2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
63 DEFINE_SPINLOCK(kvm_lock);
66 static cpumask_t cpus_hardware_enabled;
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
73 struct dentry *kvm_debugfs_dir;
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 struct list_head *ptr;
85 struct kvm_assigned_dev_kernel *match;
87 list_for_each(ptr, head) {
88 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89 if (match->assigned_dev_id == assigned_dev_id)
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
97 struct kvm_assigned_dev_kernel *assigned_dev;
99 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
102 /* This is taken to safely inject irq inside the guest. When
103 * the interrupt injection (or the ioapic code) uses a
104 * finer-grained lock, update this
106 mutex_lock(&assigned_dev->kvm->lock);
107 kvm_set_irq(assigned_dev->kvm,
108 assigned_dev->irq_source_id,
109 assigned_dev->guest_irq, 1);
110 mutex_unlock(&assigned_dev->kvm->lock);
111 kvm_put_kvm(assigned_dev->kvm);
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
116 struct kvm_assigned_dev_kernel *assigned_dev =
117 (struct kvm_assigned_dev_kernel *) dev_id;
119 kvm_get_kvm(assigned_dev->kvm);
120 schedule_work(&assigned_dev->interrupt_work);
121 disable_irq_nosync(irq);
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
128 struct kvm_assigned_dev_kernel *dev;
133 dev = container_of(kian, struct kvm_assigned_dev_kernel,
135 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136 enable_irq(dev->host_irq);
139 static void kvm_free_assigned_device(struct kvm *kvm,
140 struct kvm_assigned_dev_kernel
143 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
144 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
146 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
147 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
149 if (cancel_work_sync(&assigned_dev->interrupt_work))
150 /* We had pending work. That means we will have to take
151 * care of kvm_put_kvm.
155 pci_release_regions(assigned_dev->dev);
156 pci_disable_device(assigned_dev->dev);
157 pci_dev_put(assigned_dev->dev);
159 list_del(&assigned_dev->list);
163 void kvm_free_all_assigned_devices(struct kvm *kvm)
165 struct list_head *ptr, *ptr2;
166 struct kvm_assigned_dev_kernel *assigned_dev;
168 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
169 assigned_dev = list_entry(ptr,
170 struct kvm_assigned_dev_kernel,
173 kvm_free_assigned_device(kvm, assigned_dev);
177 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
178 struct kvm_assigned_irq
182 struct kvm_assigned_dev_kernel *match;
184 mutex_lock(&kvm->lock);
186 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
187 assigned_irq->assigned_dev_id);
189 mutex_unlock(&kvm->lock);
193 if (match->irq_requested) {
194 match->guest_irq = assigned_irq->guest_irq;
195 match->ack_notifier.gsi = assigned_irq->guest_irq;
196 mutex_unlock(&kvm->lock);
200 INIT_WORK(&match->interrupt_work,
201 kvm_assigned_dev_interrupt_work_handler);
203 if (irqchip_in_kernel(kvm)) {
204 if (!capable(CAP_SYS_RAWIO)) {
209 if (assigned_irq->host_irq)
210 match->host_irq = assigned_irq->host_irq;
212 match->host_irq = match->dev->irq;
213 match->guest_irq = assigned_irq->guest_irq;
214 match->ack_notifier.gsi = assigned_irq->guest_irq;
215 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
216 kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
217 r = kvm_request_irq_source_id(kvm);
221 match->irq_source_id = r;
223 /* Even though this is PCI, we don't want to use shared
224 * interrupts. Sharing host devices with guest-assigned devices
225 * on the same interrupt line is not a happy situation: there
226 * are going to be long delays in accepting, acking, etc.
