1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * HID support for Linux
5 * Copyright (c) 1999 Andreas Gal
8 * Copyright (c) 2006-2012 Jiri Kosina
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
42 #define DRIVER_DESC "HID core driver"
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
49 * Register a new report for a device.
52 struct hid_report *hid_register_report(struct hid_device *device,
53 enum hid_report_type type, unsigned int id,
54 unsigned int application)
56 struct hid_report_enum *report_enum = device->report_enum + type;
57 struct hid_report *report;
59 if (id >= HID_MAX_IDS)
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
69 report_enum->numbered = 1;
74 report->device = device;
75 report->application = application;
76 report_enum->report_id_hash[id] = report;
78 list_add_tail(&report->list, &report_enum->report_list);
79 INIT_LIST_HEAD(&report->field_entry_list);
83 EXPORT_SYMBOL_GPL(hid_register_report);
86 * Register a new field for this report.
89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
91 struct hid_field *field;
93 if (report->maxfield == HID_MAX_FIELDS) {
94 hid_err(report->device, "too many fields in report\n");
98 field = kvzalloc((sizeof(struct hid_field) +
99 usages * sizeof(struct hid_usage) +
100 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
104 field->index = report->maxfield++;
105 report->field[field->index] = field;
106 field->usage = (struct hid_usage *)(field + 1);
107 field->value = (s32 *)(field->usage + usages);
108 field->new_value = (s32 *)(field->value + usages);
109 field->usages_priorities = (s32 *)(field->new_value + usages);
110 field->report = report;
116 * Open a collection. The type/usage is pushed on the stack.
119 static int open_collection(struct hid_parser *parser, unsigned type)
121 struct hid_collection *collection;
123 int collection_index;
125 usage = parser->local.usage[0];
127 if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 unsigned int *collection_stack;
129 unsigned int new_size = parser->collection_stack_size +
130 HID_COLLECTION_STACK_SIZE;
132 collection_stack = krealloc(parser->collection_stack,
133 new_size * sizeof(unsigned int),
135 if (!collection_stack)
138 parser->collection_stack = collection_stack;
139 parser->collection_stack_size = new_size;
142 if (parser->device->maxcollection == parser->device->collection_size) {
143 collection = kmalloc(
144 array3_size(sizeof(struct hid_collection),
145 parser->device->collection_size,
148 if (collection == NULL) {
149 hid_err(parser->device, "failed to reallocate collection array\n");
152 memcpy(collection, parser->device->collection,
153 sizeof(struct hid_collection) *
154 parser->device->collection_size);
155 memset(collection + parser->device->collection_size, 0,
156 sizeof(struct hid_collection) *
157 parser->device->collection_size);
158 kfree(parser->device->collection);
159 parser->device->collection = collection;
160 parser->device->collection_size *= 2;
163 parser->collection_stack[parser->collection_stack_ptr++] =
164 parser->device->maxcollection;
166 collection_index = parser->device->maxcollection++;
167 collection = parser->device->collection + collection_index;
168 collection->type = type;
169 collection->usage = usage;
170 collection->level = parser->collection_stack_ptr - 1;
171 collection->parent_idx = (collection->level == 0) ? -1 :
172 parser->collection_stack[collection->level - 1];
174 if (type == HID_COLLECTION_APPLICATION)
175 parser->device->maxapplication++;
181 * Close a collection.
184 static int close_collection(struct hid_parser *parser)
186 if (!parser->collection_stack_ptr) {
187 hid_err(parser->device, "collection stack underflow\n");
190 parser->collection_stack_ptr--;
195 * Climb up the stack, search for the specified collection type
196 * and return the usage.
199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
201 struct hid_collection *collection = parser->device->collection;
204 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 unsigned index = parser->collection_stack[n];
206 if (collection[index].type == type)
207 return collection[index].usage;
209 return 0; /* we know nothing about this usage type */
213 * Concatenate usage which defines 16 bits or less with the
214 * currently defined usage page to form a 32 bit usage
217 static void complete_usage(struct hid_parser *parser, unsigned int index)
219 parser->local.usage[index] &= 0xFFFF;
220 parser->local.usage[index] |=
221 (parser->global.usage_page & 0xFFFF) << 16;
225 * Add a usage to the temporary parser table.
228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
230 if (parser->local.usage_index >= HID_MAX_USAGES) {
231 hid_err(parser->device, "usage index exceeded\n");
234 parser->local.usage[parser->local.usage_index] = usage;
237 * If Usage item only includes usage id, concatenate it with
238 * currently defined usage page
241 complete_usage(parser, parser->local.usage_index);
243 parser->local.usage_size[parser->local.usage_index] = size;
244 parser->local.collection_index[parser->local.usage_index] =
245 parser->collection_stack_ptr ?
246 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 parser->local.usage_index++;
252 * Register a new field for this report.
255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
257 struct hid_report *report;
258 struct hid_field *field;
259 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
263 unsigned int application;
265 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267 report = hid_register_report(parser->device, report_type,
268 parser->global.report_id, application);
270 hid_err(parser->device, "hid_register_report failed\n");
274 /* Handle both signed and unsigned cases properly */
275 if ((parser->global.logical_minimum < 0 &&
276 parser->global.logical_maximum <
277 parser->global.logical_minimum) ||
278 (parser->global.logical_minimum >= 0 &&
279 (__u32)parser->global.logical_maximum <
280 (__u32)parser->global.logical_minimum)) {
281 dbg_hid("logical range invalid 0x%x 0x%x\n",
282 parser->global.logical_minimum,
283 parser->global.logical_maximum);
287 offset = report->size;
288 report->size += parser->global.report_size * parser->global.report_count;
290 if (parser->device->ll_driver->max_buffer_size)
291 max_buffer_size = parser->device->ll_driver->max_buffer_size;
293 /* Total size check: Allow for possible report index byte */
294 if (report->size > (max_buffer_size - 1) << 3) {
295 hid_err(parser->device, "report is too long\n");
299 if (!parser->local.usage_index) /* Ignore padding fields */
302 usages = max_t(unsigned, parser->local.usage_index,
303 parser->global.report_count);
305 field = hid_register_field(report, usages);
309 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311 field->application = application;
313 for (i = 0; i < usages; i++) {
315 /* Duplicate the last usage we parsed if we have excess values */
316 if (i >= parser->local.usage_index)
317 j = parser->local.usage_index - 1;
318 field->usage[i].hid = parser->local.usage[j];
319 field->usage[i].collection_index =
320 parser->local.collection_index[j];
321 field->usage[i].usage_index = i;
322 field->usage[i].resolution_multiplier = 1;
325 field->maxusage = usages;
326 field->flags = flags;
327 field->report_offset = offset;
328 field->report_type = report_type;
329 field->report_size = parser->global.report_size;
330 field->report_count = parser->global.report_count;
331 field->logical_minimum = parser->global.logical_minimum;
332 field->logical_maximum = parser->global.logical_maximum;
333 field->physical_minimum = parser->global.physical_minimum;
334 field->physical_maximum = parser->global.physical_maximum;
335 field->unit_exponent = parser->global.unit_exponent;
336 field->unit = parser->global.unit;
342 * Read data value from item.
345 static u32 item_udata(struct hid_item *item)
347 switch (item->size) {
348 case 1: return item->data.u8;
349 case 2: return item->data.u16;
350 case 4: return item->data.u32;
355 static s32 item_sdata(struct hid_item *item)
357 switch (item->size) {
358 case 1: return item->data.s8;
359 case 2: return item->data.s16;
360 case 4: return item->data.s32;
366 * Process a global item.
