2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
49 #include <asm/virtext.h>
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
57 static const struct x86_cpu_id svm_cpu_id[] = {
58 X86_FEATURE_MATCH(X86_FEATURE_SVM),
61 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
63 #define IOPM_ALLOC_ORDER 2
64 #define MSRPM_ALLOC_ORDER 1
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
69 #define SVM_FEATURE_NPT (1 << 0)
70 #define SVM_FEATURE_LBRV (1 << 1)
71 #define SVM_FEATURE_SVML (1 << 2)
72 #define SVM_FEATURE_NRIP (1 << 3)
73 #define SVM_FEATURE_TSC_RATE (1 << 4)
74 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
75 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
76 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
77 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79 #define SVM_AVIC_DOORBELL 0xc001011b
81 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
82 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
83 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
88 #define TSC_RATIO_MIN 0x0000000000000001ULL
89 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
94 * 0xff is broadcast, so the max index allowed for physical APIC ID
95 * table is 0xfe. APIC IDs above 0xff are reserved.
97 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS 8
105 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107 #define AVIC_VM_ID_BITS 24
108 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116 static bool erratum_383_found __read_mostly;
118 static const u32 host_save_user_msrs[] = {
120 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
123 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
131 struct nested_state {
137 /* These are the merged vectors */
140 /* gpa pointers to the real vectors */
144 /* A VMEXIT is required but not yet emulated */
147 /* cache for intercepts of the guest */
150 u32 intercept_exceptions;
153 /* Nested Paging related state */
157 #define MSRPM_OFFSETS 16
158 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
161 * Set osvw_len to higher value when updated Revision Guides
162 * are published and we know what the new status bits are
164 static uint64_t osvw_len = 4, osvw_status;
167 struct kvm_vcpu vcpu;
169 unsigned long vmcb_pa;
170 struct svm_cpu_data *svm_data;
171 uint64_t asid_generation;
172 uint64_t sysenter_esp;
173 uint64_t sysenter_eip;
178 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
190 struct nested_state nested;
193 u64 nmi_singlestep_guest_rflags;
195 unsigned int3_injected;
196 unsigned long int3_rip;
198 /* cached guest cpuid flags for faster access */
199 bool nrips_enabled : 1;
202 struct page *avic_backing_page;
203 u64 *avic_physical_id_cache;
204 bool avic_is_running;
207 * Per-vcpu list of struct amd_svm_iommu_ir:
208 * This is used mainly to store interrupt remapping information used
209 * when update the vcpu affinity. This avoids the need to scan for
210 * IRTE and try to match ga_tag in the IOMMU driver.
212 struct list_head ir_list;
213 spinlock_t ir_list_lock;
217 * This is a wrapper of struct amd_iommu_ir_data.
219 struct amd_svm_iommu_ir {
220 struct list_head node; /* Used by SVM for per-vcpu ir_list */
221 void *data; /* Storing pointer to struct amd_ir_data */
224 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
225 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
227 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
228 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
229 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
230 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
232 static DEFINE_PER_CPU(u64, current_tsc_ratio);
233 #define TSC_RATIO_DEFAULT 0x0100000000ULL
235 #define MSR_INVALID 0xffffffffU
237 static const struct svm_direct_access_msrs {
238 u32 index; /* Index of the MSR */
239 bool always; /* True if intercept is always on */
240 } direct_access_msrs[] = {
241 { .index = MSR_STAR, .always = true },
242 { .index = MSR_IA32_SYSENTER_CS, .always = true },
244 { .index = MSR_GS_BASE, .always = true },
245 { .index = MSR_FS_BASE, .always = true },
246 { .index = MSR_KERNEL_GS_BASE, .always = true },
247 { .index = MSR_LSTAR, .always = true },
248 { .index = MSR_CSTAR, .always = true },
249 { .index = MSR_SYSCALL_MASK, .always = true },
251 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
252 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
253 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
254 { .index = MSR_IA32_LASTINTTOIP, .always = false },
255 { .index = MSR_INVALID, .always = false },
258 /* enable NPT for AMD64 and X86 with PAE */
259 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
260 static bool npt_enabled = true;
262 static bool npt_enabled;
265 /* allow nested paging (virtualized MMU) for all guests */
266 static int npt = true;
267 module_param(npt, int, S_IRUGO);
269 /* allow nested virtualization in KVM/SVM */
270 static int nested = true;
271 module_param(nested, int, S_IRUGO);
273 /* enable / disable AVIC */
275 #ifdef CONFIG_X86_LOCAL_APIC
276 module_param(avic, int, S_IRUGO);
279 /* enable/disable Virtual VMLOAD VMSAVE */
280 static int vls = true;
281 module_param(vls, int, 0444);
283 /* enable/disable Virtual GIF */
284 static int vgif = true;
285 module_param(vgif, int, 0444);
287 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
288 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
289 static void svm_complete_interrupts(struct vcpu_svm *svm);
291 static int nested_svm_exit_handled(struct vcpu_svm *svm);
292 static int nested_svm_intercept(struct vcpu_svm *svm);
293 static int nested_svm_vmexit(struct vcpu_svm *svm);
294 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
295 bool has_error_code, u32 error_code);
298 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
299 pause filter count */
300 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
301 VMCB_ASID, /* ASID */
302 VMCB_INTR, /* int_ctl, int_vector */
303 VMCB_NPT, /* npt_en, nCR3, gPAT */
304 VMCB_CR, /* CR0, CR3, CR4, EFER */
305 VMCB_DR, /* DR6, DR7 */
306 VMCB_DT, /* GDT, IDT */
307 VMCB_SEG, /* CS, DS, SS, ES, CPL */
308 VMCB_CR2, /* CR2 only */
309 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
310 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
311 * AVIC PHYSICAL_TABLE pointer,
312 * AVIC LOGICAL_TABLE pointer
317 /* TPR and CR2 are always written before VMRUN */
318 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
320 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
322 static inline void mark_all_dirty(struct vmcb *vmcb)
324 vmcb->control.clean = 0;
327 static inline void mark_all_clean(struct vmcb *vmcb)
329 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
330 & ~VMCB_ALWAYS_DIRTY_MASK;
333 static inline void mark_dirty(struct vmcb *vmcb, int bit)
335 vmcb->control.clean &= ~(1 << bit);
338 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
340 return container_of(vcpu, struct vcpu_svm, vcpu);
343 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
345 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
346 mark_dirty(svm->vmcb, VMCB_AVIC);
349 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
351 struct vcpu_svm *svm = to_svm(vcpu);
352 u64 *entry = svm->avic_physical_id_cache;
357 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
360 static void recalc_intercepts(struct vcpu_svm *svm)
362 struct vmcb_control_area *c, *h;
363 struct nested_state *g;
364 u32 h_intercept_exceptions;
366 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
368 if (!is_guest_mode(&svm->vcpu))
371 c = &svm->vmcb->control;
372 h = &svm->nested.hsave->control;
375 /* No need to intercept #UD if L1 doesn't intercept it */
376 h_intercept_exceptions =
377 h->intercept_exceptions & ~(1U << UD_VECTOR);
379 c->intercept_cr = h->intercept_cr | g->intercept_cr;
380 c->intercept_dr = h->intercept_dr | g->intercept_dr;
381 c->intercept_exceptions =
382 h_intercept_exceptions | g->intercept_exceptions;
383 c->intercept = h->intercept | g->intercept;
386 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
388 if (is_guest_mode(&svm->vcpu))
389 return svm->nested.hsave;
394 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
396 struct vmcb *vmcb = get_host_vmcb(svm);
398 vmcb->control.intercept_cr |= (1U << bit);
400 recalc_intercepts(svm);
403 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
405 struct vmcb *vmcb = get_host_vmcb(svm);
407 vmcb->control.intercept_cr &= ~(1U << bit);
409 recalc_intercepts(svm);
412 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
414 struct vmcb *vmcb = get_host_vmcb(svm);
416 return vmcb->control.intercept_cr & (1U << bit);
419 static inline void set_dr_intercepts(struct vcpu_svm *svm)
421 struct vmcb *vmcb = get_host_vmcb(svm);
423 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
424 | (1 << INTERCEPT_DR1_READ)
425 | (1 << INTERCEPT_DR2_READ)
426 | (1 << INTERCEPT_DR3_READ)
427 | (1 << INTERCEPT_DR4_READ)
428 | (1 << INTERCEPT_DR5_READ)
429 | (1 << INTERCEPT_DR6_READ)
430 | (1 << INTERCEPT_DR7_READ)
431 | (1 << INTERCEPT_DR0_WRITE)
432 | (1 << INTERCEPT_DR1_WRITE)
433 | (1 << INTERCEPT_DR2_WRITE)
434 | (1 << INTERCEPT_DR3_WRITE)
435 | (1 << INTERCEPT_DR4_WRITE)
436 | (1 << INTERCEPT_DR5_WRITE)
437 | (1 << INTERCEPT_DR6_WRITE)
438 | (1 << INTERCEPT_DR7_WRITE);
440 recalc_intercepts(svm);
443 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
445 struct vmcb *vmcb = get_host_vmcb(svm);
447 vmcb->control.intercept_dr = 0;
449 recalc_intercepts(svm);
452 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
454 struct vmcb *vmcb = get_host_vmcb(svm);
456 vmcb->control.intercept_exceptions |= (1U << bit);
458 recalc_intercepts(svm);
461 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
463 struct vmcb *vmcb = get_host_vmcb(svm);
465 vmcb->control.intercept_exceptions &= ~(1U << bit);
467 recalc_intercepts(svm);
470 static inline void set_intercept(struct vcpu_svm *svm, int bit)
472 struct vmcb *vmcb = get_host_vmcb(svm);
474 vmcb->control.intercept |= (1ULL << bit);
476 recalc_intercepts(svm);
479 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
481 struct vmcb *vmcb = get_host_vmcb(svm);
483 vmcb->control.intercept &= ~(1ULL << bit);
485 recalc_intercepts(svm);
488 static inline bool vgif_enabled(struct vcpu_svm *svm)
490 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
493 static inline void enable_gif(struct vcpu_svm *svm)
495 if (vgif_enabled(svm))
496 svm->vmcb->control.int_ctl |= V_GIF_MASK;
498 svm->vcpu.arch.hflags |= HF_GIF_MASK;
501 static inline void disable_gif(struct vcpu_svm *svm)
503 if (vgif_enabled(svm))
504 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
506 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
509 static inline bool gif_set(struct vcpu_svm *svm)
511 if (vgif_enabled(svm))
512 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
514 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
517 static unsigned long iopm_base;
519 struct kvm_ldttss_desc {
522 unsigned base1:8, type:5, dpl:2, p:1;
523 unsigned limit1:4, zero0:3, g:1, base2:8;
526 } __attribute__((packed));
528 struct svm_cpu_data {
534 struct kvm_ldttss_desc *tss_desc;
536 struct page *save_area;
539 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
541 struct svm_init_data {
546 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
548 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
549 #define MSRS_RANGE_SIZE 2048
550 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
552 static u32 svm_msrpm_offset(u32 msr)
557 for (i = 0; i < NUM_MSR_MAPS; i++) {
558 if (msr < msrpm_ranges[i] ||
559 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
562 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
563 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
565 /* Now we have the u8 offset - but need the u32 offset */
569 /* MSR not in any range */
573 #define MAX_INST_SIZE 15
575 static inline void clgi(void)
577 asm volatile (__ex(SVM_CLGI));
580 static inline void stgi(void)
582 asm volatile (__ex(SVM_STGI));
585 static inline void invlpga(unsigned long addr, u32 asid)
587 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
590 static int get_npt_level(struct kvm_vcpu *vcpu)
593 return PT64_ROOT_4LEVEL;
595 return PT32E_ROOT_LEVEL;
599 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
601 vcpu->arch.efer = efer;
602 if (!npt_enabled && !(efer & EFER_LMA))
605 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
606 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
609 static int is_external_interrupt(u32 info)
611 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
612 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
615 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
617 struct vcpu_svm *svm = to_svm(vcpu);
620 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
621 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
625 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
627 struct vcpu_svm *svm = to_svm(vcpu);
630 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
632 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
636 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
638 struct vcpu_svm *svm = to_svm(vcpu);
640 if (svm->vmcb->control.next_rip != 0) {
641 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
642 svm->next_rip = svm->vmcb->control.next_rip;
645 if (!svm->next_rip) {
646 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
648 printk(KERN_DEBUG "%s: NOP\n", __func__);
651 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
652 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
653 __func__, kvm_rip_read(vcpu), svm->next_rip);
655 kvm_rip_write(vcpu, svm->next_rip);
656 svm_set_interrupt_shadow(vcpu, 0);
659 static void svm_queue_exception(struct kvm_vcpu *vcpu)
661 struct vcpu_svm *svm = to_svm(vcpu);
662 unsigned nr = vcpu->arch.exception.nr;
663 bool has_error_code = vcpu->arch.exception.has_error_code;
664 bool reinject = vcpu->arch.exception.injected;
665 u32 error_code = vcpu->arch.exception.error_code;
668 * If we are within a nested VM we'd better #VMEXIT and let the guest
669 * handle the exception
672 nested_svm_check_exception(svm, nr, has_error_code, error_code))
675 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
676 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
679 * For guest debugging where we have to reinject #BP if some
680 * INT3 is guest-owned:
681 * Emulate nRIP by moving RIP forward. Will fail if injection
682 * raises a fault that is not intercepted. Still better than
683 * failing in all cases.
685 skip_emulated_instruction(&svm->vcpu);
686 rip = kvm_rip_read(&svm->vcpu);
687 svm->int3_rip = rip + svm->vmcb->save.cs.base;
688 svm->int3_injected = rip - old_rip;
691 svm->vmcb->control.event_inj = nr
693 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
694 | SVM_EVTINJ_TYPE_EXEPT;
695 svm->vmcb->control.event_inj_err = error_code;
698 static void svm_init_erratum_383(void)
704 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
707 /* Use _safe variants to not break nested virtualization */
708 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
714 low = lower_32_bits(val);
715 high = upper_32_bits(val);
717 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
719 erratum_383_found = true;
722 static void svm_init_osvw(struct kvm_vcpu *vcpu)
725 * Guests should see errata 400 and 415 as fixed (assuming that
726 * HLT and IO instructions are intercepted).
728 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
729 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
732 * By increasing VCPU's osvw.length to 3 we are telling the guest that
733 * all osvw.status bits inside that length, including bit 0 (which is
734 * reserved for erratum 298), are valid. However, if host processor's
735 * osvw_len is 0 then osvw_status[0] carries no information. We need to
736 * be conservative here and therefore we tell the guest that erratum 298
737 * is present (because we really don't know).