228 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
229 "kvm_assigned_device", (void *)match)) {
235 match->irq_requested = true;
236 mutex_unlock(&kvm->lock);
239 mutex_unlock(&kvm->lock);
240 kvm_free_assigned_device(kvm, match);
244 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
245 struct kvm_assigned_pci_dev *assigned_dev)
248 struct kvm_assigned_dev_kernel *match;
251 mutex_lock(&kvm->lock);
253 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
254 assigned_dev->assigned_dev_id);
256 /* device already assigned */
261 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
263 printk(KERN_INFO "%s: Couldn't allocate memory\n",
268 dev = pci_get_bus_and_slot(assigned_dev->busnr,
269 assigned_dev->devfn);
271 printk(KERN_INFO "%s: host device not found\n", __func__);
275 if (pci_enable_device(dev)) {
276 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
280 r = pci_request_regions(dev, "kvm_assigned_device");
282 printk(KERN_INFO "%s: Could not get access to device regions\n",
286 match->assigned_dev_id = assigned_dev->assigned_dev_id;
287 match->host_busnr = assigned_dev->busnr;
288 match->host_devfn = assigned_dev->devfn;
293 list_add(&match->list, &kvm->arch.assigned_dev_head);
295 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
296 r = kvm_iommu_map_guest(kvm, match);
302 mutex_unlock(&kvm->lock);
305 list_del(&match->list);
306 pci_release_regions(dev);
308 pci_disable_device(dev);
313 mutex_unlock(&kvm->lock);
318 static inline int valid_vcpu(int n)
320 return likely(n >= 0 && n < KVM_MAX_VCPUS);
323 inline int kvm_is_mmio_pfn(pfn_t pfn)
326 return PageReserved(pfn_to_page(pfn));
332 * Switches to specified vcpu, until a matching vcpu_put()
334 void vcpu_load(struct kvm_vcpu *vcpu)
338 mutex_lock(&vcpu->mutex);
340 preempt_notifier_register(&vcpu->preempt_notifier);
341 kvm_arch_vcpu_load(vcpu, cpu);
345 void vcpu_put(struct kvm_vcpu *vcpu)
348 kvm_arch_vcpu_put(vcpu);
349 preempt_notifier_unregister(&vcpu->preempt_notifier);
351 mutex_unlock(&vcpu->mutex);
354 static void ack_flush(void *_completed)
358 void kvm_flush_remote_tlbs(struct kvm *kvm)
362 struct kvm_vcpu *vcpu;
366 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
367 vcpu = kvm->vcpus[i];
370 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
373 if (cpu != -1 && cpu != me)
376 if (cpus_empty(cpus))
378 ++kvm->stat.remote_tlb_flush;
379 smp_call_function_mask(cpus, ack_flush, NULL, 1);
384 void kvm_reload_remote_mmus(struct kvm *kvm)
388 struct kvm_vcpu *vcpu;
392 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
393 vcpu = kvm->vcpus[i];
396 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
399 if (cpu != -1 && cpu != me)
402 if (cpus_empty(cpus))
404 smp_call_function_mask(cpus, ack_flush, NULL, 1);
410 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
415 mutex_init(&vcpu->mutex);
419 init_waitqueue_head(&vcpu->wq);
421 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
426 vcpu->run = page_address(page);
428 r = kvm_arch_vcpu_init(vcpu);
434 free_page((unsigned long)vcpu->run);
438 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
440 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
442 kvm_arch_vcpu_uninit(vcpu);
443 free_page((unsigned long)vcpu->run);
445 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
447 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
448 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
450 return container_of(mn, struct kvm, mmu_notifier);
453 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
454 struct mm_struct *mm,
455 unsigned long address)
457 struct kvm *kvm = mmu_notifier_to_kvm(mn);
461 * When ->invalidate_page runs, the linux pte has been zapped
462 * already but the page is still allocated until
463 * ->invalidate_page returns. So if we increase the sequence
464 * here the kvm page fault will notice if the spte can't be
465 * established because the page is going to be freed. If
466 * instead the kvm page fault establishes the spte before
467 * ->invalidate_page runs, kvm_unmap_hva will release it
470 * The sequence increase only need to be seen at spin_unlock
471 * time, and not at spin_lock time.
473 * Increasing the sequence after the spin_unlock would be
474 * unsafe because the kvm page fault could then establish the
475 * pte after kvm_unmap_hva returned, without noticing the page
476 * is going to be freed.
478 spin_lock(&kvm->mmu_lock);
479 kvm->mmu_notifier_seq++;
480 need_tlb_flush = kvm_unmap_hva(kvm, address);
481 spin_unlock(&kvm->mmu_lock);
483 /* we've to flush the tlb before the pages can be freed */
485 kvm_flush_remote_tlbs(kvm);
489 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
490 struct mm_struct *mm,
494 struct kvm *kvm = mmu_notifier_to_kvm(mn);
495 int need_tlb_flush = 0;
497 spin_lock(&kvm->mmu_lock);
499 * The count increase must become visible at unlock time as no
500 * spte can be established without taking the mmu_lock and
501 * count is also read inside the mmu_lock critical section.
503 kvm->mmu_notifier_count++;
504 for (; start < end; start += PAGE_SIZE)
505 need_tlb_flush |= kvm_unmap_hva(kvm, start);
506 spin_unlock(&kvm->mmu_lock);
508 /* we've to flush the tlb before the pages can be freed */
510 kvm_flush_remote_tlbs(kvm);
513 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
514 struct mm_struct *mm,
518 struct kvm *kvm = mmu_notifier_to_kvm(mn);
520 spin_lock(&kvm->mmu_lock);
522 * This sequence increase will notify the kvm page fault that
523 * the page that is going to be mapped in the spte could have
526 kvm->mmu_notifier_seq++;
528 * The above sequence increase must be visible before the
529 * below count decrease but both values are read by the kvm
530 * page fault under mmu_lock spinlock so we don't need to add
531 * a smb_wmb() here in between the two.
