2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
72 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
88 struct dentry *kvm_debugfs_dir;
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
108 static bool largepages_enabled = true;
110 bool kvm_is_mmio_pfn(pfn_t pfn)
113 return PageReserved(pfn_to_page(pfn));
119 * Switches to specified vcpu, until a matching vcpu_put()
121 int vcpu_load(struct kvm_vcpu *vcpu)
125 if (mutex_lock_killable(&vcpu->mutex))
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
137 preempt_notifier_register(&vcpu->preempt_notifier);
138 kvm_arch_vcpu_load(vcpu, cpu);
143 void vcpu_put(struct kvm_vcpu *vcpu)
146 kvm_arch_vcpu_put(vcpu);
147 preempt_notifier_unregister(&vcpu->preempt_notifier);
149 mutex_unlock(&vcpu->mutex);
152 static void ack_flush(void *_completed)
156 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
161 struct kvm_vcpu *vcpu;
163 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
166 kvm_for_each_vcpu(i, vcpu, kvm) {
167 kvm_make_request(req, vcpu);
170 /* Set ->requests bit before we read ->mode */
173 if (cpus != NULL && cpu != -1 && cpu != me &&
174 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175 cpumask_set_cpu(cpu, cpus);
177 if (unlikely(cpus == NULL))
178 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179 else if (!cpumask_empty(cpus))
180 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 free_cpumask_var(cpus);
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
190 long dirty_count = kvm->tlbs_dirty;
193 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194 ++kvm->stat.remote_tlb_flush;
195 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
199 void kvm_reload_remote_mmus(struct kvm *kvm)
201 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
211 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
219 mutex_init(&vcpu->mutex);
224 init_waitqueue_head(&vcpu->wq);
225 kvm_async_pf_vcpu_init(vcpu);
227 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
232 vcpu->run = page_address(page);
234 kvm_vcpu_set_in_spin_loop(vcpu, false);
235 kvm_vcpu_set_dy_eligible(vcpu, false);
236 vcpu->preempted = false;
238 r = kvm_arch_vcpu_init(vcpu);
244 free_page((unsigned long)vcpu->run);
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 return container_of(mn, struct kvm, mmu_notifier);
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
296 kvm_flush_remote_tlbs(kvm);
298 spin_unlock(&kvm->mmu_lock);
300 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
302 srcu_read_unlock(&kvm->srcu, idx);
305 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
306 struct mm_struct *mm,
307 unsigned long address,
310 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 idx = srcu_read_lock(&kvm->srcu);
314 spin_lock(&kvm->mmu_lock);
315 kvm->mmu_notifier_seq++;
316 kvm_set_spte_hva(kvm, address, pte);
317 spin_unlock(&kvm->mmu_lock);
318 srcu_read_unlock(&kvm->srcu, idx);
321 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
322 struct mm_struct *mm,
326 struct kvm *kvm = mmu_notifier_to_kvm(mn);
327 int need_tlb_flush = 0, idx;
329 idx = srcu_read_lock(&kvm->srcu);
330 spin_lock(&kvm->mmu_lock);
332 * The count increase must become visible at unlock time as no
333 * spte can be established without taking the mmu_lock and
334 * count is also read inside the mmu_lock critical section.
336 kvm->mmu_notifier_count++;
337 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
338 need_tlb_flush |= kvm->tlbs_dirty;
339 /* we've to flush the tlb before the pages can be freed */
341 kvm_flush_remote_tlbs(kvm);
343 spin_unlock(&kvm->mmu_lock);
344 srcu_read_unlock(&kvm->srcu, idx);
347 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
348 struct mm_struct *mm,
352 struct kvm *kvm = mmu_notifier_to_kvm(mn);
354 spin_lock(&kvm->mmu_lock);
356 * This sequence increase will notify the kvm page fault that
357 * the page that is going to be mapped in the spte could have
360 kvm->mmu_notifier_seq++;
363 * The above sequence increase must be visible before the
364 * below count decrease, which is ensured by the smp_wmb above
365 * in conjunction with the smp_rmb in mmu_notifier_retry().
367 kvm->mmu_notifier_count--;
368 spin_unlock(&kvm->mmu_lock);
370 BUG_ON(kvm->mmu_notifier_count < 0);
373 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
374 struct mm_struct *mm,
378 struct kvm *kvm = mmu_notifier_to_kvm(mn);
381 idx = srcu_read_lock(&kvm->srcu);
382 spin_lock(&kvm->mmu_lock);
384 young = kvm_age_hva(kvm, start, end);
386 kvm_flush_remote_tlbs(kvm);
388 spin_unlock(&kvm->mmu_lock);
389 srcu_read_unlock(&kvm->srcu, idx);
394 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
395 struct mm_struct *mm,
396 unsigned long address)
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403 young = kvm_test_age_hva(kvm, address);
404 spin_unlock(&kvm->mmu_lock);
405 srcu_read_unlock(&kvm->srcu, idx);
410 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
411 struct mm_struct *mm)
413 struct kvm *kvm = mmu_notifier_to_kvm(mn);
416 idx = srcu_read_lock(&kvm->srcu);
417 kvm_arch_flush_shadow_all(kvm);
418 srcu_read_unlock(&kvm->srcu, idx);
421 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
422 .invalidate_page = kvm_mmu_notifier_invalidate_page,
423 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
424 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
425 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
426 .test_young = kvm_mmu_notifier_test_young,
427 .change_pte = kvm_mmu_notifier_change_pte,
428 .release = kvm_mmu_notifier_release,
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
434 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
437 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
444 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446 static void kvm_init_memslots_id(struct kvm *kvm)
449 struct kvm_memslots *slots = kvm->memslots;
451 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
452 slots->id_to_index[i] = slots->memslots[i].id = i;
455 static struct kvm *kvm_create_vm(unsigned long type)
458 struct kvm *kvm = kvm_arch_alloc_vm();
461 return ERR_PTR(-ENOMEM);
463 r = kvm_arch_init_vm(kvm, type);
465 goto out_err_no_disable;
467 r = hardware_enable_all();
469 goto out_err_no_disable;
471 #ifdef CONFIG_HAVE_KVM_IRQCHIP
472 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474 #ifdef CONFIG_HAVE_KVM_IRQFD
475 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
478 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
481 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
483 goto out_err_no_srcu;
486 * Init kvm generation close to the maximum to easily test the
487 * code of handling generation number wrap-around.
489 kvm->memslots->generation = -150;
491 kvm_init_memslots_id(kvm);
492 if (init_srcu_struct(&kvm->srcu))
493 goto out_err_no_srcu;
494 if (init_srcu_struct(&kvm->irq_srcu))
495 goto out_err_no_irq_srcu;
496 for (i = 0; i < KVM_NR_BUSES; i++) {
497 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
503 spin_lock_init(&kvm->mmu_lock);
504 kvm->mm = current->mm;
505 atomic_inc(&kvm->mm->mm_count);
506 kvm_eventfd_init(kvm);
507 mutex_init(&kvm->lock);
508 mutex_init(&kvm->irq_lock);
509 mutex_init(&kvm->slots_lock);
510 atomic_set(&kvm->users_count, 1);
511 INIT_LIST_HEAD(&kvm->devices);
513 r = kvm_init_mmu_notifier(kvm);
517 spin_lock(&kvm_lock);
518 list_add(&kvm->vm_list, &vm_list);
519 spin_unlock(&kvm_lock);
524 cleanup_srcu_struct(&kvm->irq_srcu);
526 cleanup_srcu_struct(&kvm->srcu);
528 hardware_disable_all();
530 for (i = 0; i < KVM_NR_BUSES; i++)
531 kfree(kvm->buses[i]);
532 kfree(kvm->memslots);
533 kvm_arch_free_vm(kvm);
538 * Avoid using vmalloc for a small buffer.