739 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
740 vcpu->arch.osvw.status |= 1;
743 static int has_svm(void)
747 if (!cpu_has_svm(&msg)) {
748 printk(KERN_INFO "has_svm: %s\n", msg);
755 static void svm_hardware_disable(void)
757 /* Make sure we clean up behind us */
758 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
759 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
763 amd_pmu_disable_virt();
766 static int svm_hardware_enable(void)
769 struct svm_cpu_data *sd;
771 struct desc_struct *gdt;
772 int me = raw_smp_processor_id();
774 rdmsrl(MSR_EFER, efer);
775 if (efer & EFER_SVME)
779 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
782 sd = per_cpu(svm_data, me);
784 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
788 sd->asid_generation = 1;
789 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
790 sd->next_asid = sd->max_asid + 1;
792 gdt = get_current_gdt_rw();
793 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
795 wrmsrl(MSR_EFER, efer | EFER_SVME);
797 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
799 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
800 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
801 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
808 * Note that it is possible to have a system with mixed processor
809 * revisions and therefore different OSVW bits. If bits are not the same
810 * on different processors then choose the worst case (i.e. if erratum
811 * is present on one processor and not on another then assume that the
812 * erratum is present everywhere).
814 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
815 uint64_t len, status = 0;
818 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
820 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
824 osvw_status = osvw_len = 0;
828 osvw_status |= status;
829 osvw_status &= (1ULL << osvw_len) - 1;
832 osvw_status = osvw_len = 0;
834 svm_init_erratum_383();
836 amd_pmu_enable_virt();
841 static void svm_cpu_uninit(int cpu)
843 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
848 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
849 __free_page(sd->save_area);
853 static int svm_cpu_init(int cpu)
855 struct svm_cpu_data *sd;
858 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
862 sd->save_area = alloc_page(GFP_KERNEL);
867 per_cpu(svm_data, cpu) = sd;
877 static bool valid_msr_intercept(u32 index)
881 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
882 if (direct_access_msrs[i].index == index)
888 static void set_msr_interception(u32 *msrpm, unsigned msr,
891 u8 bit_read, bit_write;
896 * If this warning triggers extend the direct_access_msrs list at the
897 * beginning of the file
899 WARN_ON(!valid_msr_intercept(msr));
901 offset = svm_msrpm_offset(msr);
902 bit_read = 2 * (msr & 0x0f);
903 bit_write = 2 * (msr & 0x0f) + 1;
906 BUG_ON(offset == MSR_INVALID);
908 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
909 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
914 static void svm_vcpu_init_msrpm(u32 *msrpm)
918 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
920 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
921 if (!direct_access_msrs[i].always)
924 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
928 static void add_msr_offset(u32 offset)
932 for (i = 0; i < MSRPM_OFFSETS; ++i) {
934 /* Offset already in list? */
935 if (msrpm_offsets[i] == offset)
938 /* Slot used by another offset? */
939 if (msrpm_offsets[i] != MSR_INVALID)
942 /* Add offset to list */
943 msrpm_offsets[i] = offset;
949 * If this BUG triggers the msrpm_offsets table has an overflow. Just
950 * increase MSRPM_OFFSETS in this case.
955 static void init_msrpm_offsets(void)
959 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
961 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
964 offset = svm_msrpm_offset(direct_access_msrs[i].index);
965 BUG_ON(offset == MSR_INVALID);
967 add_msr_offset(offset);
971 static void svm_enable_lbrv(struct vcpu_svm *svm)
973 u32 *msrpm = svm->msrpm;
975 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
976 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
977 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
978 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
979 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
982 static void svm_disable_lbrv(struct vcpu_svm *svm)
984 u32 *msrpm = svm->msrpm;
986 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
987 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
988 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
989 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
990 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
993 static void disable_nmi_singlestep(struct vcpu_svm *svm)
995 svm->nmi_singlestep = false;
997 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
998 /* Clear our flags if they were not set by the guest */
999 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1000 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1001 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1002 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1007 * This hash table is used to map VM_ID to a struct kvm_arch,
1008 * when handling AMD IOMMU GALOG notification to schedule in
1009 * a particular vCPU.
1011 #define SVM_VM_DATA_HASH_BITS 8
1012 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1013 static u32 next_vm_id = 0;
1014 static bool next_vm_id_wrapped = 0;
1015 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1018 * This function is called from IOMMU driver to notify
1019 * SVM to schedule in a particular vCPU of a particular VM.
1021 static int avic_ga_log_notifier(u32 ga_tag)
1023 unsigned long flags;
1024 struct kvm_arch *ka = NULL;
1025 struct kvm_vcpu *vcpu = NULL;
1026 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1027 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1029 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1031 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1032 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1033 struct kvm *kvm = container_of(ka, struct kvm, arch);
1034 struct kvm_arch *vm_data = &kvm->arch;
1036 if (vm_data->avic_vm_id != vm_id)
1038 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1041 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1044 * At this point, the IOMMU should have already set the pending
1045 * bit in the vAPIC backing page. So, we just need to schedule
1049 kvm_vcpu_wake_up(vcpu);
1054 static __init int svm_hardware_setup(void)
1057 struct page *iopm_pages;
1061 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1066 iopm_va = page_address(iopm_pages);
1067 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1068 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1070 init_msrpm_offsets();
1072 if (boot_cpu_has(X86_FEATURE_NX))
1073 kvm_enable_efer_bits(EFER_NX);
1075 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1076 kvm_enable_efer_bits(EFER_FFXSR);
1078 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1079 kvm_has_tsc_control = true;
1080 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1081 kvm_tsc_scaling_ratio_frac_bits = 32;
1085 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1086 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1089 for_each_possible_cpu(cpu) {
1090 r = svm_cpu_init(cpu);
1095 if (!boot_cpu_has(X86_FEATURE_NPT))
1096 npt_enabled = false;
1098 if (npt_enabled && !npt) {
1099 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1100 npt_enabled = false;
1104 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1111 !boot_cpu_has(X86_FEATURE_AVIC) ||
1112 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1115 pr_info("AVIC enabled\n");
1117 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1123 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1124 !IS_ENABLED(CONFIG_X86_64)) {
1127 pr_info("Virtual VMLOAD VMSAVE supported\n");
1132 if (!boot_cpu_has(X86_FEATURE_VGIF))
1135 pr_info("Virtual GIF supported\n");
1141 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1146 static __exit void svm_hardware_unsetup(void)
1150 for_each_possible_cpu(cpu)
1151 svm_cpu_uninit(cpu);
1153 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1157 static void init_seg(struct vmcb_seg *seg)
1160 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1161 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1162 seg->limit = 0xffff;
1166 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1169 seg->attrib = SVM_SELECTOR_P_MASK | type;
1170 seg->limit = 0xffff;
1174 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1176 struct vcpu_svm *svm = to_svm(vcpu);
1177 u64 g_tsc_offset = 0;
1179 if (is_guest_mode(vcpu)) {
1180 g_tsc_offset = svm->vmcb->control.tsc_offset -
1181 svm->nested.hsave->control.tsc_offset;
1182 svm->nested.hsave->control.tsc_offset = offset;
1184 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1185 svm->vmcb->control.tsc_offset,
1188 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1190 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1193 static void avic_init_vmcb(struct vcpu_svm *svm)
1195 struct vmcb *vmcb = svm->vmcb;
1196 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1197 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1198 phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1199 phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1201 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1202 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1203 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1204 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1205 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1208 static void init_vmcb(struct vcpu_svm *svm)
1210 struct vmcb_control_area *control = &svm->vmcb->control;
1211 struct vmcb_save_area *save = &svm->vmcb->save;
1213 svm->vcpu.arch.hflags = 0;
1215 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1216 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1217 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1218 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1219 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1220 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1221 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1222 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1224 set_dr_intercepts(svm);
1226 set_exception_intercept(svm, PF_VECTOR);
1227 set_exception_intercept(svm, UD_VECTOR);
1228 set_exception_intercept(svm, MC_VECTOR);
1229 set_exception_intercept(svm, AC_VECTOR);
1230 set_exception_intercept(svm, DB_VECTOR);
1232 set_intercept(svm, INTERCEPT_INTR);
1233 set_intercept(svm, INTERCEPT_NMI);
1234 set_intercept(svm, INTERCEPT_SMI);
1235 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1236 set_intercept(svm, INTERCEPT_RDPMC);
1237 set_intercept(svm, INTERCEPT_CPUID);
1238 set_intercept(svm, INTERCEPT_INVD);
1239 set_intercept(svm, INTERCEPT_HLT);
1240 set_intercept(svm, INTERCEPT_INVLPG);
1241 set_intercept(svm, INTERCEPT_INVLPGA);
1242 set_intercept(svm, INTERCEPT_IOIO_PROT);
1243 set_intercept(svm, INTERCEPT_MSR_PROT);
1244 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1245 set_intercept(svm, INTERCEPT_SHUTDOWN);
1246 set_intercept(svm, INTERCEPT_VMRUN);
1247 set_intercept(svm, INTERCEPT_VMMCALL);
1248 set_intercept(svm, INTERCEPT_VMLOAD);
1249 set_intercept(svm, INTERCEPT_VMSAVE);
1250 set_intercept(svm, INTERCEPT_STGI);
1251 set_intercept(svm, INTERCEPT_CLGI);
1252 set_intercept(svm, INTERCEPT_SKINIT);
1253 set_intercept(svm, INTERCEPT_WBINVD);
1254 set_intercept(svm, INTERCEPT_XSETBV);
1256 if (!kvm_mwait_in_guest()) {
1257 set_intercept(svm, INTERCEPT_MONITOR);
1258 set_intercept(svm, INTERCEPT_MWAIT);
1261 control->iopm_base_pa = __sme_set(iopm_base);
1262 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1263 control->int_ctl = V_INTR_MASKING_MASK;
1265 init_seg(&save->es);
1266 init_seg(&save->ss);
1267 init_seg(&save->ds);
1268 init_seg(&save->fs);
1269 init_seg(&save->gs);
1271 save->cs.selector = 0xf000;
1272 save->cs.base = 0xffff0000;
1273 /* Executable/Readable Code Segment */
1274 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1275 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1276 save->cs.limit = 0xffff;
1278 save->gdtr.limit = 0xffff;
1279 save->idtr.limit = 0xffff;
1281 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1282 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1284 svm_set_efer(&svm->vcpu, 0);
1285 save->dr6 = 0xffff0ff0;
1286 kvm_set_rflags(&svm->vcpu, 2);
1287 save->rip = 0x0000fff0;
1288 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1291 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1292 * It also updates the guest-visible cr0 value.
1294 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1295 kvm_mmu_reset_context(&svm->vcpu);
1297 save->cr4 = X86_CR4_PAE;
1301 /* Setup VMCB for Nested Paging */
1302 control->nested_ctl = 1;
1303 clr_intercept(svm, INTERCEPT_INVLPG);
1304 clr_exception_intercept(svm, PF_VECTOR);
1305 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1306 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1307 save->g_pat = svm->vcpu.arch.pat;
1311 svm->asid_generation = 0;
1313 svm->nested.vmcb = 0;
1314 svm->vcpu.arch.hflags = 0;
1316 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1317 control->pause_filter_count = 3000;
1318 set_intercept(svm, INTERCEPT_PAUSE);
1321 if (kvm_vcpu_apicv_active(&svm->vcpu))
1322 avic_init_vmcb(svm);
1325 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1326 * in VMCB and clear intercepts to avoid #VMEXIT.
1329 clr_intercept(svm, INTERCEPT_VMLOAD);
1330 clr_intercept(svm, INTERCEPT_VMSAVE);
1331 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1335 clr_intercept(svm, INTERCEPT_STGI);
1336 clr_intercept(svm, INTERCEPT_CLGI);
1337 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1340 mark_all_dirty(svm->vmcb);
1346 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1349 u64 *avic_physical_id_table;
1350 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1352 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1355 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1357 return &avic_physical_id_table[index];
1362 * AVIC hardware walks the nested page table to check permissions,
1363 * but does not use the SPA address specified in the leaf page
1364 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1365 * field of the VMCB. Therefore, we set up the
1366 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1368 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1370 struct kvm *kvm = vcpu->kvm;
1373 if (kvm->arch.apic_access_page_done)
1376 ret = x86_set_memory_region(kvm,
1377 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1378 APIC_DEFAULT_PHYS_BASE,
1383 kvm->arch.apic_access_page_done = true;
1387 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1390 u64 *entry, new_entry;
1391 int id = vcpu->vcpu_id;
1392 struct vcpu_svm *svm = to_svm(vcpu);
1394 ret = avic_init_access_page(vcpu);
1398 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1401 if (!svm->vcpu.arch.apic->regs)
1404 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1406 /* Setting AVIC backing page address in the phy APIC ID table */
1407 entry = avic_get_physical_id_entry(vcpu, id);
1411 new_entry = READ_ONCE(*entry);
1412 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1413 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1414 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1415 WRITE_ONCE(*entry, new_entry);
1417 svm->avic_physical_id_cache = entry;
1422 static void avic_vm_destroy(struct kvm *kvm)
1424 unsigned long flags;
1425 struct kvm_arch *vm_data = &kvm->arch;
1430 if (vm_data->avic_logical_id_table_page)
1431 __free_page(vm_data->avic_logical_id_table_page);
1432 if (vm_data->avic_physical_id_table_page)
1433 __free_page(vm_data->avic_physical_id_table_page);
1435 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1436 hash_del(&vm_data->hnode);
1437 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1440 static int avic_vm_init(struct kvm *kvm)
1442 unsigned long flags;
1444 struct kvm_arch *vm_data = &kvm->arch;
1445 struct page *p_page;
1446 struct page *l_page;
1447 struct kvm_arch *ka;
1453 /* Allocating physical APIC ID table (4KB) */
1454 p_page = alloc_page(GFP_KERNEL);
1458 vm_data->avic_physical_id_table_page = p_page;
1459 clear_page(page_address(p_page));
1461 /* Allocating logical APIC ID table (4KB) */
1462 l_page = alloc_page(GFP_KERNEL);
1466 vm_data->avic_logical_id_table_page = l_page;
1467 clear_page(page_address(l_page));
1469 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1471 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1472 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1473 next_vm_id_wrapped = 1;
1476 /* Is it still in use? Only possible if wrapped at least once */
1477 if (next_vm_id_wrapped) {
1478 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1479 struct kvm *k2 = container_of(ka, struct kvm, arch);
1480 struct kvm_arch *vd2 = &k2->arch;
1481 if (vd2->avic_vm_id == vm_id)
1485 vm_data->avic_vm_id = vm_id;
1486 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1487 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1492 avic_vm_destroy(kvm);
1497 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1500 unsigned long flags;
1501 struct amd_svm_iommu_ir *ir;
1502 struct vcpu_svm *svm = to_svm(vcpu);
1504 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1508 * Here, we go through the per-vcpu ir_list to update all existing
1509 * interrupt remapping table entry targeting this vcpu.
1511 spin_lock_irqsave(&svm->ir_list_lock, flags);
1513 if (list_empty(&svm->ir_list))
1516 list_for_each_entry(ir, &svm->ir_list, node) {
1517 ret = amd_iommu_update_ga(cpu, r, ir->data);
1522 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1526 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1529 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1530 int h_physical_id = kvm_cpu_get_apicid(cpu);
1531 struct vcpu_svm *svm = to_svm(vcpu);
1533 if (!kvm_vcpu_apicv_active(vcpu))
1536 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1539 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1540 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1542 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1543 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1545 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1546 if (svm->avic_is_running)
1547 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1549 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1550 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1551 svm->avic_is_running);
1554 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1557 struct vcpu_svm *svm = to_svm(vcpu);
1559 if (!kvm_vcpu_apicv_active(vcpu))
1562 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1563 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1564 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1566 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1567 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1571 * This function is called during VCPU halt/unhalt.