533 kvm->mmu_notifier_count--;
534 spin_unlock(&kvm->mmu_lock);
536 BUG_ON(kvm->mmu_notifier_count < 0);
539 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
540 struct mm_struct *mm,
541 unsigned long address)
543 struct kvm *kvm = mmu_notifier_to_kvm(mn);
546 spin_lock(&kvm->mmu_lock);
547 young = kvm_age_hva(kvm, address);
548 spin_unlock(&kvm->mmu_lock);
551 kvm_flush_remote_tlbs(kvm);
556 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
557 .invalidate_page = kvm_mmu_notifier_invalidate_page,
558 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
559 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
560 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
562 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564 static struct kvm *kvm_create_vm(void)
566 struct kvm *kvm = kvm_arch_create_vm();
567 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
574 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
575 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
578 return ERR_PTR(-ENOMEM);
580 kvm->coalesced_mmio_ring =
581 (struct kvm_coalesced_mmio_ring *)page_address(page);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
587 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
588 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
590 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
599 kvm->mm = current->mm;
600 atomic_inc(&kvm->mm->mm_count);
601 spin_lock_init(&kvm->mmu_lock);
602 kvm_io_bus_init(&kvm->pio_bus);
603 mutex_init(&kvm->lock);
604 kvm_io_bus_init(&kvm->mmio_bus);
605 init_rwsem(&kvm->slots_lock);
606 atomic_set(&kvm->users_count, 1);
607 spin_lock(&kvm_lock);
608 list_add(&kvm->vm_list, &vm_list);
609 spin_unlock(&kvm_lock);
610 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
611 kvm_coalesced_mmio_init(kvm);
618 * Free any memory in @free but not in @dont.
620 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
621 struct kvm_memory_slot *dont)
623 if (!dont || free->rmap != dont->rmap)
626 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
627 vfree(free->dirty_bitmap);
629 if (!dont || free->lpage_info != dont->lpage_info)
630 vfree(free->lpage_info);
633 free->dirty_bitmap = NULL;
635 free->lpage_info = NULL;
638 void kvm_free_physmem(struct kvm *kvm)
642 for (i = 0; i < kvm->nmemslots; ++i)
643 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
646 static void kvm_destroy_vm(struct kvm *kvm)
648 struct mm_struct *mm = kvm->mm;
650 spin_lock(&kvm_lock);
651 list_del(&kvm->vm_list);
652 spin_unlock(&kvm_lock);
653 kvm_io_bus_destroy(&kvm->pio_bus);
654 kvm_io_bus_destroy(&kvm->mmio_bus);
655 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
656 if (kvm->coalesced_mmio_ring != NULL)
657 free_page((unsigned long)kvm->coalesced_mmio_ring);
659 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
660 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
662 kvm_arch_destroy_vm(kvm);
666 void kvm_get_kvm(struct kvm *kvm)
668 atomic_inc(&kvm->users_count);
670 EXPORT_SYMBOL_GPL(kvm_get_kvm);
672 void kvm_put_kvm(struct kvm *kvm)
674 if (atomic_dec_and_test(&kvm->users_count))
677 EXPORT_SYMBOL_GPL(kvm_put_kvm);
680 static int kvm_vm_release(struct inode *inode, struct file *filp)
682 struct kvm *kvm = filp->private_data;
689 * Allocate some memory and give it an address in the guest physical address
692 * Discontiguous memory is allowed, mostly for framebuffers.
694 * Must be called holding mmap_sem for write.
