1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
130 void *fixup_red_left(struct kmem_cache *s, void *p)
132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 p += s->red_left_pad;
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
148 * Issues still to be resolved:
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 * - Variable sizing of the per node arrays
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 #define MIN_PARTIAL 5
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
170 * sort the partial list by the number of objects in use.
172 #define MAX_PARTIAL 10
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_STORE_USER)
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
193 #define OO_MASK ((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196 /* Internal SLUB flags */
198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
203 * Tracking user of a slab.
205 #define TRACK_ADDRS_COUNT 16
207 unsigned long addr; /* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s->cpu_slab->stat[si]);
239 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
240 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
241 * differ during memory hotplug/hotremove operations.
242 * Protected by slab_mutex.
244 static nodemask_t slab_nodes;
246 /********************************************************************
247 * Core slab cache functions
248 *******************************************************************/
251 * Returns freelist pointer (ptr). With hardening, this is obfuscated
252 * with an XOR of the address where the pointer is held and a per-cache
255 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
256 unsigned long ptr_addr)
258 #ifdef CONFIG_SLAB_FREELIST_HARDENED
260 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
261 * Normally, this doesn't cause any issues, as both set_freepointer()
262 * and get_freepointer() are called with a pointer with the same tag.
263 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
264 * example, when __free_slub() iterates over objects in a cache, it
265 * passes untagged pointers to check_object(). check_object() in turns
266 * calls get_freepointer() with an untagged pointer, which causes the
267 * freepointer to be restored incorrectly.
269 return (void *)((unsigned long)ptr ^ s->random ^
270 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
276 /* Returns the freelist pointer recorded at location ptr_addr. */
277 static inline void *freelist_dereference(const struct kmem_cache *s,
280 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
281 (unsigned long)ptr_addr);
284 static inline void *get_freepointer(struct kmem_cache *s, void *object)
286 object = kasan_reset_tag(object);
287 return freelist_dereference(s, object + s->offset);
290 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292 prefetch(object + s->offset);
295 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297 unsigned long freepointer_addr;
300 if (!debug_pagealloc_enabled_static())
301 return get_freepointer(s, object);
303 freepointer_addr = (unsigned long)object + s->offset;
304 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
305 return freelist_ptr(s, p, freepointer_addr);
308 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 unsigned long freeptr_addr = (unsigned long)object + s->offset;
312 #ifdef CONFIG_SLAB_FREELIST_HARDENED
313 BUG_ON(object == fp); /* naive detection of double free or corruption */
316 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
317 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
320 /* Loop over all objects in a slab */
321 #define for_each_object(__p, __s, __addr, __objects) \
322 for (__p = fixup_red_left(__s, __addr); \
323 __p < (__addr) + (__objects) * (__s)->size; \
326 static inline unsigned int order_objects(unsigned int order, unsigned int size)
328 return ((unsigned int)PAGE_SIZE << order) / size;
331 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
334 struct kmem_cache_order_objects x = {
335 (order << OO_SHIFT) + order_objects(order, size)
341 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
343 return x.x >> OO_SHIFT;
346 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
348 return x.x & OO_MASK;
352 * Per slab locking using the pagelock
354 static __always_inline void slab_lock(struct page *page)
356 VM_BUG_ON_PAGE(PageTail(page), page);
357 bit_spin_lock(PG_locked, &page->flags);
360 static __always_inline void slab_unlock(struct page *page)
362 VM_BUG_ON_PAGE(PageTail(page), page);
363 __bit_spin_unlock(PG_locked, &page->flags);
366 /* Interrupts must be disabled (for the fallback code to work right) */
367 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 void *freelist_old, unsigned long counters_old,
369 void *freelist_new, unsigned long counters_new,
372 VM_BUG_ON(!irqs_disabled());
373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375 if (s->flags & __CMPXCHG_DOUBLE) {
376 if (cmpxchg_double(&page->freelist, &page->counters,
377 freelist_old, counters_old,
378 freelist_new, counters_new))
384 if (page->freelist == freelist_old &&
385 page->counters == counters_old) {
386 page->freelist = freelist_new;
387 page->counters = counters_new;
395 stat(s, CMPXCHG_DOUBLE_FAIL);
397 #ifdef SLUB_DEBUG_CMPXCHG
398 pr_info("%s %s: cmpxchg double redo ", n, s->name);
404 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 void *freelist_old, unsigned long counters_old,
406 void *freelist_new, unsigned long counters_new,
409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411 if (s->flags & __CMPXCHG_DOUBLE) {
412 if (cmpxchg_double(&page->freelist, &page->counters,
413 freelist_old, counters_old,
414 freelist_new, counters_new))
421 local_irq_save(flags);
423 if (page->freelist == freelist_old &&
424 page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
428 local_irq_restore(flags);
432 local_irq_restore(flags);
436 stat(s, CMPXCHG_DOUBLE_FAIL);
438 #ifdef SLUB_DEBUG_CMPXCHG
439 pr_info("%s %s: cmpxchg double redo ", n, s->name);
445 #ifdef CONFIG_SLUB_DEBUG
446 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
447 static DEFINE_SPINLOCK(object_map_lock);
450 * Determine a map of object in use on a page.
452 * Node listlock must be held to guarantee that the page does
453 * not vanish from under us.
455 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
456 __acquires(&object_map_lock)
459 void *addr = page_address(page);
461 VM_BUG_ON(!irqs_disabled());
463 spin_lock(&object_map_lock);
465 bitmap_zero(object_map, page->objects);
467 for (p = page->freelist; p; p = get_freepointer(s, p))
468 set_bit(__obj_to_index(s, addr, p), object_map);
473 static void put_map(unsigned long *map) __releases(&object_map_lock)
475 VM_BUG_ON(map != object_map);
476 spin_unlock(&object_map_lock);
479 static inline unsigned int size_from_object(struct kmem_cache *s)
481 if (s->flags & SLAB_RED_ZONE)
482 return s->size - s->red_left_pad;
487 static inline void *restore_red_left(struct kmem_cache *s, void *p)
489 if (s->flags & SLAB_RED_ZONE)
490 p -= s->red_left_pad;
498 #if defined(CONFIG_SLUB_DEBUG_ON)
499 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
501 static slab_flags_t slub_debug;
504 static char *slub_debug_string;
505 static int disable_higher_order_debug;
508 * slub is about to manipulate internal object metadata. This memory lies
509 * outside the range of the allocated object, so accessing it would normally
510 * be reported by kasan as a bounds error. metadata_access_enable() is used
511 * to tell kasan that these accesses are OK.
513 static inline void metadata_access_enable(void)
515 kasan_disable_current();
518 static inline void metadata_access_disable(void)
520 kasan_enable_current();
527 /* Verify that a pointer has an address that is valid within a slab page */
528 static inline int check_valid_pointer(struct kmem_cache *s,
529 struct page *page, void *object)
536 base = page_address(page);
537 object = kasan_reset_tag(object);
538 object = restore_red_left(s, object);
539 if (object < base || object >= base + page->objects * s->size ||
540 (object - base) % s->size) {
547 static void print_section(char *level, char *text, u8 *addr,
550 metadata_access_enable();
551 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
552 16, 1, addr, length, 1);
553 metadata_access_disable();
557 * See comment in calculate_sizes().
559 static inline bool freeptr_outside_object(struct kmem_cache *s)
561 return s->offset >= s->inuse;
565 * Return offset of the end of info block which is inuse + free pointer if
566 * not overlapping with object.