1573 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1575 struct vcpu_svm *svm = to_svm(vcpu);
1577 svm->avic_is_running = is_run;
1579 avic_vcpu_load(vcpu, vcpu->cpu);
1581 avic_vcpu_put(vcpu);
1584 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1586 struct vcpu_svm *svm = to_svm(vcpu);
1591 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1592 MSR_IA32_APICBASE_ENABLE;
1593 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1594 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1598 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1599 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1601 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1602 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1605 static int avic_init_vcpu(struct vcpu_svm *svm)
1609 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1612 ret = avic_init_backing_page(&svm->vcpu);
1616 INIT_LIST_HEAD(&svm->ir_list);
1617 spin_lock_init(&svm->ir_list_lock);
1622 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1624 struct vcpu_svm *svm;
1626 struct page *msrpm_pages;
1627 struct page *hsave_page;
1628 struct page *nested_msrpm_pages;
1631 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1637 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1642 page = alloc_page(GFP_KERNEL);
1646 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1650 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1651 if (!nested_msrpm_pages)
1654 hsave_page = alloc_page(GFP_KERNEL);
1658 err = avic_init_vcpu(svm);
1662 /* We initialize this flag to true to make sure that the is_running
1663 * bit would be set the first time the vcpu is loaded.
1665 svm->avic_is_running = true;
1667 svm->nested.hsave = page_address(hsave_page);
1669 svm->msrpm = page_address(msrpm_pages);
1670 svm_vcpu_init_msrpm(svm->msrpm);
1672 svm->nested.msrpm = page_address(nested_msrpm_pages);
1673 svm_vcpu_init_msrpm(svm->nested.msrpm);
1675 svm->vmcb = page_address(page);
1676 clear_page(svm->vmcb);
1677 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1678 svm->asid_generation = 0;
1681 svm_init_osvw(&svm->vcpu);
1686 __free_page(hsave_page);
1688 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1690 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1694 kvm_vcpu_uninit(&svm->vcpu);
1696 kmem_cache_free(kvm_vcpu_cache, svm);
1698 return ERR_PTR(err);
1701 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1703 struct vcpu_svm *svm = to_svm(vcpu);
1705 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1706 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1707 __free_page(virt_to_page(svm->nested.hsave));
1708 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1709 kvm_vcpu_uninit(vcpu);
1710 kmem_cache_free(kvm_vcpu_cache, svm);
1713 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1715 struct vcpu_svm *svm = to_svm(vcpu);
1718 if (unlikely(cpu != vcpu->cpu)) {
1719 svm->asid_generation = 0;
1720 mark_all_dirty(svm->vmcb);
1723 #ifdef CONFIG_X86_64
1724 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1726 savesegment(fs, svm->host.fs);
1727 savesegment(gs, svm->host.gs);
1728 svm->host.ldt = kvm_read_ldt();
1730 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1731 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1733 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1734 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1735 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1736 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1737 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1740 /* This assumes that the kernel never uses MSR_TSC_AUX */
1741 if (static_cpu_has(X86_FEATURE_RDTSCP))
1742 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1744 avic_vcpu_load(vcpu, cpu);
1747 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1749 struct vcpu_svm *svm = to_svm(vcpu);
1752 avic_vcpu_put(vcpu);
1754 ++vcpu->stat.host_state_reload;
1755 kvm_load_ldt(svm->host.ldt);
1756 #ifdef CONFIG_X86_64
1757 loadsegment(fs, svm->host.fs);
1758 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1759 load_gs_index(svm->host.gs);
1761 #ifdef CONFIG_X86_32_LAZY_GS
1762 loadsegment(gs, svm->host.gs);
1765 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1766 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1769 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1771 avic_set_running(vcpu, false);
1774 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1776 avic_set_running(vcpu, true);
1779 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1781 struct vcpu_svm *svm = to_svm(vcpu);
1782 unsigned long rflags = svm->vmcb->save.rflags;
1784 if (svm->nmi_singlestep) {
1785 /* Hide our flags if they were not set by the guest */
1786 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1787 rflags &= ~X86_EFLAGS_TF;
1788 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1789 rflags &= ~X86_EFLAGS_RF;
1794 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1796 if (to_svm(vcpu)->nmi_singlestep)
1797 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1800 * Any change of EFLAGS.VM is accompanied by a reload of SS
1801 * (caused by either a task switch or an inter-privilege IRET),
1802 * so we do not need to update the CPL here.
1804 to_svm(vcpu)->vmcb->save.rflags = rflags;
1807 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1810 case VCPU_EXREG_PDPTR:
1811 BUG_ON(!npt_enabled);
1812 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1819 static void svm_set_vintr(struct vcpu_svm *svm)
1821 set_intercept(svm, INTERCEPT_VINTR);
1824 static void svm_clear_vintr(struct vcpu_svm *svm)
1826 clr_intercept(svm, INTERCEPT_VINTR);
1829 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1831 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1834 case VCPU_SREG_CS: return &save->cs;
1835 case VCPU_SREG_DS: return &save->ds;
1836 case VCPU_SREG_ES: return &save->es;
1837 case VCPU_SREG_FS: return &save->fs;
1838 case VCPU_SREG_GS: return &save->gs;
1839 case VCPU_SREG_SS: return &save->ss;
1840 case VCPU_SREG_TR: return &save->tr;
1841 case VCPU_SREG_LDTR: return &save->ldtr;
1847 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1849 struct vmcb_seg *s = svm_seg(vcpu, seg);
1854 static void svm_get_segment(struct kvm_vcpu *vcpu,
1855 struct kvm_segment *var, int seg)
1857 struct vmcb_seg *s = svm_seg(vcpu, seg);
1859 var->base = s->base;
1860 var->limit = s->limit;
1861 var->selector = s->selector;
1862 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1863 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1864 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1865 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1866 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1867 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1868 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1871 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1872 * However, the SVM spec states that the G bit is not observed by the
1873 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1874 * So let's synthesize a legal G bit for all segments, this helps
1875 * running KVM nested. It also helps cross-vendor migration, because
1876 * Intel's vmentry has a check on the 'G' bit.
1878 var->g = s->limit > 0xfffff;
1881 * AMD's VMCB does not have an explicit unusable field, so emulate it
1882 * for cross vendor migration purposes by "not present"
1884 var->unusable = !var->present;
1889 * Work around a bug where the busy flag in the tr selector
1899 * The accessed bit must always be set in the segment
1900 * descriptor cache, although it can be cleared in the
1901 * descriptor, the cached bit always remains at 1. Since
1902 * Intel has a check on this, set it here to support
1903 * cross-vendor migration.
1910 * On AMD CPUs sometimes the DB bit in the segment
1911 * descriptor is left as 1, although the whole segment has
1912 * been made unusable. Clear it here to pass an Intel VMX
1913 * entry check when cross vendor migrating.
1917 /* This is symmetric with svm_set_segment() */
1918 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1923 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1925 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1930 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1932 struct vcpu_svm *svm = to_svm(vcpu);
1934 dt->size = svm->vmcb->save.idtr.limit;
1935 dt->address = svm->vmcb->save.idtr.base;
1938 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1940 struct vcpu_svm *svm = to_svm(vcpu);
1942 svm->vmcb->save.idtr.limit = dt->size;
1943 svm->vmcb->save.idtr.base = dt->address ;
1944 mark_dirty(svm->vmcb, VMCB_DT);
1947 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1949 struct vcpu_svm *svm = to_svm(vcpu);
1951 dt->size = svm->vmcb->save.gdtr.limit;
1952 dt->address = svm->vmcb->save.gdtr.base;
1955 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1957 struct vcpu_svm *svm = to_svm(vcpu);
1959 svm->vmcb->save.gdtr.limit = dt->size;
1960 svm->vmcb->save.gdtr.base = dt->address ;
1961 mark_dirty(svm->vmcb, VMCB_DT);
1964 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1968 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1972 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1976 static void update_cr0_intercept(struct vcpu_svm *svm)
1978 ulong gcr0 = svm->vcpu.arch.cr0;
1979 u64 *hcr0 = &svm->vmcb->save.cr0;
1981 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1982 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1984 mark_dirty(svm->vmcb, VMCB_CR);
1986 if (gcr0 == *hcr0) {
1987 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1988 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1990 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1991 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1995 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1997 struct vcpu_svm *svm = to_svm(vcpu);
1999 #ifdef CONFIG_X86_64
2000 if (vcpu->arch.efer & EFER_LME) {
2001 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2002 vcpu->arch.efer |= EFER_LMA;
2003 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2006 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2007 vcpu->arch.efer &= ~EFER_LMA;
2008 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2012 vcpu->arch.cr0 = cr0;
2015 cr0 |= X86_CR0_PG | X86_CR0_WP;
2018 * re-enable caching here because the QEMU bios
2019 * does not do it - this results in some delay at
2022 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2023 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2024 svm->vmcb->save.cr0 = cr0;
2025 mark_dirty(svm->vmcb, VMCB_CR);
2026 update_cr0_intercept(svm);
2029 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2031 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2032 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2034 if (cr4 & X86_CR4_VMXE)
2037 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2038 svm_flush_tlb(vcpu);
2040 vcpu->arch.cr4 = cr4;
2043 cr4 |= host_cr4_mce;
2044 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2045 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2049 static void svm_set_segment(struct kvm_vcpu *vcpu,
2050 struct kvm_segment *var, int seg)
2052 struct vcpu_svm *svm = to_svm(vcpu);
2053 struct vmcb_seg *s = svm_seg(vcpu, seg);
2055 s->base = var->base;
2056 s->limit = var->limit;
2057 s->selector = var->selector;
2058 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2059 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2060 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2061 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2062 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2063 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2064 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2065 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2068 * This is always accurate, except if SYSRET returned to a segment
2069 * with SS.DPL != 3. Intel does not have this quirk, and always
2070 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2071 * would entail passing the CPL to userspace and back.
2073 if (seg == VCPU_SREG_SS)
2074 /* This is symmetric with svm_get_segment() */
2075 svm->vmcb->save.cpl = (var->dpl & 3);
2077 mark_dirty(svm->vmcb, VMCB_SEG);
2080 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2082 struct vcpu_svm *svm = to_svm(vcpu);
2084 clr_exception_intercept(svm, BP_VECTOR);
2086 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2087 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2088 set_exception_intercept(svm, BP_VECTOR);
2090 vcpu->guest_debug = 0;
2093 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2095 if (sd->next_asid > sd->max_asid) {
2096 ++sd->asid_generation;
2098 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2101 svm->asid_generation = sd->asid_generation;
2102 svm->vmcb->control.asid = sd->next_asid++;
2104 mark_dirty(svm->vmcb, VMCB_ASID);
2107 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2109 return to_svm(vcpu)->vmcb->save.dr6;
2112 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2114 struct vcpu_svm *svm = to_svm(vcpu);
2116 svm->vmcb->save.dr6 = value;
2117 mark_dirty(svm->vmcb, VMCB_DR);
2120 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2122 struct vcpu_svm *svm = to_svm(vcpu);
2124 get_debugreg(vcpu->arch.db[0], 0);
2125 get_debugreg(vcpu->arch.db[1], 1);
2126 get_debugreg(vcpu->arch.db[2], 2);
2127 get_debugreg(vcpu->arch.db[3], 3);
2128 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2129 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2131 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2132 set_dr_intercepts(svm);
2135 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2137 struct vcpu_svm *svm = to_svm(vcpu);
2139 svm->vmcb->save.dr7 = value;
2140 mark_dirty(svm->vmcb, VMCB_DR);
2143 static int pf_interception(struct vcpu_svm *svm)
2145 u64 fault_address = svm->vmcb->control.exit_info_2;
2146 u64 error_code = svm->vmcb->control.exit_info_1;
2148 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2149 svm->vmcb->control.insn_bytes,
2150 svm->vmcb->control.insn_len);
2153 static int npf_interception(struct vcpu_svm *svm)
2155 u64 fault_address = svm->vmcb->control.exit_info_2;
2156 u64 error_code = svm->vmcb->control.exit_info_1;
2158 trace_kvm_page_fault(fault_address, error_code);
2159 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2160 svm->vmcb->control.insn_bytes,
2161 svm->vmcb->control.insn_len);
2164 static int db_interception(struct vcpu_svm *svm)
2166 struct kvm_run *kvm_run = svm->vcpu.run;
2168 if (!(svm->vcpu.guest_debug &
2169 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2170 !svm->nmi_singlestep) {
2171 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2175 if (svm->nmi_singlestep) {
2176 disable_nmi_singlestep(svm);
2179 if (svm->vcpu.guest_debug &
2180 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2181 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2182 kvm_run->debug.arch.pc =
2183 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2184 kvm_run->debug.arch.exception = DB_VECTOR;
2191 static int bp_interception(struct vcpu_svm *svm)
2193 struct kvm_run *kvm_run = svm->vcpu.run;
2195 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2196 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2197 kvm_run->debug.arch.exception = BP_VECTOR;
2201 static int ud_interception(struct vcpu_svm *svm)
2205 WARN_ON_ONCE(is_guest_mode(&svm->vcpu));
2206 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2207 if (er == EMULATE_USER_EXIT)
2209 if (er != EMULATE_DONE)
2210 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2214 static int ac_interception(struct vcpu_svm *svm)
2216 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2220 static bool is_erratum_383(void)
2225 if (!erratum_383_found)
2228 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2232 /* Bit 62 may or may not be set for this mce */
2233 value &= ~(1ULL << 62);
2235 if (value != 0xb600000000010015ULL)
2238 /* Clear MCi_STATUS registers */
2239 for (i = 0; i < 6; ++i)
2240 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2242 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2246 value &= ~(1ULL << 2);
2247 low = lower_32_bits(value);
2248 high = upper_32_bits(value);
2250 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2253 /* Flush tlb to evict multi-match entries */
2259 static void svm_handle_mce(struct vcpu_svm *svm)
2261 if (is_erratum_383()) {
2263 * Erratum 383 triggered. Guest state is corrupt so kill the
2266 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2268 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2274 * On an #MC intercept the MCE handler is not called automatically in
2275 * the host. So do it by hand here.
2279 /* not sure if we ever come back to this point */
2284 static int mc_interception(struct vcpu_svm *svm)
2289 static int shutdown_interception(struct vcpu_svm *svm)
2291 struct kvm_run *kvm_run = svm->vcpu.run;
2294 * VMCB is undefined after a SHUTDOWN intercept
2295 * so reinitialize it.
2297 clear_page(svm->vmcb);
2300 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2304 static int io_interception(struct vcpu_svm *svm)
2306 struct kvm_vcpu *vcpu = &svm->vcpu;
2307 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2308 int size, in, string, ret;
2311 ++svm->vcpu.stat.io_exits;
2312 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2313 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2315 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2317 port = io_info >> 16;
2318 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2319 svm->next_rip = svm->vmcb->control.exit_info_2;
2320 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2323 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2324 * KVM_EXIT_DEBUG here.
