]> Git Repo - linux.git/blob - drivers/hid/hid-core.c
Merge branch 'for-6.13/wacom' into for-linus
[linux.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <[email protected]>
7  *  Copyright (c) 2005 Michael Haboustak <[email protected]> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10
11 /*
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <linux/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39  * Version Information
40  */
41
42 #define DRIVER_DESC "HID core driver"
43
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48 /*
49  * Register a new report for a device.
50  */
51
52 struct hid_report *hid_register_report(struct hid_device *device,
53                                        enum hid_report_type type, unsigned int id,
54                                        unsigned int application)
55 {
56         struct hid_report_enum *report_enum = device->report_enum + type;
57         struct hid_report *report;
58
59         if (id >= HID_MAX_IDS)
60                 return NULL;
61         if (report_enum->report_id_hash[id])
62                 return report_enum->report_id_hash[id];
63
64         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65         if (!report)
66                 return NULL;
67
68         if (id != 0)
69                 report_enum->numbered = 1;
70
71         report->id = id;
72         report->type = type;
73         report->size = 0;
74         report->device = device;
75         report->application = application;
76         report_enum->report_id_hash[id] = report;
77
78         list_add_tail(&report->list, &report_enum->report_list);
79         INIT_LIST_HEAD(&report->field_entry_list);
80
81         return report;
82 }
83 EXPORT_SYMBOL_GPL(hid_register_report);
84
85 /*
86  * Register a new field for this report.
87  */
88
89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 {
91         struct hid_field *field;
92
93         if (report->maxfield == HID_MAX_FIELDS) {
94                 hid_err(report->device, "too many fields in report\n");
95                 return NULL;
96         }
97
98         field = kvzalloc((sizeof(struct hid_field) +
99                           usages * sizeof(struct hid_usage) +
100                           3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101         if (!field)
102                 return NULL;
103
104         field->index = report->maxfield++;
105         report->field[field->index] = field;
106         field->usage = (struct hid_usage *)(field + 1);
107         field->value = (s32 *)(field->usage + usages);
108         field->new_value = (s32 *)(field->value + usages);
109         field->usages_priorities = (s32 *)(field->new_value + usages);
110         field->report = report;
111
112         return field;
113 }
114
115 /*
116  * Open a collection. The type/usage is pushed on the stack.
117  */
118
119 static int open_collection(struct hid_parser *parser, unsigned type)
120 {
121         struct hid_collection *collection;
122         unsigned usage;
123         int collection_index;
124
125         usage = parser->local.usage[0];
126
127         if (parser->collection_stack_ptr == parser->collection_stack_size) {
128                 unsigned int *collection_stack;
129                 unsigned int new_size = parser->collection_stack_size +
130                                         HID_COLLECTION_STACK_SIZE;
131
132                 collection_stack = krealloc(parser->collection_stack,
133                                             new_size * sizeof(unsigned int),
134                                             GFP_KERNEL);
135                 if (!collection_stack)
136                         return -ENOMEM;
137
138                 parser->collection_stack = collection_stack;
139                 parser->collection_stack_size = new_size;
140         }
141
142         if (parser->device->maxcollection == parser->device->collection_size) {
143                 collection = kmalloc(
144                                 array3_size(sizeof(struct hid_collection),
145                                             parser->device->collection_size,
146                                             2),
147                                 GFP_KERNEL);
148                 if (collection == NULL) {
149                         hid_err(parser->device, "failed to reallocate collection array\n");
150                         return -ENOMEM;
151                 }
152                 memcpy(collection, parser->device->collection,
153                         sizeof(struct hid_collection) *
154                         parser->device->collection_size);
155                 memset(collection + parser->device->collection_size, 0,
156                         sizeof(struct hid_collection) *
157                         parser->device->collection_size);
158                 kfree(parser->device->collection);
159                 parser->device->collection = collection;
160                 parser->device->collection_size *= 2;
161         }
162
163         parser->collection_stack[parser->collection_stack_ptr++] =
164                 parser->device->maxcollection;
165
166         collection_index = parser->device->maxcollection++;
167         collection = parser->device->collection + collection_index;
168         collection->type = type;
169         collection->usage = usage;
170         collection->level = parser->collection_stack_ptr - 1;
171         collection->parent_idx = (collection->level == 0) ? -1 :
172                 parser->collection_stack[collection->level - 1];
173
174         if (type == HID_COLLECTION_APPLICATION)
175                 parser->device->maxapplication++;
176
177         return 0;
178 }
179
180 /*
181  * Close a collection.
182  */
183
184 static int close_collection(struct hid_parser *parser)
185 {
186         if (!parser->collection_stack_ptr) {
187                 hid_err(parser->device, "collection stack underflow\n");
188                 return -EINVAL;
189         }
190         parser->collection_stack_ptr--;
191         return 0;
192 }
193
194 /*
195  * Climb up the stack, search for the specified collection type
196  * and return the usage.
197  */
198
199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 {
201         struct hid_collection *collection = parser->device->collection;
202         int n;
203
204         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205                 unsigned index = parser->collection_stack[n];
206                 if (collection[index].type == type)
207                         return collection[index].usage;
208         }
209         return 0; /* we know nothing about this usage type */
210 }
211
212 /*
213  * Concatenate usage which defines 16 bits or less with the
214  * currently defined usage page to form a 32 bit usage
215  */
216
217 static void complete_usage(struct hid_parser *parser, unsigned int index)
218 {
219         parser->local.usage[index] &= 0xFFFF;
220         parser->local.usage[index] |=
221                 (parser->global.usage_page & 0xFFFF) << 16;
222 }
223
224 /*
225  * Add a usage to the temporary parser table.
226  */
227
228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 {
230         if (parser->local.usage_index >= HID_MAX_USAGES) {
231                 hid_err(parser->device, "usage index exceeded\n");
232                 return -1;
233         }
234         parser->local.usage[parser->local.usage_index] = usage;
235
236         /*
237          * If Usage item only includes usage id, concatenate it with
238          * currently defined usage page
239          */
240         if (size <= 2)
241                 complete_usage(parser, parser->local.usage_index);
242
243         parser->local.usage_size[parser->local.usage_index] = size;
244         parser->local.collection_index[parser->local.usage_index] =
245                 parser->collection_stack_ptr ?
246                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247         parser->local.usage_index++;
248         return 0;
249 }
250
251 /*
252  * Register a new field for this report.
253  */
254
255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 {
257         struct hid_report *report;
258         struct hid_field *field;
259         unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260         unsigned int usages;
261         unsigned int offset;
262         unsigned int i;
263         unsigned int application;
264
265         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
266
267         report = hid_register_report(parser->device, report_type,
268                                      parser->global.report_id, application);
269         if (!report) {
270                 hid_err(parser->device, "hid_register_report failed\n");
271                 return -1;
272         }
273
274         /* Handle both signed and unsigned cases properly */
275         if ((parser->global.logical_minimum < 0 &&
276                 parser->global.logical_maximum <
277                 parser->global.logical_minimum) ||
278                 (parser->global.logical_minimum >= 0 &&
279                 (__u32)parser->global.logical_maximum <
280                 (__u32)parser->global.logical_minimum)) {
281                 dbg_hid("logical range invalid 0x%x 0x%x\n",
282                         parser->global.logical_minimum,
283                         parser->global.logical_maximum);
284                 return -1;
285         }
286
287         offset = report->size;
288         report->size += parser->global.report_size * parser->global.report_count;
289
290         if (parser->device->ll_driver->max_buffer_size)
291                 max_buffer_size = parser->device->ll_driver->max_buffer_size;
292
293         /* Total size check: Allow for possible report index byte */
294         if (report->size > (max_buffer_size - 1) << 3) {
295                 hid_err(parser->device, "report is too long\n");
296                 return -1;
297         }
298
299         if (!parser->local.usage_index) /* Ignore padding fields */
300                 return 0;
301
302         usages = max_t(unsigned, parser->local.usage_index,
303                                  parser->global.report_count);
304
305         field = hid_register_field(report, usages);
306         if (!field)
307                 return 0;
308
309         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311         field->application = application;
312
313         for (i = 0; i < usages; i++) {
314                 unsigned j = i;
315                 /* Duplicate the last usage we parsed if we have excess values */
316                 if (i >= parser->local.usage_index)
317                         j = parser->local.usage_index - 1;
318                 field->usage[i].hid = parser->local.usage[j];
319                 field->usage[i].collection_index =
320                         parser->local.collection_index[j];
321                 field->usage[i].usage_index = i;
322                 field->usage[i].resolution_multiplier = 1;
323         }
324
325         field->maxusage = usages;
326         field->flags = flags;
327         field->report_offset = offset;
328         field->report_type = report_type;
329         field->report_size = parser->global.report_size;
330         field->report_count = parser->global.report_count;
331         field->logical_minimum = parser->global.logical_minimum;
332         field->logical_maximum = parser->global.logical_maximum;
333         field->physical_minimum = parser->global.physical_minimum;
334         field->physical_maximum = parser->global.physical_maximum;
335         field->unit_exponent = parser->global.unit_exponent;
336         field->unit = parser->global.unit;
337
338         return 0;
339 }
340
341 /*
342  * Read data value from item.
343  */
344
345 static u32 item_udata(struct hid_item *item)
346 {
347         switch (item->size) {
348         case 1: return item->data.u8;
349         case 2: return item->data.u16;
350         case 4: return item->data.u32;
351         }
352         return 0;
353 }
354
355 static s32 item_sdata(struct hid_item *item)
356 {
357         switch (item->size) {
358         case 1: return item->data.s8;
359         case 2: return item->data.s16;
360         case 4: return item->data.s32;
361         }
362         return 0;
363 }
364
365 /*
366  * Process a global item.
367  */
368
369 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
370 {
371         __s32 raw_value;
372         switch (item->tag) {
373         case HID_GLOBAL_ITEM_TAG_PUSH:
374
375                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376                         hid_err(parser->device, "global environment stack overflow\n");
377                         return -1;
378                 }
379
380                 memcpy(parser->global_stack + parser->global_stack_ptr++,
381                         &parser->global, sizeof(struct hid_global));
382                 return 0;
383
384         case HID_GLOBAL_ITEM_TAG_POP:
385
386                 if (!parser->global_stack_ptr) {
387                         hid_err(parser->device, "global environment stack underflow\n");
388                         return -1;
389                 }
390
391                 memcpy(&parser->global, parser->global_stack +
392                         --parser->global_stack_ptr, sizeof(struct hid_global));
393                 return 0;
394
395         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396                 parser->global.usage_page = item_udata(item);
397                 return 0;
398
399         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400                 parser->global.logical_minimum = item_sdata(item);
401                 return 0;
402
403         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404                 if (parser->global.logical_minimum < 0)
405                         parser->global.logical_maximum = item_sdata(item);
406                 else
407                         parser->global.logical_maximum = item_udata(item);
408                 return 0;
409
410         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411                 parser->global.physical_minimum = item_sdata(item);
412                 return 0;
413
414         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415                 if (parser->global.physical_minimum < 0)
416                         parser->global.physical_maximum = item_sdata(item);
417                 else
418                         parser->global.physical_maximum = item_udata(item);
419                 return 0;
420
421         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422                 /* Many devices provide unit exponent as a two's complement
423                  * nibble due to the common misunderstanding of HID
424                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425                  * both this and the standard encoding. */
426                 raw_value = item_sdata(item);
427                 if (!(raw_value & 0xfffffff0))
428                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
429                 else
430                         parser->global.unit_exponent = raw_value;
431                 return 0;
432
433         case HID_GLOBAL_ITEM_TAG_UNIT:
434                 parser->global.unit = item_udata(item);
435                 return 0;
436
437         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438                 parser->global.report_size = item_udata(item);
439                 if (parser->global.report_size > 256) {
440                         hid_err(parser->device, "invalid report_size %d\n",
441                                         parser->global.report_size);
442                         return -1;
443                 }
444                 return 0;
445
446         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447                 parser->global.report_count = item_udata(item);
448                 if (parser->global.report_count > HID_MAX_USAGES) {
449                         hid_err(parser->device, "invalid report_count %d\n",
450                                         parser->global.report_count);
451                         return -1;
452                 }
453                 return 0;
454
455         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456                 parser->global.report_id = item_udata(item);
457                 if (parser->global.report_id == 0 ||
458                     parser->global.report_id >= HID_MAX_IDS) {
459                         hid_err(parser->device, "report_id %u is invalid\n",
460                                 parser->global.report_id);
461                         return -1;
462                 }
463                 return 0;
464
465         default:
466                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467                 return -1;
468         }
469 }
470
471 /*
472  * Process a local item.