539 * Should not be used when the size is statically known.
541 void *kvm_kvzalloc(unsigned long size)
543 if (size > PAGE_SIZE)
544 return vzalloc(size);
546 return kzalloc(size, GFP_KERNEL);
549 void kvm_kvfree(const void *addr)
551 if (is_vmalloc_addr(addr))
557 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
559 if (!memslot->dirty_bitmap)
562 kvm_kvfree(memslot->dirty_bitmap);
563 memslot->dirty_bitmap = NULL;
567 * Free any memory in @free but not in @dont.
569 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
570 struct kvm_memory_slot *dont)
572 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
573 kvm_destroy_dirty_bitmap(free);
575 kvm_arch_free_memslot(kvm, free, dont);
580 static void kvm_free_physmem(struct kvm *kvm)
582 struct kvm_memslots *slots = kvm->memslots;
583 struct kvm_memory_slot *memslot;
585 kvm_for_each_memslot(memslot, slots)
586 kvm_free_physmem_slot(kvm, memslot, NULL);
588 kfree(kvm->memslots);
591 static void kvm_destroy_devices(struct kvm *kvm)
593 struct list_head *node, *tmp;
595 list_for_each_safe(node, tmp, &kvm->devices) {
596 struct kvm_device *dev =
597 list_entry(node, struct kvm_device, vm_node);
600 dev->ops->destroy(dev);
604 static void kvm_destroy_vm(struct kvm *kvm)
607 struct mm_struct *mm = kvm->mm;
609 kvm_arch_sync_events(kvm);
610 spin_lock(&kvm_lock);
611 list_del(&kvm->vm_list);
612 spin_unlock(&kvm_lock);
613 kvm_free_irq_routing(kvm);
614 for (i = 0; i < KVM_NR_BUSES; i++)
615 kvm_io_bus_destroy(kvm->buses[i]);
616 kvm_coalesced_mmio_free(kvm);
617 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
618 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
620 kvm_arch_flush_shadow_all(kvm);
622 kvm_arch_destroy_vm(kvm);
623 kvm_destroy_devices(kvm);
624 kvm_free_physmem(kvm);
625 cleanup_srcu_struct(&kvm->irq_srcu);
626 cleanup_srcu_struct(&kvm->srcu);
627 kvm_arch_free_vm(kvm);
628 hardware_disable_all();
632 void kvm_get_kvm(struct kvm *kvm)
634 atomic_inc(&kvm->users_count);
636 EXPORT_SYMBOL_GPL(kvm_get_kvm);
638 void kvm_put_kvm(struct kvm *kvm)
640 if (atomic_dec_and_test(&kvm->users_count))
643 EXPORT_SYMBOL_GPL(kvm_put_kvm);
646 static int kvm_vm_release(struct inode *inode, struct file *filp)
648 struct kvm *kvm = filp->private_data;
650 kvm_irqfd_release(kvm);
657 * Allocation size is twice as large as the actual dirty bitmap size.
658 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
660 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
662 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
664 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
665 if (!memslot->dirty_bitmap)
671 static int cmp_memslot(const void *slot1, const void *slot2)
673 struct kvm_memory_slot *s1, *s2;
675 s1 = (struct kvm_memory_slot *)slot1;
676 s2 = (struct kvm_memory_slot *)slot2;
678 if (s1->npages < s2->npages)
680 if (s1->npages > s2->npages)
687 * Sort the memslots base on its size, so the larger slots
688 * will get better fit.
690 static void sort_memslots(struct kvm_memslots *slots)
694 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
695 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
697 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
698 slots->id_to_index[slots->memslots[i].id] = i;
701 static void update_memslots(struct kvm_memslots *slots,
702 struct kvm_memory_slot *new)
706 struct kvm_memory_slot *old = id_to_memslot(slots, id);
707 unsigned long npages = old->npages;
710 if (new->npages != npages)
711 sort_memslots(slots);
715 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
717 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
719 #ifdef __KVM_HAVE_READONLY_MEM
720 valid_flags |= KVM_MEM_READONLY;
723 if (mem->flags & ~valid_flags)
729 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730 struct kvm_memslots *slots, struct kvm_memory_slot *new)
732 struct kvm_memslots *old_memslots = kvm->memslots;
735 * Set the low bit in the generation, which disables SPTE caching
736 * until the end of synchronize_srcu_expedited.
738 WARN_ON(old_memslots->generation & 1);
739 slots->generation = old_memslots->generation + 1;
741 update_memslots(slots, new);
742 rcu_assign_pointer(kvm->memslots, slots);
743 synchronize_srcu_expedited(&kvm->srcu);
746 * Increment the new memslot generation a second time. This prevents
747 * vm exits that race with memslot updates from caching a memslot
748 * generation that will (potentially) be valid forever.
752 kvm_arch_memslots_updated(kvm);
758 * Allocate some memory and give it an address in the guest physical address
761 * Discontiguous memory is allowed, mostly for framebuffers.
763 * Must be called holding mmap_sem for write.
765 int __kvm_set_memory_region(struct kvm *kvm,
766 struct kvm_userspace_memory_region *mem)
770 unsigned long npages;
771 struct kvm_memory_slot *slot;
772 struct kvm_memory_slot old, new;
773 struct kvm_memslots *slots = NULL, *old_memslots;
774 enum kvm_mr_change change;
776 r = check_memory_region_flags(mem);
781 /* General sanity checks */
782 if (mem->memory_size & (PAGE_SIZE - 1))
784 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
786 /* We can read the guest memory with __xxx_user() later on. */
787 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
788 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
789 !access_ok(VERIFY_WRITE,
790 (void __user *)(unsigned long)mem->userspace_addr,
793 if (mem->slot >= KVM_MEM_SLOTS_NUM)
795 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
798 slot = id_to_memslot(kvm->memslots, mem->slot);
799 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
800 npages = mem->memory_size >> PAGE_SHIFT;
802 if (npages > KVM_MEM_MAX_NR_PAGES)
806 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
811 new.base_gfn = base_gfn;
813 new.flags = mem->flags;
817 change = KVM_MR_CREATE;
818 else { /* Modify an existing slot. */
819 if ((mem->userspace_addr != old.userspace_addr) ||
820 (npages != old.npages) ||
821 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
824 if (base_gfn != old.base_gfn)
825 change = KVM_MR_MOVE;
826 else if (new.flags != old.flags)
827 change = KVM_MR_FLAGS_ONLY;
828 else { /* Nothing to change. */
833 } else if (old.npages) {
834 change = KVM_MR_DELETE;
835 } else /* Modify a non-existent slot: disallowed. */
838 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
839 /* Check for overlaps */
841 kvm_for_each_memslot(slot, kvm->memslots) {
842 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
843 (slot->id == mem->slot))
845 if (!((base_gfn + npages <= slot->base_gfn) ||
846 (base_gfn >= slot->base_gfn + slot->npages)))
851 /* Free page dirty bitmap if unneeded */
852 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
853 new.dirty_bitmap = NULL;
856 if (change == KVM_MR_CREATE) {
857 new.userspace_addr = mem->userspace_addr;
859 if (kvm_arch_create_memslot(kvm, &new, npages))
863 /* Allocate page dirty bitmap if needed */
864 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
865 if (kvm_create_dirty_bitmap(&new) < 0)
869 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
870 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
874 slot = id_to_memslot(slots, mem->slot);
875 slot->flags |= KVM_MEMSLOT_INVALID;
877 old_memslots = install_new_memslots(kvm, slots, NULL);
879 /* slot was deleted or moved, clear iommu mapping */
880 kvm_iommu_unmap_pages(kvm, &old);
881 /* From this point no new shadow pages pointing to a deleted,
882 * or moved, memslot will be created.