2327 return kvm_fast_pio_in(vcpu, size, port) && ret;
2329 return kvm_fast_pio_out(vcpu, size, port) && ret;
2332 static int nmi_interception(struct vcpu_svm *svm)
2337 static int intr_interception(struct vcpu_svm *svm)
2339 ++svm->vcpu.stat.irq_exits;
2343 static int nop_on_interception(struct vcpu_svm *svm)
2348 static int halt_interception(struct vcpu_svm *svm)
2350 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2351 return kvm_emulate_halt(&svm->vcpu);
2354 static int vmmcall_interception(struct vcpu_svm *svm)
2356 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2357 return kvm_emulate_hypercall(&svm->vcpu);
2360 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2362 struct vcpu_svm *svm = to_svm(vcpu);
2364 return svm->nested.nested_cr3;
2367 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2369 struct vcpu_svm *svm = to_svm(vcpu);
2370 u64 cr3 = svm->nested.nested_cr3;
2374 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2375 offset_in_page(cr3) + index * 8, 8);
2381 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2384 struct vcpu_svm *svm = to_svm(vcpu);
2386 svm->vmcb->control.nested_cr3 = __sme_set(root);
2387 mark_dirty(svm->vmcb, VMCB_NPT);
2388 svm_flush_tlb(vcpu);
2391 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2392 struct x86_exception *fault)
2394 struct vcpu_svm *svm = to_svm(vcpu);
2396 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2398 * TODO: track the cause of the nested page fault, and
2399 * correctly fill in the high bits of exit_info_1.
2401 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2402 svm->vmcb->control.exit_code_hi = 0;
2403 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2404 svm->vmcb->control.exit_info_2 = fault->address;
2407 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2408 svm->vmcb->control.exit_info_1 |= fault->error_code;
2411 * The present bit is always zero for page structure faults on real
2414 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2415 svm->vmcb->control.exit_info_1 &= ~1;
2417 nested_svm_vmexit(svm);
2420 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2422 WARN_ON(mmu_is_nested(vcpu));
2423 kvm_init_shadow_mmu(vcpu);
2424 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2425 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2426 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2427 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2428 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2429 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2430 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2433 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2435 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2438 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2440 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2441 !is_paging(&svm->vcpu)) {
2442 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2446 if (svm->vmcb->save.cpl) {
2447 kvm_inject_gp(&svm->vcpu, 0);
2454 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2455 bool has_error_code, u32 error_code)
2459 if (!is_guest_mode(&svm->vcpu))
2462 vmexit = nested_svm_intercept(svm);
2463 if (vmexit != NESTED_EXIT_DONE)
2466 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2467 svm->vmcb->control.exit_code_hi = 0;
2468 svm->vmcb->control.exit_info_1 = error_code;
2471 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2472 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2473 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2474 * written only when inject_pending_event runs (DR6 would written here
2475 * too). This should be conditional on a new capability---if the
2476 * capability is disabled, kvm_multiple_exception would write the
2477 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2479 if (svm->vcpu.arch.exception.nested_apf)
2480 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2482 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2484 svm->nested.exit_required = true;
2488 /* This function returns true if it is save to enable the irq window */
2489 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2491 if (!is_guest_mode(&svm->vcpu))
2494 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2497 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2501 * if vmexit was already requested (by intercepted exception
2502 * for instance) do not overwrite it with "external interrupt"
2505 if (svm->nested.exit_required)
2508 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2509 svm->vmcb->control.exit_info_1 = 0;
2510 svm->vmcb->control.exit_info_2 = 0;
2512 if (svm->nested.intercept & 1ULL) {
2514 * The #vmexit can't be emulated here directly because this
2515 * code path runs with irqs and preemption disabled. A
2516 * #vmexit emulation might sleep. Only signal request for
2519 svm->nested.exit_required = true;
2520 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2527 /* This function returns true if it is save to enable the nmi window */
2528 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2530 if (!is_guest_mode(&svm->vcpu))
2533 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2536 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2537 svm->nested.exit_required = true;
2542 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2548 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2549 if (is_error_page(page))
2557 kvm_inject_gp(&svm->vcpu, 0);
2562 static void nested_svm_unmap(struct page *page)
2565 kvm_release_page_dirty(page);
2568 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2570 unsigned port, size, iopm_len;
2575 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2576 return NESTED_EXIT_HOST;
2578 port = svm->vmcb->control.exit_info_1 >> 16;
2579 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2580 SVM_IOIO_SIZE_SHIFT;
2581 gpa = svm->nested.vmcb_iopm + (port / 8);
2582 start_bit = port % 8;
2583 iopm_len = (start_bit + size > 8) ? 2 : 1;
2584 mask = (0xf >> (4 - size)) << start_bit;
2587 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2588 return NESTED_EXIT_DONE;
2590 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2593 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2595 u32 offset, msr, value;
2598 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2599 return NESTED_EXIT_HOST;
2601 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2602 offset = svm_msrpm_offset(msr);
2603 write = svm->vmcb->control.exit_info_1 & 1;
2604 mask = 1 << ((2 * (msr & 0xf)) + write);
2606 if (offset == MSR_INVALID)
2607 return NESTED_EXIT_DONE;
2609 /* Offset is in 32 bit units but need in 8 bit units */
2612 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2613 return NESTED_EXIT_DONE;
2615 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2618 /* DB exceptions for our internal use must not cause vmexit */
2619 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2623 /* if we're not singlestepping, it's not ours */
2624 if (!svm->nmi_singlestep)
2625 return NESTED_EXIT_DONE;
2627 /* if it's not a singlestep exception, it's not ours */
2628 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2629 return NESTED_EXIT_DONE;
2630 if (!(dr6 & DR6_BS))
2631 return NESTED_EXIT_DONE;
2633 /* if the guest is singlestepping, it should get the vmexit */
2634 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2635 disable_nmi_singlestep(svm);
2636 return NESTED_EXIT_DONE;
2639 /* it's ours, the nested hypervisor must not see this one */
2640 return NESTED_EXIT_HOST;
2643 static int nested_svm_exit_special(struct vcpu_svm *svm)
2645 u32 exit_code = svm->vmcb->control.exit_code;
2647 switch (exit_code) {
2650 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2651 return NESTED_EXIT_HOST;
2653 /* For now we are always handling NPFs when using them */
2655 return NESTED_EXIT_HOST;
2657 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2658 /* When we're shadowing, trap PFs, but not async PF */
2659 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2660 return NESTED_EXIT_HOST;
2666 return NESTED_EXIT_CONTINUE;
2670 * If this function returns true, this #vmexit was already handled
2672 static int nested_svm_intercept(struct vcpu_svm *svm)
2674 u32 exit_code = svm->vmcb->control.exit_code;
2675 int vmexit = NESTED_EXIT_HOST;
2677 switch (exit_code) {
2679 vmexit = nested_svm_exit_handled_msr(svm);
2682 vmexit = nested_svm_intercept_ioio(svm);
2684 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2685 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2686 if (svm->nested.intercept_cr & bit)
2687 vmexit = NESTED_EXIT_DONE;
2690 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2691 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2692 if (svm->nested.intercept_dr & bit)
2693 vmexit = NESTED_EXIT_DONE;
2696 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2697 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2698 if (svm->nested.intercept_exceptions & excp_bits) {
2699 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2700 vmexit = nested_svm_intercept_db(svm);
2702 vmexit = NESTED_EXIT_DONE;
2704 /* async page fault always cause vmexit */
2705 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2706 svm->vcpu.arch.exception.nested_apf != 0)
2707 vmexit = NESTED_EXIT_DONE;
2710 case SVM_EXIT_ERR: {
2711 vmexit = NESTED_EXIT_DONE;
2715 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2716 if (svm->nested.intercept & exit_bits)
2717 vmexit = NESTED_EXIT_DONE;
2724 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2728 vmexit = nested_svm_intercept(svm);
2730 if (vmexit == NESTED_EXIT_DONE)
2731 nested_svm_vmexit(svm);
2736 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2738 struct vmcb_control_area *dst = &dst_vmcb->control;
2739 struct vmcb_control_area *from = &from_vmcb->control;
2741 dst->intercept_cr = from->intercept_cr;
2742 dst->intercept_dr = from->intercept_dr;
2743 dst->intercept_exceptions = from->intercept_exceptions;
2744 dst->intercept = from->intercept;
2745 dst->iopm_base_pa = from->iopm_base_pa;
2746 dst->msrpm_base_pa = from->msrpm_base_pa;
2747 dst->tsc_offset = from->tsc_offset;
2748 dst->asid = from->asid;
2749 dst->tlb_ctl = from->tlb_ctl;
2750 dst->int_ctl = from->int_ctl;
2751 dst->int_vector = from->int_vector;
2752 dst->int_state = from->int_state;
2753 dst->exit_code = from->exit_code;
2754 dst->exit_code_hi = from->exit_code_hi;
2755 dst->exit_info_1 = from->exit_info_1;
2756 dst->exit_info_2 = from->exit_info_2;
2757 dst->exit_int_info = from->exit_int_info;
2758 dst->exit_int_info_err = from->exit_int_info_err;
2759 dst->nested_ctl = from->nested_ctl;
2760 dst->event_inj = from->event_inj;
2761 dst->event_inj_err = from->event_inj_err;
2762 dst->nested_cr3 = from->nested_cr3;
2763 dst->virt_ext = from->virt_ext;
2766 static int nested_svm_vmexit(struct vcpu_svm *svm)
2768 struct vmcb *nested_vmcb;
2769 struct vmcb *hsave = svm->nested.hsave;
2770 struct vmcb *vmcb = svm->vmcb;
2773 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2774 vmcb->control.exit_info_1,
2775 vmcb->control.exit_info_2,
2776 vmcb->control.exit_int_info,
2777 vmcb->control.exit_int_info_err,
2780 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2784 /* Exit Guest-Mode */
2785 leave_guest_mode(&svm->vcpu);
2786 svm->nested.vmcb = 0;
2788 /* Give the current vmcb to the guest */
2791 nested_vmcb->save.es = vmcb->save.es;
2792 nested_vmcb->save.cs = vmcb->save.cs;
2793 nested_vmcb->save.ss = vmcb->save.ss;
2794 nested_vmcb->save.ds = vmcb->save.ds;
2795 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2796 nested_vmcb->save.idtr = vmcb->save.idtr;
2797 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2798 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2799 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2800 nested_vmcb->save.cr2 = vmcb->save.cr2;
2801 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2802 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2803 nested_vmcb->save.rip = vmcb->save.rip;
2804 nested_vmcb->save.rsp = vmcb->save.rsp;
2805 nested_vmcb->save.rax = vmcb->save.rax;
2806 nested_vmcb->save.dr7 = vmcb->save.dr7;
2807 nested_vmcb->save.dr6 = vmcb->save.dr6;
2808 nested_vmcb->save.cpl = vmcb->save.cpl;
2810 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2811 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2812 nested_vmcb->control.int_state = vmcb->control.int_state;
2813 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2814 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2815 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2816 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2817 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2818 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2820 if (svm->nrips_enabled)
2821 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2824 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2825 * to make sure that we do not lose injected events. So check event_inj
2826 * here and copy it to exit_int_info if it is valid.
2827 * Exit_int_info and event_inj can't be both valid because the case
2828 * below only happens on a VMRUN instruction intercept which has
2829 * no valid exit_int_info set.