473  */
474
475 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
476 {
477         __u32 data;
478         unsigned n;
479         __u32 count;
480
481         data = item_udata(item);
482
483         switch (item->tag) {
484         case HID_LOCAL_ITEM_TAG_DELIMITER:
485
486                 if (data) {
487                         /*
488                          * We treat items before the first delimiter
489                          * as global to all usage sets (branch 0).
490                          * In the moment we process only these global
491                          * items and the first delimiter set.
492                          */
493                         if (parser->local.delimiter_depth != 0) {
494                                 hid_err(parser->device, "nested delimiters\n");
495                                 return -1;
496                         }
497                         parser->local.delimiter_depth++;
498                         parser->local.delimiter_branch++;
499                 } else {
500                         if (parser->local.delimiter_depth < 1) {
501                                 hid_err(parser->device, "bogus close delimiter\n");
502                                 return -1;
503                         }
504                         parser->local.delimiter_depth--;
505                 }
506                 return 0;
507
508         case HID_LOCAL_ITEM_TAG_USAGE:
509
510                 if (parser->local.delimiter_branch > 1) {
511                         dbg_hid("alternative usage ignored\n");
512                         return 0;
513                 }
514
515                 return hid_add_usage(parser, data, item->size);
516
517         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
518
519                 if (parser->local.delimiter_branch > 1) {
520                         dbg_hid("alternative usage ignored\n");
521                         return 0;
522                 }
523
524                 parser->local.usage_minimum = data;
525                 return 0;
526
527         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
528
529                 if (parser->local.delimiter_branch > 1) {
530                         dbg_hid("alternative usage ignored\n");
531                         return 0;
532                 }
533
534                 count = data - parser->local.usage_minimum;
535                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
536                         /*
537                          * We do not warn if the name is not set, we are
538                          * actually pre-scanning the device.
539                          */
540                         if (dev_name(&parser->device->dev))
541                                 hid_warn(parser->device,
542                                          "ignoring exceeding usage max\n");
543                         data = HID_MAX_USAGES - parser->local.usage_index +
544                                 parser->local.usage_minimum - 1;
545                         if (data <= 0) {
546                                 hid_err(parser->device,
547                                         "no more usage index available\n");
548                                 return -1;
549                         }
550                 }
551
552                 for (n = parser->local.usage_minimum; n <= data; n++)
553                         if (hid_add_usage(parser, n, item->size)) {
554                                 dbg_hid("hid_add_usage failed\n");
555                                 return -1;
556                         }
557                 return 0;
558
559         default:
560
561                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
562                 return 0;
563         }
564         return 0;
565 }
566
567 /*
568  * Concatenate Usage Pages into Usages where relevant:
569  * As per specification, 6.2.2.8: "When the parser encounters a main item it
570  * concatenates the last declared Usage Page with a Usage to form a complete
571  * usage value."
572  */
573
574 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
575 {
576         int i;
577         unsigned int usage_page;
578         unsigned int current_page;
579
580         if (!parser->local.usage_index)
581                 return;
582
583         usage_page = parser->global.usage_page;
584
585         /*
586          * Concatenate usage page again only if last declared Usage Page
587          * has not been already used in previous usages concatenation
588          */
589         for (i = parser->local.usage_index - 1; i >= 0; i--) {
590                 if (parser->local.usage_size[i] > 2)
591                         /* Ignore extended usages */
592                         continue;
593
594                 current_page = parser->local.usage[i] >> 16;
595                 if (current_page == usage_page)
596                         break;
597
598                 complete_usage(parser, i);
599         }
600 }
601
602 /*
603  * Process a main item.
604  */
605
606 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
607 {
608         __u32 data;
609         int ret;
610
611         hid_concatenate_last_usage_page(parser);
612
613         data = item_udata(item);
614
615         switch (item->tag) {
616         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617                 ret = open_collection(parser, data & 0xff);
618                 break;
619         case HID_MAIN_ITEM_TAG_END_COLLECTION:
620                 ret = close_collection(parser);
621                 break;
622         case HID_MAIN_ITEM_TAG_INPUT:
623                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624                 break;
625         case HID_MAIN_ITEM_TAG_OUTPUT:
626                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627                 break;
628         case HID_MAIN_ITEM_TAG_FEATURE:
629                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630                 break;
631         default:
632                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633                 ret = 0;
634         }
635
636         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
637
638         return ret;
639 }
640
641 /*
642  * Process a reserved item.
643  */
644
645 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
646 {
647         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648         return 0;
649 }
650
651 /*
652  * Free a report and all registered fields. The field->usage and
653  * field->value table's are allocated behind the field, so we need
654  * only to free(field) itself.
655  */
656
657 static void hid_free_report(struct hid_report *report)
658 {
659         unsigned n;
660
661         kfree(report->field_entries);
662
663         for (n = 0; n < report->maxfield; n++)
664                 kvfree(report->field[n]);
665         kfree(report);
666 }
667
668 /*
669  * Close report. This function returns the device
670  * state to the point prior to hid_open_report().
671  */
672 static void hid_close_report(struct hid_device *device)
673 {
674         unsigned i, j;
675
676         for (i = 0; i < HID_REPORT_TYPES; i++) {
677                 struct hid_report_enum *report_enum = device->report_enum + i;
678
679                 for (j = 0; j < HID_MAX_IDS; j++) {
680                         struct hid_report *report = report_enum->report_id_hash[j];
681                         if (report)
682                                 hid_free_report(report);
683                 }
684                 memset(report_enum, 0, sizeof(*report_enum));
685                 INIT_LIST_HEAD(&report_enum->report_list);
686         }
687
688         kfree(device->rdesc);
689         device->rdesc = NULL;
690         device->rsize = 0;
691
692         kfree(device->collection);
693         device->collection = NULL;
694         device->collection_size = 0;
695         device->maxcollection = 0;
696         device->maxapplication = 0;
697
698         device->status &= ~HID_STAT_PARSED;
699 }
700
701 /*
702  * Free a device structure, all reports, and all fields.
703  */
704
705 void hiddev_free(struct kref *ref)
706 {
707         struct hid_device *hid = container_of(ref, struct hid_device, ref);
708
709         hid_close_report(hid);
710         kfree(hid->dev_rdesc);
711         kfree(hid);
712 }
713
714 static void hid_device_release(struct device *dev)
715 {
716         struct hid_device *hid = to_hid_device(dev);
717
718         kref_put(&hid->ref, hiddev_free);
719 }
720
721 /*
722  * Fetch a report description item from the data stream. We support long
723  * items, though they are not used yet.
724  */
725
726 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
727 {
728         u8 b;
729
730         if ((end - start) <= 0)
731                 return NULL;
732
733         b = *start++;
734
735         item->type = (b >> 2) & 3;
736         item->tag  = (b >> 4) & 15;
737
738         if (item->tag == HID_ITEM_TAG_LONG) {
739
740                 item->format = HID_ITEM_FORMAT_LONG;
741
742                 if ((end - start) < 2)
743                         return NULL;
744
745                 item->size = *start++;
746                 item->tag  = *start++;
747
748                 if ((end - start) < item->size)
749                         return NULL;
750
751                 item->data.longdata = start;
752                 start += item->size;
753                 return start;
754         }
755
756         item->format = HID_ITEM_FORMAT_SHORT;
757         item->size = b & 3;
758
759         switch (item->size) {
760         case 0:
761                 return start;
762
763         case 1:
764                 if ((end - start) < 1)
765                         return NULL;
766                 item->data.u8 = *start++;
767                 return start;
768
769         case 2:
770                 if ((end - start) < 2)
771                         return NULL;
772                 item->data.u16 = get_unaligned_le16(start);
773                 start = (__u8 *)((__le16 *)start + 1);
774                 return start;
775
776         case 3:
777                 item->size++;
778                 if ((end - start) < 4)
779                         return NULL;
780                 item->data.u32 = get_unaligned_le32(start);
781                 start = (__u8 *)((__le32 *)start + 1);
782                 return start;
783         }
784
785         return NULL;
786 }
787
788 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
789 {
790         struct hid_device *hid = parser->device;
791
792         if (usage == HID_DG_CONTACTID)
793                 hid->group = HID_GROUP_MULTITOUCH;
794 }
795
796 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
797 {
798         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
799             parser->global.report_size == 8)
800                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
801
802         if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
803             parser->global.report_size == 8)
804                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
805 }
806
807 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
808 {
809         struct hid_device *hid = parser->device;
810         int i;
811
812         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
813             (type == HID_COLLECTION_PHYSICAL ||
814              type == HID_COLLECTION_APPLICATION))
815                 hid->group = HID_GROUP_SENSOR_HUB;
816
817         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
818             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
819             hid->group == HID_GROUP_MULTITOUCH)
820                 hid->group = HID_GROUP_GENERIC;
821
822         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
823                 for (i = 0; i < parser->local.usage_index; i++)
824                         if (parser->local.usage[i] == HID_GD_POINTER)
825                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
826
827         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
828                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
829
830         if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
831                 for (i = 0; i < parser->local.usage_index; i++)
832                         if (parser->local.usage[i] ==
833                                         (HID_UP_GOOGLEVENDOR | 0x0001))
834                                 parser->device->group =
835                                         HID_GROUP_VIVALDI;
836 }
837
838 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
839 {
840         __u32 data;
841         int i;
842
843         hid_concatenate_last_usage_page(parser);
844
845         data = item_udata(item);
846
847         switch (item->tag) {
848         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
849                 hid_scan_collection(parser, data & 0xff);
850                 break;
851         case HID_MAIN_ITEM_TAG_END_COLLECTION:
852                 break;
853         case HID_MAIN_ITEM_TAG_INPUT:
854                 /* ignore constant inputs, they will be ignored by hid-input */
855                 if (data & HID_MAIN_ITEM_CONSTANT)
856                         break;
857                 for (i = 0; i < parser->local.usage_index; i++)
858                         hid_scan_input_usage(parser, parser->local.usage[i]);
859                 break;
860         case HID_MAIN_ITEM_TAG_OUTPUT:
861                 break;
862         case HID_MAIN_ITEM_TAG_FEATURE:
863                 for (i = 0; i < parser->local.usage_index; i++)
864                         hid_scan_feature_usage(parser, parser->local.usage[i]);
865                 break;
866         }
867
868         /* Reset the local parser environment */
869         memset(&parser->local, 0, sizeof(parser->local));
870
871         return 0;
872 }
873
874 /*
875  * Scan a report descriptor before the device is added to the bus.