696 int __kvm_set_memory_region(struct kvm *kvm,
697 struct kvm_userspace_memory_region *mem,
702 unsigned long npages;
704 struct kvm_memory_slot *memslot;
705 struct kvm_memory_slot old, new;
708 /* General sanity checks */
709 if (mem->memory_size & (PAGE_SIZE - 1))
711 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
713 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
715 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
718 memslot = &kvm->memslots[mem->slot];
719 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
720 npages = mem->memory_size >> PAGE_SHIFT;
723 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
725 new = old = *memslot;
727 new.base_gfn = base_gfn;
729 new.flags = mem->flags;
731 /* Disallow changing a memory slot's size. */
733 if (npages && old.npages && npages != old.npages)
736 /* Check for overlaps */
738 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
739 struct kvm_memory_slot *s = &kvm->memslots[i];
743 if (!((base_gfn + npages <= s->base_gfn) ||
744 (base_gfn >= s->base_gfn + s->npages)))
748 /* Free page dirty bitmap if unneeded */
749 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
750 new.dirty_bitmap = NULL;
754 /* Allocate if a slot is being created */
756 if (npages && !new.rmap) {
757 new.rmap = vmalloc(npages * sizeof(struct page *));
762 memset(new.rmap, 0, npages * sizeof(*new.rmap));
764 new.user_alloc = user_alloc;
766 * hva_to_rmmap() serialzies with the mmu_lock and to be
767 * safe it has to ignore memslots with !user_alloc &&
771 new.userspace_addr = mem->userspace_addr;
773 new.userspace_addr = 0;
775 if (npages && !new.lpage_info) {
776 int largepages = npages / KVM_PAGES_PER_HPAGE;
777 if (npages % KVM_PAGES_PER_HPAGE)
779 if (base_gfn % KVM_PAGES_PER_HPAGE)
782 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
787 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
789 if (base_gfn % KVM_PAGES_PER_HPAGE)
790 new.lpage_info[0].write_count = 1;
791 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
792 new.lpage_info[largepages-1].write_count = 1;
795 /* Allocate page dirty bitmap if needed */
796 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
797 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
799 new.dirty_bitmap = vmalloc(dirty_bytes);
800 if (!new.dirty_bitmap)
802 memset(new.dirty_bitmap, 0, dirty_bytes);
804 #endif /* not defined CONFIG_S390 */
807 kvm_arch_flush_shadow(kvm);
809 spin_lock(&kvm->mmu_lock);
810 if (mem->slot >= kvm->nmemslots)
811 kvm->nmemslots = mem->slot + 1;
814 spin_unlock(&kvm->mmu_lock);
816 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
818 spin_lock(&kvm->mmu_lock);
820 spin_unlock(&kvm->mmu_lock);
824 kvm_free_physmem_slot(&old, &new);
826 /* map the pages in iommu page table */
827 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
834 kvm_free_physmem_slot(&new, &old);
839 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
841 int kvm_set_memory_region(struct kvm *kvm,
842 struct kvm_userspace_memory_region *mem,
847 down_write(&kvm->slots_lock);
848 r = __kvm_set_memory_region(kvm, mem, user_alloc);
849 up_write(&kvm->slots_lock);
852 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
854 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
856 kvm_userspace_memory_region *mem,
859 if (mem->slot >= KVM_MEMORY_SLOTS)
861 return kvm_set_memory_region(kvm, mem, user_alloc);
864 int kvm_get_dirty_log(struct kvm *kvm,
865 struct kvm_dirty_log *log, int *is_dirty)
867 struct kvm_memory_slot *memslot;
870 unsigned long any = 0;
873 if (log->slot >= KVM_MEMORY_SLOTS)
876 memslot = &kvm->memslots[log->slot];
878 if (!memslot->dirty_bitmap)
881 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
883 for (i = 0; !any && i < n/sizeof(long); ++i)
884 any = memslot->dirty_bitmap[i];
887 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
898 int is_error_page(struct page *page)
900 return page == bad_page;
902 EXPORT_SYMBOL_GPL(is_error_page);
904 int is_error_pfn(pfn_t pfn)
906 return pfn == bad_pfn;
908 EXPORT_SYMBOL_GPL(is_error_pfn);
910 static inline unsigned long bad_hva(void)
915 int kvm_is_error_hva(unsigned long addr)
917 return addr == bad_hva();
919 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
921 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
925 for (i = 0; i < kvm->nmemslots; ++i) {
926 struct kvm_memory_slot *memslot = &kvm->memslots[i];
928 if (gfn >= memslot->base_gfn
929 && gfn < memslot->base_gfn + memslot->npages)
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
937 gfn = unalias_gfn(kvm, gfn);
938 return __gfn_to_memslot(kvm, gfn);
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
945 gfn = unalias_gfn(kvm, gfn);
946 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
947 struct kvm_memory_slot *memslot = &kvm->memslots[i];
949 if (gfn >= memslot->base_gfn
950 && gfn < memslot->base_gfn + memslot->npages)
955 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
957 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
959 struct kvm_memory_slot *slot;
961 gfn = unalias_gfn(kvm, gfn);
962 slot = __gfn_to_memslot(kvm, gfn);
965 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
967 EXPORT_SYMBOL_GPL(gfn_to_hva);
969 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
971 struct page *page[1];
978 addr = gfn_to_hva(kvm, gfn);
979 if (kvm_is_error_hva(addr)) {
981 return page_to_pfn(bad_page);
984 npages = get_user_pages_fast(addr, 1, 1, page);
986 if (unlikely(npages != 1)) {
987 struct vm_area_struct *vma;
989 down_read(¤t->mm->mmap_sem);
990 vma = find_vma(current->mm, addr);
992 if (vma == NULL || addr < vma->vm_start ||
993 !(vma->vm_flags & VM_PFNMAP)) {
994 up_read(¤t->mm->mmap_sem);
996 return page_to_pfn(bad_page);