2831 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2832 struct vmcb_control_area *nc = &nested_vmcb->control;
2834 nc->exit_int_info = vmcb->control.event_inj;
2835 nc->exit_int_info_err = vmcb->control.event_inj_err;
2838 nested_vmcb->control.tlb_ctl = 0;
2839 nested_vmcb->control.event_inj = 0;
2840 nested_vmcb->control.event_inj_err = 0;
2842 /* We always set V_INTR_MASKING and remember the old value in hflags */
2843 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2844 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2846 /* Restore the original control entries */
2847 copy_vmcb_control_area(vmcb, hsave);
2849 kvm_clear_exception_queue(&svm->vcpu);
2850 kvm_clear_interrupt_queue(&svm->vcpu);
2852 svm->nested.nested_cr3 = 0;
2854 /* Restore selected save entries */
2855 svm->vmcb->save.es = hsave->save.es;
2856 svm->vmcb->save.cs = hsave->save.cs;
2857 svm->vmcb->save.ss = hsave->save.ss;
2858 svm->vmcb->save.ds = hsave->save.ds;
2859 svm->vmcb->save.gdtr = hsave->save.gdtr;
2860 svm->vmcb->save.idtr = hsave->save.idtr;
2861 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2862 svm_set_efer(&svm->vcpu, hsave->save.efer);
2863 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2864 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2866 svm->vmcb->save.cr3 = hsave->save.cr3;
2867 svm->vcpu.arch.cr3 = hsave->save.cr3;
2869 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2871 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2872 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2873 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2874 svm->vmcb->save.dr7 = 0;
2875 svm->vmcb->save.cpl = 0;
2876 svm->vmcb->control.exit_int_info = 0;
2878 mark_all_dirty(svm->vmcb);
2880 nested_svm_unmap(page);
2882 nested_svm_uninit_mmu_context(&svm->vcpu);
2883 kvm_mmu_reset_context(&svm->vcpu);
2884 kvm_mmu_load(&svm->vcpu);
2889 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2892 * This function merges the msr permission bitmaps of kvm and the
2893 * nested vmcb. It is optimized in that it only merges the parts where
2894 * the kvm msr permission bitmap may contain zero bits
2898 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2901 for (i = 0; i < MSRPM_OFFSETS; i++) {
2905 if (msrpm_offsets[i] == 0xffffffff)
2908 p = msrpm_offsets[i];
2909 offset = svm->nested.vmcb_msrpm + (p * 4);
2911 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2914 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2917 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
2922 static bool nested_vmcb_checks(struct vmcb *vmcb)
2924 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2927 if (vmcb->control.asid == 0)
2930 if (vmcb->control.nested_ctl && !npt_enabled)
2936 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
2937 struct vmcb *nested_vmcb, struct page *page)
2939 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2940 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2942 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2944 if (nested_vmcb->control.nested_ctl) {
2945 kvm_mmu_unload(&svm->vcpu);
2946 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2947 nested_svm_init_mmu_context(&svm->vcpu);
2950 /* Load the nested guest state */
2951 svm->vmcb->save.es = nested_vmcb->save.es;
2952 svm->vmcb->save.cs = nested_vmcb->save.cs;
2953 svm->vmcb->save.ss = nested_vmcb->save.ss;
2954 svm->vmcb->save.ds = nested_vmcb->save.ds;
2955 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2956 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2957 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2958 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2959 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2960 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2962 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2963 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2965 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2967 /* Guest paging mode is active - reset mmu */
2968 kvm_mmu_reset_context(&svm->vcpu);
2970 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2971 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2972 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2973 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2975 /* In case we don't even reach vcpu_run, the fields are not updated */
2976 svm->vmcb->save.rax = nested_vmcb->save.rax;
2977 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2978 svm->vmcb->save.rip = nested_vmcb->save.rip;
2979 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2980 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2981 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2983 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2984 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2986 /* cache intercepts */
2987 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2988 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2989 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2990 svm->nested.intercept = nested_vmcb->control.intercept;
2992 svm_flush_tlb(&svm->vcpu);
2993 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2994 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2995 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2997 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2999 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3000 /* We only want the cr8 intercept bits of the guest */
3001 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3002 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3005 /* We don't want to see VMMCALLs from a nested guest */
3006 clr_intercept(svm, INTERCEPT_VMMCALL);
3008 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3009 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3010 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3011 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3012 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3013 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3015 nested_svm_unmap(page);
3017 /* Enter Guest-Mode */
3018 enter_guest_mode(&svm->vcpu);
3021 * Merge guest and host intercepts - must be called with vcpu in
3022 * guest-mode to take affect here
3024 recalc_intercepts(svm);
3026 svm->nested.vmcb = vmcb_gpa;
3030 mark_all_dirty(svm->vmcb);
3033 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3035 struct vmcb *nested_vmcb;
3036 struct vmcb *hsave = svm->nested.hsave;
3037 struct vmcb *vmcb = svm->vmcb;
3041 vmcb_gpa = svm->vmcb->save.rax;
3043 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3047 if (!nested_vmcb_checks(nested_vmcb)) {
3048 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3049 nested_vmcb->control.exit_code_hi = 0;
3050 nested_vmcb->control.exit_info_1 = 0;
3051 nested_vmcb->control.exit_info_2 = 0;
3053 nested_svm_unmap(page);
3058 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3059 nested_vmcb->save.rip,
3060 nested_vmcb->control.int_ctl,
3061 nested_vmcb->control.event_inj,
3062 nested_vmcb->control.nested_ctl);
3064 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3065 nested_vmcb->control.intercept_cr >> 16,
3066 nested_vmcb->control.intercept_exceptions,
3067 nested_vmcb->control.intercept);
3069 /* Clear internal status */
3070 kvm_clear_exception_queue(&svm->vcpu);
3071 kvm_clear_interrupt_queue(&svm->vcpu);
3074 * Save the old vmcb, so we don't need to pick what we save, but can
3075 * restore everything when a VMEXIT occurs
3077 hsave->save.es = vmcb->save.es;
3078 hsave->save.cs = vmcb->save.cs;
3079 hsave->save.ss = vmcb->save.ss;
3080 hsave->save.ds = vmcb->save.ds;
3081 hsave->save.gdtr = vmcb->save.gdtr;
3082 hsave->save.idtr = vmcb->save.idtr;
3083 hsave->save.efer = svm->vcpu.arch.efer;
3084 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3085 hsave->save.cr4 = svm->vcpu.arch.cr4;
3086 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3087 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3088 hsave->save.rsp = vmcb->save.rsp;
3089 hsave->save.rax = vmcb->save.rax;
3091 hsave->save.cr3 = vmcb->save.cr3;
3093 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3095 copy_vmcb_control_area(hsave, vmcb);
3097 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3102 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3104 to_vmcb->save.fs = from_vmcb->save.fs;
3105 to_vmcb->save.gs = from_vmcb->save.gs;
3106 to_vmcb->save.tr = from_vmcb->save.tr;
3107 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3108 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3109 to_vmcb->save.star = from_vmcb->save.star;
3110 to_vmcb->save.lstar = from_vmcb->save.lstar;
3111 to_vmcb->save.cstar = from_vmcb->save.cstar;
3112 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3113 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3114 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3115 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3118 static int vmload_interception(struct vcpu_svm *svm)
3120 struct vmcb *nested_vmcb;
3124 if (nested_svm_check_permissions(svm))
3127 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3131 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3132 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3134 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3135 nested_svm_unmap(page);
3140 static int vmsave_interception(struct vcpu_svm *svm)
3142 struct vmcb *nested_vmcb;
3146 if (nested_svm_check_permissions(svm))
3149 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3153 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3154 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3156 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3157 nested_svm_unmap(page);
3162 static int vmrun_interception(struct vcpu_svm *svm)
3164 if (nested_svm_check_permissions(svm))
3167 /* Save rip after vmrun instruction */
3168 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3170 if (!nested_svm_vmrun(svm))
3173 if (!nested_svm_vmrun_msrpm(svm))
3180 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3181 svm->vmcb->control.exit_code_hi = 0;
3182 svm->vmcb->control.exit_info_1 = 0;
3183 svm->vmcb->control.exit_info_2 = 0;
3185 nested_svm_vmexit(svm);
3190 static int stgi_interception(struct vcpu_svm *svm)
3194 if (nested_svm_check_permissions(svm))
3198 * If VGIF is enabled, the STGI intercept is only added to
3199 * detect the opening of the SMI/NMI window; remove it now.
3201 if (vgif_enabled(svm))
3202 clr_intercept(svm, INTERCEPT_STGI);
3204 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3205 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3206 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3213 static int clgi_interception(struct vcpu_svm *svm)
3217 if (nested_svm_check_permissions(svm))
3220 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3221 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3225 /* After a CLGI no interrupts should come */
3226 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3227 svm_clear_vintr(svm);
3228 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3229 mark_dirty(svm->vmcb, VMCB_INTR);
3235 static int invlpga_interception(struct vcpu_svm *svm)
3237 struct kvm_vcpu *vcpu = &svm->vcpu;
3239 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3240 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3242 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3243 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3245 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3246 return kvm_skip_emulated_instruction(&svm->vcpu);
3249 static int skinit_interception(struct vcpu_svm *svm)
3251 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3253 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3257 static int wbinvd_interception(struct vcpu_svm *svm)
3259 return kvm_emulate_wbinvd(&svm->vcpu);
3262 static int xsetbv_interception(struct vcpu_svm *svm)
3264 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3265 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3267 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3268 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3269 return kvm_skip_emulated_instruction(&svm->vcpu);
3275 static int task_switch_interception(struct vcpu_svm *svm)
3279 int int_type = svm->vmcb->control.exit_int_info &
3280 SVM_EXITINTINFO_TYPE_MASK;
3281 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3283 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3285 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3286 bool has_error_code = false;
3289 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3291 if (svm->vmcb->control.exit_info_2 &
3292 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3293 reason = TASK_SWITCH_IRET;
3294 else if (svm->vmcb->control.exit_info_2 &
3295 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3296 reason = TASK_SWITCH_JMP;
3298 reason = TASK_SWITCH_GATE;
3300 reason = TASK_SWITCH_CALL;
3302 if (reason == TASK_SWITCH_GATE) {
3304 case SVM_EXITINTINFO_TYPE_NMI:
3305 svm->vcpu.arch.nmi_injected = false;
3307 case SVM_EXITINTINFO_TYPE_EXEPT:
3308 if (svm->vmcb->control.exit_info_2 &
3309 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3310 has_error_code = true;
3312 (u32)svm->vmcb->control.exit_info_2;
3314 kvm_clear_exception_queue(&svm->vcpu);
3316 case SVM_EXITINTINFO_TYPE_INTR:
3317 kvm_clear_interrupt_queue(&svm->vcpu);
3324 if (reason != TASK_SWITCH_GATE ||
3325 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3326 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3327 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3328 skip_emulated_instruction(&svm->vcpu);
3330 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3333 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3334 has_error_code, error_code) == EMULATE_FAIL) {
3335 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3336 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3337 svm->vcpu.run->internal.ndata = 0;
3343 static int cpuid_interception(struct vcpu_svm *svm)
3345 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3346 return kvm_emulate_cpuid(&svm->vcpu);
3349 static int iret_interception(struct vcpu_svm *svm)
3351 ++svm->vcpu.stat.nmi_window_exits;
3352 clr_intercept(svm, INTERCEPT_IRET);
3353 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3354 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3355 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3359 static int invlpg_interception(struct vcpu_svm *svm)
3361 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3362 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3364 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3365 return kvm_skip_emulated_instruction(&svm->vcpu);
3368 static int emulate_on_interception(struct vcpu_svm *svm)
3370 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3373 static int rdpmc_interception(struct vcpu_svm *svm)
3377 if (!static_cpu_has(X86_FEATURE_NRIPS))
3378 return emulate_on_interception(svm);
3380 err = kvm_rdpmc(&svm->vcpu);
3381 return kvm_complete_insn_gp(&svm->vcpu, err);
3384 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3387 unsigned long cr0 = svm->vcpu.arch.cr0;
3391 intercept = svm->nested.intercept;
3393 if (!is_guest_mode(&svm->vcpu) ||
3394 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3397 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3398 val &= ~SVM_CR0_SELECTIVE_MASK;
3401 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3402 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3408 #define CR_VALID (1ULL << 63)
3410 static int cr_interception(struct vcpu_svm *svm)
3416 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3417 return emulate_on_interception(svm);
3419 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3420 return emulate_on_interception(svm);
3422 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3423 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3424 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3426 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3429 if (cr >= 16) { /* mov to cr */
3431 val = kvm_register_read(&svm->vcpu, reg);
3434 if (!check_selective_cr0_intercepted(svm, val))
3435 err = kvm_set_cr0(&svm->vcpu, val);
3441 err = kvm_set_cr3(&svm->vcpu, val);
3444 err = kvm_set_cr4(&svm->vcpu, val);
3447 err = kvm_set_cr8(&svm->vcpu, val);
3450 WARN(1, "unhandled write to CR%d", cr);
3451 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3454 } else { /* mov from cr */
3457 val = kvm_read_cr0(&svm->vcpu);
3460 val = svm->vcpu.arch.cr2;
3463 val = kvm_read_cr3(&svm->vcpu);
3466 val = kvm_read_cr4(&svm->vcpu);
3469 val = kvm_get_cr8(&svm->vcpu);
3472 WARN(1, "unhandled read from CR%d", cr);
3473 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3476 kvm_register_write(&svm->vcpu, reg, val);
3478 return kvm_complete_insn_gp(&svm->vcpu, err);
3481 static int dr_interception(struct vcpu_svm *svm)
3486 if (svm->vcpu.guest_debug == 0) {
3488 * No more DR vmexits; force a reload of the debug registers
3489 * and reenter on this instruction. The next vmexit will
3490 * retrieve the full state of the debug registers.
3492 clr_dr_intercepts(svm);
3493 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3497 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3498 return emulate_on_interception(svm);
3500 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3501 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3503 if (dr >= 16) { /* mov to DRn */
3504 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3506 val = kvm_register_read(&svm->vcpu, reg);
3507 kvm_set_dr(&svm->vcpu, dr - 16, val);
3509 if (!kvm_require_dr(&svm->vcpu, dr))
3511 kvm_get_dr(&svm->vcpu, dr, &val);
3512 kvm_register_write(&svm->vcpu, reg, val);
3515 return kvm_skip_emulated_instruction(&svm->vcpu);
3518 static int cr8_write_interception(struct vcpu_svm *svm)
3520 struct kvm_run *kvm_run = svm->vcpu.run;
3523 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3524 /* instruction emulation calls kvm_set_cr8() */
3525 r = cr_interception(svm);
3526 if (lapic_in_kernel(&svm->vcpu))
3528 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3530 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3534 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3536 struct vcpu_svm *svm = to_svm(vcpu);
3538 switch (msr_info->index) {
3539 case MSR_IA32_TSC: {
3540 msr_info->data = svm->vmcb->control.tsc_offset +
3541 kvm_scale_tsc(vcpu, rdtsc());
3546 msr_info->data = svm->vmcb->save.star;
3548 #ifdef CONFIG_X86_64
3550 msr_info->data = svm->vmcb->save.lstar;
3553 msr_info->data = svm->vmcb->save.cstar;
3555 case MSR_KERNEL_GS_BASE:
3556 msr_info->data = svm->vmcb->save.kernel_gs_base;
3558 case MSR_SYSCALL_MASK:
3559 msr_info->data = svm->vmcb->save.sfmask;
3562 case MSR_IA32_SYSENTER_CS:
3563 msr_info->data = svm->vmcb->save.sysenter_cs;
3565 case MSR_IA32_SYSENTER_EIP:
3566 msr_info->data = svm->sysenter_eip;
3568 case MSR_IA32_SYSENTER_ESP:
3569 msr_info->data = svm->sysenter_esp;
3572 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3574 msr_info->data = svm->tsc_aux;
3577 * Nobody will change the following 5 values in the VMCB so we can
3578 * safely return them on rdmsr. They will always be 0 until LBRV is
3581 case MSR_IA32_DEBUGCTLMSR:
3582 msr_info->data = svm->vmcb->save.dbgctl;
3584 case MSR_IA32_LASTBRANCHFROMIP:
3585 msr_info->data = svm->vmcb->save.br_from;
3587 case MSR_IA32_LASTBRANCHTOIP:
3588 msr_info->data = svm->vmcb->save.br_to;
3590 case MSR_IA32_LASTINTFROMIP:
3591 msr_info->data = svm->vmcb->save.last_excp_from;
3593 case MSR_IA32_LASTINTTOIP:
3594 msr_info->data = svm->vmcb->save.last_excp_to;
3596 case MSR_VM_HSAVE_PA:
3597 msr_info->data = svm->nested.hsave_msr;
3600 msr_info->data = svm->nested.vm_cr_msr;
3602 case MSR_IA32_UCODE_REV:
3603 msr_info->data = 0x01000065;
3605 case MSR_F15H_IC_CFG: {
3609 family = guest_cpuid_family(vcpu);
3610 model = guest_cpuid_model(vcpu);
3612 if (family < 0 || model < 0)
3613 return kvm_get_msr_common(vcpu, msr_info);
3617 if (family == 0x15 &&
3618 (model >= 0x2 && model < 0x20))
3619 msr_info->data = 0x1E;
3623 return kvm_get_msr_common(vcpu, msr_info);
3628 static int rdmsr_interception(struct vcpu_svm *svm)
3630 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3631 struct msr_data msr_info;
3633 msr_info.index = ecx;
3634 msr_info.host_initiated = false;
3635 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3636 trace_kvm_msr_read_ex(ecx);
3637 kvm_inject_gp(&svm->vcpu, 0);
3640 trace_kvm_msr_read(ecx, msr_info.data);
3642 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3643 msr_info.data & 0xffffffff);
3644 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3645 msr_info.data >> 32);
3646 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3647 return kvm_skip_emulated_instruction(&svm->vcpu);
3651 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3653 struct vcpu_svm *svm = to_svm(vcpu);
3654 int svm_dis, chg_mask;
3656 if (data & ~SVM_VM_CR_VALID_MASK)
3659 chg_mask = SVM_VM_CR_VALID_MASK;
3661 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3662 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3664 svm->nested.vm_cr_msr &= ~chg_mask;
3665 svm->nested.vm_cr_msr |= (data & chg_mask);
3667 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3669 /* check for svm_disable while efer.svme is set */
3670 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3676 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3678 struct vcpu_svm *svm = to_svm(vcpu);
3680 u32 ecx = msr->index;
3681 u64 data = msr->data;
3683 case MSR_IA32_CR_PAT:
3684 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3686 vcpu->arch.pat = data;
3687 svm->vmcb->save.g_pat = data;
3688 mark_dirty(svm->vmcb, VMCB_NPT);
3691 kvm_write_tsc(vcpu, msr);
3694 svm->vmcb->save.star = data;
3696 #ifdef CONFIG_X86_64
3698 svm->vmcb->save.lstar = data;
3701 svm->vmcb->save.cstar = data;
3703 case MSR_KERNEL_GS_BASE:
3704 svm->vmcb->save.kernel_gs_base = data;
3706 case MSR_SYSCALL_MASK:
3707 svm->vmcb->save.sfmask = data;
3710 case MSR_IA32_SYSENTER_CS:
3711 svm->vmcb->save.sysenter_cs = data;
3713 case MSR_IA32_SYSENTER_EIP:
3714 svm->sysenter_eip = data;
3715 svm->vmcb->save.sysenter_eip = data;
3717 case MSR_IA32_SYSENTER_ESP:
3718 svm->sysenter_esp = data;
3719 svm->vmcb->save.sysenter_esp = data;
3722 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3726 * This is rare, so we update the MSR here instead of using
3727 * direct_access_msrs. Doing that would require a rdmsr in
3730 svm->tsc_aux = data;
3731 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3733 case MSR_IA32_DEBUGCTLMSR:
3734 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3735 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3739 if (data & DEBUGCTL_RESERVED_BITS)
3742 svm->vmcb->save.dbgctl = data;
3743 mark_dirty(svm->vmcb, VMCB_LBR);
3744 if (data & (1ULL<<0))
3745 svm_enable_lbrv(svm);
3747 svm_disable_lbrv(svm);
3749 case MSR_VM_HSAVE_PA:
3750 svm->nested.hsave_msr = data;
3753 return svm_set_vm_cr(vcpu, data);
3755 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3757 case MSR_IA32_APICBASE:
3758 if (kvm_vcpu_apicv_active(vcpu))
3759 avic_update_vapic_bar(to_svm(vcpu), data);
3760 /* Follow through */
3762 return kvm_set_msr_common(vcpu, msr);
3767 static int wrmsr_interception(struct vcpu_svm *svm)
3769 struct msr_data msr;
3770 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3771 u64 data = kvm_read_edx_eax(&svm->vcpu);
3775 msr.host_initiated = false;
3777 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3778 if (kvm_set_msr(&svm->vcpu, &msr)) {
3779 trace_kvm_msr_write_ex(ecx, data);
3780 kvm_inject_gp(&svm->vcpu, 0);
3783 trace_kvm_msr_write(ecx, data);
3784 return kvm_skip_emulated_instruction(&svm->vcpu);
3788 static int msr_interception(struct vcpu_svm *svm)
3790 if (svm->vmcb->control.exit_info_1)
3791 return wrmsr_interception(svm);
3793 return rdmsr_interception(svm);
3796 static int interrupt_window_interception(struct vcpu_svm *svm)
3798 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3799 svm_clear_vintr(svm);
3800 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3801 mark_dirty(svm->vmcb, VMCB_INTR);
3802 ++svm->vcpu.stat.irq_window_exits;
3806 static int pause_interception(struct vcpu_svm *svm)
3808 struct kvm_vcpu *vcpu = &svm->vcpu;
3809 bool in_kernel = (svm_get_cpl(vcpu) == 0);
3811 kvm_vcpu_on_spin(vcpu, in_kernel);
3815 static int nop_interception(struct vcpu_svm *svm)
3817 return kvm_skip_emulated_instruction(&(svm->vcpu));
3820 static int monitor_interception(struct vcpu_svm *svm)
3822 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3823 return nop_interception(svm);
3826 static int mwait_interception(struct vcpu_svm *svm)
3828 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3829 return nop_interception(svm);
3832 enum avic_ipi_failure_cause {
3833 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3834 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3835 AVIC_IPI_FAILURE_INVALID_TARGET,
3836 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3839 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3841 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3842 u32 icrl = svm->vmcb->control.exit_info_1;
3843 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3844 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3845 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3847 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3850 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3852 * AVIC hardware handles the generation of
3853 * IPIs when the specified Message Type is Fixed
3854 * (also known as fixed delivery mode) and
3855 * the Trigger Mode is edge-triggered. The hardware
3856 * also supports self and broadcast delivery modes
3857 * specified via the Destination Shorthand(DSH)
3858 * field of the ICRL. Logical and physical APIC ID
3859 * formats are supported. All other IPI types cause
3860 * a #VMEXIT, which needs to emulated.