876  * Sets device groups and other properties that determine what driver
877  * to load.
878  */
879 static int hid_scan_report(struct hid_device *hid)
880 {
881         struct hid_parser *parser;
882         struct hid_item item;
883         const __u8 *start = hid->dev_rdesc;
884         const __u8 *end = start + hid->dev_rsize;
885         static int (*dispatch_type[])(struct hid_parser *parser,
886                                       struct hid_item *item) = {
887                 hid_scan_main,
888                 hid_parser_global,
889                 hid_parser_local,
890                 hid_parser_reserved
891         };
892
893         parser = vzalloc(sizeof(struct hid_parser));
894         if (!parser)
895                 return -ENOMEM;
896
897         parser->device = hid;
898         hid->group = HID_GROUP_GENERIC;
899
900         /*
901          * The parsing is simpler than the one in hid_open_report() as we should
902          * be robust against hid errors. Those errors will be raised by
903          * hid_open_report() anyway.
904          */
905         while ((start = fetch_item(start, end, &item)) != NULL)
906                 dispatch_type[item.type](parser, &item);
907
908         /*
909          * Handle special flags set during scanning.
910          */
911         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
912             (hid->group == HID_GROUP_MULTITOUCH))
913                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
914
915         /*
916          * Vendor specific handlings
917          */
918         switch (hid->vendor) {
919         case USB_VENDOR_ID_WACOM:
920                 hid->group = HID_GROUP_WACOM;
921                 break;
922         case USB_VENDOR_ID_SYNAPTICS:
923                 if (hid->group == HID_GROUP_GENERIC)
924                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
925                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
926                                 /*
927                                  * hid-rmi should take care of them,
928                                  * not hid-generic
929                                  */
930                                 hid->group = HID_GROUP_RMI;
931                 break;
932         }
933
934         kfree(parser->collection_stack);
935         vfree(parser);
936         return 0;
937 }
938
939 /**
940  * hid_parse_report - parse device report
941  *
942  * @hid: hid device
943  * @start: report start
944  * @size: report size
945  *
946  * Allocate the device report as read by the bus driver. This function should
947  * only be called from parse() in ll drivers.
948  */
949 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
950 {
951         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
952         if (!hid->dev_rdesc)
953                 return -ENOMEM;
954         hid->dev_rsize = size;
955         return 0;
956 }
957 EXPORT_SYMBOL_GPL(hid_parse_report);
958
959 static const char * const hid_report_names[] = {
960         "HID_INPUT_REPORT",
961         "HID_OUTPUT_REPORT",
962         "HID_FEATURE_REPORT",
963 };
964 /**
965  * hid_validate_values - validate existing device report's value indexes
966  *
967  * @hid: hid device
968  * @type: which report type to examine
969  * @id: which report ID to examine (0 for first)
970  * @field_index: which report field to examine
971  * @report_counts: expected number of values
972  *
973  * Validate the number of values in a given field of a given report, after
974  * parsing.
975  */
976 struct hid_report *hid_validate_values(struct hid_device *hid,
977                                        enum hid_report_type type, unsigned int id,
978                                        unsigned int field_index,
979                                        unsigned int report_counts)
980 {
981         struct hid_report *report;
982
983         if (type > HID_FEATURE_REPORT) {
984                 hid_err(hid, "invalid HID report type %u\n", type);
985                 return NULL;
986         }
987
988         if (id >= HID_MAX_IDS) {
989                 hid_err(hid, "invalid HID report id %u\n", id);
990                 return NULL;
991         }
992
993         /*
994          * Explicitly not using hid_get_report() here since it depends on
995          * ->numbered being checked, which may not always be the case when
996          * drivers go to access report values.
997          */
998         if (id == 0) {
999                 /*
1000                  * Validating on id 0 means we should examine the first
1001                  * report in the list.
1002                  */
1003                 report = list_first_entry_or_null(
1004                                 &hid->report_enum[type].report_list,
1005                                 struct hid_report, list);
1006         } else {
1007                 report = hid->report_enum[type].report_id_hash[id];
1008         }
1009         if (!report) {
1010                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1011                 return NULL;
1012         }
1013         if (report->maxfield <= field_index) {
1014                 hid_err(hid, "not enough fields in %s %u\n",
1015                         hid_report_names[type], id);
1016                 return NULL;
1017         }
1018         if (report->field[field_index]->report_count < report_counts) {
1019                 hid_err(hid, "not enough values in %s %u field %u\n",
1020                         hid_report_names[type], id, field_index);
1021                 return NULL;
1022         }
1023         return report;
1024 }
1025 EXPORT_SYMBOL_GPL(hid_validate_values);
1026
1027 static int hid_calculate_multiplier(struct hid_device *hid,
1028                                      struct hid_field *multiplier)
1029 {
1030         int m;
1031         __s32 v = *multiplier->value;
1032         __s32 lmin = multiplier->logical_minimum;
1033         __s32 lmax = multiplier->logical_maximum;
1034         __s32 pmin = multiplier->physical_minimum;
1035         __s32 pmax = multiplier->physical_maximum;
1036
1037         /*
1038          * "Because OS implementations will generally divide the control's
1039          * reported count by the Effective Resolution Multiplier, designers
1040          * should take care not to establish a potential Effective
1041          * Resolution Multiplier of zero."
1042          * HID Usage Table, v1.12, Section 4.3.1, p31
1043          */
1044         if (lmax - lmin == 0)
1045                 return 1;
1046         /*
1047          * Handling the unit exponent is left as an exercise to whoever
1048          * finds a device where that exponent is not 0.
1049          */
1050         m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1051         if (unlikely(multiplier->unit_exponent != 0)) {
1052                 hid_warn(hid,
1053                          "unsupported Resolution Multiplier unit exponent %d\n",
1054                          multiplier->unit_exponent);
1055         }
1056
1057         /* There are no devices with an effective multiplier > 255 */
1058         if (unlikely(m == 0 || m > 255 || m < -255)) {
1059                 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1060                 m = 1;
1061         }
1062
1063         return m;
1064 }
1065
1066 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1067                                           struct hid_field *field,
1068                                           struct hid_collection *multiplier_collection,
1069                                           int effective_multiplier)
1070 {
1071         struct hid_collection *collection;
1072         struct hid_usage *usage;
1073         int i;
1074
1075         /*
1076          * If multiplier_collection is NULL, the multiplier applies
1077          * to all fields in the report.
1078          * Otherwise, it is the Logical Collection the multiplier applies to
1079          * but our field may be in a subcollection of that collection.
1080          */
1081         for (i = 0; i < field->maxusage; i++) {
1082                 usage = &field->usage[i];
1083
1084                 collection = &hid->collection[usage->collection_index];
1085                 while (collection->parent_idx != -1 &&
1086                        collection != multiplier_collection)
1087                         collection = &hid->collection[collection->parent_idx];
1088
1089                 if (collection->parent_idx != -1 ||
1090                     multiplier_collection == NULL)
1091                         usage->resolution_multiplier = effective_multiplier;
1092
1093         }
1094 }
1095
1096 static void hid_apply_multiplier(struct hid_device *hid,
1097                                  struct hid_field *multiplier)
1098 {
1099         struct hid_report_enum *rep_enum;
1100         struct hid_report *rep;
1101         struct hid_field *field;
1102         struct hid_collection *multiplier_collection;
1103         int effective_multiplier;
1104         int i;
1105
1106         /*
1107          * "The Resolution Multiplier control must be contained in the same
1108          * Logical Collection as the control(s) to which it is to be applied.
1109          * If no Resolution Multiplier is defined, then the Resolution
1110          * Multiplier defaults to 1.  If more than one control exists in a
1111          * Logical Collection, the Resolution Multiplier is associated with
1112          * all controls in the collection. If no Logical Collection is
1113          * defined, the Resolution Multiplier is associated with all
1114          * controls in the report."
1115          * HID Usage Table, v1.12, Section 4.3.1, p30
1116          *
1117          * Thus, search from the current collection upwards until we find a
1118          * logical collection. Then search all fields for that same parent
1119          * collection. Those are the fields the multiplier applies to.
1120          *
1121          * If we have more than one multiplier, it will overwrite the
1122          * applicable fields later.
1123          */
1124         multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1125         while (multiplier_collection->parent_idx != -1 &&
1126                multiplier_collection->type != HID_COLLECTION_LOGICAL)
1127                 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1128
1129         effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1130
1131         rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1132         list_for_each_entry(rep, &rep_enum->report_list, list) {
1133                 for (i = 0; i < rep->maxfield; i++) {
1134                         field = rep->field[i];
1135                         hid_apply_multiplier_to_field(hid, field,
1136                                                       multiplier_collection,
1137                                                       effective_multiplier);
1138                 }
1139         }
1140 }
1141
1142 /*
1143  * hid_setup_resolution_multiplier - set up all resolution multipliers
1144  *
1145  * @device: hid device
1146  *
1147  * Search for all Resolution Multiplier Feature Reports and apply their
1148  * value to all matching Input items. This only updates the internal struct
1149  * fields.
1150  *
1151  * The Resolution Multiplier is applied by the hardware. If the multiplier
1152  * is anything other than 1, the hardware will send pre-multiplied events
1153  * so that the same physical interaction generates an accumulated
1154  *      accumulated_value = value * * multiplier
1155  * This may be achieved by sending
1156  * - "value * multiplier" for each event, or
1157  * - "value" but "multiplier" times as frequently, or
1158  * - a combination of the above
1159  * The only guarantee is that the same physical interaction always generates
1160  * an accumulated 'value * multiplier'.
1161  *
1162  * This function must be called before any event processing and after
1163  * any SetRequest to the Resolution Multiplier.
1164  */
1165 void hid_setup_resolution_multiplier(struct hid_device *hid)
1166 {
1167         struct hid_report_enum *rep_enum;
1168         struct hid_report *rep;
1169         struct hid_usage *usage;
1170         int i, j;
1171
1172         rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1173         list_for_each_entry(rep, &rep_enum->report_list, list) {
1174                 for (i = 0; i < rep->maxfield; i++) {
1175                         /* Ignore if report count is out of bounds. */
1176                         if (rep->field[i]->report_count < 1)
1177                                 continue;
1178
1179                         for (j = 0; j < rep->field[i]->maxusage; j++) {
1180                                 usage = &rep->field[i]->usage[j];
1181                                 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1182                                         hid_apply_multiplier(hid,
1183                                                              rep->field[i]);
1184                         }
1185                 }
1186         }
1187 }
1188 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1189
1190 /**
1191  * hid_open_report - open a driver-specific device report
1192  *
1193  * @device: hid device
1194  *
1195  * Parse a report description into a hid_device structure. Reports are
1196  * enumerated, fields are attached to these reports.
1197  * 0 returned on success, otherwise nonzero error value.
1198  *
1199  * This function (or the equivalent hid_parse() macro) should only be
1200  * called from probe() in drivers, before starting the device.