884 * validation of sp->gfn happens in:
885 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886 * - kvm_is_visible_gfn (mmu_check_roots)
888 kvm_arch_flush_shadow_memslot(kvm, slot);
889 slots = old_memslots;
892 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
898 * We can re-use the old_memslots from above, the only difference
899 * from the currently installed memslots is the invalid flag. This
900 * will get overwritten by update_memslots anyway.
903 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
909 /* actual memory is freed via old in kvm_free_physmem_slot below */
910 if (change == KVM_MR_DELETE) {
911 new.dirty_bitmap = NULL;
912 memset(&new.arch, 0, sizeof(new.arch));
915 old_memslots = install_new_memslots(kvm, slots, &new);
917 kvm_arch_commit_memory_region(kvm, mem, &old, change);
919 kvm_free_physmem_slot(kvm, &old, &new);
923 * IOMMU mapping: New slots need to be mapped. Old slots need to be
924 * un-mapped and re-mapped if their base changes. Since base change
925 * unmapping is handled above with slot deletion, mapping alone is
926 * needed here. Anything else the iommu might care about for existing
927 * slots (size changes, userspace addr changes and read-only flag
928 * changes) is disallowed above, so any other attribute changes getting
929 * here can be skipped.
931 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
932 r = kvm_iommu_map_pages(kvm, &new);
941 kvm_free_physmem_slot(kvm, &new, &old);
945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
947 int kvm_set_memory_region(struct kvm *kvm,
948 struct kvm_userspace_memory_region *mem)
952 mutex_lock(&kvm->slots_lock);
953 r = __kvm_set_memory_region(kvm, mem);
954 mutex_unlock(&kvm->slots_lock);
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960 struct kvm_userspace_memory_region *mem)
962 if (mem->slot >= KVM_USER_MEM_SLOTS)
964 return kvm_set_memory_region(kvm, mem);
967 int kvm_get_dirty_log(struct kvm *kvm,
968 struct kvm_dirty_log *log, int *is_dirty)
970 struct kvm_memory_slot *memslot;
973 unsigned long any = 0;
976 if (log->slot >= KVM_USER_MEM_SLOTS)
979 memslot = id_to_memslot(kvm->memslots, log->slot);
981 if (!memslot->dirty_bitmap)
984 n = kvm_dirty_bitmap_bytes(memslot);
986 for (i = 0; !any && i < n/sizeof(long); ++i)
987 any = memslot->dirty_bitmap[i];
990 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1002 bool kvm_largepages_enabled(void)
1004 return largepages_enabled;
1007 void kvm_disable_largepages(void)
1009 largepages_enabled = false;
1011 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1013 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1015 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1017 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1019 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1021 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1023 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1024 memslot->flags & KVM_MEMSLOT_INVALID)
1029 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1031 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1033 struct vm_area_struct *vma;
1034 unsigned long addr, size;
1038 addr = gfn_to_hva(kvm, gfn);
1039 if (kvm_is_error_hva(addr))
1042 down_read(¤t->mm->mmap_sem);
1043 vma = find_vma(current->mm, addr);
1047 size = vma_kernel_pagesize(vma);
1050 up_read(¤t->mm->mmap_sem);
1055 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1057 return slot->flags & KVM_MEM_READONLY;
1060 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1061 gfn_t *nr_pages, bool write)
1063 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1064 return KVM_HVA_ERR_BAD;
1066 if (memslot_is_readonly(slot) && write)
1067 return KVM_HVA_ERR_RO_BAD;
1070 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1072 return __gfn_to_hva_memslot(slot, gfn);
1075 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1078 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1081 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1084 return gfn_to_hva_many(slot, gfn, NULL);
1086 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1088 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1090 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1092 EXPORT_SYMBOL_GPL(gfn_to_hva);
1095 * If writable is set to false, the hva returned by this function is only
1096 * allowed to be read.
1098 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1099 gfn_t gfn, bool *writable)
1101 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1103 if (!kvm_is_error_hva(hva) && writable)
1104 *writable = !memslot_is_readonly(slot);
1109 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1111 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1113 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1116 static int kvm_read_hva(void *data, void __user *hva, int len)
1118 return __copy_from_user(data, hva, len);
1121 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1123 return __copy_from_user_inatomic(data, hva, len);
1126 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1127 unsigned long start, int write, struct page **page)
1129 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1132 flags |= FOLL_WRITE;
1134 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1137 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1138 unsigned long addr, bool write_fault,
1139 struct page **pagep)
1143 int flags = FOLL_TOUCH | FOLL_HWPOISON |
1144 (pagep ? FOLL_GET : 0) |
1145 (write_fault ? FOLL_WRITE : 0);
1148 * If retrying the fault, we get here *not* having allowed the filemap
1149 * to wait on the page lock. We should now allow waiting on the IO with
1150 * the mmap semaphore released.
1152 down_read(&mm->mmap_sem);
1153 npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1162 * The previous call has now waited on the IO. Now we can
1163 * retry and complete. Pass TRIED to ensure we do not re
1164 * schedule async IO (see e.g. filemap_fault).
1166 down_read(&mm->mmap_sem);
1167 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1170 up_read(&mm->mmap_sem);
1174 static inline int check_user_page_hwpoison(unsigned long addr)
1176 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1178 rc = __get_user_pages(current, current->mm, addr, 1,
1179 flags, NULL, NULL, NULL);
1180 return rc == -EHWPOISON;
1184 * The atomic path to get the writable pfn which will be stored in @pfn,
1185 * true indicates success, otherwise false is returned.
1187 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1188 bool write_fault, bool *writable, pfn_t *pfn)
1190 struct page *page[1];
1193 if (!(async || atomic))
1197 * Fast pin a writable pfn only if it is a write fault request
1198 * or the caller allows to map a writable pfn for a read fault
1201 if (!(write_fault || writable))
1204 npages = __get_user_pages_fast(addr, 1, 1, page);
1206 *pfn = page_to_pfn(page[0]);
1217 * The slow path to get the pfn of the specified host virtual address,
1218 * 1 indicates success, -errno is returned if error is detected.
1220 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1221 bool *writable, pfn_t *pfn)
1223 struct page *page[1];
1229 *writable = write_fault;
1232 down_read(¤t->mm->mmap_sem);
1233 npages = get_user_page_nowait(current, current->mm,
1234 addr, write_fault, page);
1235 up_read(¤t->mm->mmap_sem);
1238 * By now we have tried gup_fast, and possibly async_pf, and we
1239 * are certainly not atomic. Time to retry the gup, allowing
1240 * mmap semaphore to be relinquished in the case of IO.