999 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1000 up_read(¤t->mm->mmap_sem);
1001 BUG_ON(!kvm_is_mmio_pfn(pfn));
1003 pfn = page_to_pfn(page[0]);
1008 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1010 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1014 pfn = gfn_to_pfn(kvm, gfn);
1015 if (!kvm_is_mmio_pfn(pfn))
1016 return pfn_to_page(pfn);
1018 WARN_ON(kvm_is_mmio_pfn(pfn));
1024 EXPORT_SYMBOL_GPL(gfn_to_page);
1026 void kvm_release_page_clean(struct page *page)
1028 kvm_release_pfn_clean(page_to_pfn(page));
1030 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1032 void kvm_release_pfn_clean(pfn_t pfn)
1034 if (!kvm_is_mmio_pfn(pfn))
1035 put_page(pfn_to_page(pfn));
1037 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1039 void kvm_release_page_dirty(struct page *page)
1041 kvm_release_pfn_dirty(page_to_pfn(page));
1043 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1045 void kvm_release_pfn_dirty(pfn_t pfn)
1047 kvm_set_pfn_dirty(pfn);
1048 kvm_release_pfn_clean(pfn);
1050 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1052 void kvm_set_page_dirty(struct page *page)
1054 kvm_set_pfn_dirty(page_to_pfn(page));
1056 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1058 void kvm_set_pfn_dirty(pfn_t pfn)
1060 if (!kvm_is_mmio_pfn(pfn)) {
1061 struct page *page = pfn_to_page(pfn);
1062 if (!PageReserved(page))
1066 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1068 void kvm_set_pfn_accessed(pfn_t pfn)
1070 if (!kvm_is_mmio_pfn(pfn))
1071 mark_page_accessed(pfn_to_page(pfn));
1073 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1075 void kvm_get_pfn(pfn_t pfn)
1077 if (!kvm_is_mmio_pfn(pfn))
1078 get_page(pfn_to_page(pfn));
1080 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1082 static int next_segment(unsigned long len, int offset)
1084 if (len > PAGE_SIZE - offset)
1085 return PAGE_SIZE - offset;
1090 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1096 addr = gfn_to_hva(kvm, gfn);
1097 if (kvm_is_error_hva(addr))
1099 r = copy_from_user(data, (void __user *)addr + offset, len);
1104 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1106 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1108 gfn_t gfn = gpa >> PAGE_SHIFT;
1110 int offset = offset_in_page(gpa);
1113 while ((seg = next_segment(len, offset)) != 0) {
1114 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1124 EXPORT_SYMBOL_GPL(kvm_read_guest);
1126 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1131 gfn_t gfn = gpa >> PAGE_SHIFT;
1132 int offset = offset_in_page(gpa);
1134 addr = gfn_to_hva(kvm, gfn);
1135 if (kvm_is_error_hva(addr))
1137 pagefault_disable();
1138 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1144 EXPORT_SYMBOL(kvm_read_guest_atomic);
1146 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1147 int offset, int len)
1152 addr = gfn_to_hva(kvm, gfn);
1153 if (kvm_is_error_hva(addr))
1155 r = copy_to_user((void __user *)addr + offset, data, len);
1158 mark_page_dirty(kvm, gfn);
1161 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1163 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1166 gfn_t gfn = gpa >> PAGE_SHIFT;
1168 int offset = offset_in_page(gpa);
1171 while ((seg = next_segment(len, offset)) != 0) {
1172 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1183 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1185 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1187 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1189 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1191 gfn_t gfn = gpa >> PAGE_SHIFT;
1193 int offset = offset_in_page(gpa);
1196 while ((seg = next_segment(len, offset)) != 0) {
1197 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1206 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1208 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1210 struct kvm_memory_slot *memslot;
1212 gfn = unalias_gfn(kvm, gfn);
1213 memslot = __gfn_to_memslot(kvm, gfn);
1214 if (memslot && memslot->dirty_bitmap) {
1215 unsigned long rel_gfn = gfn - memslot->base_gfn;
1218 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1219 set_bit(rel_gfn, memslot->dirty_bitmap);
1224 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1226 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1231 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1233 if (kvm_cpu_has_interrupt(vcpu) ||
1234 kvm_cpu_has_pending_timer(vcpu) ||
1235 kvm_arch_vcpu_runnable(vcpu)) {
1236 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1239 if (signal_pending(current))
1247 finish_wait(&vcpu->wq, &wait);
1250 void kvm_resched(struct kvm_vcpu *vcpu)
1252 if (!need_resched())
1256 EXPORT_SYMBOL_GPL(kvm_resched);
1258 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1260 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1263 if (vmf->pgoff == 0)
1264 page = virt_to_page(vcpu->run);
1266 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1267 page = virt_to_page(vcpu->arch.pio_data);
1269 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1270 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1271 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1274 return VM_FAULT_SIGBUS;
1280 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1281 .fault = kvm_vcpu_fault,
1284 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1286 vma->vm_ops = &kvm_vcpu_vm_ops;
1290 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1292 struct kvm_vcpu *vcpu = filp->private_data;
1294 kvm_put_kvm(vcpu->kvm);
1298 static const struct file_operations kvm_vcpu_fops = {
1299 .release = kvm_vcpu_release,
1300 .unlocked_ioctl = kvm_vcpu_ioctl,
1301 .compat_ioctl = kvm_vcpu_ioctl,
1302 .mmap = kvm_vcpu_mmap,
1306 * Allocates an inode for the vcpu.