1201  */
1202 int hid_open_report(struct hid_device *device)
1203 {
1204         struct hid_parser *parser;
1205         struct hid_item item;
1206         unsigned int size;
1207         const __u8 *start;
1208         __u8 *buf;
1209         const __u8 *end;
1210         const __u8 *next;
1211         int ret;
1212         int i;
1213         static int (*dispatch_type[])(struct hid_parser *parser,
1214                                       struct hid_item *item) = {
1215                 hid_parser_main,
1216                 hid_parser_global,
1217                 hid_parser_local,
1218                 hid_parser_reserved
1219         };
1220
1221         if (WARN_ON(device->status & HID_STAT_PARSED))
1222                 return -EBUSY;
1223
1224         start = device->dev_rdesc;
1225         if (WARN_ON(!start))
1226                 return -ENODEV;
1227         size = device->dev_rsize;
1228
1229         /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1230         buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1231         if (buf == NULL)
1232                 return -ENOMEM;
1233
1234         if (device->driver->report_fixup)
1235                 start = device->driver->report_fixup(device, buf, &size);
1236         else
1237                 start = buf;
1238
1239         start = kmemdup(start, size, GFP_KERNEL);
1240         kfree(buf);
1241         if (start == NULL)
1242                 return -ENOMEM;
1243
1244         device->rdesc = start;
1245         device->rsize = size;
1246
1247         parser = vzalloc(sizeof(struct hid_parser));
1248         if (!parser) {
1249                 ret = -ENOMEM;
1250                 goto alloc_err;
1251         }
1252
1253         parser->device = device;
1254
1255         end = start + size;
1256
1257         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1258                                      sizeof(struct hid_collection), GFP_KERNEL);
1259         if (!device->collection) {
1260                 ret = -ENOMEM;
1261                 goto err;
1262         }
1263         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1264         for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1265                 device->collection[i].parent_idx = -1;
1266
1267         ret = -EINVAL;
1268         while ((next = fetch_item(start, end, &item)) != NULL) {
1269                 start = next;
1270
1271                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1272                         hid_err(device, "unexpected long global item\n");
1273                         goto err;
1274                 }
1275
1276                 if (dispatch_type[item.type](parser, &item)) {
1277                         hid_err(device, "item %u %u %u %u parsing failed\n",
1278                                 item.format, (unsigned)item.size,
1279                                 (unsigned)item.type, (unsigned)item.tag);
1280                         goto err;
1281                 }
1282
1283                 if (start == end) {
1284                         if (parser->collection_stack_ptr) {
1285                                 hid_err(device, "unbalanced collection at end of report description\n");
1286                                 goto err;
1287                         }
1288                         if (parser->local.delimiter_depth) {
1289                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1290                                 goto err;
1291                         }
1292
1293                         /*
1294                          * fetch initial values in case the device's
1295                          * default multiplier isn't the recommended 1
1296                          */
1297                         hid_setup_resolution_multiplier(device);
1298
1299                         kfree(parser->collection_stack);
1300                         vfree(parser);
1301                         device->status |= HID_STAT_PARSED;
1302
1303                         return 0;
1304                 }
1305         }
1306
1307         hid_err(device, "item fetching failed at offset %u/%u\n",
1308                 size - (unsigned int)(end - start), size);
1309 err:
1310         kfree(parser->collection_stack);
1311 alloc_err:
1312         vfree(parser);
1313         hid_close_report(device);
1314         return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(hid_open_report);
1317
1318 /*
1319  * Convert a signed n-bit integer to signed 32-bit integer. Common
1320  * cases are done through the compiler, the screwed things has to be
1321  * done by hand.
1322  */
1323
1324 static s32 snto32(__u32 value, unsigned n)
1325 {
1326         if (!value || !n)
1327                 return 0;
1328
1329         if (n > 32)
1330                 n = 32;
1331
1332         switch (n) {
1333         case 8:  return ((__s8)value);
1334         case 16: return ((__s16)value);
1335         case 32: return ((__s32)value);
1336         }
1337         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1338 }
1339
1340 s32 hid_snto32(__u32 value, unsigned n)
1341 {
1342         return snto32(value, n);
1343 }
1344 EXPORT_SYMBOL_GPL(hid_snto32);
1345
1346 /*
1347  * Convert a signed 32-bit integer to a signed n-bit integer.
1348  */
1349
1350 static u32 s32ton(__s32 value, unsigned n)
1351 {
1352         s32 a = value >> (n - 1);
1353         if (a && a != -1)
1354                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1355         return value & ((1 << n) - 1);
1356 }
1357
1358 /*
1359  * Extract/implement a data field from/to a little endian report (bit array).
1360  *
1361  * Code sort-of follows HID spec:
1362  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1363  *
1364  * While the USB HID spec allows unlimited length bit fields in "report
1365  * descriptors", most devices never use more than 16 bits.
1366  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1367  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1368  */
1369
1370 static u32 __extract(u8 *report, unsigned offset, int n)
1371 {
1372         unsigned int idx = offset / 8;
1373         unsigned int bit_nr = 0;
1374         unsigned int bit_shift = offset % 8;
1375         int bits_to_copy = 8 - bit_shift;
1376         u32 value = 0;
1377         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1378
1379         while (n > 0) {
1380                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1381                 n -= bits_to_copy;
1382                 bit_nr += bits_to_copy;
1383                 bits_to_copy = 8;
1384                 bit_shift = 0;
1385                 idx++;
1386         }
1387
1388         return value & mask;
1389 }
1390
1391 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1392                         unsigned offset, unsigned n)
1393 {
1394         if (n > 32) {
1395                 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1396                               __func__, n, current->comm);
1397                 n = 32;
1398         }
1399
1400         return __extract(report, offset, n);
1401 }
1402 EXPORT_SYMBOL_GPL(hid_field_extract);
1403
1404 /*
1405  * "implement" : set bits in a little endian bit stream.
1406  * Same concepts as "extract" (see comments above).
1407  * The data mangled in the bit stream remains in little endian
1408  * order the whole time. It make more sense to talk about
1409  * endianness of register values by considering a register
1410  * a "cached" copy of the little endian bit stream.
1411  */
1412
1413 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1414 {
1415         unsigned int idx = offset / 8;
1416         unsigned int bit_shift = offset % 8;
1417         int bits_to_set = 8 - bit_shift;
1418
1419         while (n - bits_to_set >= 0) {
1420                 report[idx] &= ~(0xff << bit_shift);
1421                 report[idx] |= value << bit_shift;
1422                 value >>= bits_to_set;
1423                 n -= bits_to_set;
1424                 bits_to_set = 8;
1425                 bit_shift = 0;
1426                 idx++;
1427         }
1428
1429         /* last nibble */
1430         if (n) {
1431                 u8 bit_mask = ((1U << n) - 1);
1432                 report[idx] &= ~(bit_mask << bit_shift);
1433                 report[idx] |= value << bit_shift;
1434         }
1435 }
1436
1437 static void implement(const struct hid_device *hid, u8 *report,
1438                       unsigned offset, unsigned n, u32 value)
1439 {
1440         if (unlikely(n > 32)) {
1441                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1442                          __func__, n, current->comm);
1443                 n = 32;
1444         } else if (n < 32) {
1445                 u32 m = (1U << n) - 1;
1446
1447                 if (unlikely(value > m)) {
1448                         hid_warn(hid,
1449                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1450                                  __func__, value, n, current->comm);
1451                         value &= m;
1452                 }
1453         }
1454
1455         __implement(report, offset, n, value);
1456 }
1457
1458 /*
1459  * Search an array for a value.
1460  */
1461
1462 static int search(__s32 *array, __s32 value, unsigned n)
1463 {
1464         while (n--) {
1465                 if (*array++ == value)
1466                         return 0;
1467         }
1468         return -1;
1469 }
1470
1471 /**
1472  * hid_match_report - check if driver's raw_event should be called
1473  *
1474  * @hid: hid device
1475  * @report: hid report to match against
1476  *
1477  * compare hid->driver->report_table->report_type to report->type
1478  */
1479 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1480 {
1481         const struct hid_report_id *id = hid->driver->report_table;
1482
1483         if (!id) /* NULL means all */
1484                 return 1;
1485
1486         for (; id->report_type != HID_TERMINATOR; id++)
1487                 if (id->report_type == HID_ANY_ID ||
1488                                 id->report_type == report->type)
1489                         return 1;
1490         return 0;
1491 }
1492
1493 /**
1494  * hid_match_usage - check if driver's event should be called
1495  *
1496  * @hid: hid device
1497  * @usage: usage to match against
1498  *
1499  * compare hid->driver->usage_table->usage_{type,code} to
1500  * usage->usage_{type,code}
1501  */
1502 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1503 {
1504         const struct hid_usage_id *id = hid->driver->usage_table;
1505
1506         if (!id) /* NULL means all */
1507                 return 1;
1508
1509         for (; id->usage_type != HID_ANY_ID - 1; id++)
1510                 if ((id->usage_hid == HID_ANY_ID ||
1511                                 id->usage_hid == usage->hid) &&
1512                                 (id->usage_type == HID_ANY_ID ||
1513                                 id->usage_type == usage->type) &&
1514                                 (id->usage_code == HID_ANY_ID ||
1515                                  id->usage_code == usage->code))
1516                         return 1;
1517         return 0;
1518 }
1519
1520 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1521                 struct hid_usage *usage, __s32 value, int interrupt)
1522 {
1523         struct hid_driver *hdrv = hid->driver;
1524         int ret;
1525
1526         if (!list_empty(&hid->debug_list))
1527                 hid_dump_input(hid, usage, value);
1528
1529         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1530                 ret = hdrv->event(hid, field, usage, value);
1531                 if (ret != 0) {
1532                         if (ret < 0)
1533                                 hid_err(hid, "%s's event failed with %d\n",
1534                                                 hdrv->name, ret);
1535                         return;
1536                 }
1537         }
1538
1539         if (hid->claimed & HID_CLAIMED_INPUT)
1540                 hidinput_hid_event(hid, field, usage, value);
1541         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1542                 hid->hiddev_hid_event(hid, field, usage, value);
1543 }
1544
1545 /*
1546  * Checks if the given value is valid within this field
1547  */
1548 static inline int hid_array_value_is_valid(struct hid_field *field,
1549                                            __s32 value)
1550 {
1551         __s32 min = field->logical_minimum;
1552
1553         /*
1554          * Value needs to be between logical min and max, and
1555          * (value - min) is used as an index in the usage array.
1556          * This array is of size field->maxusage
1557          */
1558         return value >= min &&
1559                value <= field->logical_maximum &&
1560                value - min < field->maxusage;
1561 }
1562
1563 /*
1564  * Fetch the field from the data. The field content is stored for next
1565  * report processing (we do differential reporting to the layer).
1566  */
1567 static void hid_input_fetch_field(struct hid_device *hid,
1568                                   struct hid_field *field,
1569                                   __u8 *data)
1570 {
1571         unsigned n;
1572         unsigned count = field->report_count;
1573         unsigned offset = field->report_offset;
1574         unsigned size = field->report_size;
1575         __s32 min = field->logical_minimum;
1576         __s32 *value;
1577
1578         value = field->new_value;
1579         memset(value, 0, count * sizeof(__s32));
1580         field->ignored = false;
1581
1582         for (n = 0; n < count; n++) {
1583
1584                 value[n] = min < 0 ?