369 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
373 case HID_GLOBAL_ITEM_TAG_PUSH:
375 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376 hid_err(parser->device, "global environment stack overflow\n");
380 memcpy(parser->global_stack + parser->global_stack_ptr++,
381 &parser->global, sizeof(struct hid_global));
384 case HID_GLOBAL_ITEM_TAG_POP:
386 if (!parser->global_stack_ptr) {
387 hid_err(parser->device, "global environment stack underflow\n");
391 memcpy(&parser->global, parser->global_stack +
392 --parser->global_stack_ptr, sizeof(struct hid_global));
395 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396 parser->global.usage_page = item_udata(item);
399 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400 parser->global.logical_minimum = item_sdata(item);
403 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404 if (parser->global.logical_minimum < 0)
405 parser->global.logical_maximum = item_sdata(item);
407 parser->global.logical_maximum = item_udata(item);
410 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411 parser->global.physical_minimum = item_sdata(item);
414 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415 if (parser->global.physical_minimum < 0)
416 parser->global.physical_maximum = item_sdata(item);
418 parser->global.physical_maximum = item_udata(item);
421 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422 /* Many devices provide unit exponent as a two's complement
423 * nibble due to the common misunderstanding of HID
424 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425 * both this and the standard encoding. */
426 raw_value = item_sdata(item);
427 if (!(raw_value & 0xfffffff0))
428 parser->global.unit_exponent = hid_snto32(raw_value, 4);
430 parser->global.unit_exponent = raw_value;
433 case HID_GLOBAL_ITEM_TAG_UNIT:
434 parser->global.unit = item_udata(item);
437 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438 parser->global.report_size = item_udata(item);
439 if (parser->global.report_size > 256) {
440 hid_err(parser->device, "invalid report_size %d\n",
441 parser->global.report_size);
446 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447 parser->global.report_count = item_udata(item);
448 if (parser->global.report_count > HID_MAX_USAGES) {
449 hid_err(parser->device, "invalid report_count %d\n",
450 parser->global.report_count);
455 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456 parser->global.report_id = item_udata(item);
457 if (parser->global.report_id == 0 ||
458 parser->global.report_id >= HID_MAX_IDS) {
459 hid_err(parser->device, "report_id %u is invalid\n",
460 parser->global.report_id);
466 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
472 * Process a local item.
475 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
481 data = item_udata(item);
484 case HID_LOCAL_ITEM_TAG_DELIMITER:
488 * We treat items before the first delimiter
489 * as global to all usage sets (branch 0).
490 * In the moment we process only these global
491 * items and the first delimiter set.
493 if (parser->local.delimiter_depth != 0) {
494 hid_err(parser->device, "nested delimiters\n");
497 parser->local.delimiter_depth++;
498 parser->local.delimiter_branch++;
500 if (parser->local.delimiter_depth < 1) {
501 hid_err(parser->device, "bogus close delimiter\n");
504 parser->local.delimiter_depth--;
508 case HID_LOCAL_ITEM_TAG_USAGE:
510 if (parser->local.delimiter_branch > 1) {
511 dbg_hid("alternative usage ignored\n");
515 return hid_add_usage(parser, data, item->size);
517 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519 if (parser->local.delimiter_branch > 1) {
520 dbg_hid("alternative usage ignored\n");
524 parser->local.usage_minimum = data;
527 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529 if (parser->local.delimiter_branch > 1) {
530 dbg_hid("alternative usage ignored\n");
534 count = data - parser->local.usage_minimum;
535 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 * We do not warn if the name is not set, we are
538 * actually pre-scanning the device.
540 if (dev_name(&parser->device->dev))
541 hid_warn(parser->device,
542 "ignoring exceeding usage max\n");
543 data = HID_MAX_USAGES - parser->local.usage_index +
544 parser->local.usage_minimum - 1;
546 hid_err(parser->device,
547 "no more usage index available\n");
552 for (n = parser->local.usage_minimum; n <= data; n++)
553 if (hid_add_usage(parser, n, item->size)) {
554 dbg_hid("hid_add_usage failed\n");
561 dbg_hid("unknown local item tag 0x%x\n", item->tag);
568 * Concatenate Usage Pages into Usages where relevant:
569 * As per specification, 6.2.2.8: "When the parser encounters a main item it
570 * concatenates the last declared Usage Page with a Usage to form a complete
574 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
577 unsigned int usage_page;
578 unsigned int current_page;
580 if (!parser->local.usage_index)
583 usage_page = parser->global.usage_page;
586 * Concatenate usage page again only if last declared Usage Page
587 * has not been already used in previous usages concatenation
589 for (i = parser->local.usage_index - 1; i >= 0; i--) {
590 if (parser->local.usage_size[i] > 2)
591 /* Ignore extended usages */
594 current_page = parser->local.usage[i] >> 16;
595 if (current_page == usage_page)
598 complete_usage(parser, i);
603 * Process a main item.
606 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
611 hid_concatenate_last_usage_page(parser);
613 data = item_udata(item);
616 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617 ret = open_collection(parser, data & 0xff);
619 case HID_MAIN_ITEM_TAG_END_COLLECTION:
620 ret = close_collection(parser);
622 case HID_MAIN_ITEM_TAG_INPUT:
623 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
625 case HID_MAIN_ITEM_TAG_OUTPUT:
626 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
628 case HID_MAIN_ITEM_TAG_FEATURE:
629 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
632 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
636 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
642 * Process a reserved item.
645 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
652 * Free a report and all registered fields. The field->usage and
653 * field->value table's are allocated behind the field, so we need
654 * only to free(field) itself.
657 static void hid_free_report(struct hid_report *report)
661 kfree(report->field_entries);
663 for (n = 0; n < report->maxfield; n++)
664 kvfree(report->field[n]);
669 * Close report. This function returns the device
670 * state to the point prior to hid_open_report().
672 static void hid_close_report(struct hid_device *device)
676 for (i = 0; i < HID_REPORT_TYPES; i++) {
677 struct hid_report_enum *report_enum = device->report_enum + i;
679 for (j = 0; j < HID_MAX_IDS; j++) {
680 struct hid_report *report = report_enum->report_id_hash[j];
682 hid_free_report(report);
684 memset(report_enum, 0, sizeof(*report_enum));
685 INIT_LIST_HEAD(&report_enum->report_list);
688 kfree(device->rdesc);
689 device->rdesc = NULL;
692 kfree(device->collection);
693 device->collection = NULL;
694 device->collection_size = 0;
695 device->maxcollection = 0;
696 device->maxapplication = 0;
698 device->status &= ~HID_STAT_PARSED;
702 * Free a device structure, all reports, and all fields.
705 void hiddev_free(struct kref *ref)
707 struct hid_device *hid = container_of(ref, struct hid_device, ref);
709 hid_close_report(hid);
710 kfree(hid->dev_rdesc);
714 static void hid_device_release(struct device *dev)
716 struct hid_device *hid = to_hid_device(dev);
718 kref_put(&hid->ref, hiddev_free);
722 * Fetch a report description item from the data stream. We support long
723 * items, though they are not used yet.
726 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
730 if ((end - start) <= 0)
735 item->type = (b >> 2) & 3;
736 item->tag = (b >> 4) & 15;
738 if (item->tag == HID_ITEM_TAG_LONG) {
740 item->format = HID_ITEM_FORMAT_LONG;
742 if ((end - start) < 2)
745 item->size = *start++;
746 item->tag = *start++;
748 if ((end - start) < item->size)
751 item->data.longdata = start;
756 item->format = HID_ITEM_FORMAT_SHORT;
759 switch (item->size) {
764 if ((end - start) < 1)
766 item->data.u8 = *start++;
770 if ((end - start) < 2)
772 item->data.u16 = get_unaligned_le16(start);
773 start = (__u8 *)((__le16 *)start + 1);
778 if ((end - start) < 4)
780 item->data.u32 = get_unaligned_le32(start);
781 start = (__u8 *)((__le32 *)start + 1);
788 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
790 struct hid_device *hid = parser->device;
792 if (usage == HID_DG_CONTACTID)
793 hid->group = HID_GROUP_MULTITOUCH;
796 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
798 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
799 parser->global.report_size == 8)
800 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
802 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
803 parser->global.report_size == 8)
804 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
807 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
809 struct hid_device *hid = parser->device;
812 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
813 (type == HID_COLLECTION_PHYSICAL ||
814 type == HID_COLLECTION_APPLICATION))
815 hid->group = HID_GROUP_SENSOR_HUB;
817 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
818 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
819 hid->group == HID_GROUP_MULTITOUCH)
820 hid->group = HID_GROUP_GENERIC;
822 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
823 for (i = 0; i < parser->local.usage_index; i++)
824 if (parser->local.usage[i] == HID_GD_POINTER)
825 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
827 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
828 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
830 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
831 for (i = 0; i < parser->local.usage_index; i++)
832 if (parser->local.usage[i] ==
833 (HID_UP_GOOGLEVENDOR | 0x0001))
834 parser->device->group =
838 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
843 hid_concatenate_last_usage_page(parser);
845 data = item_udata(item);
848 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
849 hid_scan_collection(parser, data & 0xff);
851 case HID_MAIN_ITEM_TAG_END_COLLECTION:
853 case HID_MAIN_ITEM_TAG_INPUT:
854 /* ignore constant inputs, they will be ignored by hid-input */
855 if (data & HID_MAIN_ITEM_CONSTANT)
857 for (i = 0; i < parser->local.usage_index; i++)
858 hid_scan_input_usage(parser, parser->local.usage[i]);
860 case HID_MAIN_ITEM_TAG_OUTPUT:
862 case HID_MAIN_ITEM_TAG_FEATURE:
863 for (i = 0; i < parser->local.usage_index; i++)
864 hid_scan_feature_usage(parser, parser->local.usage[i]);
868 /* Reset the local parser environment */
869 memset(&parser->local, 0, sizeof(parser->local));
875 * Scan a report descriptor before the device is added to the bus.