1242 npages = kvm_get_user_page_io(current, current->mm, addr,
1248 /* map read fault as writable if possible */
1249 if (unlikely(!write_fault) && writable) {
1250 struct page *wpage[1];
1252 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1261 *pfn = page_to_pfn(page[0]);
1265 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1267 if (unlikely(!(vma->vm_flags & VM_READ)))
1270 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1277 * Pin guest page in memory and return its pfn.
1278 * @addr: host virtual address which maps memory to the guest
1279 * @atomic: whether this function can sleep
1280 * @async: whether this function need to wait IO complete if the
1281 * host page is not in the memory
1282 * @write_fault: whether we should get a writable host page
1283 * @writable: whether it allows to map a writable host page for !@write_fault
1285 * The function will map a writable host page for these two cases:
1286 * 1): @write_fault = true
1287 * 2): @write_fault = false && @writable, @writable will tell the caller
1288 * whether the mapping is writable.
1290 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1291 bool write_fault, bool *writable)
1293 struct vm_area_struct *vma;
1297 /* we can do it either atomically or asynchronously, not both */
1298 BUG_ON(atomic && async);
1300 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1304 return KVM_PFN_ERR_FAULT;
1306 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1310 down_read(¤t->mm->mmap_sem);
1311 if (npages == -EHWPOISON ||
1312 (!async && check_user_page_hwpoison(addr))) {
1313 pfn = KVM_PFN_ERR_HWPOISON;
1317 vma = find_vma_intersection(current->mm, addr, addr + 1);
1320 pfn = KVM_PFN_ERR_FAULT;
1321 else if ((vma->vm_flags & VM_PFNMAP)) {
1322 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1324 BUG_ON(!kvm_is_mmio_pfn(pfn));
1326 if (async && vma_is_valid(vma, write_fault))
1328 pfn = KVM_PFN_ERR_FAULT;
1331 up_read(¤t->mm->mmap_sem);
1336 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1337 bool *async, bool write_fault, bool *writable)
1339 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1341 if (addr == KVM_HVA_ERR_RO_BAD)
1342 return KVM_PFN_ERR_RO_FAULT;
1344 if (kvm_is_error_hva(addr))
1345 return KVM_PFN_NOSLOT;
1347 /* Do not map writable pfn in the readonly memslot. */
1348 if (writable && memslot_is_readonly(slot)) {
1353 return hva_to_pfn(addr, atomic, async, write_fault,
1357 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1358 bool write_fault, bool *writable)
1360 struct kvm_memory_slot *slot;
1365 slot = gfn_to_memslot(kvm, gfn);
1367 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1371 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1373 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1375 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1377 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1378 bool write_fault, bool *writable)
1380 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1382 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1384 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1386 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1388 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1390 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1393 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1395 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1397 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1399 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1402 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1404 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1406 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1408 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1414 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1415 if (kvm_is_error_hva(addr))
1418 if (entry < nr_pages)
1421 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1423 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1425 static struct page *kvm_pfn_to_page(pfn_t pfn)
1427 if (is_error_noslot_pfn(pfn))
1428 return KVM_ERR_PTR_BAD_PAGE;
1430 if (kvm_is_mmio_pfn(pfn)) {
1432 return KVM_ERR_PTR_BAD_PAGE;
1435 return pfn_to_page(pfn);
1438 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1442 pfn = gfn_to_pfn(kvm, gfn);
1444 return kvm_pfn_to_page(pfn);
1447 EXPORT_SYMBOL_GPL(gfn_to_page);
1449 void kvm_release_page_clean(struct page *page)
1451 WARN_ON(is_error_page(page));
1453 kvm_release_pfn_clean(page_to_pfn(page));
1455 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1457 void kvm_release_pfn_clean(pfn_t pfn)
1459 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1460 put_page(pfn_to_page(pfn));
1462 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1464 void kvm_release_page_dirty(struct page *page)
1466 WARN_ON(is_error_page(page));
1468 kvm_release_pfn_dirty(page_to_pfn(page));
1470 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1472 static void kvm_release_pfn_dirty(pfn_t pfn)
1474 kvm_set_pfn_dirty(pfn);
1475 kvm_release_pfn_clean(pfn);
1478 void kvm_set_pfn_dirty(pfn_t pfn)
1480 if (!kvm_is_mmio_pfn(pfn)) {
1481 struct page *page = pfn_to_page(pfn);
1482 if (!PageReserved(page))
1486 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1488 void kvm_set_pfn_accessed(pfn_t pfn)
1490 if (!kvm_is_mmio_pfn(pfn))
1491 mark_page_accessed(pfn_to_page(pfn));
1493 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1495 void kvm_get_pfn(pfn_t pfn)
1497 if (!kvm_is_mmio_pfn(pfn))
1498 get_page(pfn_to_page(pfn));
1500 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1502 static int next_segment(unsigned long len, int offset)
1504 if (len > PAGE_SIZE - offset)
1505 return PAGE_SIZE - offset;
1510 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1516 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1517 if (kvm_is_error_hva(addr))
1519 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1524 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1526 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1528 gfn_t gfn = gpa >> PAGE_SHIFT;
1530 int offset = offset_in_page(gpa);
1533 while ((seg = next_segment(len, offset)) != 0) {
1534 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1544 EXPORT_SYMBOL_GPL(kvm_read_guest);
1546 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1551 gfn_t gfn = gpa >> PAGE_SHIFT;
1552 int offset = offset_in_page(gpa);
1554 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1555 if (kvm_is_error_hva(addr))
1557 pagefault_disable();
1558 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1564 EXPORT_SYMBOL(kvm_read_guest_atomic);
1566 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1567 int offset, int len)
1572 addr = gfn_to_hva(kvm, gfn);
1573 if (kvm_is_error_hva(addr))
1575 r = __copy_to_user((void __user *)addr + offset, data, len);
1578 mark_page_dirty(kvm, gfn);
1581 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1583 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1586 gfn_t gfn = gpa >> PAGE_SHIFT;
1588 int offset = offset_in_page(gpa);
1591 while ((seg = next_segment(len, offset)) != 0) {
1592 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1603 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1604 gpa_t gpa, unsigned long len)
1606 struct kvm_memslots *slots = kvm_memslots(kvm);
1607 int offset = offset_in_page(gpa);
1608 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1609 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1610 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1611 gfn_t nr_pages_avail;
1614 ghc->generation = slots->generation;
1616 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1617 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1618 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1622 * If the requested region crosses two memslots, we still
1623 * verify that the entire region is valid here.