3862 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3863 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3865 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3867 struct kvm_vcpu *vcpu;
3868 struct kvm *kvm = svm->vcpu.kvm;
3869 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3872 * At this point, we expect that the AVIC HW has already
3873 * set the appropriate IRR bits on the valid target
3874 * vcpus. So, we just need to kick the appropriate vcpu.
3876 kvm_for_each_vcpu(i, vcpu, kvm) {
3877 bool m = kvm_apic_match_dest(vcpu, apic,
3878 icrl & KVM_APIC_SHORT_MASK,
3879 GET_APIC_DEST_FIELD(icrh),
3880 icrl & KVM_APIC_DEST_MASK);
3882 if (m && !avic_vcpu_is_running(vcpu))
3883 kvm_vcpu_wake_up(vcpu);
3887 case AVIC_IPI_FAILURE_INVALID_TARGET:
3889 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3890 WARN_ONCE(1, "Invalid backing page\n");
3893 pr_err("Unknown IPI interception\n");
3899 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3901 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3903 u32 *logical_apic_id_table;
3904 int dlid = GET_APIC_LOGICAL_ID(ldr);
3909 if (flat) { /* flat */
3910 index = ffs(dlid) - 1;
3913 } else { /* cluster */
3914 int cluster = (dlid & 0xf0) >> 4;
3915 int apic = ffs(dlid & 0x0f) - 1;
3917 if ((apic < 0) || (apic > 7) ||
3920 index = (cluster << 2) + apic;
3923 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3925 return &logical_apic_id_table[index];
3928 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3932 u32 *entry, new_entry;
3934 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3935 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3939 new_entry = READ_ONCE(*entry);
3940 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3941 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3943 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3945 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3946 WRITE_ONCE(*entry, new_entry);
3951 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3954 struct vcpu_svm *svm = to_svm(vcpu);
3955 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3960 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3961 if (ret && svm->ldr_reg) {
3962 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3970 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3973 struct vcpu_svm *svm = to_svm(vcpu);
3974 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3975 u32 id = (apic_id_reg >> 24) & 0xff;
3977 if (vcpu->vcpu_id == id)
3980 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3981 new = avic_get_physical_id_entry(vcpu, id);
3985 /* We need to move physical_id_entry to new offset */
3988 to_svm(vcpu)->avic_physical_id_cache = new;
3991 * Also update the guest physical APIC ID in the logical
3992 * APIC ID table entry if already setup the LDR.
3995 avic_handle_ldr_update(vcpu);
4000 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4002 struct vcpu_svm *svm = to_svm(vcpu);
4003 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4004 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4005 u32 mod = (dfr >> 28) & 0xf;
4008 * We assume that all local APICs are using the same type.
4009 * If this changes, we need to flush the AVIC logical
4012 if (vm_data->ldr_mode == mod)
4015 clear_page(page_address(vm_data->avic_logical_id_table_page));
4016 vm_data->ldr_mode = mod;
4019 avic_handle_ldr_update(vcpu);
4023 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4025 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4026 u32 offset = svm->vmcb->control.exit_info_1 &
4027 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4031 if (avic_handle_apic_id_update(&svm->vcpu))
4035 if (avic_handle_ldr_update(&svm->vcpu))
4039 avic_handle_dfr_update(&svm->vcpu);
4045 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4050 static bool is_avic_unaccelerated_access_trap(u32 offset)
4079 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4082 u32 offset = svm->vmcb->control.exit_info_1 &
4083 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4084 u32 vector = svm->vmcb->control.exit_info_2 &
4085 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4086 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4087 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4088 bool trap = is_avic_unaccelerated_access_trap(offset);
4090 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4091 trap, write, vector);
4094 WARN_ONCE(!write, "svm: Handling trap read.\n");
4095 ret = avic_unaccel_trap_write(svm);
4097 /* Handling Fault */
4098 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4104 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4105 [SVM_EXIT_READ_CR0] = cr_interception,
4106 [SVM_EXIT_READ_CR3] = cr_interception,
4107 [SVM_EXIT_READ_CR4] = cr_interception,
4108 [SVM_EXIT_READ_CR8] = cr_interception,
4109 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4110 [SVM_EXIT_WRITE_CR0] = cr_interception,
4111 [SVM_EXIT_WRITE_CR3] = cr_interception,
4112 [SVM_EXIT_WRITE_CR4] = cr_interception,
4113 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4114 [SVM_EXIT_READ_DR0] = dr_interception,
4115 [SVM_EXIT_READ_DR1] = dr_interception,
4116 [SVM_EXIT_READ_DR2] = dr_interception,
4117 [SVM_EXIT_READ_DR3] = dr_interception,
4118 [SVM_EXIT_READ_DR4] = dr_interception,
4119 [SVM_EXIT_READ_DR5] = dr_interception,
4120 [SVM_EXIT_READ_DR6] = dr_interception,
4121 [SVM_EXIT_READ_DR7] = dr_interception,
4122 [SVM_EXIT_WRITE_DR0] = dr_interception,
4123 [SVM_EXIT_WRITE_DR1] = dr_interception,
4124 [SVM_EXIT_WRITE_DR2] = dr_interception,
4125 [SVM_EXIT_WRITE_DR3] = dr_interception,
4126 [SVM_EXIT_WRITE_DR4] = dr_interception,
4127 [SVM_EXIT_WRITE_DR5] = dr_interception,
4128 [SVM_EXIT_WRITE_DR6] = dr_interception,
4129 [SVM_EXIT_WRITE_DR7] = dr_interception,
4130 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4131 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4132 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4133 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4134 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4135 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4136 [SVM_EXIT_INTR] = intr_interception,
4137 [SVM_EXIT_NMI] = nmi_interception,
4138 [SVM_EXIT_SMI] = nop_on_interception,
4139 [SVM_EXIT_INIT] = nop_on_interception,
4140 [SVM_EXIT_VINTR] = interrupt_window_interception,
4141 [SVM_EXIT_RDPMC] = rdpmc_interception,
4142 [SVM_EXIT_CPUID] = cpuid_interception,
4143 [SVM_EXIT_IRET] = iret_interception,
4144 [SVM_EXIT_INVD] = emulate_on_interception,
4145 [SVM_EXIT_PAUSE] = pause_interception,
4146 [SVM_EXIT_HLT] = halt_interception,
4147 [SVM_EXIT_INVLPG] = invlpg_interception,
4148 [SVM_EXIT_INVLPGA] = invlpga_interception,
4149 [SVM_EXIT_IOIO] = io_interception,
4150 [SVM_EXIT_MSR] = msr_interception,
4151 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4152 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4153 [SVM_EXIT_VMRUN] = vmrun_interception,
4154 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4155 [SVM_EXIT_VMLOAD] = vmload_interception,
4156 [SVM_EXIT_VMSAVE] = vmsave_interception,
4157 [SVM_EXIT_STGI] = stgi_interception,
4158 [SVM_EXIT_CLGI] = clgi_interception,
4159 [SVM_EXIT_SKINIT] = skinit_interception,
4160 [SVM_EXIT_WBINVD] = wbinvd_interception,
4161 [SVM_EXIT_MONITOR] = monitor_interception,
4162 [SVM_EXIT_MWAIT] = mwait_interception,
4163 [SVM_EXIT_XSETBV] = xsetbv_interception,
4164 [SVM_EXIT_NPF] = npf_interception,
4165 [SVM_EXIT_RSM] = emulate_on_interception,
4166 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4167 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4170 static void dump_vmcb(struct kvm_vcpu *vcpu)
4172 struct vcpu_svm *svm = to_svm(vcpu);
4173 struct vmcb_control_area *control = &svm->vmcb->control;
4174 struct vmcb_save_area *save = &svm->vmcb->save;
4176 pr_err("VMCB Control Area:\n");
4177 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4178 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4179 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4180 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4181 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4182 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4183 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4184 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4185 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4186 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4187 pr_err("%-20s%d\n", "asid:", control->asid);
4188 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4189 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4190 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4191 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4192 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4193 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4194 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4195 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4196 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4197 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4198 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4199 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4200 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4201 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4202 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4203 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4204 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4205 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4206 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4207 pr_err("VMCB State Save Area:\n");
4208 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4210 save->es.selector, save->es.attrib,
4211 save->es.limit, save->es.base);
4212 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4214 save->cs.selector, save->cs.attrib,
4215 save->cs.limit, save->cs.base);
4216 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4218 save->ss.selector, save->ss.attrib,
4219 save->ss.limit, save->ss.base);
4220 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4222 save->ds.selector, save->ds.attrib,
4223 save->ds.limit, save->ds.base);
4224 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4226 save->fs.selector, save->fs.attrib,
4227 save->fs.limit, save->fs.base);
4228 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4230 save->gs.selector, save->gs.attrib,
4231 save->gs.limit, save->gs.base);
4232 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4234 save->gdtr.selector, save->gdtr.attrib,
4235 save->gdtr.limit, save->gdtr.base);
4236 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4238 save->ldtr.selector, save->ldtr.attrib,
4239 save->ldtr.limit, save->ldtr.base);
4240 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4242 save->idtr.selector, save->idtr.attrib,
4243 save->idtr.limit, save->idtr.base);
4244 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4246 save->tr.selector, save->tr.attrib,
4247 save->tr.limit, save->tr.base);
4248 pr_err("cpl: %d efer: %016llx\n",
4249 save->cpl, save->efer);
4250 pr_err("%-15s %016llx %-13s %016llx\n",
4251 "cr0:", save->cr0, "cr2:", save->cr2);
4252 pr_err("%-15s %016llx %-13s %016llx\n",
4253 "cr3:", save->cr3, "cr4:", save->cr4);
4254 pr_err("%-15s %016llx %-13s %016llx\n",
4255 "dr6:", save->dr6, "dr7:", save->dr7);
4256 pr_err("%-15s %016llx %-13s %016llx\n",
4257 "rip:", save->rip, "rflags:", save->rflags);
4258 pr_err("%-15s %016llx %-13s %016llx\n",
4259 "rsp:", save->rsp, "rax:", save->rax);
4260 pr_err("%-15s %016llx %-13s %016llx\n",
4261 "star:", save->star, "lstar:", save->lstar);
4262 pr_err("%-15s %016llx %-13s %016llx\n",
4263 "cstar:", save->cstar, "sfmask:", save->sfmask);
4264 pr_err("%-15s %016llx %-13s %016llx\n",
4265 "kernel_gs_base:", save->kernel_gs_base,
4266 "sysenter_cs:", save->sysenter_cs);
4267 pr_err("%-15s %016llx %-13s %016llx\n",
4268 "sysenter_esp:", save->sysenter_esp,
4269 "sysenter_eip:", save->sysenter_eip);
4270 pr_err("%-15s %016llx %-13s %016llx\n",
4271 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4272 pr_err("%-15s %016llx %-13s %016llx\n",
4273 "br_from:", save->br_from, "br_to:", save->br_to);
4274 pr_err("%-15s %016llx %-13s %016llx\n",
4275 "excp_from:", save->last_excp_from,
4276 "excp_to:", save->last_excp_to);
4279 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4281 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4283 *info1 = control->exit_info_1;
4284 *info2 = control->exit_info_2;
4287 static int handle_exit(struct kvm_vcpu *vcpu)
4289 struct vcpu_svm *svm = to_svm(vcpu);
4290 struct kvm_run *kvm_run = vcpu->run;
4291 u32 exit_code = svm->vmcb->control.exit_code;
4293 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4295 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4296 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4298 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4300 if (unlikely(svm->nested.exit_required)) {
4301 nested_svm_vmexit(svm);
4302 svm->nested.exit_required = false;
4307 if (is_guest_mode(vcpu)) {
4310 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4311 svm->vmcb->control.exit_info_1,
4312 svm->vmcb->control.exit_info_2,
4313 svm->vmcb->control.exit_int_info,
4314 svm->vmcb->control.exit_int_info_err,
4317 vmexit = nested_svm_exit_special(svm);
4319 if (vmexit == NESTED_EXIT_CONTINUE)
4320 vmexit = nested_svm_exit_handled(svm);
4322 if (vmexit == NESTED_EXIT_DONE)
4326 svm_complete_interrupts(svm);
4328 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4329 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4330 kvm_run->fail_entry.hardware_entry_failure_reason
4331 = svm->vmcb->control.exit_code;
4332 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4337 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4338 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4339 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4340 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4341 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4343 __func__, svm->vmcb->control.exit_int_info,
4346 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4347 || !svm_exit_handlers[exit_code]) {