876 * Sets device groups and other properties that determine what driver
879 static int hid_scan_report(struct hid_device *hid)
881 struct hid_parser *parser;
882 struct hid_item item;
883 const __u8 *start = hid->dev_rdesc;
884 const __u8 *end = start + hid->dev_rsize;
885 static int (*dispatch_type[])(struct hid_parser *parser,
886 struct hid_item *item) = {
893 parser = vzalloc(sizeof(struct hid_parser));
897 parser->device = hid;
898 hid->group = HID_GROUP_GENERIC;
901 * The parsing is simpler than the one in hid_open_report() as we should
902 * be robust against hid errors. Those errors will be raised by
903 * hid_open_report() anyway.
905 while ((start = fetch_item(start, end, &item)) != NULL)
906 dispatch_type[item.type](parser, &item);
909 * Handle special flags set during scanning.
911 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
912 (hid->group == HID_GROUP_MULTITOUCH))
913 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
916 * Vendor specific handlings
918 switch (hid->vendor) {
919 case USB_VENDOR_ID_WACOM:
920 hid->group = HID_GROUP_WACOM;
922 case USB_VENDOR_ID_SYNAPTICS:
923 if (hid->group == HID_GROUP_GENERIC)
924 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
925 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
927 * hid-rmi should take care of them,
930 hid->group = HID_GROUP_RMI;
934 kfree(parser->collection_stack);
940 * hid_parse_report - parse device report
943 * @start: report start
946 * Allocate the device report as read by the bus driver. This function should
947 * only be called from parse() in ll drivers.
949 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
951 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
954 hid->dev_rsize = size;
957 EXPORT_SYMBOL_GPL(hid_parse_report);
959 static const char * const hid_report_names[] = {
962 "HID_FEATURE_REPORT",
965 * hid_validate_values - validate existing device report's value indexes
968 * @type: which report type to examine
969 * @id: which report ID to examine (0 for first)
970 * @field_index: which report field to examine
971 * @report_counts: expected number of values
973 * Validate the number of values in a given field of a given report, after
976 struct hid_report *hid_validate_values(struct hid_device *hid,
977 enum hid_report_type type, unsigned int id,
978 unsigned int field_index,
979 unsigned int report_counts)
981 struct hid_report *report;
983 if (type > HID_FEATURE_REPORT) {
984 hid_err(hid, "invalid HID report type %u\n", type);
988 if (id >= HID_MAX_IDS) {
989 hid_err(hid, "invalid HID report id %u\n", id);
994 * Explicitly not using hid_get_report() here since it depends on
995 * ->numbered being checked, which may not always be the case when
996 * drivers go to access report values.
1000 * Validating on id 0 means we should examine the first
1001 * report in the list.
1003 report = list_first_entry_or_null(
1004 &hid->report_enum[type].report_list,
1005 struct hid_report, list);
1007 report = hid->report_enum[type].report_id_hash[id];
1010 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1013 if (report->maxfield <= field_index) {
1014 hid_err(hid, "not enough fields in %s %u\n",
1015 hid_report_names[type], id);
1018 if (report->field[field_index]->report_count < report_counts) {
1019 hid_err(hid, "not enough values in %s %u field %u\n",
1020 hid_report_names[type], id, field_index);
1025 EXPORT_SYMBOL_GPL(hid_validate_values);
1027 static int hid_calculate_multiplier(struct hid_device *hid,
1028 struct hid_field *multiplier)
1031 __s32 v = *multiplier->value;
1032 __s32 lmin = multiplier->logical_minimum;
1033 __s32 lmax = multiplier->logical_maximum;
1034 __s32 pmin = multiplier->physical_minimum;
1035 __s32 pmax = multiplier->physical_maximum;
1038 * "Because OS implementations will generally divide the control's
1039 * reported count by the Effective Resolution Multiplier, designers
1040 * should take care not to establish a potential Effective
1041 * Resolution Multiplier of zero."
1042 * HID Usage Table, v1.12, Section 4.3.1, p31
1044 if (lmax - lmin == 0)
1047 * Handling the unit exponent is left as an exercise to whoever
1048 * finds a device where that exponent is not 0.
1050 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1051 if (unlikely(multiplier->unit_exponent != 0)) {
1053 "unsupported Resolution Multiplier unit exponent %d\n",
1054 multiplier->unit_exponent);
1057 /* There are no devices with an effective multiplier > 255 */
1058 if (unlikely(m == 0 || m > 255 || m < -255)) {
1059 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1066 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1067 struct hid_field *field,
1068 struct hid_collection *multiplier_collection,
1069 int effective_multiplier)
1071 struct hid_collection *collection;
1072 struct hid_usage *usage;
1076 * If multiplier_collection is NULL, the multiplier applies
1077 * to all fields in the report.
1078 * Otherwise, it is the Logical Collection the multiplier applies to
1079 * but our field may be in a subcollection of that collection.
1081 for (i = 0; i < field->maxusage; i++) {
1082 usage = &field->usage[i];
1084 collection = &hid->collection[usage->collection_index];
1085 while (collection->parent_idx != -1 &&
1086 collection != multiplier_collection)
1087 collection = &hid->collection[collection->parent_idx];
1089 if (collection->parent_idx != -1 ||
1090 multiplier_collection == NULL)
1091 usage->resolution_multiplier = effective_multiplier;
1096 static void hid_apply_multiplier(struct hid_device *hid,
1097 struct hid_field *multiplier)
1099 struct hid_report_enum *rep_enum;
1100 struct hid_report *rep;
1101 struct hid_field *field;
1102 struct hid_collection *multiplier_collection;
1103 int effective_multiplier;
1107 * "The Resolution Multiplier control must be contained in the same
1108 * Logical Collection as the control(s) to which it is to be applied.
1109 * If no Resolution Multiplier is defined, then the Resolution
1110 * Multiplier defaults to 1. If more than one control exists in a
1111 * Logical Collection, the Resolution Multiplier is associated with
1112 * all controls in the collection. If no Logical Collection is
1113 * defined, the Resolution Multiplier is associated with all
1114 * controls in the report."
1115 * HID Usage Table, v1.12, Section 4.3.1, p30
1117 * Thus, search from the current collection upwards until we find a
1118 * logical collection. Then search all fields for that same parent
1119 * collection. Those are the fields the multiplier applies to.
1121 * If we have more than one multiplier, it will overwrite the
1122 * applicable fields later.
1124 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1125 while (multiplier_collection->parent_idx != -1 &&
1126 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1127 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1129 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1131 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1132 list_for_each_entry(rep, &rep_enum->report_list, list) {
1133 for (i = 0; i < rep->maxfield; i++) {
1134 field = rep->field[i];
1135 hid_apply_multiplier_to_field(hid, field,
1136 multiplier_collection,
1137 effective_multiplier);
1143 * hid_setup_resolution_multiplier - set up all resolution multipliers
1145 * @device: hid device
1147 * Search for all Resolution Multiplier Feature Reports and apply their
1148 * value to all matching Input items. This only updates the internal struct
1151 * The Resolution Multiplier is applied by the hardware. If the multiplier
1152 * is anything other than 1, the hardware will send pre-multiplied events
1153 * so that the same physical interaction generates an accumulated
1154 * accumulated_value = value * * multiplier
1155 * This may be achieved by sending
1156 * - "value * multiplier" for each event, or
1157 * - "value" but "multiplier" times as frequently, or
1158 * - a combination of the above
1159 * The only guarantee is that the same physical interaction always generates
1160 * an accumulated 'value * multiplier'.