568 static inline unsigned int get_info_end(struct kmem_cache *s)
570 if (freeptr_outside_object(s))
571 return s->inuse + sizeof(void *);
576 static struct track *get_track(struct kmem_cache *s, void *object,
577 enum track_item alloc)
581 p = object + get_info_end(s);
583 return kasan_reset_tag(p + alloc);
586 static void set_track(struct kmem_cache *s, void *object,
587 enum track_item alloc, unsigned long addr)
589 struct track *p = get_track(s, object, alloc);
592 #ifdef CONFIG_STACKTRACE
593 unsigned int nr_entries;
595 metadata_access_enable();
596 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
597 TRACK_ADDRS_COUNT, 3);
598 metadata_access_disable();
600 if (nr_entries < TRACK_ADDRS_COUNT)
601 p->addrs[nr_entries] = 0;
604 p->cpu = smp_processor_id();
605 p->pid = current->pid;
608 memset(p, 0, sizeof(struct track));
612 static void init_tracking(struct kmem_cache *s, void *object)
614 if (!(s->flags & SLAB_STORE_USER))
617 set_track(s, object, TRACK_FREE, 0UL);
618 set_track(s, object, TRACK_ALLOC, 0UL);
621 static void print_track(const char *s, struct track *t, unsigned long pr_time)
626 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
627 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
628 #ifdef CONFIG_STACKTRACE
631 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 pr_err("\t%pS\n", (void *)t->addrs[i]);
640 void print_tracking(struct kmem_cache *s, void *object)
642 unsigned long pr_time = jiffies;
643 if (!(s->flags & SLAB_STORE_USER))
646 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
647 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
650 static void print_page_info(struct page *page)
652 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
653 page, page->objects, page->inuse, page->freelist, page->flags);
657 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
659 struct va_format vaf;
665 pr_err("=============================================================================\n");
666 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
667 pr_err("-----------------------------------------------------------------------------\n\n");
669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
673 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
675 struct va_format vaf;
681 pr_err("FIX %s: %pV\n", s->name, &vaf);
685 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
686 void **freelist, void *nextfree)
688 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
689 !check_valid_pointer(s, page, nextfree) && freelist) {
690 object_err(s, page, *freelist, "Freechain corrupt");
692 slab_fix(s, "Isolate corrupted freechain");
699 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
701 unsigned int off; /* Offset of last byte */
702 u8 *addr = page_address(page);
704 print_tracking(s, p);
706 print_page_info(page);
708 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
709 p, p - addr, get_freepointer(s, p));
711 if (s->flags & SLAB_RED_ZONE)
712 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
714 else if (p > addr + 16)
715 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
717 print_section(KERN_ERR, "Object ", p,
718 min_t(unsigned int, s->object_size, PAGE_SIZE));
719 if (s->flags & SLAB_RED_ZONE)
720 print_section(KERN_ERR, "Redzone ", p + s->object_size,
721 s->inuse - s->object_size);
723 off = get_info_end(s);
725 if (s->flags & SLAB_STORE_USER)
726 off += 2 * sizeof(struct track);
728 off += kasan_metadata_size(s);
730 if (off != size_from_object(s))
731 /* Beginning of the filler is the free pointer */
732 print_section(KERN_ERR, "Padding ", p + off,
733 size_from_object(s) - off);
738 void object_err(struct kmem_cache *s, struct page *page,
739 u8 *object, char *reason)
741 slab_bug(s, "%s", reason);
742 print_trailer(s, page, object);
745 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
746 const char *fmt, ...)
752 vsnprintf(buf, sizeof(buf), fmt, args);
754 slab_bug(s, "%s", buf);
755 print_page_info(page);
759 static void init_object(struct kmem_cache *s, void *object, u8 val)
761 u8 *p = kasan_reset_tag(object);
763 if (s->flags & SLAB_RED_ZONE)
764 memset(p - s->red_left_pad, val, s->red_left_pad);
766 if (s->flags & __OBJECT_POISON) {
767 memset(p, POISON_FREE, s->object_size - 1);
768 p[s->object_size - 1] = POISON_END;
771 if (s->flags & SLAB_RED_ZONE)
772 memset(p + s->object_size, val, s->inuse - s->object_size);
775 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
776 void *from, void *to)
778 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
779 memset(from, data, to - from);
782 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
783 u8 *object, char *what,
784 u8 *start, unsigned int value, unsigned int bytes)
788 u8 *addr = page_address(page);
790 metadata_access_enable();
791 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
792 metadata_access_disable();
797 while (end > fault && end[-1] == value)
800 slab_bug(s, "%s overwritten", what);
801 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
802 fault, end - 1, fault - addr,
804 print_trailer(s, page, object);
806 restore_bytes(s, what, value, fault, end);
814 * Bytes of the object to be managed.
815 * If the freepointer may overlay the object then the free
816 * pointer is at the middle of the object.
818 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
821 * object + s->object_size
822 * Padding to reach word boundary. This is also used for Redzoning.
823 * Padding is extended by another word if Redzoning is enabled and
824 * object_size == inuse.
826 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
827 * 0xcc (RED_ACTIVE) for objects in use.
830 * Meta data starts here.
832 * A. Free pointer (if we cannot overwrite object on free)
833 * B. Tracking data for SLAB_STORE_USER
834 * C. Padding to reach required alignment boundary or at mininum
835 * one word if debugging is on to be able to detect writes
836 * before the word boundary.
838 * Padding is done using 0x5a (POISON_INUSE)
841 * Nothing is used beyond s->size.
843 * If slabcaches are merged then the object_size and inuse boundaries are mostly
844 * ignored. And therefore no slab options that rely on these boundaries
845 * may be used with merged slabcaches.
848 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
850 unsigned long off = get_info_end(s); /* The end of info */
852 if (s->flags & SLAB_STORE_USER)
853 /* We also have user information there */
854 off += 2 * sizeof(struct track);
856 off += kasan_metadata_size(s);
858 if (size_from_object(s) == off)
861 return check_bytes_and_report(s, page, p, "Object padding",
862 p + off, POISON_INUSE, size_from_object(s) - off);
865 /* Check the pad bytes at the end of a slab page */
866 static int slab_pad_check(struct kmem_cache *s, struct page *page)
875 if (!(s->flags & SLAB_POISON))
878 start = page_address(page);
879 length = page_size(page);
880 end = start + length;
881 remainder = length % s->size;
885 pad = end - remainder;
886 metadata_access_enable();
887 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
888 metadata_access_disable();
891 while (end > fault && end[-1] == POISON_INUSE)
894 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
895 fault, end - 1, fault - start);
896 print_section(KERN_ERR, "Padding ", pad, remainder);
898 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
902 static int check_object(struct kmem_cache *s, struct page *page,
903 void *object, u8 val)
906 u8 *endobject = object + s->object_size;
908 if (s->flags & SLAB_RED_ZONE) {
909 if (!check_bytes_and_report(s, page, object, "Redzone",
910 object - s->red_left_pad, val, s->red_left_pad))
913 if (!check_bytes_and_report(s, page, object, "Redzone",
914 endobject, val, s->inuse - s->object_size))
917 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
918 check_bytes_and_report(s, page, p, "Alignment padding",
919 endobject, POISON_INUSE,
920 s->inuse - s->object_size);
924 if (s->flags & SLAB_POISON) {
925 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
926 (!check_bytes_and_report(s, page, p, "Poison", p,
927 POISON_FREE, s->object_size - 1) ||
928 !check_bytes_and_report(s, page, p, "Poison",
929 p + s->object_size - 1, POISON_END, 1)))
932 * check_pad_bytes cleans up on its own.
934 check_pad_bytes(s, page, p);
937 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
939 * Object and freepointer overlap. Cannot check
940 * freepointer while object is allocated.
944 /* Check free pointer validity */
945 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
946 object_err(s, page, p, "Freepointer corrupt");
948 * No choice but to zap it and thus lose the remainder
949 * of the free objects in this slab. May cause
950 * another error because the object count is now wrong.
952 set_freepointer(s, p, NULL);
958 static int check_slab(struct kmem_cache *s, struct page *page)
962 VM_BUG_ON(!irqs_disabled());
964 if (!PageSlab(page)) {
965 slab_err(s, page, "Not a valid slab page");
969 maxobj = order_objects(compound_order(page), s->size);
970 if (page->objects > maxobj) {
971 slab_err(s, page, "objects %u > max %u",
972 page->objects, maxobj);
975 if (page->inuse > page->objects) {
976 slab_err(s, page, "inuse %u > max %u",
977 page->inuse, page->objects);
980 /* Slab_pad_check fixes things up after itself */
981 slab_pad_check(s, page);
986 * Determine if a certain object on a page is on the freelist. Must hold the
987 * slab lock to guarantee that the chains are in a consistent state.
989 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
997 while (fp && nr <= page->objects) {
1000 if (!check_valid_pointer(s, page, fp)) {
1002 object_err(s, page, object,
1003 "Freechain corrupt");
1004 set_freepointer(s, object, NULL);
1006 slab_err(s, page, "Freepointer corrupt");
1007 page->freelist = NULL;
1008 page->inuse = page->objects;
1009 slab_fix(s, "Freelist cleared");
1015 fp = get_freepointer(s, object);
1019 max_objects = order_objects(compound_order(page), s->size);
1020 if (max_objects > MAX_OBJS_PER_PAGE)
1021 max_objects = MAX_OBJS_PER_PAGE;
1023 if (page->objects != max_objects) {
1024 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1025 page->objects, max_objects);
1026 page->objects = max_objects;
1027 slab_fix(s, "Number of objects adjusted.");
1029 if (page->inuse != page->objects - nr) {
1030 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1031 page->inuse, page->objects - nr);
1032 page->inuse = page->objects - nr;
1033 slab_fix(s, "Object count adjusted.");
1035 return search == NULL;
1038 static void trace(struct kmem_cache *s, struct page *page, void *object,
1041 if (s->flags & SLAB_TRACE) {
1042 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1044 alloc ? "alloc" : "free",
1045 object, page->inuse,
1049 print_section(KERN_INFO, "Object ", (void *)object,
1057 * Tracking of fully allocated slabs for debugging purposes.