4348 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4349 kvm_queue_exception(vcpu, UD_VECTOR);
4353 return svm_exit_handlers[exit_code](svm);
4356 static void reload_tss(struct kvm_vcpu *vcpu)
4358 int cpu = raw_smp_processor_id();
4360 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4361 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4365 static void pre_svm_run(struct vcpu_svm *svm)
4367 int cpu = raw_smp_processor_id();
4369 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4371 /* FIXME: handle wraparound of asid_generation */
4372 if (svm->asid_generation != sd->asid_generation)
4376 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4378 struct vcpu_svm *svm = to_svm(vcpu);
4380 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4381 vcpu->arch.hflags |= HF_NMI_MASK;
4382 set_intercept(svm, INTERCEPT_IRET);
4383 ++vcpu->stat.nmi_injections;
4386 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4388 struct vmcb_control_area *control;
4390 /* The following fields are ignored when AVIC is enabled */
4391 control = &svm->vmcb->control;
4392 control->int_vector = irq;
4393 control->int_ctl &= ~V_INTR_PRIO_MASK;
4394 control->int_ctl |= V_IRQ_MASK |
4395 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4396 mark_dirty(svm->vmcb, VMCB_INTR);
4399 static void svm_set_irq(struct kvm_vcpu *vcpu)
4401 struct vcpu_svm *svm = to_svm(vcpu);
4403 BUG_ON(!(gif_set(svm)));
4405 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4406 ++vcpu->stat.irq_injections;
4408 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4409 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4412 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4414 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4417 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4419 struct vcpu_svm *svm = to_svm(vcpu);
4421 if (svm_nested_virtualize_tpr(vcpu) ||
4422 kvm_vcpu_apicv_active(vcpu))
4425 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4431 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4434 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4439 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4441 return avic && irqchip_split(vcpu->kvm);
4444 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4448 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4452 /* Note: Currently only used by Hyper-V. */
4453 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4455 struct vcpu_svm *svm = to_svm(vcpu);
4456 struct vmcb *vmcb = svm->vmcb;
4458 if (!kvm_vcpu_apicv_active(&svm->vcpu))
4461 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4462 mark_dirty(vmcb, VMCB_INTR);
4465 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4470 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4472 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4473 smp_mb__after_atomic();
4475 if (avic_vcpu_is_running(vcpu))
4476 wrmsrl(SVM_AVIC_DOORBELL,
4477 kvm_cpu_get_apicid(vcpu->cpu));
4479 kvm_vcpu_wake_up(vcpu);
4482 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4484 unsigned long flags;
4485 struct amd_svm_iommu_ir *cur;
4487 spin_lock_irqsave(&svm->ir_list_lock, flags);
4488 list_for_each_entry(cur, &svm->ir_list, node) {
4489 if (cur->data != pi->ir_data)
4491 list_del(&cur->node);
4495 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4498 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4501 unsigned long flags;
4502 struct amd_svm_iommu_ir *ir;
4505 * In some cases, the existing irte is updaed and re-set,
4506 * so we need to check here if it's already been * added
4509 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4510 struct kvm *kvm = svm->vcpu.kvm;
4511 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4512 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4513 struct vcpu_svm *prev_svm;
4520 prev_svm = to_svm(prev_vcpu);
4521 svm_ir_list_del(prev_svm, pi);
4525 * Allocating new amd_iommu_pi_data, which will get
4526 * add to the per-vcpu ir_list.
4528 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4533 ir->data = pi->ir_data;
4535 spin_lock_irqsave(&svm->ir_list_lock, flags);
4536 list_add(&ir->node, &svm->ir_list);
4537 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4544 * The HW cannot support posting multicast/broadcast
4545 * interrupts to a vCPU. So, we still use legacy interrupt
4546 * remapping for these kind of interrupts.
4548 * For lowest-priority interrupts, we only support
4549 * those with single CPU as the destination, e.g. user
4550 * configures the interrupts via /proc/irq or uses
4551 * irqbalance to make the interrupts single-CPU.
4554 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4555 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4557 struct kvm_lapic_irq irq;
4558 struct kvm_vcpu *vcpu = NULL;
4560 kvm_set_msi_irq(kvm, e, &irq);
4562 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4563 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4564 __func__, irq.vector);
4568 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4570 *svm = to_svm(vcpu);
4571 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4572 vcpu_info->vector = irq.vector;
4578 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4581 * @host_irq: host irq of the interrupt
4582 * @guest_irq: gsi of the interrupt
4583 * @set: set or unset PI
4584 * returns 0 on success, < 0 on failure
4586 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4587 uint32_t guest_irq, bool set)
4589 struct kvm_kernel_irq_routing_entry *e;
4590 struct kvm_irq_routing_table *irq_rt;
4591 int idx, ret = -EINVAL;
4593 if (!kvm_arch_has_assigned_device(kvm) ||
4594 !irq_remapping_cap(IRQ_POSTING_CAP))
4597 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4598 __func__, host_irq, guest_irq, set);
4600 idx = srcu_read_lock(&kvm->irq_srcu);
4601 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4602 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4604 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4605 struct vcpu_data vcpu_info;
4606 struct vcpu_svm *svm = NULL;
4608 if (e->type != KVM_IRQ_ROUTING_MSI)
4612 * Here, we setup with legacy mode in the following cases:
4613 * 1. When cannot target interrupt to a specific vcpu.
4614 * 2. Unsetting posted interrupt.
4615 * 3. APIC virtialization is disabled for the vcpu.
4617 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4618 kvm_vcpu_apicv_active(&svm->vcpu)) {
4619 struct amd_iommu_pi_data pi;
4621 /* Try to enable guest_mode in IRTE */
4622 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
4624 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4626 pi.is_guest_mode = true;
4627 pi.vcpu_data = &vcpu_info;
4628 ret = irq_set_vcpu_affinity(host_irq, &pi);
4631 * Here, we successfully setting up vcpu affinity in
4632 * IOMMU guest mode. Now, we need to store the posted
4633 * interrupt information in a per-vcpu ir_list so that
4634 * we can reference to them directly when we update vcpu
4635 * scheduling information in IOMMU irte.
4637 if (!ret && pi.is_guest_mode)
4638 svm_ir_list_add(svm, &pi);
4640 /* Use legacy mode in IRTE */
4641 struct amd_iommu_pi_data pi;
4644 * Here, pi is used to:
4645 * - Tell IOMMU to use legacy mode for this interrupt.
4646 * - Retrieve ga_tag of prior interrupt remapping data.
4648 pi.is_guest_mode = false;
4649 ret = irq_set_vcpu_affinity(host_irq, &pi);
4652 * Check if the posted interrupt was previously
4653 * setup with the guest_mode by checking if the ga_tag
4654 * was cached. If so, we need to clean up the per-vcpu
4657 if (!ret && pi.prev_ga_tag) {
4658 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4659 struct kvm_vcpu *vcpu;
4661 vcpu = kvm_get_vcpu_by_id(kvm, id);
4663 svm_ir_list_del(to_svm(vcpu), &pi);
4668 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4671 vcpu_info.pi_desc_addr, set);
4675 pr_err("%s: failed to update PI IRTE\n", __func__);
4682 srcu_read_unlock(&kvm->irq_srcu, idx);
4686 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4688 struct vcpu_svm *svm = to_svm(vcpu);
4689 struct vmcb *vmcb = svm->vmcb;
4691 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4692 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4693 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4698 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4700 struct vcpu_svm *svm = to_svm(vcpu);
4702 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4705 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4707 struct vcpu_svm *svm = to_svm(vcpu);
4710 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4711 set_intercept(svm, INTERCEPT_IRET);
4713 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4714 clr_intercept(svm, INTERCEPT_IRET);
4718 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4720 struct vcpu_svm *svm = to_svm(vcpu);
4721 struct vmcb *vmcb = svm->vmcb;
4724 if (!gif_set(svm) ||
4725 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4728 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4730 if (is_guest_mode(vcpu))
4731 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4736 static void enable_irq_window(struct kvm_vcpu *vcpu)
4738 struct vcpu_svm *svm = to_svm(vcpu);
4740 if (kvm_vcpu_apicv_active(vcpu))
4744 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4745 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4746 * get that intercept, this function will be called again though and
4747 * we'll get the vintr intercept. However, if the vGIF feature is
4748 * enabled, the STGI interception will not occur. Enable the irq
4749 * window under the assumption that the hardware will set the GIF.
4751 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
4753 svm_inject_irq(svm, 0x0);
4757 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4759 struct vcpu_svm *svm = to_svm(vcpu);
4761 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4763 return; /* IRET will cause a vm exit */
4765 if (!gif_set(svm)) {
4766 if (vgif_enabled(svm))
4767 set_intercept(svm, INTERCEPT_STGI);
4768 return; /* STGI will cause a vm exit */
4771 if (svm->nested.exit_required)
4772 return; /* we're not going to run the guest yet */
4775 * Something prevents NMI from been injected. Single step over possible
4776 * problem (IRET or exception injection or interrupt shadow)
4778 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4779 svm->nmi_singlestep = true;
4780 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4783 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4788 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4790 struct vcpu_svm *svm = to_svm(vcpu);
4792 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4793 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4795 svm->asid_generation--;
4798 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4802 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4804 struct vcpu_svm *svm = to_svm(vcpu);
4806 if (svm_nested_virtualize_tpr(vcpu))
4809 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4810 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4811 kvm_set_cr8(vcpu, cr8);
4815 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4817 struct vcpu_svm *svm = to_svm(vcpu);
4820 if (svm_nested_virtualize_tpr(vcpu) ||
4821 kvm_vcpu_apicv_active(vcpu))
4824 cr8 = kvm_get_cr8(vcpu);
4825 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4826 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4829 static void svm_complete_interrupts(struct vcpu_svm *svm)
4833 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4834 unsigned int3_injected = svm->int3_injected;
4836 svm->int3_injected = 0;
4839 * If we've made progress since setting HF_IRET_MASK, we've
4840 * executed an IRET and can allow NMI injection.
4842 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4843 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4844 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4845 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4848 svm->vcpu.arch.nmi_injected = false;
4849 kvm_clear_exception_queue(&svm->vcpu);
4850 kvm_clear_interrupt_queue(&svm->vcpu);
4852 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4855 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4857 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4858 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4861 case SVM_EXITINTINFO_TYPE_NMI:
4862 svm->vcpu.arch.nmi_injected = true;
4864 case SVM_EXITINTINFO_TYPE_EXEPT:
4866 * In case of software exceptions, do not reinject the vector,
4867 * but re-execute the instruction instead. Rewind RIP first
4868 * if we emulated INT3 before.
4870 if (kvm_exception_is_soft(vector)) {
4871 if (vector == BP_VECTOR && int3_injected &&
4872 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4873 kvm_rip_write(&svm->vcpu,
4874 kvm_rip_read(&svm->vcpu) -
4878 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4879 u32 err = svm->vmcb->control.exit_int_info_err;
4880 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4883 kvm_requeue_exception(&svm->vcpu, vector);
4885 case SVM_EXITINTINFO_TYPE_INTR:
4886 kvm_queue_interrupt(&svm->vcpu, vector, false);
4893 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4895 struct vcpu_svm *svm = to_svm(vcpu);
4896 struct vmcb_control_area *control = &svm->vmcb->control;
4898 control->exit_int_info = control->event_inj;
4899 control->exit_int_info_err = control->event_inj_err;
4900 control->event_inj = 0;
4901 svm_complete_interrupts(svm);
4904 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4906 struct vcpu_svm *svm = to_svm(vcpu);
4908 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4909 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4910 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4913 * A vmexit emulation is required before the vcpu can be executed
4916 if (unlikely(svm->nested.exit_required))
4920 * Disable singlestep if we're injecting an interrupt/exception.
4921 * We don't want our modified rflags to be pushed on the stack where
4922 * we might not be able to easily reset them if we disabled NMI
4925 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4927 * Event injection happens before external interrupts cause a
4928 * vmexit and interrupts are disabled here, so smp_send_reschedule
4929 * is enough to force an immediate vmexit.