1162 * This function must be called before any event processing and after
1163 * any SetRequest to the Resolution Multiplier.
1165 void hid_setup_resolution_multiplier(struct hid_device *hid)
1167 struct hid_report_enum *rep_enum;
1168 struct hid_report *rep;
1169 struct hid_usage *usage;
1172 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1173 list_for_each_entry(rep, &rep_enum->report_list, list) {
1174 for (i = 0; i < rep->maxfield; i++) {
1175 /* Ignore if report count is out of bounds. */
1176 if (rep->field[i]->report_count < 1)
1179 for (j = 0; j < rep->field[i]->maxusage; j++) {
1180 usage = &rep->field[i]->usage[j];
1181 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1182 hid_apply_multiplier(hid,
1188 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1191 * hid_open_report - open a driver-specific device report
1193 * @device: hid device
1195 * Parse a report description into a hid_device structure. Reports are
1196 * enumerated, fields are attached to these reports.
1197 * 0 returned on success, otherwise nonzero error value.
1199 * This function (or the equivalent hid_parse() macro) should only be
1200 * called from probe() in drivers, before starting the device.
1202 int hid_open_report(struct hid_device *device)
1204 struct hid_parser *parser;
1205 struct hid_item item;
1213 static int (*dispatch_type[])(struct hid_parser *parser,
1214 struct hid_item *item) = {
1221 if (WARN_ON(device->status & HID_STAT_PARSED))
1224 start = device->dev_rdesc;
1225 if (WARN_ON(!start))
1227 size = device->dev_rsize;
1229 /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1230 buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1234 if (device->driver->report_fixup)
1235 start = device->driver->report_fixup(device, buf, &size);
1239 start = kmemdup(start, size, GFP_KERNEL);
1244 device->rdesc = start;
1245 device->rsize = size;
1247 parser = vzalloc(sizeof(struct hid_parser));
1253 parser->device = device;
1257 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1258 sizeof(struct hid_collection), GFP_KERNEL);
1259 if (!device->collection) {
1263 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1264 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1265 device->collection[i].parent_idx = -1;
1268 while ((next = fetch_item(start, end, &item)) != NULL) {
1271 if (item.format != HID_ITEM_FORMAT_SHORT) {
1272 hid_err(device, "unexpected long global item\n");
1276 if (dispatch_type[item.type](parser, &item)) {
1277 hid_err(device, "item %u %u %u %u parsing failed\n",
1278 item.format, (unsigned)item.size,
1279 (unsigned)item.type, (unsigned)item.tag);
1284 if (parser->collection_stack_ptr) {
1285 hid_err(device, "unbalanced collection at end of report description\n");
1288 if (parser->local.delimiter_depth) {
1289 hid_err(device, "unbalanced delimiter at end of report description\n");
1294 * fetch initial values in case the device's
1295 * default multiplier isn't the recommended 1
1297 hid_setup_resolution_multiplier(device);
1299 kfree(parser->collection_stack);
1301 device->status |= HID_STAT_PARSED;
1307 hid_err(device, "item fetching failed at offset %u/%u\n",
1308 size - (unsigned int)(end - start), size);
1310 kfree(parser->collection_stack);
1313 hid_close_report(device);
1316 EXPORT_SYMBOL_GPL(hid_open_report);
1319 * Convert a signed n-bit integer to signed 32-bit integer. Common
1320 * cases are done through the compiler, the screwed things has to be
1324 static s32 snto32(__u32 value, unsigned n)
1333 case 8: return ((__s8)value);
1334 case 16: return ((__s16)value);
1335 case 32: return ((__s32)value);
1337 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1340 s32 hid_snto32(__u32 value, unsigned n)
1342 return snto32(value, n);
1344 EXPORT_SYMBOL_GPL(hid_snto32);
1347 * Convert a signed 32-bit integer to a signed n-bit integer.
1350 static u32 s32ton(__s32 value, unsigned n)
1352 s32 a = value >> (n - 1);
1354 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1355 return value & ((1 << n) - 1);
1359 * Extract/implement a data field from/to a little endian report (bit array).
1361 * Code sort-of follows HID spec:
1362 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1364 * While the USB HID spec allows unlimited length bit fields in "report
1365 * descriptors", most devices never use more than 16 bits.
1366 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1367 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1370 static u32 __extract(u8 *report, unsigned offset, int n)
1372 unsigned int idx = offset / 8;
1373 unsigned int bit_nr = 0;
1374 unsigned int bit_shift = offset % 8;
1375 int bits_to_copy = 8 - bit_shift;
1377 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1380 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1382 bit_nr += bits_to_copy;
1388 return value & mask;
1391 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1392 unsigned offset, unsigned n)
1395 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1396 __func__, n, current->comm);
1400 return __extract(report, offset, n);
1402 EXPORT_SYMBOL_GPL(hid_field_extract);
1405 * "implement" : set bits in a little endian bit stream.
1406 * Same concepts as "extract" (see comments above).
1407 * The data mangled in the bit stream remains in little endian
1408 * order the whole time. It make more sense to talk about
1409 * endianness of register values by considering a register
1410 * a "cached" copy of the little endian bit stream.
1413 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1415 unsigned int idx = offset / 8;
1416 unsigned int bit_shift = offset % 8;
1417 int bits_to_set = 8 - bit_shift;
1419 while (n - bits_to_set >= 0) {
1420 report[idx] &= ~(0xff << bit_shift);
1421 report[idx] |= value << bit_shift;
1422 value >>= bits_to_set;
1431 u8 bit_mask = ((1U << n) - 1);
1432 report[idx] &= ~(bit_mask << bit_shift);
1433 report[idx] |= value << bit_shift;
1437 static void implement(const struct hid_device *hid, u8 *report,
1438 unsigned offset, unsigned n, u32 value)
1440 if (unlikely(n > 32)) {
1441 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1442 __func__, n, current->comm);
1444 } else if (n < 32) {
1445 u32 m = (1U << n) - 1;
1447 if (unlikely(value > m)) {
1449 "%s() called with too large value %d (n: %d)! (%s)\n",
1450 __func__, value, n, current->comm);
1455 __implement(report, offset, n, value);
1459 * Search an array for a value.
1462 static int search(__s32 *array, __s32 value, unsigned n)
1465 if (*array++ == value)
1472 * hid_match_report - check if driver's raw_event should be called
1475 * @report: hid report to match against
1477 * compare hid->driver->report_table->report_type to report->type
1479 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1481 const struct hid_report_id *id = hid->driver->report_table;
1483 if (!id) /* NULL means all */
1486 for (; id->report_type != HID_TERMINATOR; id++)
1487 if (id->report_type == HID_ANY_ID ||
1488 id->report_type == report->type)
1494 * hid_match_usage - check if driver's event should be called
1497 * @usage: usage to match against
1499 * compare hid->driver->usage_table->usage_{type,code} to
1500 * usage->usage_{type,code}
1502 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1504 const struct hid_usage_id *id = hid->driver->usage_table;
1506 if (!id) /* NULL means all */
1509 for (; id->usage_type != HID_ANY_ID - 1; id++)
1510 if ((id->usage_hid == HID_ANY_ID ||
1511 id->usage_hid == usage->hid) &&
1512 (id->usage_type == HID_ANY_ID ||
1513 id->usage_type == usage->type) &&
1514 (id->usage_code == HID_ANY_ID ||
1515 id->usage_code == usage->code))
1520 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1521 struct hid_usage *usage, __s32 value, int interrupt)
1523 struct hid_driver *hdrv = hid->driver;
1526 if (!list_empty(&hid->debug_list))
1527 hid_dump_input(hid, usage, value);
1529 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1530 ret = hdrv->event(hid, field, usage, value);
1533 hid_err(hid, "%s's event failed with %d\n",
1539 if (hid->claimed & HID_CLAIMED_INPUT)
1540 hidinput_hid_event(hid, field, usage, value);
1541 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1542 hid->hiddev_hid_event(hid, field, usage, value);
1546 * Checks if the given value is valid within this field
1548 static inline int hid_array_value_is_valid(struct hid_field *field,
1551 __s32 min = field->logical_minimum;
1554 * Value needs to be between logical min and max, and
1555 * (value - min) is used as an index in the usage array.
1556 * This array is of size field->maxusage
1558 return value >= min &&
1559 value <= field->logical_maximum &&
1560 value - min < field->maxusage;
1564 * Fetch the field from the data. The field content is stored for next
1565 * report processing (we do differential reporting to the layer).