1585                         snto32(hid_field_extract(hid, data, offset + n * size,
1586                                size), size) :
1587                         hid_field_extract(hid, data, offset + n * size, size);
1588
1589                 /* Ignore report if ErrorRollOver */
1590                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1591                     hid_array_value_is_valid(field, value[n]) &&
1592                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1593                         field->ignored = true;
1594                         return;
1595                 }
1596         }
1597 }
1598
1599 /*
1600  * Process a received variable field.
1601  */
1602
1603 static void hid_input_var_field(struct hid_device *hid,
1604                                 struct hid_field *field,
1605                                 int interrupt)
1606 {
1607         unsigned int count = field->report_count;
1608         __s32 *value = field->new_value;
1609         unsigned int n;
1610
1611         for (n = 0; n < count; n++)
1612                 hid_process_event(hid,
1613                                   field,
1614                                   &field->usage[n],
1615                                   value[n],
1616                                   interrupt);
1617
1618         memcpy(field->value, value, count * sizeof(__s32));
1619 }
1620
1621 /*
1622  * Process a received array field. The field content is stored for
1623  * next report processing (we do differential reporting to the layer).
1624  */
1625
1626 static void hid_input_array_field(struct hid_device *hid,
1627                                   struct hid_field *field,
1628                                   int interrupt)
1629 {
1630         unsigned int n;
1631         unsigned int count = field->report_count;
1632         __s32 min = field->logical_minimum;
1633         __s32 *value;
1634
1635         value = field->new_value;
1636
1637         /* ErrorRollOver */
1638         if (field->ignored)
1639                 return;
1640
1641         for (n = 0; n < count; n++) {
1642                 if (hid_array_value_is_valid(field, field->value[n]) &&
1643                     search(value, field->value[n], count))
1644                         hid_process_event(hid,
1645                                           field,
1646                                           &field->usage[field->value[n] - min],
1647                                           0,
1648                                           interrupt);
1649
1650                 if (hid_array_value_is_valid(field, value[n]) &&
1651                     search(field->value, value[n], count))
1652                         hid_process_event(hid,
1653                                           field,
1654                                           &field->usage[value[n] - min],
1655                                           1,
1656                                           interrupt);
1657         }
1658
1659         memcpy(field->value, value, count * sizeof(__s32));
1660 }
1661
1662 /*
1663  * Analyse a received report, and fetch the data from it. The field
1664  * content is stored for next report processing (we do differential
1665  * reporting to the layer).
1666  */
1667 static void hid_process_report(struct hid_device *hid,
1668                                struct hid_report *report,
1669                                __u8 *data,
1670                                int interrupt)
1671 {
1672         unsigned int a;
1673         struct hid_field_entry *entry;
1674         struct hid_field *field;
1675
1676         /* first retrieve all incoming values in data */
1677         for (a = 0; a < report->maxfield; a++)
1678                 hid_input_fetch_field(hid, report->field[a], data);
1679
1680         if (!list_empty(&report->field_entry_list)) {
1681                 /* INPUT_REPORT, we have a priority list of fields */
1682                 list_for_each_entry(entry,
1683                                     &report->field_entry_list,
1684                                     list) {
1685                         field = entry->field;
1686
1687                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1688                                 hid_process_event(hid,
1689                                                   field,
1690                                                   &field->usage[entry->index],
1691                                                   field->new_value[entry->index],
1692                                                   interrupt);
1693                         else
1694                                 hid_input_array_field(hid, field, interrupt);
1695                 }
1696
1697                 /* we need to do the memcpy at the end for var items */
1698                 for (a = 0; a < report->maxfield; a++) {
1699                         field = report->field[a];
1700
1701                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1702                                 memcpy(field->value, field->new_value,
1703                                        field->report_count * sizeof(__s32));
1704                 }
1705         } else {
1706                 /* FEATURE_REPORT, regular processing */
1707                 for (a = 0; a < report->maxfield; a++) {
1708                         field = report->field[a];
1709
1710                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1711                                 hid_input_var_field(hid, field, interrupt);
1712                         else
1713                                 hid_input_array_field(hid, field, interrupt);
1714                 }
1715         }
1716 }
1717
1718 /*
1719  * Insert a given usage_index in a field in the list
1720  * of processed usages in the report.
1721  *
1722  * The elements of lower priority score are processed
1723  * first.
1724  */
1725 static void __hid_insert_field_entry(struct hid_device *hid,
1726                                      struct hid_report *report,
1727                                      struct hid_field_entry *entry,
1728                                      struct hid_field *field,
1729                                      unsigned int usage_index)
1730 {
1731         struct hid_field_entry *next;
1732
1733         entry->field = field;
1734         entry->index = usage_index;
1735         entry->priority = field->usages_priorities[usage_index];
1736
1737         /* insert the element at the correct position */
1738         list_for_each_entry(next,
1739                             &report->field_entry_list,
1740                             list) {
1741                 /*
1742                  * the priority of our element is strictly higher
1743                  * than the next one, insert it before
1744                  */
1745                 if (entry->priority > next->priority) {
1746                         list_add_tail(&entry->list, &next->list);
1747                         return;
1748                 }
1749         }
1750
1751         /* lowest priority score: insert at the end */
1752         list_add_tail(&entry->list, &report->field_entry_list);
1753 }
1754
1755 static void hid_report_process_ordering(struct hid_device *hid,
1756                                         struct hid_report *report)
1757 {
1758         struct hid_field *field;
1759         struct hid_field_entry *entries;
1760         unsigned int a, u, usages;
1761         unsigned int count = 0;
1762
1763         /* count the number of individual fields in the report */
1764         for (a = 0; a < report->maxfield; a++) {
1765                 field = report->field[a];
1766
1767                 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1768                         count += field->report_count;
1769                 else
1770                         count++;
1771         }
1772
1773         /* allocate the memory to process the fields */
1774         entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1775         if (!entries)
1776                 return;
1777
1778         report->field_entries = entries;
1779
1780         /*
1781          * walk through all fields in the report and
1782          * store them by priority order in report->field_entry_list
1783          *
1784          * - Var elements are individualized (field + usage_index)
1785          * - Arrays are taken as one, we can not chose an order for them
1786          */
1787         usages = 0;
1788         for (a = 0; a < report->maxfield; a++) {
1789                 field = report->field[a];
1790
1791                 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1792                         for (u = 0; u < field->report_count; u++) {
1793                                 __hid_insert_field_entry(hid, report,
1794                                                          &entries[usages],
1795                                                          field, u);
1796                                 usages++;
1797                         }
1798                 } else {
1799                         __hid_insert_field_entry(hid, report, &entries[usages],
1800                                                  field, 0);
1801                         usages++;
1802                 }
1803         }
1804 }
1805
1806 static void hid_process_ordering(struct hid_device *hid)
1807 {
1808         struct hid_report *report;
1809         struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1810
1811         list_for_each_entry(report, &report_enum->report_list, list)
1812                 hid_report_process_ordering(hid, report);
1813 }
1814
1815 /*
1816  * Output the field into the report.
1817  */
1818
1819 static void hid_output_field(const struct hid_device *hid,
1820                              struct hid_field *field, __u8 *data)
1821 {
1822         unsigned count = field->report_count;
1823         unsigned offset = field->report_offset;
1824         unsigned size = field->report_size;
1825         unsigned n;
1826
1827         for (n = 0; n < count; n++) {
1828                 if (field->logical_minimum < 0) /* signed values */
1829                         implement(hid, data, offset + n * size, size,
1830                                   s32ton(field->value[n], size));
1831                 else                            /* unsigned values */
1832                         implement(hid, data, offset + n * size, size,
1833                                   field->value[n]);
1834         }
1835 }
1836
1837 /*
1838  * Compute the size of a report.
1839  */
1840 static size_t hid_compute_report_size(struct hid_report *report)
1841 {
1842         if (report->size)
1843                 return ((report->size - 1) >> 3) + 1;
1844
1845         return 0;
1846 }
1847
1848 /*
1849  * Create a report. 'data' has to be allocated using
1850  * hid_alloc_report_buf() so that it has proper size.
1851  */
1852
1853 void hid_output_report(struct hid_report *report, __u8 *data)
1854 {
1855         unsigned n;
1856
1857         if (report->id > 0)
1858                 *data++ = report->id;
1859
1860         memset(data, 0, hid_compute_report_size(report));
1861         for (n = 0; n < report->maxfield; n++)
1862                 hid_output_field(report->device, report->field[n], data);
1863 }
1864 EXPORT_SYMBOL_GPL(hid_output_report);
1865
1866 /*
1867  * Allocator for buffer that is going to be passed to hid_output_report()
1868  */
1869 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1870 {
1871         /*
1872          * 7 extra bytes are necessary to achieve proper functionality
1873          * of implement() working on 8 byte chunks
1874          */
1875
1876         u32 len = hid_report_len(report) + 7;
1877
1878         return kzalloc(len, flags);
1879 }
1880 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1881
1882 /*
1883  * Set a field value. The report this field belongs to has to be
1884  * created and transferred to the device, to set this value in the
1885  * device.