1059 static void add_full(struct kmem_cache *s,
1060 struct kmem_cache_node *n, struct page *page)
1062 if (!(s->flags & SLAB_STORE_USER))
1065 lockdep_assert_held(&n->list_lock);
1066 list_add(&page->slab_list, &n->full);
1069 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1071 if (!(s->flags & SLAB_STORE_USER))
1074 lockdep_assert_held(&n->list_lock);
1075 list_del(&page->slab_list);
1078 /* Tracking of the number of slabs for debugging purposes */
1079 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1081 struct kmem_cache_node *n = get_node(s, node);
1083 return atomic_long_read(&n->nr_slabs);
1086 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 return atomic_long_read(&n->nr_slabs);
1091 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1093 struct kmem_cache_node *n = get_node(s, node);
1096 * May be called early in order to allocate a slab for the
1097 * kmem_cache_node structure. Solve the chicken-egg
1098 * dilemma by deferring the increment of the count during
1099 * bootstrap (see early_kmem_cache_node_alloc).
1102 atomic_long_inc(&n->nr_slabs);
1103 atomic_long_add(objects, &n->total_objects);
1106 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1108 struct kmem_cache_node *n = get_node(s, node);
1110 atomic_long_dec(&n->nr_slabs);
1111 atomic_long_sub(objects, &n->total_objects);
1114 /* Object debug checks for alloc/free paths */
1115 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1118 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1121 init_object(s, object, SLUB_RED_INACTIVE);
1122 init_tracking(s, object);
1126 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1128 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1131 metadata_access_enable();
1132 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1133 metadata_access_disable();
1136 static inline int alloc_consistency_checks(struct kmem_cache *s,
1137 struct page *page, void *object)
1139 if (!check_slab(s, page))
1142 if (!check_valid_pointer(s, page, object)) {
1143 object_err(s, page, object, "Freelist Pointer check fails");
1147 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1153 static noinline int alloc_debug_processing(struct kmem_cache *s,
1155 void *object, unsigned long addr)
1157 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158 if (!alloc_consistency_checks(s, page, object))
1162 /* Success perform special debug activities for allocs */
1163 if (s->flags & SLAB_STORE_USER)
1164 set_track(s, object, TRACK_ALLOC, addr);
1165 trace(s, page, object, 1);
1166 init_object(s, object, SLUB_RED_ACTIVE);
1170 if (PageSlab(page)) {
1172 * If this is a slab page then lets do the best we can
1173 * to avoid issues in the future. Marking all objects
1174 * as used avoids touching the remaining objects.
1176 slab_fix(s, "Marking all objects used");
1177 page->inuse = page->objects;
1178 page->freelist = NULL;
1183 static inline int free_consistency_checks(struct kmem_cache *s,
1184 struct page *page, void *object, unsigned long addr)
1186 if (!check_valid_pointer(s, page, object)) {
1187 slab_err(s, page, "Invalid object pointer 0x%p", object);
1191 if (on_freelist(s, page, object)) {
1192 object_err(s, page, object, "Object already free");
1196 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1199 if (unlikely(s != page->slab_cache)) {
1200 if (!PageSlab(page)) {
1201 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1203 } else if (!page->slab_cache) {
1204 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1208 object_err(s, page, object,
1209 "page slab pointer corrupt.");
1215 /* Supports checking bulk free of a constructed freelist */
1216 static noinline int free_debug_processing(
1217 struct kmem_cache *s, struct page *page,
1218 void *head, void *tail, int bulk_cnt,
1221 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1222 void *object = head;
1224 unsigned long flags;
1227 spin_lock_irqsave(&n->list_lock, flags);
1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 if (!check_slab(s, page))
1238 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1239 if (!free_consistency_checks(s, page, object, addr))
1243 if (s->flags & SLAB_STORE_USER)
1244 set_track(s, object, TRACK_FREE, addr);
1245 trace(s, page, object, 0);
1246 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1247 init_object(s, object, SLUB_RED_INACTIVE);
1249 /* Reached end of constructed freelist yet? */
1250 if (object != tail) {
1251 object = get_freepointer(s, object);
1257 if (cnt != bulk_cnt)
1258 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1262 spin_unlock_irqrestore(&n->list_lock, flags);
1264 slab_fix(s, "Object at 0x%p not freed", object);
1269 * Parse a block of slub_debug options. Blocks are delimited by ';'
1271 * @str: start of block
1272 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1273 * @slabs: return start of list of slabs, or NULL when there's no list
1274 * @init: assume this is initial parsing and not per-kmem-create parsing
1276 * returns the start of next block if there's any, or NULL
1279 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1281 bool higher_order_disable = false;
1283 /* Skip any completely empty blocks */
1284 while (*str && *str == ';')
1289 * No options but restriction on slabs. This means full
1290 * debugging for slabs matching a pattern.
1292 *flags = DEBUG_DEFAULT_FLAGS;
1297 /* Determine which debug features should be switched on */
1298 for (; *str && *str != ',' && *str != ';'; str++) {
1299 switch (tolower(*str)) {
1304 *flags |= SLAB_CONSISTENCY_CHECKS;
1307 *flags |= SLAB_RED_ZONE;
1310 *flags |= SLAB_POISON;
1313 *flags |= SLAB_STORE_USER;
1316 *flags |= SLAB_TRACE;
1319 *flags |= SLAB_FAILSLAB;
1323 * Avoid enabling debugging on caches if its minimum
1324 * order would increase as a result.
1326 higher_order_disable = true;
1330 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1339 /* Skip over the slab list */
1340 while (*str && *str != ';')
1343 /* Skip any completely empty blocks */
1344 while (*str && *str == ';')
1347 if (init && higher_order_disable)
1348 disable_higher_order_debug = 1;
1356 static int __init setup_slub_debug(char *str)
1361 bool global_slub_debug_changed = false;
1362 bool slab_list_specified = false;
1364 slub_debug = DEBUG_DEFAULT_FLAGS;
1365 if (*str++ != '=' || !*str)
1367 * No options specified. Switch on full debugging.
1373 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1377 global_slub_debug_changed = true;
1379 slab_list_specified = true;
1384 * For backwards compatibility, a single list of flags with list of
1385 * slabs means debugging is only enabled for those slabs, so the global
1386 * slub_debug should be 0. We can extended that to multiple lists as
1387 * long as there is no option specifying flags without a slab list.
1389 if (slab_list_specified) {
1390 if (!global_slub_debug_changed)
1392 slub_debug_string = saved_str;
1395 if (slub_debug != 0 || slub_debug_string)
1396 static_branch_enable(&slub_debug_enabled);
1397 if ((static_branch_unlikely(&init_on_alloc) ||
1398 static_branch_unlikely(&init_on_free)) &&
1399 (slub_debug & SLAB_POISON))
1400 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1404 __setup("slub_debug", setup_slub_debug);
1407 * kmem_cache_flags - apply debugging options to the cache
1408 * @object_size: the size of an object without meta data
1409 * @flags: flags to set
1410 * @name: name of the cache
1412 * Debug option(s) are applied to @flags. In addition to the debug
1413 * option(s), if a slab name (or multiple) is specified i.e.
1414 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1415 * then only the select slabs will receive the debug option(s).
1417 slab_flags_t kmem_cache_flags(unsigned int object_size,
1418 slab_flags_t flags, const char *name)
1423 slab_flags_t block_flags;
1424 slab_flags_t slub_debug_local = slub_debug;
1427 * If the slab cache is for debugging (e.g. kmemleak) then
1428 * don't store user (stack trace) information by default,
1429 * but let the user enable it via the command line below.
1431 if (flags & SLAB_NOLEAKTRACE)
1432 slub_debug_local &= ~SLAB_STORE_USER;
1435 next_block = slub_debug_string;
1436 /* Go through all blocks of debug options, see if any matches our slab's name */
1437 while (next_block) {
1438 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1441 /* Found a block that has a slab list, search it */
1446 end = strchrnul(iter, ',');
1447 if (next_block && next_block < end)
1448 end = next_block - 1;
1450 glob = strnchr(iter, end - iter, '*');
1452 cmplen = glob - iter;
1454 cmplen = max_t(size_t, len, (end - iter));
1456 if (!strncmp(name, iter, cmplen)) {
1457 flags |= block_flags;
1461 if (!*end || *end == ';')
1467 return flags | slub_debug_local;
1469 #else /* !CONFIG_SLUB_DEBUG */
1470 static inline void setup_object_debug(struct kmem_cache *s,
1471 struct page *page, void *object) {}
1473 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1475 static inline int alloc_debug_processing(struct kmem_cache *s,
1476 struct page *page, void *object, unsigned long addr) { return 0; }
1478 static inline int free_debug_processing(
1479 struct kmem_cache *s, struct page *page,
1480 void *head, void *tail, int bulk_cnt,
1481 unsigned long addr) { return 0; }
1483 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1485 static inline int check_object(struct kmem_cache *s, struct page *page,
1486 void *object, u8 val) { return 1; }
1487 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1488 struct page *page) {}
1489 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
1491 slab_flags_t kmem_cache_flags(unsigned int object_size,
1492 slab_flags_t flags, const char *name)
1496 #define slub_debug 0
1498 #define disable_higher_order_debug 0
1500 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1502 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1504 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1506 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1509 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1510 void **freelist, void *nextfree)
1514 #endif /* CONFIG_SLUB_DEBUG */
1517 * Hooks for other subsystems that check memory allocations. In a typical
1518 * production configuration these hooks all should produce no code at all.
