 schedule_work(&aux->work);
1565 EXPORT_SYMBOL_GPL(bpf_prog_free);
1567 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1568 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1570 void bpf_user_rnd_init_once(void)
1572 prandom_init_once(&bpf_user_rnd_state);
1575 BPF_CALL_0(bpf_user_rnd_u32)
1577 /* Should someone ever have the rather unwise idea to use some
1578 * of the registers passed into this function, then note that
1579 * this function is called from native eBPF and classic-to-eBPF
1580 * transformations. Register assignments from both sides are
1581 * different, f.e. classic always sets fn(ctx, A, X) here.
1583 struct rnd_state *state;
1586 state = &get_cpu_var(bpf_user_rnd_state);
1587 res = prandom_u32_state(state);
1588 put_cpu_var(bpf_user_rnd_state);
1593 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1594 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1595 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1596 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1598 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1599 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1600 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1601 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1603 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1604 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1605 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1606 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1608 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1614 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1615 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1620 /* Always built-in helper functions. */
1621 const struct bpf_func_proto bpf_tail_call_proto = {
1624 .ret_type = RET_VOID,
1625 .arg1_type = ARG_PTR_TO_CTX,
1626 .arg2_type = ARG_CONST_MAP_PTR,
1627 .arg3_type = ARG_ANYTHING,
1630 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1631 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1632 * eBPF and implicitly also cBPF can get JITed!
1634 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1639 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1640 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1642 void __weak bpf_jit_compile(struct bpf_prog *prog)
1646 bool __weak bpf_helper_changes_pkt_data(void *func)
1651 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1652 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1654 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1660 /* All definitions of tracepoints related to BPF. */
1661 #define CREATE_TRACE_POINTS
1662 #include <linux/bpf_trace.h>
1664 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1666 /* These are only used within the BPF_SYSCALL code */
1667 #ifdef CONFIG_BPF_SYSCALL
1668 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1669 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);