1308 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1310 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1312 kvm_put_kvm(vcpu->kvm);
1317 * Creates some virtual cpus. Good luck creating more than one.
1319 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1322 struct kvm_vcpu *vcpu;
1327 vcpu = kvm_arch_vcpu_create(kvm, n);
1329 return PTR_ERR(vcpu);
1331 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1333 r = kvm_arch_vcpu_setup(vcpu);
1337 mutex_lock(&kvm->lock);
1338 if (kvm->vcpus[n]) {
1342 kvm->vcpus[n] = vcpu;
1343 mutex_unlock(&kvm->lock);
1345 /* Now it's all set up, let userspace reach it */
1347 r = create_vcpu_fd(vcpu);
1353 mutex_lock(&kvm->lock);
1354 kvm->vcpus[n] = NULL;
1356 mutex_unlock(&kvm->lock);
1357 kvm_arch_vcpu_destroy(vcpu);
1361 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1364 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1365 vcpu->sigset_active = 1;
1366 vcpu->sigset = *sigset;
1368 vcpu->sigset_active = 0;
1372 static long kvm_vcpu_ioctl(struct file *filp,
1373 unsigned int ioctl, unsigned long arg)
1375 struct kvm_vcpu *vcpu = filp->private_data;
1376 void __user *argp = (void __user *)arg;
1378 struct kvm_fpu *fpu = NULL;
1379 struct kvm_sregs *kvm_sregs = NULL;
1381 if (vcpu->kvm->mm != current->mm)
1388 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1390 case KVM_GET_REGS: {
1391 struct kvm_regs *kvm_regs;
1394 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1397 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1401 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1408 case KVM_SET_REGS: {
1409 struct kvm_regs *kvm_regs;
1412 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1416 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1418 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1426 case KVM_GET_SREGS: {
1427 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1431 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1435 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1440 case KVM_SET_SREGS: {
1441 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1446 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1448 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1454 case KVM_GET_MP_STATE: {
1455 struct kvm_mp_state mp_state;
1457 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1461 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1466 case KVM_SET_MP_STATE: {
1467 struct kvm_mp_state mp_state;
1470 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1472 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1478 case KVM_TRANSLATE: {
1479 struct kvm_translation tr;
1482 if (copy_from_user(&tr, argp, sizeof tr))
1484 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1488 if (copy_to_user(argp, &tr, sizeof tr))
1493 case KVM_DEBUG_GUEST: {
1494 struct kvm_debug_guest dbg;
1497 if (copy_from_user(&dbg, argp, sizeof dbg))
1499 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1505 case KVM_SET_SIGNAL_MASK: {
1506 struct kvm_signal_mask __user *sigmask_arg = argp;
1507 struct kvm_signal_mask kvm_sigmask;
1508 sigset_t sigset, *p;
1513 if (copy_from_user(&kvm_sigmask, argp,
1514 sizeof kvm_sigmask))
1517 if (kvm_sigmask.len != sizeof sigset)
1520 if (copy_from_user(&sigset, sigmask_arg->sigset,
1525 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1529 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1533 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1537 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1543 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1548 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1550 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1557 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1565 static long kvm_vm_ioctl(struct file *filp,
1566 unsigned int ioctl, unsigned long arg)
1568 struct kvm *kvm = filp->private_data;
1569 void __user *argp = (void __user *)arg;
1572 if (kvm->mm != current->mm)
1575 case KVM_CREATE_VCPU:
1576 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1580 case KVM_SET_USER_MEMORY_REGION: {
1581 struct kvm_userspace_memory_region kvm_userspace_mem;
1584 if (copy_from_user(&kvm_userspace_mem, argp,
1585 sizeof kvm_userspace_mem))
1588 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1593 case KVM_GET_DIRTY_LOG: {
1594 struct kvm_dirty_log log;
1597 if (copy_from_user(&log, argp, sizeof log))
1599 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1604 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1605 case KVM_REGISTER_COALESCED_MMIO: {