1520 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1522 ptr = kasan_kmalloc_large(ptr, size, flags);
1523 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1524 kmemleak_alloc(ptr, size, 1, flags);
1528 static __always_inline void kfree_hook(void *x)
1531 kasan_kfree_large(x, _RET_IP_);
1534 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1536 kmemleak_free_recursive(x, s->flags);
1539 * Trouble is that we may no longer disable interrupts in the fast path
1540 * So in order to make the debug calls that expect irqs to be
1541 * disabled we need to disable interrupts temporarily.
1543 #ifdef CONFIG_LOCKDEP
1545 unsigned long flags;
1547 local_irq_save(flags);
1548 debug_check_no_locks_freed(x, s->object_size);
1549 local_irq_restore(flags);
1552 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1553 debug_check_no_obj_freed(x, s->object_size);
1555 /* Use KCSAN to help debug racy use-after-free. */
1556 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1557 __kcsan_check_access(x, s->object_size,
1558 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1560 /* KASAN might put x into memory quarantine, delaying its reuse */
1561 return kasan_slab_free(s, x, _RET_IP_);
1564 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1565 void **head, void **tail)
1570 void *old_tail = *tail ? *tail : *head;
1573 /* Head and tail of the reconstructed freelist */
1579 next = get_freepointer(s, object);
1581 if (slab_want_init_on_free(s)) {
1583 * Clear the object and the metadata, but don't touch
1586 memset(kasan_reset_tag(object), 0, s->object_size);
1587 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1589 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1590 s->size - s->inuse - rsize);
1593 /* If object's reuse doesn't have to be delayed */
1594 if (!slab_free_hook(s, object)) {
1595 /* Move object to the new freelist */
1596 set_freepointer(s, object, *head);
1601 } while (object != old_tail);
1606 return *head != NULL;
1609 static void *setup_object(struct kmem_cache *s, struct page *page,
1612 setup_object_debug(s, page, object);
1613 object = kasan_init_slab_obj(s, object);
1614 if (unlikely(s->ctor)) {
1615 kasan_unpoison_object_data(s, object);
1617 kasan_poison_object_data(s, object);
1623 * Slab allocation and freeing
1625 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1626 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1629 unsigned int order = oo_order(oo);
1631 if (node == NUMA_NO_NODE)
1632 page = alloc_pages(flags, order);
1634 page = __alloc_pages_node(node, flags, order);
1639 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1640 /* Pre-initialize the random sequence cache */
1641 static int init_cache_random_seq(struct kmem_cache *s)
1643 unsigned int count = oo_objects(s->oo);
1646 /* Bailout if already initialised */
1650 err = cache_random_seq_create(s, count, GFP_KERNEL);
1652 pr_err("SLUB: Unable to initialize free list for %s\n",
1657 /* Transform to an offset on the set of pages */
1658 if (s->random_seq) {
1661 for (i = 0; i < count; i++)
1662 s->random_seq[i] *= s->size;
1667 /* Initialize each random sequence freelist per cache */
1668 static void __init init_freelist_randomization(void)
1670 struct kmem_cache *s;
1672 mutex_lock(&slab_mutex);
1674 list_for_each_entry(s, &slab_caches, list)
1675 init_cache_random_seq(s);
1677 mutex_unlock(&slab_mutex);
1680 /* Get the next entry on the pre-computed freelist randomized */
1681 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1682 unsigned long *pos, void *start,
1683 unsigned long page_limit,
1684 unsigned long freelist_count)
1689 * If the target page allocation failed, the number of objects on the
1690 * page might be smaller than the usual size defined by the cache.
1693 idx = s->random_seq[*pos];
1695 if (*pos >= freelist_count)
1697 } while (unlikely(idx >= page_limit));
1699 return (char *)start + idx;
1702 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1703 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1708 unsigned long idx, pos, page_limit, freelist_count;
1710 if (page->objects < 2 || !s->random_seq)
1713 freelist_count = oo_objects(s->oo);
1714 pos = get_random_int() % freelist_count;
1716 page_limit = page->objects * s->size;
1717 start = fixup_red_left(s, page_address(page));
1719 /* First entry is used as the base of the freelist */
1720 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1722 cur = setup_object(s, page, cur);
1723 page->freelist = cur;
1725 for (idx = 1; idx < page->objects; idx++) {
1726 next = next_freelist_entry(s, page, &pos, start, page_limit,
1728 next = setup_object(s, page, next);
1729 set_freepointer(s, cur, next);
1732 set_freepointer(s, cur, NULL);
1737 static inline int init_cache_random_seq(struct kmem_cache *s)
1741 static inline void init_freelist_randomization(void) { }
1742 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1746 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1748 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1751 struct kmem_cache_order_objects oo = s->oo;
1753 void *start, *p, *next;
1757 flags &= gfp_allowed_mask;
1759 if (gfpflags_allow_blocking(flags))
1762 flags |= s->allocflags;
1765 * Let the initial higher-order allocation fail under memory pressure
1766 * so we fall-back to the minimum order allocation.
1768 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1769 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1770 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1772 page = alloc_slab_page(s, alloc_gfp, node, oo);
1773 if (unlikely(!page)) {
1777 * Allocation may have failed due to fragmentation.
1778 * Try a lower order alloc if possible
1780 page = alloc_slab_page(s, alloc_gfp, node, oo);
1781 if (unlikely(!page))
1783 stat(s, ORDER_FALLBACK);
1786 page->objects = oo_objects(oo);
1788 account_slab_page(page, oo_order(oo), s, flags);
1790 page->slab_cache = s;
1791 __SetPageSlab(page);
1792 if (page_is_pfmemalloc(page))
1793 SetPageSlabPfmemalloc(page);
1795 kasan_poison_slab(page);
1797 start = page_address(page);
1799 setup_page_debug(s, page, start);
1801 shuffle = shuffle_freelist(s, page);
1804 start = fixup_red_left(s, start);
1805 start = setup_object(s, page, start);
1806 page->freelist = start;
1807 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1809 next = setup_object(s, page, next);
1810 set_freepointer(s, p, next);
1813 set_freepointer(s, p, NULL);
1816 page->inuse = page->objects;
1820 if (gfpflags_allow_blocking(flags))
1821 local_irq_disable();
1825 inc_slabs_node(s, page_to_nid(page), page->objects);
1830 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1832 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1833 flags = kmalloc_fix_flags(flags);
1835 return allocate_slab(s,
1836 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1839 static void __free_slab(struct kmem_cache *s, struct page *page)
1841 int order = compound_order(page);
1842 int pages = 1 << order;
1844 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1847 slab_pad_check(s, page);
1848 for_each_object(p, s, page_address(page),
1850 check_object(s, page, p, SLUB_RED_INACTIVE);
1853 __ClearPageSlabPfmemalloc(page);
1854 __ClearPageSlab(page);
1855 /* In union with page->mapping where page allocator expects NULL */
1856 page->slab_cache = NULL;
1857 if (current->reclaim_state)
1858 current->reclaim_state->reclaimed_slab += pages;
1859 unaccount_slab_page(page, order, s);
1860 __free_pages(page, order);
1863 static void rcu_free_slab(struct rcu_head *h)
1865 struct page *page = container_of(h, struct page, rcu_head);
1867 __free_slab(page->slab_cache, page);
1870 static void free_slab(struct kmem_cache *s, struct page *page)
1872 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1873 call_rcu(&page->rcu_head, rcu_free_slab);
1875 __free_slab(s, page);
1878 static void discard_slab(struct kmem_cache *s, struct page *page)
1880 dec_slabs_node(s, page_to_nid(page), page->objects);
1885 * Management of partially allocated slabs.
1888 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1891 if (tail == DEACTIVATE_TO_TAIL)
1892 list_add_tail(&page->slab_list, &n->partial);
1894 list_add(&page->slab_list, &n->partial);
1897 static inline void add_partial(struct kmem_cache_node *n,
1898 struct page *page, int tail)
1900 lockdep_assert_held(&n->list_lock);
1901 __add_partial(n, page, tail);
1904 static inline void remove_partial(struct kmem_cache_node *n,
1907 lockdep_assert_held(&n->list_lock);
1908 list_del(&page->slab_list);
1913 * Remove slab from the partial list, freeze it and
1914 * return the pointer to the freelist.
1916 * Returns a list of objects or NULL if it fails.