1886  */
1887
1888 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1889 {
1890         unsigned size;
1891
1892         if (!field)
1893                 return -1;
1894
1895         size = field->report_size;
1896
1897         hid_dump_input(field->report->device, field->usage + offset, value);
1898
1899         if (offset >= field->report_count) {
1900                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1901                                 offset, field->report_count);
1902                 return -1;
1903         }
1904         if (field->logical_minimum < 0) {
1905                 if (value != snto32(s32ton(value, size), size)) {
1906                         hid_err(field->report->device, "value %d is out of range\n", value);
1907                         return -1;
1908                 }
1909         }
1910         field->value[offset] = value;
1911         return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(hid_set_field);
1914
1915 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1916                                  unsigned int application, unsigned int usage)
1917 {
1918         struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1919         struct hid_report *report;
1920         int i, j;
1921
1922         list_for_each_entry(report, report_list, list) {
1923                 if (report->application != application)
1924                         continue;
1925
1926                 for (i = 0; i < report->maxfield; i++) {
1927                         struct hid_field *field = report->field[i];
1928
1929                         for (j = 0; j < field->maxusage; j++) {
1930                                 if (field->usage[j].hid == usage)
1931                                         return field;
1932                         }
1933                 }
1934         }
1935
1936         return NULL;
1937 }
1938 EXPORT_SYMBOL_GPL(hid_find_field);
1939
1940 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1941                 const u8 *data)
1942 {
1943         struct hid_report *report;
1944         unsigned int n = 0;     /* Normally report number is 0 */
1945
1946         /* Device uses numbered reports, data[0] is report number */
1947         if (report_enum->numbered)
1948                 n = *data;
1949
1950         report = report_enum->report_id_hash[n];
1951         if (report == NULL)
1952                 dbg_hid("undefined report_id %u received\n", n);
1953
1954         return report;
1955 }
1956
1957 /*
1958  * Implement a generic .request() callback, using .raw_request()
1959  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1960  */
1961 int __hid_request(struct hid_device *hid, struct hid_report *report,
1962                 enum hid_class_request reqtype)
1963 {
1964         char *buf;
1965         int ret;
1966         u32 len;
1967
1968         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1969         if (!buf)
1970                 return -ENOMEM;
1971
1972         len = hid_report_len(report);
1973
1974         if (reqtype == HID_REQ_SET_REPORT)
1975                 hid_output_report(report, buf);
1976
1977         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1978                                           report->type, reqtype);
1979         if (ret < 0) {
1980                 dbg_hid("unable to complete request: %d\n", ret);
1981                 goto out;
1982         }
1983
1984         if (reqtype == HID_REQ_GET_REPORT)
1985                 hid_input_report(hid, report->type, buf, ret, 0);
1986
1987         ret = 0;
1988
1989 out:
1990         kfree(buf);
1991         return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(__hid_request);
1994
1995 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1996                          int interrupt)
1997 {
1998         struct hid_report_enum *report_enum = hid->report_enum + type;
1999         struct hid_report *report;
2000         struct hid_driver *hdrv;
2001         int max_buffer_size = HID_MAX_BUFFER_SIZE;
2002         u32 rsize, csize = size;
2003         u8 *cdata = data;
2004         int ret = 0;
2005
2006         report = hid_get_report(report_enum, data);
2007         if (!report)
2008                 goto out;
2009
2010         if (report_enum->numbered) {
2011                 cdata++;
2012                 csize--;
2013         }
2014
2015         rsize = hid_compute_report_size(report);
2016
2017         if (hid->ll_driver->max_buffer_size)
2018                 max_buffer_size = hid->ll_driver->max_buffer_size;
2019
2020         if (report_enum->numbered && rsize >= max_buffer_size)
2021                 rsize = max_buffer_size - 1;
2022         else if (rsize > max_buffer_size)
2023                 rsize = max_buffer_size;
2024
2025         if (csize < rsize) {
2026                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2027                                 csize, rsize);
2028                 memset(cdata + csize, 0, rsize - csize);
2029         }
2030
2031         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2032                 hid->hiddev_report_event(hid, report);
2033         if (hid->claimed & HID_CLAIMED_HIDRAW) {
2034                 ret = hidraw_report_event(hid, data, size);
2035                 if (ret)
2036                         goto out;
2037         }
2038
2039         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2040                 hid_process_report(hid, report, cdata, interrupt);
2041                 hdrv = hid->driver;
2042                 if (hdrv && hdrv->report)
2043                         hdrv->report(hid, report);
2044         }
2045
2046         if (hid->claimed & HID_CLAIMED_INPUT)
2047                 hidinput_report_event(hid, report);
2048 out:
2049         return ret;
2050 }
2051 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2052
2053
2054 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2055                               u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2056                               bool lock_already_taken)
2057 {
2058         struct hid_report_enum *report_enum;
2059         struct hid_driver *hdrv;
2060         struct hid_report *report;
2061         int ret = 0;
2062
2063         if (!hid)
2064                 return -ENODEV;
2065
2066         ret = down_trylock(&hid->driver_input_lock);
2067         if (lock_already_taken && !ret) {
2068                 up(&hid->driver_input_lock);
2069                 return -EINVAL;
2070         } else if (!lock_already_taken && ret) {
2071                 return -EBUSY;
2072         }
2073
2074         if (!hid->driver) {
2075                 ret = -ENODEV;
2076                 goto unlock;
2077         }
2078         report_enum = hid->report_enum + type;
2079         hdrv = hid->driver;
2080
2081         data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2082         if (IS_ERR(data)) {
2083                 ret = PTR_ERR(data);
2084                 goto unlock;
2085         }
2086
2087         if (!size) {
2088                 dbg_hid("empty report\n");
2089                 ret = -1;
2090                 goto unlock;
2091         }
2092
2093         /* Avoid unnecessary overhead if debugfs is disabled */
2094         if (!list_empty(&hid->debug_list))
2095                 hid_dump_report(hid, type, data, size);
2096
2097         report = hid_get_report(report_enum, data);
2098
2099         if (!report) {
2100                 ret = -1;
2101                 goto unlock;
2102         }
2103
2104         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2105                 ret = hdrv->raw_event(hid, report, data, size);
2106                 if (ret < 0)
2107                         goto unlock;
2108         }
2109
2110         ret = hid_report_raw_event(hid, type, data, size, interrupt);
2111
2112 unlock:
2113         if (!lock_already_taken)
2114                 up(&hid->driver_input_lock);
2115         return ret;
2116 }
2117
2118 /**
2119  * hid_input_report - report data from lower layer (usb, bt...)
2120  *
2121  * @hid: hid device
2122  * @type: HID report type (HID_*_REPORT)
2123  * @data: report contents
2124  * @size: size of data parameter
2125  * @interrupt: distinguish between interrupt and control transfers
2126  *
2127  * This is data entry for lower layers.
2128  */
2129 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2130                      int interrupt)
2131 {
2132         return __hid_input_report(hid, type, data, size, interrupt, 0,
2133                                   false, /* from_bpf */
2134                                   false /* lock_already_taken */);
2135 }
2136 EXPORT_SYMBOL_GPL(hid_input_report);
2137
2138 bool hid_match_one_id(const struct hid_device *hdev,
2139                       const struct hid_device_id *id)
2140 {
2141         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2142                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2143                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2144                 (id->product == HID_ANY_ID || id->product == hdev->product);
2145 }
2146
2147 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2148                 const struct hid_device_id *id)
2149 {
2150         for (; id->bus; id++)
2151                 if (hid_match_one_id(hdev, id))
2152                         return id;
2153
2154         return NULL;
2155 }
2156 EXPORT_SYMBOL_GPL(hid_match_id);
2157
2158 static const struct hid_device_id hid_hiddev_list[] = {
2159         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2160         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2161         { }
2162 };
2163
2164 static bool hid_hiddev(struct hid_device *hdev)
2165 {
2166         return !!hid_match_id(hdev, hid_hiddev_list);
2167 }
2168
2169
2170 static ssize_t
2171 read_report_descriptor(struct file *filp, struct kobject *kobj,
2172                 struct bin_attribute *attr,
2173                 char *buf, loff_t off, size_t count)
2174 {
2175         struct device *dev = kobj_to_dev(kobj);
2176         struct hid_device *hdev = to_hid_device(dev);
2177
2178         if (off >= hdev->rsize)
2179                 return 0;
2180
2181         if (off + count > hdev->rsize)
2182                 count = hdev->rsize - off;
2183
2184         memcpy(buf, hdev->rdesc + off, count);
2185
2186         return count;
2187 }
2188
2189 static ssize_t
2190 show_country(struct device *dev, struct device_attribute *attr,
2191                 char *buf)
2192 {
2193         struct hid_device *hdev = to_hid_device(dev);
2194
2195         return sprintf(buf, "%02x\n", hdev->country & 0xff);
2196 }
2197
2198 static struct bin_attribute dev_bin_attr_report_desc = {
2199         .attr = { .name = "report_descriptor", .mode = 0444 },
2200         .read = read_report_descriptor,
2201         .size = HID_MAX_DESCRIPTOR_SIZE,
2202 };
2203
2204 static const struct device_attribute dev_attr_country = {
2205         .attr = { .name = "country", .mode = 0444 },
2206         .show = show_country,
2207 };
2208
2209 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2210 {
2211         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2212                 "Joystick", "Gamepad", "Keyboard", "Keypad",
2213                 "Multi-Axis Controller"
2214         };
2215         const char *type, *bus;
2216         char buf[64] = "";
2217         unsigned int i;
2218         int len;
2219         int ret;
2220
2221         ret = hid_bpf_connect_device(hdev);
2222         if (ret)
2223                 return ret;
2224
2225         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2226                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2227         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2228                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2229         if (hdev->bus != BUS_USB)
2230                 connect_mask &= ~HID_CONNECT_HIDDEV;
2231         if (hid_hiddev(hdev))
2232                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2233
2234         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2235                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2236                 hdev->claimed |= HID_CLAIMED_INPUT;
2237
2238         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2239                         !hdev->hiddev_connect(hdev,
2240                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2241                 hdev->claimed |= HID_CLAIMED_HIDDEV;
2242         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2243                 hdev->claimed |= HID_CLAIMED_HIDRAW;
2244
2245         if (connect_mask & HID_CONNECT_DRIVER)
2246                 hdev->claimed |= HID_CLAIMED_DRIVER;
2247
2248         /* Drivers with the ->raw_event callback set are not required to connect
2249          * to any other listener. */
2250         if (!hdev->claimed && !hdev->driver->raw_event) {
2251                 hid_err(hdev, "device has no listeners, quitting\n");
2252                 return -ENODEV;
2253         }
2254
2255         hid_process_ordering(hdev);
2256
2257         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2258                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2259                 hdev->ff_init(hdev);
2260
2261         len = 0;
2262         if (hdev->claimed & HID_CLAIMED_INPUT)
2263                 len += sprintf(buf + len, "input");
2264         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2265                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2266                                 ((struct hiddev *)hdev->hiddev)->minor);
2267         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2268                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2269                                 ((struct hidraw *)hdev->hidraw)->minor);
2270
2271         type = "Device";
2272         for (i = 0; i < hdev->maxcollection; i++) {
2273                 struct hid_collection *col = &hdev->collection[i];
2274                 if (col->type == HID_COLLECTION_APPLICATION &&
2275                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2276                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2277                         type = types[col->usage & 0xffff];
2278                         break;
2279                 }
2280         }
2281
2282         switch (hdev->bus) {
2283         case BUS_USB:
2284                 bus = "USB";
2285                 break;
2286         case BUS_BLUETOOTH:
2287                 bus = "BLUETOOTH";
2288                 break;
2289         case BUS_I2C:
2290                 bus = "I2C";
2291                 break;
2292         case BUS_VIRTUAL:
2293                 bus = "VIRTUAL";
2294                 break;
2295         case BUS_INTEL_ISHTP:
2296         case BUS_AMD_SFH:
2297                 bus = "SENSOR HUB";
2298                 break;
2299         default:
2300                 bus = "<UNKNOWN>";
2301         }
2302
2303         ret = device_create_file(&hdev->dev, &dev_attr_country);
2304         if (ret)
2305                 hid_warn(hdev,
2306                          "can't create sysfs country code attribute err: %d\n", ret);
2307
2308         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2309                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
2310                  type, hdev->name, hdev->phys);
2311
2312         return 0;
2313 }
2314 EXPORT_SYMBOL_GPL(hid_connect);
2315
2316 void hid_disconnect(struct hid_device *hdev)
2317 {
2318         device_remove_file(&hdev->dev, &dev_attr_country);
2319         if (hdev->claimed & HID_CLAIMED_INPUT)
2320                 hidinput_disconnect(hdev);
2321         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2322                 hdev->hiddev_disconnect(hdev);
2323         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2324                 hidraw_disconnect(hdev);
2325         hdev->claimed = 0;
2326
2327         hid_bpf_disconnect_device(hdev);
2328 }
2329 EXPORT_SYMBOL_GPL(hid_disconnect);
2330
2331 /**
2332  * hid_hw_start - start underlying HW
2333  * @hdev: hid device
2334  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2335  *
2336  * Call this in probe function *after* hid_parse. This will setup HW
2337  * buffers and start the device (if not defeirred to device open).
2338  * hid_hw_stop must be called if this was successful.
2339  */
2340 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2341 {
2342         int error;
2343
2344         error = hdev->ll_driver->start(hdev);
2345         if (error)
2346                 return error;
2347
2348         if (connect_mask) {
2349                 error = hid_connect(hdev, connect_mask);
2350                 if (error) {
2351                         hdev->ll_driver->stop(hdev);
2352                         return error;
2353                 }
2354         }
2355
2356         return 0;
2357 }
2358 EXPORT_SYMBOL_GPL(hid_hw_start);
2359
2360 /**
2361  * hid_hw_stop - stop underlying HW
2362  * @hdev: hid device
2363  *
2364  * This is usually called from remove function or from probe when something
2365  * failed and hid_hw_start was called already.