1625 while (start_gfn <= end_gfn) {
1626 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1627 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1629 if (kvm_is_error_hva(ghc->hva))
1631 start_gfn += nr_pages_avail;
1633 /* Use the slow path for cross page reads and writes. */
1634 ghc->memslot = NULL;
1638 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1640 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1641 void *data, unsigned long len)
1643 struct kvm_memslots *slots = kvm_memslots(kvm);
1646 BUG_ON(len > ghc->len);
1648 if (slots->generation != ghc->generation)
1649 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1651 if (unlikely(!ghc->memslot))
1652 return kvm_write_guest(kvm, ghc->gpa, data, len);
1654 if (kvm_is_error_hva(ghc->hva))
1657 r = __copy_to_user((void __user *)ghc->hva, data, len);
1660 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1664 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1666 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1667 void *data, unsigned long len)
1669 struct kvm_memslots *slots = kvm_memslots(kvm);
1672 BUG_ON(len > ghc->len);
1674 if (slots->generation != ghc->generation)
1675 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1677 if (unlikely(!ghc->memslot))
1678 return kvm_read_guest(kvm, ghc->gpa, data, len);
1680 if (kvm_is_error_hva(ghc->hva))
1683 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1689 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1691 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1693 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1695 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1697 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1699 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1701 gfn_t gfn = gpa >> PAGE_SHIFT;
1703 int offset = offset_in_page(gpa);
1706 while ((seg = next_segment(len, offset)) != 0) {
1707 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1716 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1718 static void mark_page_dirty_in_slot(struct kvm *kvm,
1719 struct kvm_memory_slot *memslot,
1722 if (memslot && memslot->dirty_bitmap) {
1723 unsigned long rel_gfn = gfn - memslot->base_gfn;
1725 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1729 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1731 struct kvm_memory_slot *memslot;
1733 memslot = gfn_to_memslot(kvm, gfn);
1734 mark_page_dirty_in_slot(kvm, memslot, gfn);
1736 EXPORT_SYMBOL_GPL(mark_page_dirty);
1739 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1741 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1746 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1748 if (kvm_arch_vcpu_runnable(vcpu)) {
1749 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1752 if (kvm_cpu_has_pending_timer(vcpu))
1754 if (signal_pending(current))
1760 finish_wait(&vcpu->wq, &wait);
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1766 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1768 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1771 int cpu = vcpu->cpu;
1772 wait_queue_head_t *wqp;
1774 wqp = kvm_arch_vcpu_wq(vcpu);
1775 if (waitqueue_active(wqp)) {
1776 wake_up_interruptible(wqp);
1777 ++vcpu->stat.halt_wakeup;
1781 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1782 if (kvm_arch_vcpu_should_kick(vcpu))
1783 smp_send_reschedule(cpu);
1786 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1787 #endif /* !CONFIG_S390 */
1789 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1792 struct task_struct *task = NULL;
1796 pid = rcu_dereference(target->pid);
1798 task = get_pid_task(target->pid, PIDTYPE_PID);
1802 if (task->flags & PF_VCPU) {
1803 put_task_struct(task);
1806 ret = yield_to(task, 1);
1807 put_task_struct(task);
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1814 * Helper that checks whether a VCPU is eligible for directed yield.
1815 * Most eligible candidate to yield is decided by following heuristics:
1817 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1818 * (preempted lock holder), indicated by @in_spin_loop.
1819 * Set at the beiginning and cleared at the end of interception/PLE handler.
1821 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1822 * chance last time (mostly it has become eligible now since we have probably
1823 * yielded to lockholder in last iteration. This is done by toggling
1824 * @dy_eligible each time a VCPU checked for eligibility.)
1826 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1827 * to preempted lock-holder could result in wrong VCPU selection and CPU
1828 * burning. Giving priority for a potential lock-holder increases lock
1831 * Since algorithm is based on heuristics, accessing another VCPU data without
1832 * locking does not harm. It may result in trying to yield to same VCPU, fail
1833 * and continue with next VCPU and so on.
1835 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1837 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1840 eligible = !vcpu->spin_loop.in_spin_loop ||
1841 vcpu->spin_loop.dy_eligible;
1843 if (vcpu->spin_loop.in_spin_loop)
1844 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1852 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1854 struct kvm *kvm = me->kvm;
1855 struct kvm_vcpu *vcpu;
1856 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1862 kvm_vcpu_set_in_spin_loop(me, true);
1864 * We boost the priority of a VCPU that is runnable but not
1865 * currently running, because it got preempted by something
1866 * else and called schedule in __vcpu_run. Hopefully that
1867 * VCPU is holding the lock that we need and will release it.
1868 * We approximate round-robin by starting at the last boosted VCPU.
1870 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1871 kvm_for_each_vcpu(i, vcpu, kvm) {
1872 if (!pass && i <= last_boosted_vcpu) {
1873 i = last_boosted_vcpu;
1875 } else if (pass && i > last_boosted_vcpu)
1877 if (!ACCESS_ONCE(vcpu->preempted))
1881 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1883 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1886 yielded = kvm_vcpu_yield_to(vcpu);
1888 kvm->last_boosted_vcpu = i;
1890 } else if (yielded < 0) {
1897 kvm_vcpu_set_in_spin_loop(me, false);
1899 /* Ensure vcpu is not eligible during next spinloop */
1900 kvm_vcpu_set_dy_eligible(me, false);
1902 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1904 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1906 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1909 if (vmf->pgoff == 0)
1910 page = virt_to_page(vcpu->run);
1912 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1913 page = virt_to_page(vcpu->arch.pio_data);
1915 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1916 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1917 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1920 return kvm_arch_vcpu_fault(vcpu, vmf);
1926 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1927 .fault = kvm_vcpu_fault,
1930 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1932 vma->vm_ops = &kvm_vcpu_vm_ops;
1936 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1938 struct kvm_vcpu *vcpu = filp->private_data;
1940 kvm_put_kvm(vcpu->kvm);
1944 static struct file_operations kvm_vcpu_fops = {
1945 .release = kvm_vcpu_release,
1946 .unlocked_ioctl = kvm_vcpu_ioctl,
1947 #ifdef CONFIG_COMPAT
1948 .compat_ioctl = kvm_vcpu_compat_ioctl,
1950 .mmap = kvm_vcpu_mmap,
1951 .llseek = noop_llseek,
1955 * Allocates an inode for the vcpu.
1957 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1959 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1963 * Creates some virtual cpus. Good luck creating more than one.
1965 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1968 struct kvm_vcpu *vcpu, *v;
1970 if (id >= KVM_MAX_VCPUS)
1973 vcpu = kvm_arch_vcpu_create(kvm, id);
1975 return PTR_ERR(vcpu);
1977 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1979 r = kvm_arch_vcpu_setup(vcpu);
1983 mutex_lock(&kvm->lock);
1984 if (!kvm_vcpu_compatible(vcpu)) {
1986 goto unlock_vcpu_destroy;
1988 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1990 goto unlock_vcpu_destroy;
1993 kvm_for_each_vcpu(r, v, kvm)
1994 if (v->vcpu_id == id) {
1996 goto unlock_vcpu_destroy;
1999 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2001 /* Now it's all set up, let userspace reach it */
2003 r = create_vcpu_fd(vcpu);
2006 goto unlock_vcpu_destroy;
2009 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2011 atomic_inc(&kvm->online_vcpus);
2013 mutex_unlock(&kvm->lock);
2014 kvm_arch_vcpu_postcreate(vcpu);
2017 unlock_vcpu_destroy:
2018 mutex_unlock(&kvm->lock);
2020 kvm_arch_vcpu_destroy(vcpu);
2024 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2027 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2028 vcpu->sigset_active = 1;
2029 vcpu->sigset = *sigset;
2031 vcpu->sigset_active = 0;
2035 static long kvm_vcpu_ioctl(struct file *filp,
2036 unsigned int ioctl, unsigned long arg)
2038 struct kvm_vcpu *vcpu = filp->private_data;
2039 void __user *argp = (void __user *)arg;
2041 struct kvm_fpu *fpu = NULL;
2042 struct kvm_sregs *kvm_sregs = NULL;
2044 if (vcpu->kvm->mm != current->mm)
2047 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2050 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2052 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2053 * so vcpu_load() would break it.