1918 static inline void *acquire_slab(struct kmem_cache *s,
1919 struct kmem_cache_node *n, struct page *page,
1920 int mode, int *objects)
1923 unsigned long counters;
1926 lockdep_assert_held(&n->list_lock);
1929 * Zap the freelist and set the frozen bit.
1930 * The old freelist is the list of objects for the
1931 * per cpu allocation list.
1933 freelist = page->freelist;
1934 counters = page->counters;
1935 new.counters = counters;
1936 *objects = new.objects - new.inuse;
1938 new.inuse = page->objects;
1939 new.freelist = NULL;
1941 new.freelist = freelist;
1944 VM_BUG_ON(new.frozen);
1947 if (!__cmpxchg_double_slab(s, page,
1949 new.freelist, new.counters,
1953 remove_partial(n, page);
1958 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1959 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1962 * Try to allocate a partial slab from a specific node.
1964 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1965 struct kmem_cache_cpu *c, gfp_t flags)
1967 struct page *page, *page2;
1968 void *object = NULL;
1969 unsigned int available = 0;
1973 * Racy check. If we mistakenly see no partial slabs then we
1974 * just allocate an empty slab. If we mistakenly try to get a
1975 * partial slab and there is none available then get_partial()
1978 if (!n || !n->nr_partial)
1981 spin_lock(&n->list_lock);
1982 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1985 if (!pfmemalloc_match(page, flags))
1988 t = acquire_slab(s, n, page, object == NULL, &objects);
1990 continue; /* cmpxchg raced */
1992 available += objects;
1995 stat(s, ALLOC_FROM_PARTIAL);
1998 put_cpu_partial(s, page, 0);
1999 stat(s, CPU_PARTIAL_NODE);
2001 if (!kmem_cache_has_cpu_partial(s)
2002 || available > slub_cpu_partial(s) / 2)
2006 spin_unlock(&n->list_lock);
2011 * Get a page from somewhere. Search in increasing NUMA distances.
2013 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2014 struct kmem_cache_cpu *c)
2017 struct zonelist *zonelist;
2020 enum zone_type highest_zoneidx = gfp_zone(flags);
2022 unsigned int cpuset_mems_cookie;
2025 * The defrag ratio allows a configuration of the tradeoffs between
2026 * inter node defragmentation and node local allocations. A lower
2027 * defrag_ratio increases the tendency to do local allocations
2028 * instead of attempting to obtain partial slabs from other nodes.
2030 * If the defrag_ratio is set to 0 then kmalloc() always
2031 * returns node local objects. If the ratio is higher then kmalloc()
2032 * may return off node objects because partial slabs are obtained
2033 * from other nodes and filled up.
2035 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2036 * (which makes defrag_ratio = 1000) then every (well almost)
2037 * allocation will first attempt to defrag slab caches on other nodes.
2038 * This means scanning over all nodes to look for partial slabs which
2039 * may be expensive if we do it every time we are trying to find a slab
2040 * with available objects.
2042 if (!s->remote_node_defrag_ratio ||
2043 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2047 cpuset_mems_cookie = read_mems_allowed_begin();
2048 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2049 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2050 struct kmem_cache_node *n;
2052 n = get_node(s, zone_to_nid(zone));
2054 if (n && cpuset_zone_allowed(zone, flags) &&
2055 n->nr_partial > s->min_partial) {
2056 object = get_partial_node(s, n, c, flags);
2059 * Don't check read_mems_allowed_retry()
2060 * here - if mems_allowed was updated in
2061 * parallel, that was a harmless race
2062 * between allocation and the cpuset
2069 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2070 #endif /* CONFIG_NUMA */
2075 * Get a partial page, lock it and return it.
2077 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2078 struct kmem_cache_cpu *c)
2081 int searchnode = node;
2083 if (node == NUMA_NO_NODE)
2084 searchnode = numa_mem_id();
2086 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2087 if (object || node != NUMA_NO_NODE)
2090 return get_any_partial(s, flags, c);
2093 #ifdef CONFIG_PREEMPTION
2095 * Calculate the next globally unique transaction for disambiguation
2096 * during cmpxchg. The transactions start with the cpu number and are then
2097 * incremented by CONFIG_NR_CPUS.
2099 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2102 * No preemption supported therefore also no need to check for
2108 static inline unsigned long next_tid(unsigned long tid)
2110 return tid + TID_STEP;
2113 #ifdef SLUB_DEBUG_CMPXCHG
2114 static inline unsigned int tid_to_cpu(unsigned long tid)
2116 return tid % TID_STEP;
2119 static inline unsigned long tid_to_event(unsigned long tid)
2121 return tid / TID_STEP;
2125 static inline unsigned int init_tid(int cpu)
2130 static inline void note_cmpxchg_failure(const char *n,
2131 const struct kmem_cache *s, unsigned long tid)
2133 #ifdef SLUB_DEBUG_CMPXCHG
2134 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2136 pr_info("%s %s: cmpxchg redo ", n, s->name);
2138 #ifdef CONFIG_PREEMPTION
2139 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2140 pr_warn("due to cpu change %d -> %d\n",
2141 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2144 if (tid_to_event(tid) != tid_to_event(actual_tid))
2145 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2146 tid_to_event(tid), tid_to_event(actual_tid));
2148 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2149 actual_tid, tid, next_tid(tid));
2151 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2154 static void init_kmem_cache_cpus(struct kmem_cache *s)
2158 for_each_possible_cpu(cpu)
2159 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2163 * Remove the cpu slab
2165 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2166 void *freelist, struct kmem_cache_cpu *c)
2168 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2169 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2170 int lock = 0, free_delta = 0;
2171 enum slab_modes l = M_NONE, m = M_NONE;
2172 void *nextfree, *freelist_iter, *freelist_tail;
2173 int tail = DEACTIVATE_TO_HEAD;
2177 if (page->freelist) {
2178 stat(s, DEACTIVATE_REMOTE_FREES);
2179 tail = DEACTIVATE_TO_TAIL;
2183 * Stage one: Count the objects on cpu's freelist as free_delta and
2184 * remember the last object in freelist_tail for later splicing.
2186 freelist_tail = NULL;
2187 freelist_iter = freelist;
2188 while (freelist_iter) {
2189 nextfree = get_freepointer(s, freelist_iter);
2192 * If 'nextfree' is invalid, it is possible that the object at
2193 * 'freelist_iter' is already corrupted. So isolate all objects
2194 * starting at 'freelist_iter' by skipping them.
2196 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2199 freelist_tail = freelist_iter;
2202 freelist_iter = nextfree;
2206 * Stage two: Unfreeze the page while splicing the per-cpu
2207 * freelist to the head of page's freelist.
2209 * Ensure that the page is unfrozen while the list presence
2210 * reflects the actual number of objects during unfreeze.
2212 * We setup the list membership and then perform a cmpxchg
2213 * with the count. If there is a mismatch then the page
2214 * is not unfrozen but the page is on the wrong list.
2216 * Then we restart the process which may have to remove
2217 * the page from the list that we just put it on again
2218 * because the number of objects in the slab may have
2223 old.freelist = READ_ONCE(page->freelist);
2224 old.counters = READ_ONCE(page->counters);
2225 VM_BUG_ON(!old.frozen);
2227 /* Determine target state of the slab */
2228 new.counters = old.counters;
2229 if (freelist_tail) {
2230 new.inuse -= free_delta;
2231 set_freepointer(s, freelist_tail, old.freelist);
2232 new.freelist = freelist;
2234 new.freelist = old.freelist;
2238 if (!new.inuse && n->nr_partial >= s->min_partial)
2240 else if (new.freelist) {
2245 * Taking the spinlock removes the possibility
2246 * that acquire_slab() will see a slab page that
2249 spin_lock(&n->list_lock);
2253 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2256 * This also ensures that the scanning of full
2257 * slabs from diagnostic functions will not see
2260 spin_lock(&n->list_lock);
2266 remove_partial(n, page);
2267 else if (l == M_FULL)
2268 remove_full(s, n, page);
2271 add_partial(n, page, tail);
2272 else if (m == M_FULL)
2273 add_full(s, n, page);
2277 if (!__cmpxchg_double_slab(s, page,
2278 old.freelist, old.counters,
2279 new.freelist, new.counters,
2284 spin_unlock(&n->list_lock);
2288 else if (m == M_FULL)
2289 stat(s, DEACTIVATE_FULL);
2290 else if (m == M_FREE) {
2291 stat(s, DEACTIVATE_EMPTY);
2292 discard_slab(s, page);
2301 * Unfreeze all the cpu partial slabs.
2303 * This function must be called with interrupts disabled
2304 * for the cpu using c (or some other guarantee must be there
2305 * to guarantee no concurrent accesses).