1567 static void hid_input_fetch_field(struct hid_device *hid,
1568 struct hid_field *field,
1572 unsigned count = field->report_count;
1573 unsigned offset = field->report_offset;
1574 unsigned size = field->report_size;
1575 __s32 min = field->logical_minimum;
1578 value = field->new_value;
1579 memset(value, 0, count * sizeof(__s32));
1580 field->ignored = false;
1582 for (n = 0; n < count; n++) {
1584 value[n] = min < 0 ?
1585 snto32(hid_field_extract(hid, data, offset + n * size,
1587 hid_field_extract(hid, data, offset + n * size, size);
1589 /* Ignore report if ErrorRollOver */
1590 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1591 hid_array_value_is_valid(field, value[n]) &&
1592 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1593 field->ignored = true;
1600 * Process a received variable field.
1603 static void hid_input_var_field(struct hid_device *hid,
1604 struct hid_field *field,
1607 unsigned int count = field->report_count;
1608 __s32 *value = field->new_value;
1611 for (n = 0; n < count; n++)
1612 hid_process_event(hid,
1618 memcpy(field->value, value, count * sizeof(__s32));
1622 * Process a received array field. The field content is stored for
1623 * next report processing (we do differential reporting to the layer).
1626 static void hid_input_array_field(struct hid_device *hid,
1627 struct hid_field *field,
1631 unsigned int count = field->report_count;
1632 __s32 min = field->logical_minimum;
1635 value = field->new_value;
1641 for (n = 0; n < count; n++) {
1642 if (hid_array_value_is_valid(field, field->value[n]) &&
1643 search(value, field->value[n], count))
1644 hid_process_event(hid,
1646 &field->usage[field->value[n] - min],
1650 if (hid_array_value_is_valid(field, value[n]) &&
1651 search(field->value, value[n], count))
1652 hid_process_event(hid,
1654 &field->usage[value[n] - min],
1659 memcpy(field->value, value, count * sizeof(__s32));
1663 * Analyse a received report, and fetch the data from it. The field
1664 * content is stored for next report processing (we do differential
1665 * reporting to the layer).
1667 static void hid_process_report(struct hid_device *hid,
1668 struct hid_report *report,
1673 struct hid_field_entry *entry;
1674 struct hid_field *field;
1676 /* first retrieve all incoming values in data */
1677 for (a = 0; a < report->maxfield; a++)
1678 hid_input_fetch_field(hid, report->field[a], data);
1680 if (!list_empty(&report->field_entry_list)) {
1681 /* INPUT_REPORT, we have a priority list of fields */
1682 list_for_each_entry(entry,
1683 &report->field_entry_list,
1685 field = entry->field;
1687 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1688 hid_process_event(hid,
1690 &field->usage[entry->index],
1691 field->new_value[entry->index],
1694 hid_input_array_field(hid, field, interrupt);
1697 /* we need to do the memcpy at the end for var items */
1698 for (a = 0; a < report->maxfield; a++) {
1699 field = report->field[a];
1701 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1702 memcpy(field->value, field->new_value,
1703 field->report_count * sizeof(__s32));
1706 /* FEATURE_REPORT, regular processing */
1707 for (a = 0; a < report->maxfield; a++) {
1708 field = report->field[a];
1710 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1711 hid_input_var_field(hid, field, interrupt);
1713 hid_input_array_field(hid, field, interrupt);
1719 * Insert a given usage_index in a field in the list
1720 * of processed usages in the report.
1722 * The elements of lower priority score are processed
1725 static void __hid_insert_field_entry(struct hid_device *hid,
1726 struct hid_report *report,
1727 struct hid_field_entry *entry,
1728 struct hid_field *field,
1729 unsigned int usage_index)
1731 struct hid_field_entry *next;
1733 entry->field = field;
1734 entry->index = usage_index;
1735 entry->priority = field->usages_priorities[usage_index];
1737 /* insert the element at the correct position */
1738 list_for_each_entry(next,
1739 &report->field_entry_list,
1742 * the priority of our element is strictly higher
1743 * than the next one, insert it before
1745 if (entry->priority > next->priority) {
1746 list_add_tail(&entry->list, &next->list);
1751 /* lowest priority score: insert at the end */
1752 list_add_tail(&entry->list, &report->field_entry_list);
1755 static void hid_report_process_ordering(struct hid_device *hid,
1756 struct hid_report *report)
1758 struct hid_field *field;
1759 struct hid_field_entry *entries;
1760 unsigned int a, u, usages;
1761 unsigned int count = 0;
1763 /* count the number of individual fields in the report */
1764 for (a = 0; a < report->maxfield; a++) {
1765 field = report->field[a];
1767 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1768 count += field->report_count;
1773 /* allocate the memory to process the fields */
1774 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1778 report->field_entries = entries;
1781 * walk through all fields in the report and
1782 * store them by priority order in report->field_entry_list
1784 * - Var elements are individualized (field + usage_index)
1785 * - Arrays are taken as one, we can not chose an order for them
1788 for (a = 0; a < report->maxfield; a++) {
1789 field = report->field[a];
1791 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1792 for (u = 0; u < field->report_count; u++) {
1793 __hid_insert_field_entry(hid, report,
1799 __hid_insert_field_entry(hid, report, &entries[usages],
1806 static void hid_process_ordering(struct hid_device *hid)
1808 struct hid_report *report;
1809 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1811 list_for_each_entry(report, &report_enum->report_list, list)
1812 hid_report_process_ordering(hid, report);
1816 * Output the field into the report.
1819 static void hid_output_field(const struct hid_device *hid,
1820 struct hid_field *field, __u8 *data)
1822 unsigned count = field->report_count;
1823 unsigned offset = field->report_offset;
1824 unsigned size = field->report_size;
1827 for (n = 0; n < count; n++) {
1828 if (field->logical_minimum < 0) /* signed values */
1829 implement(hid, data, offset + n * size, size,
1830 s32ton(field->value[n], size));
1831 else /* unsigned values */
1832 implement(hid, data, offset + n * size, size,
1838 * Compute the size of a report.
1840 static size_t hid_compute_report_size(struct hid_report *report)
1843 return ((report->size - 1) >> 3) + 1;
1849 * Create a report. 'data' has to be allocated using
1850 * hid_alloc_report_buf() so that it has proper size.