2055 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2056 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2060 r = vcpu_load(vcpu);
2068 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2069 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2071 case KVM_GET_REGS: {
2072 struct kvm_regs *kvm_regs;
2075 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2078 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2082 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2089 case KVM_SET_REGS: {
2090 struct kvm_regs *kvm_regs;
2093 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2094 if (IS_ERR(kvm_regs)) {
2095 r = PTR_ERR(kvm_regs);
2098 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2102 case KVM_GET_SREGS: {
2103 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2107 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2111 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2116 case KVM_SET_SREGS: {
2117 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2118 if (IS_ERR(kvm_sregs)) {
2119 r = PTR_ERR(kvm_sregs);
2123 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2126 case KVM_GET_MP_STATE: {
2127 struct kvm_mp_state mp_state;
2129 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2133 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2138 case KVM_SET_MP_STATE: {
2139 struct kvm_mp_state mp_state;
2142 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2144 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2147 case KVM_TRANSLATE: {
2148 struct kvm_translation tr;
2151 if (copy_from_user(&tr, argp, sizeof tr))
2153 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2157 if (copy_to_user(argp, &tr, sizeof tr))
2162 case KVM_SET_GUEST_DEBUG: {
2163 struct kvm_guest_debug dbg;
2166 if (copy_from_user(&dbg, argp, sizeof dbg))
2168 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2171 case KVM_SET_SIGNAL_MASK: {
2172 struct kvm_signal_mask __user *sigmask_arg = argp;
2173 struct kvm_signal_mask kvm_sigmask;
2174 sigset_t sigset, *p;
2179 if (copy_from_user(&kvm_sigmask, argp,
2180 sizeof kvm_sigmask))
2183 if (kvm_sigmask.len != sizeof sigset)
2186 if (copy_from_user(&sigset, sigmask_arg->sigset,
2191 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2195 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2199 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2203 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2209 fpu = memdup_user(argp, sizeof(*fpu));
2215 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2219 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2228 #ifdef CONFIG_COMPAT
2229 static long kvm_vcpu_compat_ioctl(struct file *filp,
2230 unsigned int ioctl, unsigned long arg)
2232 struct kvm_vcpu *vcpu = filp->private_data;
2233 void __user *argp = compat_ptr(arg);
2236 if (vcpu->kvm->mm != current->mm)
2240 case KVM_SET_SIGNAL_MASK: {
2241 struct kvm_signal_mask __user *sigmask_arg = argp;
2242 struct kvm_signal_mask kvm_sigmask;
2243 compat_sigset_t csigset;
2248 if (copy_from_user(&kvm_sigmask, argp,
2249 sizeof kvm_sigmask))
2252 if (kvm_sigmask.len != sizeof csigset)
2255 if (copy_from_user(&csigset, sigmask_arg->sigset,
2258 sigset_from_compat(&sigset, &csigset);
2259 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2261 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2265 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2273 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2274 int (*accessor)(struct kvm_device *dev,
2275 struct kvm_device_attr *attr),
2278 struct kvm_device_attr attr;
2283 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2286 return accessor(dev, &attr);
2289 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2292 struct kvm_device *dev = filp->private_data;
2295 case KVM_SET_DEVICE_ATTR:
2296 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2297 case KVM_GET_DEVICE_ATTR:
2298 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2299 case KVM_HAS_DEVICE_ATTR:
2300 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2302 if (dev->ops->ioctl)
2303 return dev->ops->ioctl(dev, ioctl, arg);
2309 static int kvm_device_release(struct inode *inode, struct file *filp)
2311 struct kvm_device *dev = filp->private_data;
2312 struct kvm *kvm = dev->kvm;
2318 static const struct file_operations kvm_device_fops = {
2319 .unlocked_ioctl = kvm_device_ioctl,
2320 #ifdef CONFIG_COMPAT
2321 .compat_ioctl = kvm_device_ioctl,
2323 .release = kvm_device_release,
2326 struct kvm_device *kvm_device_from_filp(struct file *filp)
2328 if (filp->f_op != &kvm_device_fops)
2331 return filp->private_data;
2334 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2335 #ifdef CONFIG_KVM_MPIC
2336 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2337 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2340 #ifdef CONFIG_KVM_XICS
2341 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2345 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2347 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2350 if (kvm_device_ops_table[type] != NULL)
2353 kvm_device_ops_table[type] = ops;
2357 static int kvm_ioctl_create_device(struct kvm *kvm,
2358 struct kvm_create_device *cd)
2360 struct kvm_device_ops *ops = NULL;
2361 struct kvm_device *dev;
2362 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2365 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2368 ops = kvm_device_ops_table[cd->type];
2375 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2382 ret = ops->create(dev, cd->type);
2388 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2394 list_add(&dev->vm_node, &kvm->devices);
2400 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2403 case KVM_CAP_USER_MEMORY:
2404 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2405 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2406 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2407 case KVM_CAP_SET_BOOT_CPU_ID:
2409 case KVM_CAP_INTERNAL_ERROR_DATA:
2410 #ifdef CONFIG_HAVE_KVM_MSI
2411 case KVM_CAP_SIGNAL_MSI:
2413 #ifdef CONFIG_HAVE_KVM_IRQFD
2414 case KVM_CAP_IRQFD_RESAMPLE:
2416 case KVM_CAP_CHECK_EXTENSION_VM:
2418 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2419 case KVM_CAP_IRQ_ROUTING:
2420 return KVM_MAX_IRQ_ROUTES;
2425 return kvm_vm_ioctl_check_extension(kvm, arg);
2428 static long kvm_vm_ioctl(struct file *filp,
2429 unsigned int ioctl, unsigned long arg)
2431 struct kvm *kvm = filp->private_data;
2432 void __user *argp = (void __user *)arg;
2435 if (kvm->mm != current->mm)
2438 case KVM_CREATE_VCPU:
2439 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2441 case KVM_SET_USER_MEMORY_REGION: {
2442 struct kvm_userspace_memory_region kvm_userspace_mem;
2445 if (copy_from_user(&kvm_userspace_mem, argp,
2446 sizeof kvm_userspace_mem))
2449 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2452 case KVM_GET_DIRTY_LOG: {
2453 struct kvm_dirty_log log;
2456 if (copy_from_user(&log, argp, sizeof log))
2458 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2461 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2462 case KVM_REGISTER_COALESCED_MMIO: {
2463 struct kvm_coalesced_mmio_zone zone;
2465 if (copy_from_user(&zone, argp, sizeof zone))
2467 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2470 case KVM_UNREGISTER_COALESCED_MMIO: {
2471 struct kvm_coalesced_mmio_zone zone;
2473 if (copy_from_user(&zone, argp, sizeof zone))
2475 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2480 struct kvm_irqfd data;
2483 if (copy_from_user(&data, argp, sizeof data))
2485 r = kvm_irqfd(kvm, &data);
2488 case KVM_IOEVENTFD: {
2489 struct kvm_ioeventfd data;
2492 if (copy_from_user(&data, argp, sizeof data))
2494 r = kvm_ioeventfd(kvm, &data);
2497 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2498 case KVM_SET_BOOT_CPU_ID:
2500 mutex_lock(&kvm->lock);
2501 if (atomic_read(&kvm->online_vcpus) != 0)
2504 kvm->bsp_vcpu_id = arg;
2505 mutex_unlock(&kvm->lock);
2508 #ifdef CONFIG_HAVE_KVM_MSI
2509 case KVM_SIGNAL_MSI: {
2513 if (copy_from_user(&msi, argp, sizeof msi))
2515 r = kvm_send_userspace_msi(kvm, &msi);
2519 #ifdef __KVM_HAVE_IRQ_LINE
2520 case KVM_IRQ_LINE_STATUS:
2521 case KVM_IRQ_LINE: {
2522 struct kvm_irq_level irq_event;
2525 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2528 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2529 ioctl == KVM_IRQ_LINE_STATUS);
2534 if (ioctl == KVM_IRQ_LINE_STATUS) {
2535 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2543 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2544 case KVM_SET_GSI_ROUTING: {
2545 struct kvm_irq_routing routing;
2546 struct kvm_irq_routing __user *urouting;
2547 struct kvm_irq_routing_entry *entries;
2550 if (copy_from_user(&routing, argp, sizeof(routing)))
2553 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2558 entries = vmalloc(routing.nr * sizeof(*entries));
2563 if (copy_from_user(entries, urouting->entries,
2564 routing.nr * sizeof(*entries)))
2565 goto out_free_irq_routing;
2566 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2568 out_free_irq_routing:
2572 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2573 case KVM_CREATE_DEVICE: {
2574 struct kvm_create_device cd;
2577 if (copy_from_user(&cd, argp, sizeof(cd)))
2580 r = kvm_ioctl_create_device(kvm, &cd);
2585 if (copy_to_user(argp, &cd, sizeof(cd)))
2591 case KVM_CHECK_EXTENSION:
2592 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2595 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2597 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2603 #ifdef CONFIG_COMPAT
2604 struct compat_kvm_dirty_log {
2608 compat_uptr_t dirty_bitmap; /* one bit per page */
2613 static long kvm_vm_compat_ioctl(struct file *filp,
2614 unsigned int ioctl, unsigned long arg)
2616 struct kvm *kvm = filp->private_data;
2619 if (kvm->mm != current->mm)
2622 case KVM_GET_DIRTY_LOG: {
2623 struct compat_kvm_dirty_log compat_log;
2624 struct kvm_dirty_log log;
2627 if (copy_from_user(&compat_log, (void __user *)arg,
2628 sizeof(compat_log)))
2630 log.slot = compat_log.slot;
2631 log.padding1 = compat_log.padding1;
2632 log.padding2 = compat_log.padding2;
2633 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2635 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2639 r = kvm_vm_ioctl(filp, ioctl, arg);
2647 static struct file_operations kvm_vm_fops = {
2648 .release = kvm_vm_release,
2649 .unlocked_ioctl = kvm_vm_ioctl,
2650 #ifdef CONFIG_COMPAT
2651 .compat_ioctl = kvm_vm_compat_ioctl,
2653 .llseek = noop_llseek,
2656 static int kvm_dev_ioctl_create_vm(unsigned long type)
2661 kvm = kvm_create_vm(type);
2663 return PTR_ERR(kvm);
2664 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2665 r = kvm_coalesced_mmio_init(kvm);
2671 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2678 static long kvm_dev_ioctl(struct file *filp,
2679 unsigned int ioctl, unsigned long arg)
2684 case KVM_GET_API_VERSION:
2687 r = KVM_API_VERSION;
2690 r = kvm_dev_ioctl_create_vm(arg);
2692 case KVM_CHECK_EXTENSION:
2693 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2695 case KVM_GET_VCPU_MMAP_SIZE:
2698 r = PAGE_SIZE; /* struct kvm_run */
2700 r += PAGE_SIZE; /* pio data page */
2702 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2703 r += PAGE_SIZE; /* coalesced mmio ring page */
2706 case KVM_TRACE_ENABLE:
2707 case KVM_TRACE_PAUSE:
2708 case KVM_TRACE_DISABLE:
2712 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2718 static struct file_operations kvm_chardev_ops = {
2719 .unlocked_ioctl = kvm_dev_ioctl,
2720 .compat_ioctl = kvm_dev_ioctl,
2721 .llseek = noop_llseek,
2724 static struct miscdevice kvm_dev = {
2730 static void hardware_enable_nolock(void *junk)
2732 int cpu = raw_smp_processor_id();
2735 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2738 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2740 r = kvm_arch_hardware_enable();
2743 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2744 atomic_inc(&hardware_enable_failed);
2745 printk(KERN_INFO "kvm: enabling virtualization on "
2746 "CPU%d failed\n", cpu);
2750 static void hardware_enable(void)
2752 raw_spin_lock(&kvm_count_lock);
2753 if (kvm_usage_count)
2754 hardware_enable_nolock(NULL);
2755 raw_spin_unlock(&kvm_count_lock);
2758 static void hardware_disable_nolock(void *junk)
2760 int cpu = raw_smp_processor_id();
2762 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2764 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2765 kvm_arch_hardware_disable();
2768 static void hardware_disable(void)
2770 raw_spin_lock(&kvm_count_lock);
2771 if (kvm_usage_count)
2772 hardware_disable_nolock(NULL);
2773 raw_spin_unlock(&kvm_count_lock);
2776 static void hardware_disable_all_nolock(void)
2778 BUG_ON(!kvm_usage_count);
2781 if (!kvm_usage_count)
2782 on_each_cpu(hardware_disable_nolock, NULL, 1);
2785 static void hardware_disable_all(void)
2787 raw_spin_lock(&kvm_count_lock);
2788 hardware_disable_all_nolock();
2789 raw_spin_unlock(&kvm_count_lock);
2792 static int hardware_enable_all(void)
2796 raw_spin_lock(&kvm_count_lock);
2799 if (kvm_usage_count == 1) {
2800 atomic_set(&hardware_enable_failed, 0);
2801 on_each_cpu(hardware_enable_nolock, NULL, 1);
2803 if (atomic_read(&hardware_enable_failed)) {
2804 hardware_disable_all_nolock();
2809 raw_spin_unlock(&kvm_count_lock);
2814 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2819 val &= ~CPU_TASKS_FROZEN;
2822 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2827 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2835 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2839 * Some (well, at least mine) BIOSes hang on reboot if
2842 * And Intel TXT required VMX off for all cpu when system shutdown.
2844 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2845 kvm_rebooting = true;
2846 on_each_cpu(hardware_disable_nolock, NULL, 1);
2850 static struct notifier_block kvm_reboot_notifier = {
2851 .notifier_call = kvm_reboot,
2855 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2859 for (i = 0; i < bus->dev_count; i++) {
2860 struct kvm_io_device *pos = bus->range[i].dev;
2862 kvm_iodevice_destructor(pos);
2867 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2868 const struct kvm_io_range *r2)
2870 if (r1->addr < r2->addr)
2872 if (r1->addr + r1->len > r2->addr + r2->len)
2877 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2879 return kvm_io_bus_cmp(p1, p2);
2882 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2883 gpa_t addr, int len)
2885 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2891 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2892 kvm_io_bus_sort_cmp, NULL);
2897 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2898 gpa_t addr, int len)
2900 struct kvm_io_range *range, key;
2903 key = (struct kvm_io_range) {
2908 range = bsearch(&key, bus->range, bus->dev_count,
2909 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2913 off = range - bus->range;
2915 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2921 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2922 struct kvm_io_range *range, const void *val)
2926 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930 while (idx < bus->dev_count &&
2931 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2932 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2941 /* kvm_io_bus_write - called under kvm->slots_lock */
2942 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2943 int len, const void *val)
2945 struct kvm_io_bus *bus;
2946 struct kvm_io_range range;
2949 range = (struct kvm_io_range) {
2954 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2955 r = __kvm_io_bus_write(bus, &range, val);
2956 return r < 0 ? r : 0;
2959 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2960 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2961 int len, const void *val, long cookie)
2963 struct kvm_io_bus *bus;
2964 struct kvm_io_range range;
2966 range = (struct kvm_io_range) {
2971 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2973 /* First try the device referenced by cookie. */
2974 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2975 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2976 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2981 * cookie contained garbage; fall back to search and return the
2982 * correct cookie value.