1606 struct kvm_coalesced_mmio_zone zone;
1608 if (copy_from_user(&zone, argp, sizeof zone))
1611 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1617 case KVM_UNREGISTER_COALESCED_MMIO: {
1618 struct kvm_coalesced_mmio_zone zone;
1620 if (copy_from_user(&zone, argp, sizeof zone))
1623 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1630 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1631 case KVM_ASSIGN_PCI_DEVICE: {
1632 struct kvm_assigned_pci_dev assigned_dev;
1635 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1637 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1642 case KVM_ASSIGN_IRQ: {
1643 struct kvm_assigned_irq assigned_irq;
1646 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1648 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1655 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1661 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1663 struct page *page[1];
1666 gfn_t gfn = vmf->pgoff;
1667 struct kvm *kvm = vma->vm_file->private_data;
1669 addr = gfn_to_hva(kvm, gfn);
1670 if (kvm_is_error_hva(addr))
1671 return VM_FAULT_SIGBUS;
1673 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1675 if (unlikely(npages != 1))
1676 return VM_FAULT_SIGBUS;
1678 vmf->page = page[0];
1682 static struct vm_operations_struct kvm_vm_vm_ops = {
1683 .fault = kvm_vm_fault,
1686 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1688 vma->vm_ops = &kvm_vm_vm_ops;
1692 static const struct file_operations kvm_vm_fops = {
1693 .release = kvm_vm_release,
1694 .unlocked_ioctl = kvm_vm_ioctl,
1695 .compat_ioctl = kvm_vm_ioctl,
1696 .mmap = kvm_vm_mmap,
1699 static int kvm_dev_ioctl_create_vm(void)
1704 kvm = kvm_create_vm();
1706 return PTR_ERR(kvm);
1707 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1714 static long kvm_dev_ioctl(struct file *filp,
1715 unsigned int ioctl, unsigned long arg)
1720 case KVM_GET_API_VERSION:
1724 r = KVM_API_VERSION;
1730 r = kvm_dev_ioctl_create_vm();
1732 case KVM_CHECK_EXTENSION:
1733 r = kvm_dev_ioctl_check_extension(arg);
1735 case KVM_GET_VCPU_MMAP_SIZE:
1739 r = PAGE_SIZE; /* struct kvm_run */
1741 r += PAGE_SIZE; /* pio data page */
1743 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1744 r += PAGE_SIZE; /* coalesced mmio ring page */
1747 case KVM_TRACE_ENABLE:
1748 case KVM_TRACE_PAUSE:
1749 case KVM_TRACE_DISABLE:
1750 r = kvm_trace_ioctl(ioctl, arg);
1753 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1759 static struct file_operations kvm_chardev_ops = {
1760 .unlocked_ioctl = kvm_dev_ioctl,
1761 .compat_ioctl = kvm_dev_ioctl,
1764 static struct miscdevice kvm_dev = {
1770 static void hardware_enable(void *junk)
1772 int cpu = raw_smp_processor_id();
1774 if (cpu_isset(cpu, cpus_hardware_enabled))
1776 cpu_set(cpu, cpus_hardware_enabled);
1777 kvm_arch_hardware_enable(NULL);
1780 static void hardware_disable(void *junk)
1782 int cpu = raw_smp_processor_id();
1784 if (!cpu_isset(cpu, cpus_hardware_enabled))
1786 cpu_clear(cpu, cpus_hardware_enabled);
1787 kvm_arch_hardware_disable(NULL);
1790 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1795 val &= ~CPU_TASKS_FROZEN;
1798 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1800 hardware_disable(NULL);
1802 case CPU_UP_CANCELED:
1803 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1805 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1808 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1810 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1817 asmlinkage void kvm_handle_fault_on_reboot(void)
1820 /* spin while reset goes on */
1823 /* Fault while not rebooting. We want the trace. */
1826 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1828 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1831 if (val == SYS_RESTART) {
1833 * Some (well, at least mine) BIOSes hang on reboot if
1836 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1837 kvm_rebooting = true;
1838 on_each_cpu(hardware_disable, NULL, 1);
1843 static struct notifier_block kvm_reboot_notifier = {
1844 .notifier_call = kvm_reboot,
1848 void kvm_io_bus_init(struct kvm_io_bus *bus)
1850 memset(bus, 0, sizeof(*bus));
1853 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1857 for (i = 0; i < bus->dev_count; i++) {
1858 struct kvm_io_device *pos = bus->devs[i];
1860 kvm_iodevice_destructor(pos);
1864 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1865 gpa_t addr, int len, int is_write)