2307 static void unfreeze_partials(struct kmem_cache *s,
2308 struct kmem_cache_cpu *c)
2310 #ifdef CONFIG_SLUB_CPU_PARTIAL
2311 struct kmem_cache_node *n = NULL, *n2 = NULL;
2312 struct page *page, *discard_page = NULL;
2314 while ((page = slub_percpu_partial(c))) {
2318 slub_set_percpu_partial(c, page);
2320 n2 = get_node(s, page_to_nid(page));
2323 spin_unlock(&n->list_lock);
2326 spin_lock(&n->list_lock);
2331 old.freelist = page->freelist;
2332 old.counters = page->counters;
2333 VM_BUG_ON(!old.frozen);
2335 new.counters = old.counters;
2336 new.freelist = old.freelist;
2340 } while (!__cmpxchg_double_slab(s, page,
2341 old.freelist, old.counters,
2342 new.freelist, new.counters,
2343 "unfreezing slab"));
2345 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2346 page->next = discard_page;
2347 discard_page = page;
2349 add_partial(n, page, DEACTIVATE_TO_TAIL);
2350 stat(s, FREE_ADD_PARTIAL);
2355 spin_unlock(&n->list_lock);
2357 while (discard_page) {
2358 page = discard_page;
2359 discard_page = discard_page->next;
2361 stat(s, DEACTIVATE_EMPTY);
2362 discard_slab(s, page);
2365 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2369 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2370 * partial page slot if available.
2372 * If we did not find a slot then simply move all the partials to the
2373 * per node partial list.
2375 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2377 #ifdef CONFIG_SLUB_CPU_PARTIAL
2378 struct page *oldpage;
2386 oldpage = this_cpu_read(s->cpu_slab->partial);
2389 pobjects = oldpage->pobjects;
2390 pages = oldpage->pages;
2391 if (drain && pobjects > slub_cpu_partial(s)) {
2392 unsigned long flags;
2394 * partial array is full. Move the existing
2395 * set to the per node partial list.
2397 local_irq_save(flags);
2398 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2399 local_irq_restore(flags);
2403 stat(s, CPU_PARTIAL_DRAIN);
2408 pobjects += page->objects - page->inuse;
2410 page->pages = pages;
2411 page->pobjects = pobjects;
2412 page->next = oldpage;
2414 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2416 if (unlikely(!slub_cpu_partial(s))) {
2417 unsigned long flags;
2419 local_irq_save(flags);
2420 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2421 local_irq_restore(flags);
2424 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2427 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2429 stat(s, CPUSLAB_FLUSH);
2430 deactivate_slab(s, c->page, c->freelist, c);
2432 c->tid = next_tid(c->tid);
2438 * Called from IPI handler with interrupts disabled.
2440 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2442 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2447 unfreeze_partials(s, c);
2450 static void flush_cpu_slab(void *d)
2452 struct kmem_cache *s = d;
2454 __flush_cpu_slab(s, smp_processor_id());
2457 static bool has_cpu_slab(int cpu, void *info)
2459 struct kmem_cache *s = info;
2460 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2462 return c->page || slub_percpu_partial(c);
2465 static void flush_all(struct kmem_cache *s)
2467 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2471 * Use the cpu notifier to insure that the cpu slabs are flushed when
2474 static int slub_cpu_dead(unsigned int cpu)
2476 struct kmem_cache *s;
2477 unsigned long flags;
2479 mutex_lock(&slab_mutex);
2480 list_for_each_entry(s, &slab_caches, list) {
2481 local_irq_save(flags);
2482 __flush_cpu_slab(s, cpu);
2483 local_irq_restore(flags);
2485 mutex_unlock(&slab_mutex);
2490 * Check if the objects in a per cpu structure fit numa
2491 * locality expectations.
2493 static inline int node_match(struct page *page, int node)
2496 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2502 #ifdef CONFIG_SLUB_DEBUG
2503 static int count_free(struct page *page)
2505 return page->objects - page->inuse;
2508 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2510 return atomic_long_read(&n->total_objects);
2512 #endif /* CONFIG_SLUB_DEBUG */
2514 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2515 static unsigned long count_partial(struct kmem_cache_node *n,
2516 int (*get_count)(struct page *))
2518 unsigned long flags;
2519 unsigned long x = 0;
2522 spin_lock_irqsave(&n->list_lock, flags);
2523 list_for_each_entry(page, &n->partial, slab_list)
2524 x += get_count(page);
2525 spin_unlock_irqrestore(&n->list_lock, flags);
2528 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2530 static noinline void
2531 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2533 #ifdef CONFIG_SLUB_DEBUG
2534 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2535 DEFAULT_RATELIMIT_BURST);
2537 struct kmem_cache_node *n;
2539 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2542 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2543 nid, gfpflags, &gfpflags);
2544 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2545 s->name, s->object_size, s->size, oo_order(s->oo),
2548 if (oo_order(s->min) > get_order(s->object_size))
2549 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2552 for_each_kmem_cache_node(s, node, n) {
2553 unsigned long nr_slabs;
2554 unsigned long nr_objs;
2555 unsigned long nr_free;
2557 nr_free = count_partial(n, count_free);
2558 nr_slabs = node_nr_slabs(n);
2559 nr_objs = node_nr_objs(n);
2561 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2562 node, nr_slabs, nr_objs, nr_free);
2567 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2568 int node, struct kmem_cache_cpu **pc)
2571 struct kmem_cache_cpu *c = *pc;
2574 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2576 freelist = get_partial(s, flags, node, c);
2581 page = new_slab(s, flags, node);
2583 c = raw_cpu_ptr(s->cpu_slab);
2588 * No other reference to the page yet so we can
2589 * muck around with it freely without cmpxchg
2591 freelist = page->freelist;
2592 page->freelist = NULL;
2594 stat(s, ALLOC_SLAB);
2602 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2604 if (unlikely(PageSlabPfmemalloc(page)))
2605 return gfp_pfmemalloc_allowed(gfpflags);
2611 * Check the page->freelist of a page and either transfer the freelist to the
2612 * per cpu freelist or deactivate the page.
2614 * The page is still frozen if the return value is not NULL.
2616 * If this function returns NULL then the page has been unfrozen.
2618 * This function must be called with interrupt disabled.
2620 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2623 unsigned long counters;
2627 freelist = page->freelist;
2628 counters = page->counters;
2630 new.counters = counters;
2631 VM_BUG_ON(!new.frozen);
2633 new.inuse = page->objects;
2634 new.frozen = freelist != NULL;
2636 } while (!__cmpxchg_double_slab(s, page,
2645 * Slow path. The lockless freelist is empty or we need to perform
2648 * Processing is still very fast if new objects have been freed to the
2649 * regular freelist. In that case we simply take over the regular freelist
2650 * as the lockless freelist and zap the regular freelist.
2652 * If that is not working then we fall back to the partial lists. We take the
2653 * first element of the freelist as the object to allocate now and move the
2654 * rest of the freelist to the lockless freelist.
2656 * And if we were unable to get a new slab from the partial slab lists then
2657 * we need to allocate a new slab. This is the slowest path since it involves
2658 * a call to the page allocator and the setup of a new slab.
2660 * Version of __slab_alloc to use when we know that interrupts are
2661 * already disabled (which is the case for bulk allocation).
2663 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2664 unsigned long addr, struct kmem_cache_cpu *c)
2669 stat(s, ALLOC_SLOWPATH);
2674 * if the node is not online or has no normal memory, just
2675 * ignore the node constraint
2677 if (unlikely(node != NUMA_NO_NODE &&
2678 !node_isset(node, slab_nodes)))
2679 node = NUMA_NO_NODE;
2684 if (unlikely(!node_match(page, node))) {
2686 * same as above but node_match() being false already
2687 * implies node != NUMA_NO_NODE
2689 if (!node_isset(node, slab_nodes)) {
2690 node = NUMA_NO_NODE;
2693 stat(s, ALLOC_NODE_MISMATCH);
2694 deactivate_slab(s, page, c->freelist, c);
2700 * By rights, we should be searching for a slab page that was
2701 * PFMEMALLOC but right now, we are losing the pfmemalloc
2702 * information when the page leaves the per-cpu allocator
2704 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2705 deactivate_slab(s, page, c->freelist, c);
2709 /* must check again c->freelist in case of cpu migration or IRQ */
2710 freelist = c->freelist;
2714 freelist = get_freelist(s, page);
2718 stat(s, DEACTIVATE_BYPASS);
2722 stat(s, ALLOC_REFILL);
2726 * freelist is pointing to the list of objects to be used.
2727 * page is pointing to the page from which the objects are obtained.
2728 * That page must be frozen for per cpu allocations to work.