2366  */
2367 void hid_hw_stop(struct hid_device *hdev)
2368 {
2369         hid_disconnect(hdev);
2370         hdev->ll_driver->stop(hdev);
2371 }
2372 EXPORT_SYMBOL_GPL(hid_hw_stop);
2373
2374 /**
2375  * hid_hw_open - signal underlying HW to start delivering events
2376  * @hdev: hid device
2377  *
2378  * Tell underlying HW to start delivering events from the device.
2379  * This function should be called sometime after successful call
2380  * to hid_hw_start().
2381  */
2382 int hid_hw_open(struct hid_device *hdev)
2383 {
2384         int ret;
2385
2386         ret = mutex_lock_killable(&hdev->ll_open_lock);
2387         if (ret)
2388                 return ret;
2389
2390         if (!hdev->ll_open_count++) {
2391                 ret = hdev->ll_driver->open(hdev);
2392                 if (ret)
2393                         hdev->ll_open_count--;
2394         }
2395
2396         mutex_unlock(&hdev->ll_open_lock);
2397         return ret;
2398 }
2399 EXPORT_SYMBOL_GPL(hid_hw_open);
2400
2401 /**
2402  * hid_hw_close - signal underlaying HW to stop delivering events
2403  *
2404  * @hdev: hid device
2405  *
2406  * This function indicates that we are not interested in the events
2407  * from this device anymore. Delivery of events may or may not stop,
2408  * depending on the number of users still outstanding.
2409  */
2410 void hid_hw_close(struct hid_device *hdev)
2411 {
2412         mutex_lock(&hdev->ll_open_lock);
2413         if (!--hdev->ll_open_count)
2414                 hdev->ll_driver->close(hdev);
2415         mutex_unlock(&hdev->ll_open_lock);
2416 }
2417 EXPORT_SYMBOL_GPL(hid_hw_close);
2418
2419 /**
2420  * hid_hw_request - send report request to device
2421  *
2422  * @hdev: hid device
2423  * @report: report to send
2424  * @reqtype: hid request type
2425  */
2426 void hid_hw_request(struct hid_device *hdev,
2427                     struct hid_report *report, enum hid_class_request reqtype)
2428 {
2429         if (hdev->ll_driver->request)
2430                 return hdev->ll_driver->request(hdev, report, reqtype);
2431
2432         __hid_request(hdev, report, reqtype);
2433 }
2434 EXPORT_SYMBOL_GPL(hid_hw_request);
2435
2436 int __hid_hw_raw_request(struct hid_device *hdev,
2437                          unsigned char reportnum, __u8 *buf,
2438                          size_t len, enum hid_report_type rtype,
2439                          enum hid_class_request reqtype,
2440                          u64 source, bool from_bpf)
2441 {
2442         unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2443         int ret;
2444
2445         if (hdev->ll_driver->max_buffer_size)
2446                 max_buffer_size = hdev->ll_driver->max_buffer_size;
2447
2448         if (len < 1 || len > max_buffer_size || !buf)
2449                 return -EINVAL;
2450
2451         ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2452                                             reqtype, source, from_bpf);
2453         if (ret)
2454                 return ret;
2455
2456         return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2457                                             rtype, reqtype);
2458 }
2459
2460 /**
2461  * hid_hw_raw_request - send report request to device
2462  *
2463  * @hdev: hid device
2464  * @reportnum: report ID
2465  * @buf: in/out data to transfer
2466  * @len: length of buf
2467  * @rtype: HID report type
2468  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2469  *
2470  * Return: count of data transferred, negative if error
2471  *
2472  * Same behavior as hid_hw_request, but with raw buffers instead.
2473  */
2474 int hid_hw_raw_request(struct hid_device *hdev,
2475                        unsigned char reportnum, __u8 *buf,
2476                        size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2477 {
2478         return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2479 }
2480 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2481
2482 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2483                            bool from_bpf)
2484 {
2485         unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2486         int ret;
2487
2488         if (hdev->ll_driver->max_buffer_size)
2489                 max_buffer_size = hdev->ll_driver->max_buffer_size;
2490
2491         if (len < 1 || len > max_buffer_size || !buf)
2492                 return -EINVAL;
2493
2494         ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2495         if (ret)
2496                 return ret;
2497
2498         if (hdev->ll_driver->output_report)
2499                 return hdev->ll_driver->output_report(hdev, buf, len);
2500
2501         return -ENOSYS;
2502 }
2503
2504 /**
2505  * hid_hw_output_report - send output report to device
2506  *
2507  * @hdev: hid device
2508  * @buf: raw data to transfer
2509  * @len: length of buf
2510  *
2511  * Return: count of data transferred, negative if error
2512  */
2513 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2514 {
2515         return __hid_hw_output_report(hdev, buf, len, 0, false);
2516 }
2517 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2518
2519 #ifdef CONFIG_PM
2520 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2521 {
2522         if (hdev->driver && hdev->driver->suspend)
2523                 return hdev->driver->suspend(hdev, state);
2524
2525         return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2528
2529 int hid_driver_reset_resume(struct hid_device *hdev)
2530 {
2531         if (hdev->driver && hdev->driver->reset_resume)
2532                 return hdev->driver->reset_resume(hdev);
2533
2534         return 0;
2535 }
2536 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2537
2538 int hid_driver_resume(struct hid_device *hdev)
2539 {
2540         if (hdev->driver && hdev->driver->resume)
2541                 return hdev->driver->resume(hdev);
2542
2543         return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(hid_driver_resume);
2546 #endif /* CONFIG_PM */
2547
2548 struct hid_dynid {
2549         struct list_head list;
2550         struct hid_device_id id;
2551 };
2552
2553 /**
2554  * new_id_store - add a new HID device ID to this driver and re-probe devices
2555  * @drv: target device driver
2556  * @buf: buffer for scanning device ID data
2557  * @count: input size
2558  *
2559  * Adds a new dynamic hid device ID to this driver,
2560  * and causes the driver to probe for all devices again.
2561  */
2562 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2563                 size_t count)
2564 {
2565         struct hid_driver *hdrv = to_hid_driver(drv);
2566         struct hid_dynid *dynid;
2567         __u32 bus, vendor, product;
2568         unsigned long driver_data = 0;
2569         int ret;
2570
2571         ret = sscanf(buf, "%x %x %x %lx",
2572                         &bus, &vendor, &product, &driver_data);
2573         if (ret < 3)
2574                 return -EINVAL;
2575
2576         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2577         if (!dynid)
2578                 return -ENOMEM;
2579
2580         dynid->id.bus = bus;
2581         dynid->id.group = HID_GROUP_ANY;
2582         dynid->id.vendor = vendor;
2583         dynid->id.product = product;
2584         dynid->id.driver_data = driver_data;
2585
2586         spin_lock(&hdrv->dyn_lock);
2587         list_add_tail(&dynid->list, &hdrv->dyn_list);
2588         spin_unlock(&hdrv->dyn_lock);
2589
2590         ret = driver_attach(&hdrv->driver);
2591
2592         return ret ? : count;
2593 }
2594 static DRIVER_ATTR_WO(new_id);
2595
2596 static struct attribute *hid_drv_attrs[] = {
2597         &driver_attr_new_id.attr,
2598         NULL,
2599 };
2600 ATTRIBUTE_GROUPS(hid_drv);
2601
2602 static void hid_free_dynids(struct hid_driver *hdrv)
2603 {
2604         struct hid_dynid *dynid, *n;
2605
2606         spin_lock(&hdrv->dyn_lock);
2607         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2608                 list_del(&dynid->list);
2609                 kfree(dynid);
2610         }
2611         spin_unlock(&hdrv->dyn_lock);
2612 }
2613
2614 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2615                                              struct hid_driver *hdrv)
2616 {
2617         struct hid_dynid *dynid;
2618
2619         spin_lock(&hdrv->dyn_lock);
2620         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2621                 if (hid_match_one_id(hdev, &dynid->id)) {
2622                         spin_unlock(&hdrv->dyn_lock);
2623                         return &dynid->id;
2624                 }
2625         }
2626         spin_unlock(&hdrv->dyn_lock);
2627
2628         return hid_match_id(hdev, hdrv->id_table);
2629 }
2630 EXPORT_SYMBOL_GPL(hid_match_device);
2631
2632 static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2633 {
2634         struct hid_driver *hdrv = to_hid_driver(drv);
2635         struct hid_device *hdev = to_hid_device(dev);
2636
2637         return hid_match_device(hdev, hdrv) != NULL;
2638 }
2639
2640 /**
2641  * hid_compare_device_paths - check if both devices share the same path
2642  * @hdev_a: hid device
2643  * @hdev_b: hid device
2644  * @separator: char to use as separator
2645  *
2646  * Check if two devices share the same path up to the last occurrence of
2647  * the separator char. Both paths must exist (i.e., zero-length paths
2648  * don't match).
2649  */
2650 bool hid_compare_device_paths(struct hid_device *hdev_a,
2651                               struct hid_device *hdev_b, char separator)
2652 {
2653         int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2654         int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2655
2656         if (n1 != n2 || n1 <= 0 || n2 <= 0)
2657                 return false;
2658
2659         return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2660 }
2661 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2662
2663 static bool hid_check_device_match(struct hid_device *hdev,
2664                                    struct hid_driver *hdrv,
2665                                    const struct hid_device_id **id)
2666 {
2667         *id = hid_match_device(hdev, hdrv);
2668         if (!*id)
2669                 return false;
2670
2671         if (hdrv->match)
2672                 return hdrv->match(hdev, hid_ignore_special_drivers);
2673
2674         /*
2675          * hid-generic implements .match(), so we must be dealing with a
2676          * different HID driver here, and can simply check if
2677          * hid_ignore_special_drivers is set or not.
2678          */
2679         return !hid_ignore_special_drivers;
2680 }
2681
2682 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2683 {
2684         const struct hid_device_id *id;
2685         int ret;
2686
2687         if (!hid_check_device_match(hdev, hdrv, &id))
2688                 return -ENODEV;
2689
2690         hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2691         if (!hdev->devres_group_id)
2692                 return -ENOMEM;
2693
2694         /* reset the quirks that has been previously set */
2695         hdev->quirks = hid_lookup_quirk(hdev);
2696         hdev->driver = hdrv;
2697
2698         if (hdrv->probe) {
2699                 ret = hdrv->probe(hdev, id);
2700         } else { /* default probe */
2701                 ret = hid_open_report(hdev);
2702                 if (!ret)
2703                         ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2704         }
2705
2706         /*
2707          * Note that we are not closing the devres group opened above so
2708          * even resources that were attached to the device after probe is
2709          * run are released when hid_device_remove() is executed. This is
2710          * needed as some drivers would allocate additional resources,
2711          * for example when updating firmware.