1853 void hid_output_report(struct hid_report *report, __u8 *data)
1858 *data++ = report->id;
1860 memset(data, 0, hid_compute_report_size(report));
1861 for (n = 0; n < report->maxfield; n++)
1862 hid_output_field(report->device, report->field[n], data);
1864 EXPORT_SYMBOL_GPL(hid_output_report);
1867 * Allocator for buffer that is going to be passed to hid_output_report()
1869 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1872 * 7 extra bytes are necessary to achieve proper functionality
1873 * of implement() working on 8 byte chunks
1876 u32 len = hid_report_len(report) + 7;
1878 return kzalloc(len, flags);
1880 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1883 * Set a field value. The report this field belongs to has to be
1884 * created and transferred to the device, to set this value in the
1888 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1895 size = field->report_size;
1897 hid_dump_input(field->report->device, field->usage + offset, value);
1899 if (offset >= field->report_count) {
1900 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1901 offset, field->report_count);
1904 if (field->logical_minimum < 0) {
1905 if (value != snto32(s32ton(value, size), size)) {
1906 hid_err(field->report->device, "value %d is out of range\n", value);
1910 field->value[offset] = value;
1913 EXPORT_SYMBOL_GPL(hid_set_field);
1915 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1916 unsigned int application, unsigned int usage)
1918 struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1919 struct hid_report *report;
1922 list_for_each_entry(report, report_list, list) {
1923 if (report->application != application)
1926 for (i = 0; i < report->maxfield; i++) {
1927 struct hid_field *field = report->field[i];
1929 for (j = 0; j < field->maxusage; j++) {
1930 if (field->usage[j].hid == usage)
1938 EXPORT_SYMBOL_GPL(hid_find_field);
1940 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1943 struct hid_report *report;
1944 unsigned int n = 0; /* Normally report number is 0 */
1946 /* Device uses numbered reports, data[0] is report number */
1947 if (report_enum->numbered)
1950 report = report_enum->report_id_hash[n];
1952 dbg_hid("undefined report_id %u received\n", n);
1958 * Implement a generic .request() callback, using .raw_request()
1959 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1961 int __hid_request(struct hid_device *hid, struct hid_report *report,
1962 enum hid_class_request reqtype)
1968 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1972 len = hid_report_len(report);
1974 if (reqtype == HID_REQ_SET_REPORT)
1975 hid_output_report(report, buf);
1977 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1978 report->type, reqtype);
1980 dbg_hid("unable to complete request: %d\n", ret);
1984 if (reqtype == HID_REQ_GET_REPORT)
1985 hid_input_report(hid, report->type, buf, ret, 0);
1993 EXPORT_SYMBOL_GPL(__hid_request);
1995 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1998 struct hid_report_enum *report_enum = hid->report_enum + type;
1999 struct hid_report *report;
2000 struct hid_driver *hdrv;
2001 int max_buffer_size = HID_MAX_BUFFER_SIZE;
2002 u32 rsize, csize = size;
2006 report = hid_get_report(report_enum, data);
2010 if (report_enum->numbered) {
2015 rsize = hid_compute_report_size(report);
2017 if (hid->ll_driver->max_buffer_size)
2018 max_buffer_size = hid->ll_driver->max_buffer_size;
2020 if (report_enum->numbered && rsize >= max_buffer_size)
2021 rsize = max_buffer_size - 1;
2022 else if (rsize > max_buffer_size)
2023 rsize = max_buffer_size;
2025 if (csize < rsize) {
2026 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2028 memset(cdata + csize, 0, rsize - csize);
2031 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2032 hid->hiddev_report_event(hid, report);
2033 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2034 ret = hidraw_report_event(hid, data, size);
2039 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2040 hid_process_report(hid, report, cdata, interrupt);
2042 if (hdrv && hdrv->report)
2043 hdrv->report(hid, report);
2046 if (hid->claimed & HID_CLAIMED_INPUT)
2047 hidinput_report_event(hid, report);
2051 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2054 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2055 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2056 bool lock_already_taken)
2058 struct hid_report_enum *report_enum;
2059 struct hid_driver *hdrv;
2060 struct hid_report *report;
2066 ret = down_trylock(&hid->driver_input_lock);
2067 if (lock_already_taken && !ret) {
2068 up(&hid->driver_input_lock);
2070 } else if (!lock_already_taken && ret) {
2078 report_enum = hid->report_enum + type;
2081 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2083 ret = PTR_ERR(data);
2088 dbg_hid("empty report\n");
2093 /* Avoid unnecessary overhead if debugfs is disabled */
2094 if (!list_empty(&hid->debug_list))
2095 hid_dump_report(hid, type, data, size);
2097 report = hid_get_report(report_enum, data);
2104 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2105 ret = hdrv->raw_event(hid, report, data, size);
2110 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2113 if (!lock_already_taken)
2114 up(&hid->driver_input_lock);
2119 * hid_input_report - report data from lower layer (usb, bt...)
2122 * @type: HID report type (HID_*_REPORT)
2123 * @data: report contents
2124 * @size: size of data parameter
2125 * @interrupt: distinguish between interrupt and control transfers
2127 * This is data entry for lower layers.
2129 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2132 return __hid_input_report(hid, type, data, size, interrupt, 0,
2133 false, /* from_bpf */
2134 false /* lock_already_taken */);
2136 EXPORT_SYMBOL_GPL(hid_input_report);
2138 bool hid_match_one_id(const struct hid_device *hdev,
2139 const struct hid_device_id *id)
2141 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2142 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2143 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2144 (id->product == HID_ANY_ID || id->product == hdev->product);
2147 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2148 const struct hid_device_id *id)
2150 for (; id->bus; id++)
2151 if (hid_match_one_id(hdev, id))
2156 EXPORT_SYMBOL_GPL(hid_match_id);
2158 static const struct hid_device_id hid_hiddev_list[] = {
2159 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2160 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2164 static bool hid_hiddev(struct hid_device *hdev)
2166 return !!hid_match_id(hdev, hid_hiddev_list);
2171 read_report_descriptor(struct file *filp, struct kobject *kobj,
2172 struct bin_attribute *attr,
2173 char *buf, loff_t off, size_t count)
2175 struct device *dev = kobj_to_dev(kobj);
2176 struct hid_device *hdev = to_hid_device(dev);
2178 if (off >= hdev->rsize)
2181 if (off + count > hdev->rsize)
2182 count = hdev->rsize - off;
2184 memcpy(buf, hdev->rdesc + off, count);
2190 show_country(struct device *dev, struct device_attribute *attr,
2193 struct hid_device *hdev = to_hid_device(dev);
2195 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2198 static struct bin_attribute dev_bin_attr_report_desc = {
2199 .attr = { .name = "report_descriptor", .mode = 0444 },
2200 .read = read_report_descriptor,
2201 .size = HID_MAX_DESCRIPTOR_SIZE,
2204 static const struct device_attribute dev_attr_country = {
2205 .attr = { .name = "country", .mode = 0444 },
2206 .show = show_country,
2209 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2211 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2212 "Joystick", "Gamepad", "Keyboard", "Keypad",
2213 "Multi-Axis Controller"
2215 const char *type, *bus;
2221 ret = hid_bpf_connect_device(hdev);
2225 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2226 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2227 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2228 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2229 if (hdev->bus != BUS_USB)
2230 connect_mask &= ~HID_CONNECT_HIDDEV;
2231 if (hid_hiddev(hdev))
2232 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2234 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2235 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2236 hdev->claimed |= HID_CLAIMED_INPUT;
2238 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2239 !hdev->hiddev_connect(hdev,
2240 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2241 hdev->claimed |= HID_CLAIMED_HIDDEV;
2242 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2243 hdev->claimed |= HID_CLAIMED_HIDRAW;
2245 if (connect_mask & HID_CONNECT_DRIVER)
2246 hdev->claimed |= HID_CLAIMED_DRIVER;
2248 /* Drivers with the ->raw_event callback set are not required to connect
2249 * to any other listener. */
2250 if (!hdev->claimed && !hdev->driver->raw_event) {
2251 hid_err(hdev, "device has no listeners, quitting\n");
2255 hid_process_ordering(hdev);
2257 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2258 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2259 hdev->ff_init(hdev);
2262 if (hdev->claimed & HID_CLAIMED_INPUT)
2263 len += sprintf(buf + len, "input");
2264 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2265 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2266 ((struct hiddev *)hdev->hiddev)->minor);
2267 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2268 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2269 ((struct hidraw *)hdev->hidraw)->minor);
2272 for (i = 0; i < hdev->maxcollection; i++) {
2273 struct hid_collection *col = &hdev->collection[i];
2274 if (col->type == HID_COLLECTION_APPLICATION &&
2275 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2276 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2277 type = types[col->usage & 0xffff];
2282 switch (hdev->bus) {
2295 case BUS_INTEL_ISHTP:
2303 ret = device_create_file(&hdev->dev, &dev_attr_country);
2306 "can't create sysfs country code attribute err: %d\n", ret);
2308 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2309 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2310 type, hdev->name, hdev->phys);
2314 EXPORT_SYMBOL_GPL(hid_connect);
2316 void hid_disconnect(struct hid_device *hdev)
2318 device_remove_file(&hdev->dev, &dev_attr_country);
2319 if (hdev->claimed & HID_CLAIMED_INPUT)
2320 hidinput_disconnect(hdev);
2321 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2322 hdev->hiddev_disconnect(hdev);
2323 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2324 hidraw_disconnect(hdev);
2327 hid_bpf_disconnect_device(hdev);
2329 EXPORT_SYMBOL_GPL(hid_disconnect);
2332 * hid_hw_start - start underlying HW
2334 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2336 * Call this in probe function *after* hid_parse. This will setup HW
2337 * buffers and start the device (if not defeirred to device open).
2338 * hid_hw_stop must be called if this was successful.
2340 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2344 error = hdev->ll_driver->start(hdev);
2349 error = hid_connect(hdev, connect_mask);
2351 hdev->ll_driver->stop(hdev);
2358 EXPORT_SYMBOL_GPL(hid_hw_start);
2361 * hid_hw_stop - stop underlying HW
2364 * This is usually called from remove function or from probe when something
2365 * failed and hid_hw_start was called already.