2730 VM_BUG_ON(!c->page->frozen);
2731 c->freelist = get_freepointer(s, freelist);
2732 c->tid = next_tid(c->tid);
2737 if (slub_percpu_partial(c)) {
2738 page = c->page = slub_percpu_partial(c);
2739 slub_set_percpu_partial(c, page);
2740 stat(s, CPU_PARTIAL_ALLOC);
2744 freelist = new_slab_objects(s, gfpflags, node, &c);
2746 if (unlikely(!freelist)) {
2747 slab_out_of_memory(s, gfpflags, node);
2752 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2755 /* Only entered in the debug case */
2756 if (kmem_cache_debug(s) &&
2757 !alloc_debug_processing(s, page, freelist, addr))
2758 goto new_slab; /* Slab failed checks. Next slab needed */
2760 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2765 * Another one that disabled interrupt and compensates for possible
2766 * cpu changes by refetching the per cpu area pointer.
2768 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2769 unsigned long addr, struct kmem_cache_cpu *c)
2772 unsigned long flags;
2774 local_irq_save(flags);
2775 #ifdef CONFIG_PREEMPTION
2777 * We may have been preempted and rescheduled on a different
2778 * cpu before disabling interrupts. Need to reload cpu area
2781 c = this_cpu_ptr(s->cpu_slab);
2784 p = ___slab_alloc(s, gfpflags, node, addr, c);
2785 local_irq_restore(flags);
2790 * If the object has been wiped upon free, make sure it's fully initialized by
2791 * zeroing out freelist pointer.
2793 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2796 if (unlikely(slab_want_init_on_free(s)) && obj)
2797 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2802 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2803 * have the fastpath folded into their functions. So no function call
2804 * overhead for requests that can be satisfied on the fastpath.
2806 * The fastpath works by first checking if the lockless freelist can be used.
2807 * If not then __slab_alloc is called for slow processing.
2809 * Otherwise we can simply pick the next object from the lockless free list.
2811 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2812 gfp_t gfpflags, int node, unsigned long addr)
2815 struct kmem_cache_cpu *c;
2818 struct obj_cgroup *objcg = NULL;
2820 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2825 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2826 * enabled. We may switch back and forth between cpus while
2827 * reading from one cpu area. That does not matter as long
2828 * as we end up on the original cpu again when doing the cmpxchg.
2830 * We should guarantee that tid and kmem_cache are retrieved on
2831 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2832 * to check if it is matched or not.
2835 tid = this_cpu_read(s->cpu_slab->tid);
2836 c = raw_cpu_ptr(s->cpu_slab);
2837 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2838 unlikely(tid != READ_ONCE(c->tid)));
2841 * Irqless object alloc/free algorithm used here depends on sequence
2842 * of fetching cpu_slab's data. tid should be fetched before anything
2843 * on c to guarantee that object and page associated with previous tid
2844 * won't be used with current tid. If we fetch tid first, object and
2845 * page could be one associated with next tid and our alloc/free
2846 * request will be failed. In this case, we will retry. So, no problem.
2851 * The transaction ids are globally unique per cpu and per operation on
2852 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2853 * occurs on the right processor and that there was no operation on the
2854 * linked list in between.
2857 object = c->freelist;
2859 if (unlikely(!object || !page || !node_match(page, node))) {
2860 object = __slab_alloc(s, gfpflags, node, addr, c);
2862 void *next_object = get_freepointer_safe(s, object);
2865 * The cmpxchg will only match if there was no additional
2866 * operation and if we are on the right processor.
2868 * The cmpxchg does the following atomically (without lock
2870 * 1. Relocate first pointer to the current per cpu area.
2871 * 2. Verify that tid and freelist have not been changed
2872 * 3. If they were not changed replace tid and freelist
2874 * Since this is without lock semantics the protection is only
2875 * against code executing on this cpu *not* from access by
2878 if (unlikely(!this_cpu_cmpxchg_double(
2879 s->cpu_slab->freelist, s->cpu_slab->tid,
2881 next_object, next_tid(tid)))) {
2883 note_cmpxchg_failure("slab_alloc", s, tid);
2886 prefetch_freepointer(s, next_object);
2887 stat(s, ALLOC_FASTPATH);
2890 maybe_wipe_obj_freeptr(s, object);
2892 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2893 memset(kasan_reset_tag(object), 0, s->object_size);
2895 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2900 static __always_inline void *slab_alloc(struct kmem_cache *s,
2901 gfp_t gfpflags, unsigned long addr)
2903 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2906 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2908 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2910 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2915 EXPORT_SYMBOL(kmem_cache_alloc);
2917 #ifdef CONFIG_TRACING
2918 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2920 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2921 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2922 ret = kasan_kmalloc(s, ret, size, gfpflags);
2925 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2929 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2931 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2933 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2934 s->object_size, s->size, gfpflags, node);
2938 EXPORT_SYMBOL(kmem_cache_alloc_node);
2940 #ifdef CONFIG_TRACING
2941 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2943 int node, size_t size)
2945 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2947 trace_kmalloc_node(_RET_IP_, ret,
2948 size, s->size, gfpflags, node);
2950 ret = kasan_kmalloc(s, ret, size, gfpflags);
2953 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2955 #endif /* CONFIG_NUMA */
2958 * Slow path handling. This may still be called frequently since objects
2959 * have a longer lifetime than the cpu slabs in most processing loads.
2961 * So we still attempt to reduce cache line usage. Just take the slab
2962 * lock and free the item. If there is no additional partial page
2963 * handling required then we can return immediately.
2965 static void __slab_free(struct kmem_cache *s, struct page *page,
2966 void *head, void *tail, int cnt,
2973 unsigned long counters;
2974 struct kmem_cache_node *n = NULL;
2975 unsigned long flags;
2977 stat(s, FREE_SLOWPATH);
2979 if (kmem_cache_debug(s) &&
2980 !free_debug_processing(s, page, head, tail, cnt, addr))
2985 spin_unlock_irqrestore(&n->list_lock, flags);
2988 prior = page->freelist;
2989 counters = page->counters;
2990 set_freepointer(s, tail, prior);
2991 new.counters = counters;
2992 was_frozen = new.frozen;
2994 if ((!new.inuse || !prior) && !was_frozen) {
2996 if (kmem_cache_has_cpu_partial(s) && !prior) {
2999 * Slab was on no list before and will be
3001 * We can defer the list move and instead
3006 } else { /* Needs to be taken off a list */
3008 n = get_node(s, page_to_nid(page));
3010 * Speculatively acquire the list_lock.
3011 * If the cmpxchg does not succeed then we may
3012 * drop the list_lock without any processing.
3014 * Otherwise the list_lock will synchronize with
3015 * other processors updating the list of slabs.
3017 spin_lock_irqsave(&n->list_lock, flags);
3022 } while (!cmpxchg_double_slab(s, page,
3029 if (likely(was_frozen)) {
3031 * The list lock was not taken therefore no list
3032 * activity can be necessary.
3034 stat(s, FREE_FROZEN);
3035 } else if (new.frozen) {
3037 * If we just froze the page then put it onto the
3038 * per cpu partial list.
3040 put_cpu_partial(s, page, 1);
3041 stat(s, CPU_PARTIAL_FREE);
3047 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3051 * Objects left in the slab. If it was not on the partial list before
3054 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3055 remove_full(s, n, page);
3056 add_partial(n, page, DEACTIVATE_TO_TAIL);
3057 stat(s, FREE_ADD_PARTIAL);
3059 spin_unlock_irqrestore(&n->list_lock, flags);
3065 * Slab on the partial list.
3067 remove_partial(n, page);
3068 stat(s, FREE_REMOVE_PARTIAL);
3070 /* Slab must be on the full list */
3071 remove_full(s, n, page);
3074 spin_unlock_irqrestore(&n->list_lock, flags);
3076 discard_slab(s, page);
3080 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3081 * can perform fastpath freeing without additional function calls.
3083 * The fastpath is only possible if we are freeing to the current cpu slab
3084 * of this processor. This typically the case if we have just allocated
3087 * If fastpath is not possible then fall back to __slab_free where we deal
3088 * with all sorts of special processing.
3090 * Bulk free of a freelist with several objects (all pointing to the
3091 * same page) possible by specifying head and tail ptr, plus objects
3092 * count (cnt). Bulk free indicated by tail pointer being set.
3094 static __always_inline void do_slab_free(struct kmem_cache *s,
3095 struct page *page, void *head, void *tail,
3096 int cnt, unsigned long addr)
3098 void *tail_obj = tail ? : head;
3099 struct kmem_cache_cpu *c;
3102 memcg_slab_free_hook(s, &head, 1);
3105 * Determine the currently cpus per cpu slab.
3106 * The cpu may change afterward. However that does not matter since
3107 * data is retrieved via this pointer. If we are on the same cpu
3108 * during the cmpxchg then the free will succeed.