2984 return __kvm_io_bus_write(bus, &range, val);
2987 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2992 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2996 while (idx < bus->dev_count &&
2997 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2998 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3006 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3008 /* kvm_io_bus_read - called under kvm->slots_lock */
3009 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3012 struct kvm_io_bus *bus;
3013 struct kvm_io_range range;
3016 range = (struct kvm_io_range) {
3021 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3022 r = __kvm_io_bus_read(bus, &range, val);
3023 return r < 0 ? r : 0;
3027 /* Caller must hold slots_lock. */
3028 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3029 int len, struct kvm_io_device *dev)
3031 struct kvm_io_bus *new_bus, *bus;
3033 bus = kvm->buses[bus_idx];
3034 /* exclude ioeventfd which is limited by maximum fd */
3035 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3038 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3039 sizeof(struct kvm_io_range)), GFP_KERNEL);
3042 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3043 sizeof(struct kvm_io_range)));
3044 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3045 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3046 synchronize_srcu_expedited(&kvm->srcu);
3052 /* Caller must hold slots_lock. */
3053 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3054 struct kvm_io_device *dev)
3057 struct kvm_io_bus *new_bus, *bus;
3059 bus = kvm->buses[bus_idx];
3061 for (i = 0; i < bus->dev_count; i++)
3062 if (bus->range[i].dev == dev) {
3070 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3071 sizeof(struct kvm_io_range)), GFP_KERNEL);
3075 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3076 new_bus->dev_count--;
3077 memcpy(new_bus->range + i, bus->range + i + 1,
3078 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3080 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3081 synchronize_srcu_expedited(&kvm->srcu);
3086 static struct notifier_block kvm_cpu_notifier = {
3087 .notifier_call = kvm_cpu_hotplug,
3090 static int vm_stat_get(void *_offset, u64 *val)
3092 unsigned offset = (long)_offset;
3096 spin_lock(&kvm_lock);
3097 list_for_each_entry(kvm, &vm_list, vm_list)
3098 *val += *(u32 *)((void *)kvm + offset);
3099 spin_unlock(&kvm_lock);
3103 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3105 static int vcpu_stat_get(void *_offset, u64 *val)
3107 unsigned offset = (long)_offset;
3109 struct kvm_vcpu *vcpu;
3113 spin_lock(&kvm_lock);
3114 list_for_each_entry(kvm, &vm_list, vm_list)
3115 kvm_for_each_vcpu(i, vcpu, kvm)
3116 *val += *(u32 *)((void *)vcpu + offset);
3118 spin_unlock(&kvm_lock);
3122 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3124 static const struct file_operations *stat_fops[] = {
3125 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3126 [KVM_STAT_VM] = &vm_stat_fops,
3129 static int kvm_init_debug(void)
3132 struct kvm_stats_debugfs_item *p;
3134 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3135 if (kvm_debugfs_dir == NULL)
3138 for (p = debugfs_entries; p->name; ++p) {
3139 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3140 (void *)(long)p->offset,
3141 stat_fops[p->kind]);
3142 if (p->dentry == NULL)
3149 debugfs_remove_recursive(kvm_debugfs_dir);
3154 static void kvm_exit_debug(void)
3156 struct kvm_stats_debugfs_item *p;
3158 for (p = debugfs_entries; p->name; ++p)
3159 debugfs_remove(p->dentry);
3160 debugfs_remove(kvm_debugfs_dir);
3163 static int kvm_suspend(void)
3165 if (kvm_usage_count)
3166 hardware_disable_nolock(NULL);
3170 static void kvm_resume(void)
3172 if (kvm_usage_count) {
3173 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3174 hardware_enable_nolock(NULL);
3178 static struct syscore_ops kvm_syscore_ops = {
3179 .suspend = kvm_suspend,
3180 .resume = kvm_resume,
3184 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3186 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3189 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3191 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3192 if (vcpu->preempted)
3193 vcpu->preempted = false;
3195 kvm_arch_sched_in(vcpu, cpu);
3197 kvm_arch_vcpu_load(vcpu, cpu);
3200 static void kvm_sched_out(struct preempt_notifier *pn,
3201 struct task_struct *next)
3203 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3205 if (current->state == TASK_RUNNING)
3206 vcpu->preempted = true;
3207 kvm_arch_vcpu_put(vcpu);
3210 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3211 struct module *module)
3216 r = kvm_arch_init(opaque);
3221 * kvm_arch_init makes sure there's at most one caller
3222 * for architectures that support multiple implementations,
3223 * like intel and amd on x86.
3224 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3225 * conflicts in case kvm is already setup for another implementation.
3227 r = kvm_irqfd_init();
3231 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3236 r = kvm_arch_hardware_setup();
3240 for_each_online_cpu(cpu) {
3241 smp_call_function_single(cpu,
3242 kvm_arch_check_processor_compat,
3248 r = register_cpu_notifier(&kvm_cpu_notifier);
3251 register_reboot_notifier(&kvm_reboot_notifier);
3253 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3255 vcpu_align = __alignof__(struct kvm_vcpu);
3256 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3258 if (!kvm_vcpu_cache) {
3263 r = kvm_async_pf_init();
3267 kvm_chardev_ops.owner = module;
3268 kvm_vm_fops.owner = module;
3269 kvm_vcpu_fops.owner = module;
3271 r = misc_register(&kvm_dev);
3273 printk(KERN_ERR "kvm: misc device register failed\n");
3277 register_syscore_ops(&kvm_syscore_ops);
3279 kvm_preempt_ops.sched_in = kvm_sched_in;
3280 kvm_preempt_ops.sched_out = kvm_sched_out;
3282 r = kvm_init_debug();
3284 printk(KERN_ERR "kvm: create debugfs files failed\n");
3288 r = kvm_vfio_ops_init();
3294 unregister_syscore_ops(&kvm_syscore_ops);
3295 misc_deregister(&kvm_dev);
3297 kvm_async_pf_deinit();
3299 kmem_cache_destroy(kvm_vcpu_cache);
3301 unregister_reboot_notifier(&kvm_reboot_notifier);
3302 unregister_cpu_notifier(&kvm_cpu_notifier);
3305 kvm_arch_hardware_unsetup();
3307 free_cpumask_var(cpus_hardware_enabled);
3315 EXPORT_SYMBOL_GPL(kvm_init);
3320 misc_deregister(&kvm_dev);
3321 kmem_cache_destroy(kvm_vcpu_cache);
3322 kvm_async_pf_deinit();
3323 unregister_syscore_ops(&kvm_syscore_ops);
3324 unregister_reboot_notifier(&kvm_reboot_notifier);
3325 unregister_cpu_notifier(&kvm_cpu_notifier);
3326 on_each_cpu(hardware_disable_nolock, NULL, 1);
3327 kvm_arch_hardware_unsetup();
3330 free_cpumask_var(cpus_hardware_enabled);
3332 EXPORT_SYMBOL_GPL(kvm_exit);