4931 disable_nmi_singlestep(svm);
4932 smp_send_reschedule(vcpu->cpu);
4937 sync_lapic_to_cr8(vcpu);
4939 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4946 "push %%" _ASM_BP "; \n\t"
4947 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4948 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4949 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4950 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4951 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4952 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4953 #ifdef CONFIG_X86_64
4954 "mov %c[r8](%[svm]), %%r8 \n\t"
4955 "mov %c[r9](%[svm]), %%r9 \n\t"
4956 "mov %c[r10](%[svm]), %%r10 \n\t"
4957 "mov %c[r11](%[svm]), %%r11 \n\t"
4958 "mov %c[r12](%[svm]), %%r12 \n\t"
4959 "mov %c[r13](%[svm]), %%r13 \n\t"
4960 "mov %c[r14](%[svm]), %%r14 \n\t"
4961 "mov %c[r15](%[svm]), %%r15 \n\t"
4964 /* Enter guest mode */
4965 "push %%" _ASM_AX " \n\t"
4966 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4967 __ex(SVM_VMLOAD) "\n\t"
4968 __ex(SVM_VMRUN) "\n\t"
4969 __ex(SVM_VMSAVE) "\n\t"
4970 "pop %%" _ASM_AX " \n\t"
4972 /* Save guest registers, load host registers */
4973 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4974 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4975 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4976 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4977 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4978 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4979 #ifdef CONFIG_X86_64
4980 "mov %%r8, %c[r8](%[svm]) \n\t"
4981 "mov %%r9, %c[r9](%[svm]) \n\t"
4982 "mov %%r10, %c[r10](%[svm]) \n\t"
4983 "mov %%r11, %c[r11](%[svm]) \n\t"
4984 "mov %%r12, %c[r12](%[svm]) \n\t"
4985 "mov %%r13, %c[r13](%[svm]) \n\t"
4986 "mov %%r14, %c[r14](%[svm]) \n\t"
4987 "mov %%r15, %c[r15](%[svm]) \n\t"
4992 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4993 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4994 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4995 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4996 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4997 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4998 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4999 #ifdef CONFIG_X86_64
5000 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5001 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5002 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5003 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5004 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5005 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5006 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5007 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5010 #ifdef CONFIG_X86_64
5011 , "rbx", "rcx", "rdx", "rsi", "rdi"
5012 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5014 , "ebx", "ecx", "edx", "esi", "edi"
5018 #ifdef CONFIG_X86_64
5019 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5021 loadsegment(fs, svm->host.fs);
5022 #ifndef CONFIG_X86_32_LAZY_GS
5023 loadsegment(gs, svm->host.gs);
5029 local_irq_disable();
5031 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5032 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5033 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5034 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5036 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5037 kvm_before_handle_nmi(&svm->vcpu);
5041 /* Any pending NMI will happen here */
5043 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5044 kvm_after_handle_nmi(&svm->vcpu);
5046 sync_cr8_to_lapic(vcpu);
5050 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5052 /* if exit due to PF check for async PF */
5053 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5054 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5057 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5058 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5062 * We need to handle MC intercepts here before the vcpu has a chance to
5063 * change the physical cpu
5065 if (unlikely(svm->vmcb->control.exit_code ==
5066 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5067 svm_handle_mce(svm);
5069 mark_all_clean(svm->vmcb);
5071 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5073 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5075 struct vcpu_svm *svm = to_svm(vcpu);
5077 svm->vmcb->save.cr3 = __sme_set(root);
5078 mark_dirty(svm->vmcb, VMCB_CR);
5079 svm_flush_tlb(vcpu);
5082 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5084 struct vcpu_svm *svm = to_svm(vcpu);
5086 svm->vmcb->control.nested_cr3 = __sme_set(root);
5087 mark_dirty(svm->vmcb, VMCB_NPT);
5089 /* Also sync guest cr3 here in case we live migrate */
5090 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5091 mark_dirty(svm->vmcb, VMCB_CR);
5093 svm_flush_tlb(vcpu);
5096 static int is_disabled(void)
5100 rdmsrl(MSR_VM_CR, vm_cr);
5101 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5108 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5111 * Patch in the VMMCALL instruction:
5113 hypercall[0] = 0x0f;
5114 hypercall[1] = 0x01;
5115 hypercall[2] = 0xd9;
5118 static void svm_check_processor_compat(void *rtn)
5123 static bool svm_cpu_has_accelerated_tpr(void)
5128 static bool svm_has_high_real_mode_segbase(void)
5133 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5138 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5140 struct vcpu_svm *svm = to_svm(vcpu);
5142 /* Update nrips enabled cache */
5143 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5145 if (!kvm_vcpu_apicv_active(vcpu))
5148 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5151 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5156 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5160 entry->ecx |= (1 << 2); /* Set SVM bit */
5163 entry->eax = 1; /* SVM revision 1 */
5164 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5165 ASID emulation to nested SVM */
5166 entry->ecx = 0; /* Reserved */
5167 entry->edx = 0; /* Per default do not support any
5168 additional features */
5170 /* Support next_rip if host supports it */
5171 if (boot_cpu_has(X86_FEATURE_NRIPS))
5172 entry->edx |= SVM_FEATURE_NRIP;
5174 /* Support NPT for the guest if enabled */
5176 entry->edx |= SVM_FEATURE_NPT;
5182 static int svm_get_lpage_level(void)
5184 return PT_PDPE_LEVEL;
5187 static bool svm_rdtscp_supported(void)
5189 return boot_cpu_has(X86_FEATURE_RDTSCP);
5192 static bool svm_invpcid_supported(void)
5197 static bool svm_mpx_supported(void)
5202 static bool svm_xsaves_supported(void)
5207 static bool svm_has_wbinvd_exit(void)
5212 #define PRE_EX(exit) { .exit_code = (exit), \
5213 .stage = X86_ICPT_PRE_EXCEPT, }
5214 #define POST_EX(exit) { .exit_code = (exit), \
5215 .stage = X86_ICPT_POST_EXCEPT, }
5216 #define POST_MEM(exit) { .exit_code = (exit), \
5217 .stage = X86_ICPT_POST_MEMACCESS, }
5219 static const struct __x86_intercept {
5221 enum x86_intercept_stage stage;
5222 } x86_intercept_map[] = {
5223 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5224 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5225 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5226 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5227 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5228 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5229 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5230 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5231 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5232 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5233 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5234 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5235 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5236 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5237 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5238 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5239 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5240 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5241 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5242 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5243 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5244 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5245 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5246 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5247 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5248 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5249 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5250 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5251 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5252 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5253 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5254 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5255 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5256 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5257 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5258 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5259 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5260 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5261 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5262 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5263 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5264 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5265 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5266 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5267 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5268 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5275 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5276 struct x86_instruction_info *info,
5277 enum x86_intercept_stage stage)
5279 struct vcpu_svm *svm = to_svm(vcpu);
5280 int vmexit, ret = X86EMUL_CONTINUE;
5281 struct __x86_intercept icpt_info;
5282 struct vmcb *vmcb = svm->vmcb;
5284 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5287 icpt_info = x86_intercept_map[info->intercept];
5289 if (stage != icpt_info.stage)
5292 switch (icpt_info.exit_code) {
5293 case SVM_EXIT_READ_CR0:
5294 if (info->intercept == x86_intercept_cr_read)
5295 icpt_info.exit_code += info->modrm_reg;
5297 case SVM_EXIT_WRITE_CR0: {
5298 unsigned long cr0, val;
5301 if (info->intercept == x86_intercept_cr_write)
5302 icpt_info.exit_code += info->modrm_reg;
5304 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5305 info->intercept == x86_intercept_clts)
5308 intercept = svm->nested.intercept;
5310 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5313 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5314 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5316 if (info->intercept == x86_intercept_lmsw) {
5319 /* lmsw can't clear PE - catch this here */
5320 if (cr0 & X86_CR0_PE)
5325 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5329 case SVM_EXIT_READ_DR0:
5330 case SVM_EXIT_WRITE_DR0:
5331 icpt_info.exit_code += info->modrm_reg;
5334 if (info->intercept == x86_intercept_wrmsr)
5335 vmcb->control.exit_info_1 = 1;
5337 vmcb->control.exit_info_1 = 0;
5339 case SVM_EXIT_PAUSE:
5341 * We get this for NOP only, but pause
5342 * is rep not, check this here
5344 if (info->rep_prefix != REPE_PREFIX)
5347 case SVM_EXIT_IOIO: {
5351 if (info->intercept == x86_intercept_in ||
5352 info->intercept == x86_intercept_ins) {
5353 exit_info = ((info->src_val & 0xffff) << 16) |
5355 bytes = info->dst_bytes;
5357 exit_info = (info->dst_val & 0xffff) << 16;
5358 bytes = info->src_bytes;
5361 if (info->intercept == x86_intercept_outs ||
5362 info->intercept == x86_intercept_ins)
5363 exit_info |= SVM_IOIO_STR_MASK;
5365 if (info->rep_prefix)
5366 exit_info |= SVM_IOIO_REP_MASK;
5368 bytes = min(bytes, 4u);
5370 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5372 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5374 vmcb->control.exit_info_1 = exit_info;
5375 vmcb->control.exit_info_2 = info->next_rip;
5383 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5384 if (static_cpu_has(X86_FEATURE_NRIPS))
5385 vmcb->control.next_rip = info->next_rip;
5386 vmcb->control.exit_code = icpt_info.exit_code;
5387 vmexit = nested_svm_exit_handled(svm);
5389 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5396 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5400 * We must have an instruction with interrupts enabled, so
5401 * the timer interrupt isn't delayed by the interrupt shadow.
5404 local_irq_disable();
5407 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5411 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5413 if (avic_handle_apic_id_update(vcpu) != 0)
5415 if (avic_handle_dfr_update(vcpu) != 0)
5417 avic_handle_ldr_update(vcpu);
5420 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5422 /* [63:9] are reserved. */
5423 vcpu->arch.mcg_cap &= 0x1ff;
5426 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
5428 struct vcpu_svm *svm = to_svm(vcpu);
5430 /* Per APM Vol.2 15.22.2 "Response to SMI" */
5434 if (is_guest_mode(&svm->vcpu) &&
5435 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
5436 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
5437 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
5438 svm->nested.exit_required = true;
5445 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
5447 struct vcpu_svm *svm = to_svm(vcpu);
5450 if (is_guest_mode(vcpu)) {
5451 /* FED8h - SVM Guest */
5452 put_smstate(u64, smstate, 0x7ed8, 1);
5453 /* FEE0h - SVM Guest VMCB Physical Address */
5454 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
5456 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5457 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5458 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5460 ret = nested_svm_vmexit(svm);
5467 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
5469 struct vcpu_svm *svm = to_svm(vcpu);
5470 struct vmcb *nested_vmcb;
5478 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
5479 sizeof(svm_state_save));
5483 if (svm_state_save.guest) {
5484 vcpu->arch.hflags &= ~HF_SMM_MASK;
5485 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
5487 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
5490 vcpu->arch.hflags |= HF_SMM_MASK;
5495 static int enable_smi_window(struct kvm_vcpu *vcpu)
5497 struct vcpu_svm *svm = to_svm(vcpu);
5499 if (!gif_set(svm)) {
5500 if (vgif_enabled(svm))
5501 set_intercept(svm, INTERCEPT_STGI);
5502 /* STGI will cause a vm exit */
5508 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5509 .cpu_has_kvm_support = has_svm,
5510 .disabled_by_bios = is_disabled,
5511 .hardware_setup = svm_hardware_setup,
5512 .hardware_unsetup = svm_hardware_unsetup,
5513 .check_processor_compatibility = svm_check_processor_compat,
5514 .hardware_enable = svm_hardware_enable,
5515 .hardware_disable = svm_hardware_disable,
5516 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5517 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5519 .vcpu_create = svm_create_vcpu,
5520 .vcpu_free = svm_free_vcpu,
5521 .vcpu_reset = svm_vcpu_reset,
5523 .vm_init = avic_vm_init,
5524 .vm_destroy = avic_vm_destroy,
5526 .prepare_guest_switch = svm_prepare_guest_switch,
5527 .vcpu_load = svm_vcpu_load,
5528 .vcpu_put = svm_vcpu_put,
5529 .vcpu_blocking = svm_vcpu_blocking,
5530 .vcpu_unblocking = svm_vcpu_unblocking,
5532 .update_bp_intercept = update_bp_intercept,
5533 .get_msr = svm_get_msr,
5534 .set_msr = svm_set_msr,
5535 .get_segment_base = svm_get_segment_base,
5536 .get_segment = svm_get_segment,
5537 .set_segment = svm_set_segment,
5538 .get_cpl = svm_get_cpl,
5539 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5540 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5541 .decache_cr3 = svm_decache_cr3,
5542 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5543 .set_cr0 = svm_set_cr0,
5544 .set_cr3 = svm_set_cr3,
5545 .set_cr4 = svm_set_cr4,
5546 .set_efer = svm_set_efer,
5547 .get_idt = svm_get_idt,
5548 .set_idt = svm_set_idt,
5549 .get_gdt = svm_get_gdt,
5550 .set_gdt = svm_set_gdt,
5551 .get_dr6 = svm_get_dr6,
5552 .set_dr6 = svm_set_dr6,
5553 .set_dr7 = svm_set_dr7,
5554 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5555 .cache_reg = svm_cache_reg,
5556 .get_rflags = svm_get_rflags,
5557 .set_rflags = svm_set_rflags,
5559 .tlb_flush = svm_flush_tlb,
5561 .run = svm_vcpu_run,
5562 .handle_exit = handle_exit,
5563 .skip_emulated_instruction = skip_emulated_instruction,
5564 .set_interrupt_shadow = svm_set_interrupt_shadow,
5565 .get_interrupt_shadow = svm_get_interrupt_shadow,
5566 .patch_hypercall = svm_patch_hypercall,
5567 .set_irq = svm_set_irq,
5568 .set_nmi = svm_inject_nmi,
5569 .queue_exception = svm_queue_exception,
5570 .cancel_injection = svm_cancel_injection,
5571 .interrupt_allowed = svm_interrupt_allowed,
5572 .nmi_allowed = svm_nmi_allowed,
5573 .get_nmi_mask = svm_get_nmi_mask,
5574 .set_nmi_mask = svm_set_nmi_mask,
5575 .enable_nmi_window = enable_nmi_window,
5576 .enable_irq_window = enable_irq_window,
5577 .update_cr8_intercept = update_cr8_intercept,
5578 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5579 .get_enable_apicv = svm_get_enable_apicv,
5580 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5581 .load_eoi_exitmap = svm_load_eoi_exitmap,
5582 .hwapic_irr_update = svm_hwapic_irr_update,
5583 .hwapic_isr_update = svm_hwapic_isr_update,
5584 .apicv_post_state_restore = avic_post_state_restore,
5586 .set_tss_addr = svm_set_tss_addr,
5587 .get_tdp_level = get_npt_level,
5588 .get_mt_mask = svm_get_mt_mask,
5590 .get_exit_info = svm_get_exit_info,
5592 .get_lpage_level = svm_get_lpage_level,
5594 .cpuid_update = svm_cpuid_update,
5596 .rdtscp_supported = svm_rdtscp_supported,
5597 .invpcid_supported = svm_invpcid_supported,
5598 .mpx_supported = svm_mpx_supported,
5599 .xsaves_supported = svm_xsaves_supported,
5601 .set_supported_cpuid = svm_set_supported_cpuid,
5603 .has_wbinvd_exit = svm_has_wbinvd_exit,
5605 .write_tsc_offset = svm_write_tsc_offset,
5607 .set_tdp_cr3 = set_tdp_cr3,
5609 .check_intercept = svm_check_intercept,
5610 .handle_external_intr = svm_handle_external_intr,
5612 .sched_in = svm_sched_in,
5614 .pmu_ops = &amd_pmu_ops,
5615 .deliver_posted_interrupt = svm_deliver_avic_intr,
5616 .update_pi_irte = svm_update_pi_irte,
5617 .setup_mce = svm_setup_mce,
5619 .smi_allowed = svm_smi_allowed,
5620 .pre_enter_smm = svm_pre_enter_smm,
5621 .pre_leave_smm = svm_pre_leave_smm,
5622 .enable_smi_window = enable_smi_window,
5625 static int __init svm_init(void)
5627 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5628 __alignof__(struct vcpu_svm), THIS_MODULE);
5631 static void __exit svm_exit(void)
5636 module_init(svm_init)
5637 module_exit(svm_exit)