2367 void hid_hw_stop(struct hid_device *hdev)
2369 hid_disconnect(hdev);
2370 hdev->ll_driver->stop(hdev);
2372 EXPORT_SYMBOL_GPL(hid_hw_stop);
2375 * hid_hw_open - signal underlying HW to start delivering events
2378 * Tell underlying HW to start delivering events from the device.
2379 * This function should be called sometime after successful call
2380 * to hid_hw_start().
2382 int hid_hw_open(struct hid_device *hdev)
2386 ret = mutex_lock_killable(&hdev->ll_open_lock);
2390 if (!hdev->ll_open_count++) {
2391 ret = hdev->ll_driver->open(hdev);
2393 hdev->ll_open_count--;
2396 mutex_unlock(&hdev->ll_open_lock);
2399 EXPORT_SYMBOL_GPL(hid_hw_open);
2402 * hid_hw_close - signal underlaying HW to stop delivering events
2406 * This function indicates that we are not interested in the events
2407 * from this device anymore. Delivery of events may or may not stop,
2408 * depending on the number of users still outstanding.
2410 void hid_hw_close(struct hid_device *hdev)
2412 mutex_lock(&hdev->ll_open_lock);
2413 if (!--hdev->ll_open_count)
2414 hdev->ll_driver->close(hdev);
2415 mutex_unlock(&hdev->ll_open_lock);
2417 EXPORT_SYMBOL_GPL(hid_hw_close);
2420 * hid_hw_request - send report request to device
2423 * @report: report to send
2424 * @reqtype: hid request type
2426 void hid_hw_request(struct hid_device *hdev,
2427 struct hid_report *report, enum hid_class_request reqtype)
2429 if (hdev->ll_driver->request)
2430 return hdev->ll_driver->request(hdev, report, reqtype);
2432 __hid_request(hdev, report, reqtype);
2434 EXPORT_SYMBOL_GPL(hid_hw_request);
2436 int __hid_hw_raw_request(struct hid_device *hdev,
2437 unsigned char reportnum, __u8 *buf,
2438 size_t len, enum hid_report_type rtype,
2439 enum hid_class_request reqtype,
2440 u64 source, bool from_bpf)
2442 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2445 if (hdev->ll_driver->max_buffer_size)
2446 max_buffer_size = hdev->ll_driver->max_buffer_size;
2448 if (len < 1 || len > max_buffer_size || !buf)
2451 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2452 reqtype, source, from_bpf);
2456 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2461 * hid_hw_raw_request - send report request to device
2464 * @reportnum: report ID
2465 * @buf: in/out data to transfer
2466 * @len: length of buf
2467 * @rtype: HID report type
2468 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2470 * Return: count of data transferred, negative if error
2472 * Same behavior as hid_hw_request, but with raw buffers instead.
2474 int hid_hw_raw_request(struct hid_device *hdev,
2475 unsigned char reportnum, __u8 *buf,
2476 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2478 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2480 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2482 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2485 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2488 if (hdev->ll_driver->max_buffer_size)
2489 max_buffer_size = hdev->ll_driver->max_buffer_size;
2491 if (len < 1 || len > max_buffer_size || !buf)
2494 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2498 if (hdev->ll_driver->output_report)
2499 return hdev->ll_driver->output_report(hdev, buf, len);
2505 * hid_hw_output_report - send output report to device
2508 * @buf: raw data to transfer
2509 * @len: length of buf
2511 * Return: count of data transferred, negative if error
2513 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2515 return __hid_hw_output_report(hdev, buf, len, 0, false);
2517 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2520 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2522 if (hdev->driver && hdev->driver->suspend)
2523 return hdev->driver->suspend(hdev, state);
2527 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2529 int hid_driver_reset_resume(struct hid_device *hdev)
2531 if (hdev->driver && hdev->driver->reset_resume)
2532 return hdev->driver->reset_resume(hdev);
2536 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2538 int hid_driver_resume(struct hid_device *hdev)
2540 if (hdev->driver && hdev->driver->resume)
2541 return hdev->driver->resume(hdev);
2545 EXPORT_SYMBOL_GPL(hid_driver_resume);
2546 #endif /* CONFIG_PM */
2549 struct list_head list;
2550 struct hid_device_id id;
2554 * new_id_store - add a new HID device ID to this driver and re-probe devices
2555 * @drv: target device driver
2556 * @buf: buffer for scanning device ID data
2557 * @count: input size
2559 * Adds a new dynamic hid device ID to this driver,
2560 * and causes the driver to probe for all devices again.
2562 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2565 struct hid_driver *hdrv = to_hid_driver(drv);
2566 struct hid_dynid *dynid;
2567 __u32 bus, vendor, product;
2568 unsigned long driver_data = 0;
2571 ret = sscanf(buf, "%x %x %x %lx",
2572 &bus, &vendor, &product, &driver_data);
2576 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2580 dynid->id.bus = bus;
2581 dynid->id.group = HID_GROUP_ANY;
2582 dynid->id.vendor = vendor;
2583 dynid->id.product = product;
2584 dynid->id.driver_data = driver_data;
2586 spin_lock(&hdrv->dyn_lock);
2587 list_add_tail(&dynid->list, &hdrv->dyn_list);
2588 spin_unlock(&hdrv->dyn_lock);
2590 ret = driver_attach(&hdrv->driver);
2592 return ret ? : count;
2594 static DRIVER_ATTR_WO(new_id);
2596 static struct attribute *hid_drv_attrs[] = {
2597 &driver_attr_new_id.attr,
2600 ATTRIBUTE_GROUPS(hid_drv);
2602 static void hid_free_dynids(struct hid_driver *hdrv)
2604 struct hid_dynid *dynid, *n;
2606 spin_lock(&hdrv->dyn_lock);
2607 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2608 list_del(&dynid->list);
2611 spin_unlock(&hdrv->dyn_lock);
2614 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2615 struct hid_driver *hdrv)
2617 struct hid_dynid *dynid;
2619 spin_lock(&hdrv->dyn_lock);
2620 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2621 if (hid_match_one_id(hdev, &dynid->id)) {
2622 spin_unlock(&hdrv->dyn_lock);
2626 spin_unlock(&hdrv->dyn_lock);
2628 return hid_match_id(hdev, hdrv->id_table);
2630 EXPORT_SYMBOL_GPL(hid_match_device);
2632 static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2634 struct hid_driver *hdrv = to_hid_driver(drv);
2635 struct hid_device *hdev = to_hid_device(dev);
2637 return hid_match_device(hdev, hdrv) != NULL;
2641 * hid_compare_device_paths - check if both devices share the same path
2642 * @hdev_a: hid device
2643 * @hdev_b: hid device
2644 * @separator: char to use as separator
2646 * Check if two devices share the same path up to the last occurrence of
2647 * the separator char. Both paths must exist (i.e., zero-length paths
2650 bool hid_compare_device_paths(struct hid_device *hdev_a,
2651 struct hid_device *hdev_b, char separator)
2653 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2654 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2656 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2659 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2661 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2663 static bool hid_check_device_match(struct hid_device *hdev,
2664 struct hid_driver *hdrv,
2665 const struct hid_device_id **id)
2667 *id = hid_match_device(hdev, hdrv);
2672 return hdrv->match(hdev, hid_ignore_special_drivers);
2675 * hid-generic implements .match(), so we must be dealing with a
2676 * different HID driver here, and can simply check if
2677 * hid_ignore_special_drivers is set or not.
2679 return !hid_ignore_special_drivers;
2682 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2684 const struct hid_device_id *id;
2687 if (!hid_check_device_match(hdev, hdrv, &id))
2690 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2691 if (!hdev->devres_group_id)
2694 /* reset the quirks that has been previously set */
2695 hdev->quirks = hid_lookup_quirk(hdev);
2696 hdev->driver = hdrv;
2699 ret = hdrv->probe(hdev, id);
2700 } else { /* default probe */
2701 ret = hid_open_report(hdev);
2703 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2707 * Note that we are not closing the devres group opened above so
2708 * even resources that were attached to the device after probe is
2709 * run are released when hid_device_remove() is executed. This is
2710 * needed as some drivers would allocate additional resources,
2711 * for example when updating firmware.