2712          */
2713
2714         if (ret) {
2715                 devres_release_group(&hdev->dev, hdev->devres_group_id);
2716                 hid_close_report(hdev);
2717                 hdev->driver = NULL;
2718         }
2719
2720         return ret;
2721 }
2722
2723 static int hid_device_probe(struct device *dev)
2724 {
2725         struct hid_device *hdev = to_hid_device(dev);
2726         struct hid_driver *hdrv = to_hid_driver(dev->driver);
2727         int ret = 0;
2728
2729         if (down_interruptible(&hdev->driver_input_lock))
2730                 return -EINTR;
2731
2732         hdev->io_started = false;
2733         clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2734
2735         if (!hdev->driver)
2736                 ret = __hid_device_probe(hdev, hdrv);
2737
2738         if (!hdev->io_started)
2739                 up(&hdev->driver_input_lock);
2740
2741         return ret;
2742 }
2743
2744 static void hid_device_remove(struct device *dev)
2745 {
2746         struct hid_device *hdev = to_hid_device(dev);
2747         struct hid_driver *hdrv;
2748
2749         down(&hdev->driver_input_lock);
2750         hdev->io_started = false;
2751
2752         hdrv = hdev->driver;
2753         if (hdrv) {
2754                 if (hdrv->remove)
2755                         hdrv->remove(hdev);
2756                 else /* default remove */
2757                         hid_hw_stop(hdev);
2758
2759                 /* Release all devres resources allocated by the driver */
2760                 devres_release_group(&hdev->dev, hdev->devres_group_id);
2761
2762                 hid_close_report(hdev);
2763                 hdev->driver = NULL;
2764         }
2765
2766         if (!hdev->io_started)
2767                 up(&hdev->driver_input_lock);
2768 }
2769
2770 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2771                              char *buf)
2772 {
2773         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2774
2775         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2776                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2777 }
2778 static DEVICE_ATTR_RO(modalias);
2779
2780 static struct attribute *hid_dev_attrs[] = {
2781         &dev_attr_modalias.attr,
2782         NULL,
2783 };
2784 static struct bin_attribute *hid_dev_bin_attrs[] = {
2785         &dev_bin_attr_report_desc,
2786         NULL
2787 };
2788 static const struct attribute_group hid_dev_group = {
2789         .attrs = hid_dev_attrs,
2790         .bin_attrs = hid_dev_bin_attrs,
2791 };
2792 __ATTRIBUTE_GROUPS(hid_dev);
2793
2794 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2795 {
2796         const struct hid_device *hdev = to_hid_device(dev);
2797
2798         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2799                         hdev->bus, hdev->vendor, hdev->product))
2800                 return -ENOMEM;
2801
2802         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2803                 return -ENOMEM;
2804
2805         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2806                 return -ENOMEM;
2807
2808         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2809                 return -ENOMEM;
2810
2811         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2812                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2813                 return -ENOMEM;
2814
2815         return 0;
2816 }
2817
2818 const struct bus_type hid_bus_type = {
2819         .name           = "hid",
2820         .dev_groups     = hid_dev_groups,
2821         .drv_groups     = hid_drv_groups,
2822         .match          = hid_bus_match,
2823         .probe          = hid_device_probe,
2824         .remove         = hid_device_remove,
2825         .uevent         = hid_uevent,
2826 };
2827 EXPORT_SYMBOL(hid_bus_type);
2828
2829 int hid_add_device(struct hid_device *hdev)
2830 {
2831         static atomic_t id = ATOMIC_INIT(0);
2832         int ret;
2833
2834         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2835                 return -EBUSY;
2836
2837         hdev->quirks = hid_lookup_quirk(hdev);
2838
2839         /* we need to kill them here, otherwise they will stay allocated to
2840          * wait for coming driver */
2841         if (hid_ignore(hdev))
2842                 return -ENODEV;
2843
2844         /*
2845          * Check for the mandatory transport channel.
2846          */
2847          if (!hdev->ll_driver->raw_request) {
2848                 hid_err(hdev, "transport driver missing .raw_request()\n");
2849                 return -EINVAL;
2850          }
2851
2852         /*
2853          * Read the device report descriptor once and use as template
2854          * for the driver-specific modifications.
2855          */
2856         ret = hdev->ll_driver->parse(hdev);
2857         if (ret)
2858                 return ret;
2859         if (!hdev->dev_rdesc)
2860                 return -ENODEV;
2861
2862         /*
2863          * Scan generic devices for group information
2864          */
2865         if (hid_ignore_special_drivers) {
2866                 hdev->group = HID_GROUP_GENERIC;
2867         } else if (!hdev->group &&
2868                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2869                 ret = hid_scan_report(hdev);
2870                 if (ret)
2871                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2872         }
2873
2874         hdev->id = atomic_inc_return(&id);
2875
2876         /* XXX hack, any other cleaner solution after the driver core
2877          * is converted to allow more than 20 bytes as the device name? */
2878         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2879                      hdev->vendor, hdev->product, hdev->id);
2880
2881         hid_debug_register(hdev, dev_name(&hdev->dev));
2882         ret = device_add(&hdev->dev);
2883         if (!ret)
2884                 hdev->status |= HID_STAT_ADDED;
2885         else
2886                 hid_debug_unregister(hdev);
2887
2888         return ret;
2889 }
2890 EXPORT_SYMBOL_GPL(hid_add_device);
2891
2892 /**
2893  * hid_allocate_device - allocate new hid device descriptor
2894  *
2895  * Allocate and initialize hid device, so that hid_destroy_device might be
2896  * used to free it.
2897  *
2898  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2899  * error value.
2900  */
2901 struct hid_device *hid_allocate_device(void)
2902 {
2903         struct hid_device *hdev;
2904         int ret = -ENOMEM;
2905
2906         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2907         if (hdev == NULL)
2908                 return ERR_PTR(ret);
2909
2910         device_initialize(&hdev->dev);
2911         hdev->dev.release = hid_device_release;
2912         hdev->dev.bus = &hid_bus_type;
2913         device_enable_async_suspend(&hdev->dev);
2914
2915         hid_close_report(hdev);
2916
2917         init_waitqueue_head(&hdev->debug_wait);
2918         INIT_LIST_HEAD(&hdev->debug_list);
2919         spin_lock_init(&hdev->debug_list_lock);
2920         sema_init(&hdev->driver_input_lock, 1);
2921         mutex_init(&hdev->ll_open_lock);
2922         kref_init(&hdev->ref);
2923
2924         ret = hid_bpf_device_init(hdev);
2925         if (ret)
2926                 goto out_err;
2927
2928         return hdev;
2929
2930 out_err:
2931         hid_destroy_device(hdev);
2932         return ERR_PTR(ret);
2933 }
2934 EXPORT_SYMBOL_GPL(hid_allocate_device);
2935
2936 static void hid_remove_device(struct hid_device *hdev)
2937 {
2938         if (hdev->status & HID_STAT_ADDED) {
2939                 device_del(&hdev->dev);
2940                 hid_debug_unregister(hdev);
2941                 hdev->status &= ~HID_STAT_ADDED;
2942         }
2943         kfree(hdev->dev_rdesc);
2944         hdev->dev_rdesc = NULL;
2945         hdev->dev_rsize = 0;
2946 }
2947
2948 /**
2949  * hid_destroy_device - free previously allocated device
2950  *
2951  * @hdev: hid device
2952  *
2953  * If you allocate hid_device through hid_allocate_device, you should ever
2954  * free by this function.
2955  */
2956 void hid_destroy_device(struct hid_device *hdev)
2957 {
2958         hid_bpf_destroy_device(hdev);
2959         hid_remove_device(hdev);
2960         put_device(&hdev->dev);
2961 }
2962 EXPORT_SYMBOL_GPL(hid_destroy_device);
2963
2964
2965 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2966 {
2967         struct hid_driver *hdrv = data;
2968         struct hid_device *hdev = to_hid_device(dev);
2969
2970         if (hdev->driver == hdrv &&
2971             !hdrv->match(hdev, hid_ignore_special_drivers) &&
2972             !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2973                 return device_reprobe(dev);
2974
2975         return 0;
2976 }
2977
2978 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2979 {
2980         struct hid_driver *hdrv = to_hid_driver(drv);
2981
2982         if (hdrv->match) {
2983                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2984                                  __hid_bus_reprobe_drivers);
2985         }
2986
2987         return 0;
2988 }
2989
2990 static int __bus_removed_driver(struct device_driver *drv, void *data)
2991 {
2992         return bus_rescan_devices(&hid_bus_type);
2993 }
2994
2995 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2996                 const char *mod_name)
2997 {
2998         int ret;
2999
3000         hdrv->driver.name = hdrv->name;
3001         hdrv->driver.bus = &hid_bus_type;
3002         hdrv->driver.owner = owner;
3003         hdrv->driver.mod_name = mod_name;
3004
3005         INIT_LIST_HEAD(&hdrv->dyn_list);
3006         spin_lock_init(&hdrv->dyn_lock);
3007
3008         ret = driver_register(&hdrv->driver);
3009
3010         if (ret == 0)
3011                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
3012                                  __hid_bus_driver_added);
3013
3014         return ret;
3015 }
3016 EXPORT_SYMBOL_GPL(__hid_register_driver);
3017
3018 void hid_unregister_driver(struct hid_driver *hdrv)
3019 {
3020         driver_unregister(&hdrv->driver);
3021         hid_free_dynids(hdrv);
3022
3023         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3024 }
3025 EXPORT_SYMBOL_GPL(hid_unregister_driver);
3026
3027 int hid_check_keys_pressed(struct hid_device *hid)
3028 {
3029         struct hid_input *hidinput;
3030         int i;
3031
3032         if (!(hid->claimed & HID_CLAIMED_INPUT))
3033                 return 0;
3034
3035         list_for_each_entry(hidinput, &hid->inputs, list) {
3036                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3037                         if (hidinput->input->key[i])
3038                                 return 1;
3039         }
3040
3041         return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3044
3045 #ifdef CONFIG_HID_BPF
3046 static struct hid_ops __hid_ops = {
3047         .hid_get_report = hid_get_report,
3048         .hid_hw_raw_request = __hid_hw_raw_request,
3049         .hid_hw_output_report = __hid_hw_output_report,
3050         .hid_input_report = __hid_input_report,
3051         .owner = THIS_MODULE,
3052         .bus_type = &hid_bus_type,
3053 };
3054 #endif
3055
3056 static int __init hid_init(void)
3057 {
3058         int ret;
3059
3060         ret = bus_register(&hid_bus_type);
3061         if (ret) {
3062                 pr_err("can't register hid bus\n");
3063                 goto err;
3064         }
3065
3066 #ifdef CONFIG_HID_BPF
3067         hid_ops = &__hid_ops;
3068 #endif
3069
3070         ret = hidraw_init();
3071         if (ret)
3072                 goto err_bus;
3073
3074         hid_debug_init();
3075
3076         return 0;
3077 err_bus:
3078         bus_unregister(&hid_bus_type);
3079 err:
3080         return ret;
3081 }
3082
3083 static void __exit hid_exit(void)
3084 {
3085 #ifdef CONFIG_HID_BPF
3086         hid_ops = NULL;
3087 #endif
3088         hid_debug_exit();
3089         hidraw_exit();
3090         bus_unregister(&hid_bus_type);
3091         hid_quirks_exit(HID_BUS_ANY);
3092 }
3093
3094 module_init(hid_init);
3095 module_exit(hid_exit);
3096
3097 MODULE_AUTHOR("Andreas Gal");
3098 MODULE_AUTHOR("Vojtech Pavlik");
3099 MODULE_AUTHOR("Jiri Kosina");
3100 MODULE_DESCRIPTION("HID support for Linux");
3101 MODULE_LICENSE("GPL");
This page took 0.218772 seconds and 4 git commands to generate.