1869 for (i = 0; i < bus->dev_count; i++) {
1870 struct kvm_io_device *pos = bus->devs[i];
1872 if (pos->in_range(pos, addr, len, is_write))
1879 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1881 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1883 bus->devs[bus->dev_count++] = dev;
1886 static struct notifier_block kvm_cpu_notifier = {
1887 .notifier_call = kvm_cpu_hotplug,
1888 .priority = 20, /* must be > scheduler priority */
1891 static int vm_stat_get(void *_offset, u64 *val)
1893 unsigned offset = (long)_offset;
1897 spin_lock(&kvm_lock);
1898 list_for_each_entry(kvm, &vm_list, vm_list)
1899 *val += *(u32 *)((void *)kvm + offset);
1900 spin_unlock(&kvm_lock);
1904 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1906 static int vcpu_stat_get(void *_offset, u64 *val)
1908 unsigned offset = (long)_offset;
1910 struct kvm_vcpu *vcpu;
1914 spin_lock(&kvm_lock);
1915 list_for_each_entry(kvm, &vm_list, vm_list)
1916 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1917 vcpu = kvm->vcpus[i];
1919 *val += *(u32 *)((void *)vcpu + offset);
1921 spin_unlock(&kvm_lock);
1925 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1927 static struct file_operations *stat_fops[] = {
1928 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1929 [KVM_STAT_VM] = &vm_stat_fops,
1932 static void kvm_init_debug(void)
1934 struct kvm_stats_debugfs_item *p;
1936 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1937 for (p = debugfs_entries; p->name; ++p)
1938 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1939 (void *)(long)p->offset,
1940 stat_fops[p->kind]);
1943 static void kvm_exit_debug(void)
1945 struct kvm_stats_debugfs_item *p;
1947 for (p = debugfs_entries; p->name; ++p)
1948 debugfs_remove(p->dentry);
1949 debugfs_remove(kvm_debugfs_dir);
1952 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1954 hardware_disable(NULL);
1958 static int kvm_resume(struct sys_device *dev)
1960 hardware_enable(NULL);
1964 static struct sysdev_class kvm_sysdev_class = {
1966 .suspend = kvm_suspend,
1967 .resume = kvm_resume,
1970 static struct sys_device kvm_sysdev = {
1972 .cls = &kvm_sysdev_class,
1975 struct page *bad_page;
1979 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1981 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1984 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1986 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1988 kvm_arch_vcpu_load(vcpu, cpu);
1991 static void kvm_sched_out(struct preempt_notifier *pn,
1992 struct task_struct *next)
1994 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1996 kvm_arch_vcpu_put(vcpu);
1999 int kvm_init(void *opaque, unsigned int vcpu_size,
2000 struct module *module)
2007 r = kvm_arch_init(opaque);
2011 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2013 if (bad_page == NULL) {
2018 bad_pfn = page_to_pfn(bad_page);
2020 r = kvm_arch_hardware_setup();
2024 for_each_online_cpu(cpu) {
2025 smp_call_function_single(cpu,
2026 kvm_arch_check_processor_compat,
2032 on_each_cpu(hardware_enable, NULL, 1);
2033 r = register_cpu_notifier(&kvm_cpu_notifier);
2036 register_reboot_notifier(&kvm_reboot_notifier);
2038 r = sysdev_class_register(&kvm_sysdev_class);
2042 r = sysdev_register(&kvm_sysdev);
2046 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2047 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2048 __alignof__(struct kvm_vcpu),
2050 if (!kvm_vcpu_cache) {
2055 kvm_chardev_ops.owner = module;
2057 r = misc_register(&kvm_dev);
2059 printk(KERN_ERR "kvm: misc device register failed\n");
2063 kvm_preempt_ops.sched_in = kvm_sched_in;
2064 kvm_preempt_ops.sched_out = kvm_sched_out;
2069 kmem_cache_destroy(kvm_vcpu_cache);
2071 sysdev_unregister(&kvm_sysdev);
2073 sysdev_class_unregister(&kvm_sysdev_class);
2075 unregister_reboot_notifier(&kvm_reboot_notifier);
2076 unregister_cpu_notifier(&kvm_cpu_notifier);
2078 on_each_cpu(hardware_disable, NULL, 1);
2080 kvm_arch_hardware_unsetup();
2082 __free_page(bad_page);
2089 EXPORT_SYMBOL_GPL(kvm_init);
2093 kvm_trace_cleanup();
2094 misc_deregister(&kvm_dev);
2095 kmem_cache_destroy(kvm_vcpu_cache);
2096 sysdev_unregister(&kvm_sysdev);
2097 sysdev_class_unregister(&kvm_sysdev_class);
2098 unregister_reboot_notifier(&kvm_reboot_notifier);
2099 unregister_cpu_notifier(&kvm_cpu_notifier);
2100 on_each_cpu(hardware_disable, NULL, 1);
2101 kvm_arch_hardware_unsetup();
2104 __free_page(bad_page);
2106 EXPORT_SYMBOL_GPL(kvm_exit);