2715 devres_release_group(&hdev->dev, hdev->devres_group_id);
2716 hid_close_report(hdev);
2717 hdev->driver = NULL;
2723 static int hid_device_probe(struct device *dev)
2725 struct hid_device *hdev = to_hid_device(dev);
2726 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2729 if (down_interruptible(&hdev->driver_input_lock))
2732 hdev->io_started = false;
2733 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2736 ret = __hid_device_probe(hdev, hdrv);
2738 if (!hdev->io_started)
2739 up(&hdev->driver_input_lock);
2744 static void hid_device_remove(struct device *dev)
2746 struct hid_device *hdev = to_hid_device(dev);
2747 struct hid_driver *hdrv;
2749 down(&hdev->driver_input_lock);
2750 hdev->io_started = false;
2752 hdrv = hdev->driver;
2756 else /* default remove */
2759 /* Release all devres resources allocated by the driver */
2760 devres_release_group(&hdev->dev, hdev->devres_group_id);
2762 hid_close_report(hdev);
2763 hdev->driver = NULL;
2766 if (!hdev->io_started)
2767 up(&hdev->driver_input_lock);
2770 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2773 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2775 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2776 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2778 static DEVICE_ATTR_RO(modalias);
2780 static struct attribute *hid_dev_attrs[] = {
2781 &dev_attr_modalias.attr,
2784 static struct bin_attribute *hid_dev_bin_attrs[] = {
2785 &dev_bin_attr_report_desc,
2788 static const struct attribute_group hid_dev_group = {
2789 .attrs = hid_dev_attrs,
2790 .bin_attrs = hid_dev_bin_attrs,
2792 __ATTRIBUTE_GROUPS(hid_dev);
2794 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2796 const struct hid_device *hdev = to_hid_device(dev);
2798 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2799 hdev->bus, hdev->vendor, hdev->product))
2802 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2805 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2808 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2811 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2812 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2818 const struct bus_type hid_bus_type = {
2820 .dev_groups = hid_dev_groups,
2821 .drv_groups = hid_drv_groups,
2822 .match = hid_bus_match,
2823 .probe = hid_device_probe,
2824 .remove = hid_device_remove,
2825 .uevent = hid_uevent,
2827 EXPORT_SYMBOL(hid_bus_type);
2829 int hid_add_device(struct hid_device *hdev)
2831 static atomic_t id = ATOMIC_INIT(0);
2834 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2837 hdev->quirks = hid_lookup_quirk(hdev);
2839 /* we need to kill them here, otherwise they will stay allocated to
2840 * wait for coming driver */
2841 if (hid_ignore(hdev))
2845 * Check for the mandatory transport channel.
2847 if (!hdev->ll_driver->raw_request) {
2848 hid_err(hdev, "transport driver missing .raw_request()\n");
2853 * Read the device report descriptor once and use as template
2854 * for the driver-specific modifications.
2856 ret = hdev->ll_driver->parse(hdev);
2859 if (!hdev->dev_rdesc)
2863 * Scan generic devices for group information
2865 if (hid_ignore_special_drivers) {
2866 hdev->group = HID_GROUP_GENERIC;
2867 } else if (!hdev->group &&
2868 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2869 ret = hid_scan_report(hdev);
2871 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2874 hdev->id = atomic_inc_return(&id);
2876 /* XXX hack, any other cleaner solution after the driver core
2877 * is converted to allow more than 20 bytes as the device name? */
2878 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2879 hdev->vendor, hdev->product, hdev->id);
2881 hid_debug_register(hdev, dev_name(&hdev->dev));
2882 ret = device_add(&hdev->dev);
2884 hdev->status |= HID_STAT_ADDED;
2886 hid_debug_unregister(hdev);
2890 EXPORT_SYMBOL_GPL(hid_add_device);
2893 * hid_allocate_device - allocate new hid device descriptor
2895 * Allocate and initialize hid device, so that hid_destroy_device might be
2898 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2901 struct hid_device *hid_allocate_device(void)
2903 struct hid_device *hdev;
2906 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2908 return ERR_PTR(ret);
2910 device_initialize(&hdev->dev);
2911 hdev->dev.release = hid_device_release;
2912 hdev->dev.bus = &hid_bus_type;
2913 device_enable_async_suspend(&hdev->dev);
2915 hid_close_report(hdev);
2917 init_waitqueue_head(&hdev->debug_wait);
2918 INIT_LIST_HEAD(&hdev->debug_list);
2919 spin_lock_init(&hdev->debug_list_lock);
2920 sema_init(&hdev->driver_input_lock, 1);
2921 mutex_init(&hdev->ll_open_lock);
2922 kref_init(&hdev->ref);
2924 ret = hid_bpf_device_init(hdev);
2931 hid_destroy_device(hdev);
2932 return ERR_PTR(ret);
2934 EXPORT_SYMBOL_GPL(hid_allocate_device);
2936 static void hid_remove_device(struct hid_device *hdev)
2938 if (hdev->status & HID_STAT_ADDED) {
2939 device_del(&hdev->dev);
2940 hid_debug_unregister(hdev);
2941 hdev->status &= ~HID_STAT_ADDED;
2943 kfree(hdev->dev_rdesc);
2944 hdev->dev_rdesc = NULL;
2945 hdev->dev_rsize = 0;
2949 * hid_destroy_device - free previously allocated device
2953 * If you allocate hid_device through hid_allocate_device, you should ever
2954 * free by this function.
2956 void hid_destroy_device(struct hid_device *hdev)
2958 hid_bpf_destroy_device(hdev);
2959 hid_remove_device(hdev);
2960 put_device(&hdev->dev);
2962 EXPORT_SYMBOL_GPL(hid_destroy_device);
2965 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2967 struct hid_driver *hdrv = data;
2968 struct hid_device *hdev = to_hid_device(dev);
2970 if (hdev->driver == hdrv &&
2971 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2972 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2973 return device_reprobe(dev);
2978 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2980 struct hid_driver *hdrv = to_hid_driver(drv);
2983 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2984 __hid_bus_reprobe_drivers);
2990 static int __bus_removed_driver(struct device_driver *drv, void *data)
2992 return bus_rescan_devices(&hid_bus_type);
2995 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2996 const char *mod_name)
3000 hdrv->driver.name = hdrv->name;
3001 hdrv->driver.bus = &hid_bus_type;
3002 hdrv->driver.owner = owner;
3003 hdrv->driver.mod_name = mod_name;
3005 INIT_LIST_HEAD(&hdrv->dyn_list);
3006 spin_lock_init(&hdrv->dyn_lock);
3008 ret = driver_register(&hdrv->driver);
3011 bus_for_each_drv(&hid_bus_type, NULL, NULL,
3012 __hid_bus_driver_added);
3016 EXPORT_SYMBOL_GPL(__hid_register_driver);
3018 void hid_unregister_driver(struct hid_driver *hdrv)
3020 driver_unregister(&hdrv->driver);
3021 hid_free_dynids(hdrv);
3023 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3025 EXPORT_SYMBOL_GPL(hid_unregister_driver);
3027 int hid_check_keys_pressed(struct hid_device *hid)
3029 struct hid_input *hidinput;
3032 if (!(hid->claimed & HID_CLAIMED_INPUT))
3035 list_for_each_entry(hidinput, &hid->inputs, list) {
3036 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3037 if (hidinput->input->key[i])
3043 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3045 #ifdef CONFIG_HID_BPF
3046 static struct hid_ops __hid_ops = {
3047 .hid_get_report = hid_get_report,
3048 .hid_hw_raw_request = __hid_hw_raw_request,
3049 .hid_hw_output_report = __hid_hw_output_report,
3050 .hid_input_report = __hid_input_report,
3051 .owner = THIS_MODULE,
3052 .bus_type = &hid_bus_type,
3056 static int __init hid_init(void)
3060 ret = bus_register(&hid_bus_type);
3062 pr_err("can't register hid bus\n");
3066 #ifdef CONFIG_HID_BPF
3067 hid_ops = &__hid_ops;
3070 ret = hidraw_init();
3078 bus_unregister(&hid_bus_type);
3083 static void __exit hid_exit(void)
3085 #ifdef CONFIG_HID_BPF
3090 bus_unregister(&hid_bus_type);
3091 hid_quirks_exit(HID_BUS_ANY);
3094 module_init(hid_init);
3095 module_exit(hid_exit);
3097 MODULE_AUTHOR("Andreas Gal");
3098 MODULE_AUTHOR("Vojtech Pavlik");
3099 MODULE_AUTHOR("Jiri Kosina");
3100 MODULE_DESCRIPTION("HID support for Linux");
3101 MODULE_LICENSE("GPL");