3111 tid = this_cpu_read(s->cpu_slab->tid);
3112 c = raw_cpu_ptr(s->cpu_slab);
3113 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3114 unlikely(tid != READ_ONCE(c->tid)));
3116 /* Same with comment on barrier() in slab_alloc_node() */
3119 if (likely(page == c->page)) {
3120 void **freelist = READ_ONCE(c->freelist);
3122 set_freepointer(s, tail_obj, freelist);
3124 if (unlikely(!this_cpu_cmpxchg_double(
3125 s->cpu_slab->freelist, s->cpu_slab->tid,
3127 head, next_tid(tid)))) {
3129 note_cmpxchg_failure("slab_free", s, tid);
3132 stat(s, FREE_FASTPATH);
3134 __slab_free(s, page, head, tail_obj, cnt, addr);
3138 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3139 void *head, void *tail, int cnt,
3143 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3144 * to remove objects, whose reuse must be delayed.
3146 if (slab_free_freelist_hook(s, &head, &tail))
3147 do_slab_free(s, page, head, tail, cnt, addr);
3150 #ifdef CONFIG_KASAN_GENERIC
3151 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3153 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3157 void kmem_cache_free(struct kmem_cache *s, void *x)
3159 s = cache_from_obj(s, x);
3162 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3163 trace_kmem_cache_free(_RET_IP_, x, s->name);
3165 EXPORT_SYMBOL(kmem_cache_free);
3167 struct detached_freelist {
3172 struct kmem_cache *s;
3176 * This function progressively scans the array with free objects (with
3177 * a limited look ahead) and extract objects belonging to the same
3178 * page. It builds a detached freelist directly within the given
3179 * page/objects. This can happen without any need for
3180 * synchronization, because the objects are owned by running process.
3181 * The freelist is build up as a single linked list in the objects.
3182 * The idea is, that this detached freelist can then be bulk
3183 * transferred to the real freelist(s), but only requiring a single
3184 * synchronization primitive. Look ahead in the array is limited due
3185 * to performance reasons.
3188 int build_detached_freelist(struct kmem_cache *s, size_t size,
3189 void **p, struct detached_freelist *df)
3191 size_t first_skipped_index = 0;
3196 /* Always re-init detached_freelist */
3201 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3202 } while (!object && size);
3207 page = virt_to_head_page(object);
3209 /* Handle kalloc'ed objects */
3210 if (unlikely(!PageSlab(page))) {
3211 BUG_ON(!PageCompound(page));
3213 __free_pages(page, compound_order(page));
3214 p[size] = NULL; /* mark object processed */
3217 /* Derive kmem_cache from object */
3218 df->s = page->slab_cache;
3220 df->s = cache_from_obj(s, object); /* Support for memcg */
3223 /* Start new detached freelist */
3225 set_freepointer(df->s, object, NULL);
3227 df->freelist = object;
3228 p[size] = NULL; /* mark object processed */
3234 continue; /* Skip processed objects */
3236 /* df->page is always set at this point */
3237 if (df->page == virt_to_head_page(object)) {
3238 /* Opportunity build freelist */
3239 set_freepointer(df->s, object, df->freelist);
3240 df->freelist = object;
3242 p[size] = NULL; /* mark object processed */
3247 /* Limit look ahead search */
3251 if (!first_skipped_index)
3252 first_skipped_index = size + 1;
3255 return first_skipped_index;
3258 /* Note that interrupts must be enabled when calling this function. */
3259 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3264 memcg_slab_free_hook(s, p, size);
3266 struct detached_freelist df;
3268 size = build_detached_freelist(s, size, p, &df);
3272 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3273 } while (likely(size));
3275 EXPORT_SYMBOL(kmem_cache_free_bulk);
3277 /* Note that interrupts must be enabled when calling this function. */
3278 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3281 struct kmem_cache_cpu *c;
3283 struct obj_cgroup *objcg = NULL;
3285 /* memcg and kmem_cache debug support */
3286 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3290 * Drain objects in the per cpu slab, while disabling local
3291 * IRQs, which protects against PREEMPT and interrupts
3292 * handlers invoking normal fastpath.
3294 local_irq_disable();
3295 c = this_cpu_ptr(s->cpu_slab);
3297 for (i = 0; i < size; i++) {
3298 void *object = c->freelist;
3300 if (unlikely(!object)) {
3302 * We may have removed an object from c->freelist using
3303 * the fastpath in the previous iteration; in that case,
3304 * c->tid has not been bumped yet.
3305 * Since ___slab_alloc() may reenable interrupts while
3306 * allocating memory, we should bump c->tid now.
3308 c->tid = next_tid(c->tid);
3311 * Invoking slow path likely have side-effect
3312 * of re-populating per CPU c->freelist
3314 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3316 if (unlikely(!p[i]))
3319 c = this_cpu_ptr(s->cpu_slab);
3320 maybe_wipe_obj_freeptr(s, p[i]);
3322 continue; /* goto for-loop */
3324 c->freelist = get_freepointer(s, object);
3326 maybe_wipe_obj_freeptr(s, p[i]);
3328 c->tid = next_tid(c->tid);
3331 /* Clear memory outside IRQ disabled fastpath loop */
3332 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3335 for (j = 0; j < i; j++)
3336 memset(kasan_reset_tag(p[j]), 0, s->object_size);
3339 /* memcg and kmem_cache debug support */
3340 slab_post_alloc_hook(s, objcg, flags, size, p);
3344 slab_post_alloc_hook(s, objcg, flags, i, p);
3345 __kmem_cache_free_bulk(s, i, p);
3348 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3352 * Object placement in a slab is made very easy because we always start at
3353 * offset 0. If we tune the size of the object to the alignment then we can
3354 * get the required alignment by putting one properly sized object after
3357 * Notice that the allocation order determines the sizes of the per cpu
3358 * caches. Each processor has always one slab available for allocations.
3359 * Increasing the allocation order reduces the number of times that slabs
3360 * must be moved on and off the partial lists and is therefore a factor in
3365 * Mininum / Maximum order of slab pages. This influences locking overhead
3366 * and slab fragmentation. A higher order reduces the number of partial slabs
3367 * and increases the number of allocations possible without having to
3368 * take the list_lock.
3370 static unsigned int slub_min_order;
3371 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3372 static unsigned int slub_min_objects;
3375 * Calculate the order of allocation given an slab object size.
3377 * The order of allocation has significant impact on performance and other
3378 * system components. Generally order 0 allocations should be preferred since
3379 * order 0 does not cause fragmentation in the page allocator. Larger objects
3380 * be problematic to put into order 0 slabs because there may be too much
3381 * unused space left. We go to a higher order if more than 1/16th of the slab
3384 * In order to reach satisfactory performance we must ensure that a minimum
3385 * number of objects is in one slab. Otherwise we may generate too much
3386 * activity on the partial lists which requires taking the list_lock. This is
3387 * less a concern for large slabs though which are rarely used.
3389 * slub_max_order specifies the order where we begin to stop considering the
3390 * number of objects in a slab as critical. If we reach slub_max_order then
3391 * we try to keep the page order as low as possible. So we accept more waste
3392 * of space in favor of a small page order.
3394 * Higher order allocations also allow the placement of more objects in a
3395 * slab and thereby reduce object handling overhead. If the user has
3396 * requested a higher mininum order then we start with that one instead of
3397 * the smallest order which will fit the object.
3399 static inline unsigned int slab_order(unsigned int size,
3400 unsigned int min_objects, unsigned int max_order,
3401 unsigned int fract_leftover)
3403 unsigned int min_order = slub_min_order;
3406 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3407 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3409 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3410 order <= max_order; order++) {
3412 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3415 rem = slab_size % size;
3417 if (rem <= slab_size / fract_leftover)
3424 static inline int calculate_order(unsigned int size)
3427 unsigned int min_objects;
3428 unsigned int max_objects;
3429 unsigned int nr_cpus;
3432 * Attempt to find best configuration for a slab. This
3433 * works by first attempting to generate a layout with
3434 * the best configuration and backing off gradually.
3436 * First we increase the acceptable waste in a slab. Then
3437 * we reduce the minimum objects required in a slab.
3439 min_objects = slub_min_objects;
3442 * Some architectures will only update present cpus when
3443 * onlining them, so don't trust the number if it's just 1. But
3444 * we also don't want to use nr_cpu_ids always, as on some other
3445 * architectures, there can be many possible cpus, but never
3446 * onlined. Here we compromise between trying to avoid too high
3447 * order on systems that appear larger than they are, and too
3448 * low order on systems that appear smaller than they are.
3450 nr_cpus = num_present_cpus();
3452 nr_cpus = nr_cpu_ids;
3453 min_objects = 4 * (fls(nr_cpus) + 1);
3455 max_objects = order_objects(slub_max_order, size);
3456 min_objects = min(min_objects, max_objects);
3458 while (min_objects > 1) {
3459 unsigned int fraction;
3462 while (fraction >= 4) {
3463 order = slab_order(size, min_objects,
3464 slub_max_order, fraction);
3465 if (order <= slub_max_order)
3473 * We were unable to place multiple objects in a slab. Now
3474 * lets see if we can place a single object there.
3476 order = slab_order(size, 1, slub_max_order, 1);
3477 if (order <= slub_max_order)
3481 * Doh this slab cannot be placed using slub_max_order.
3483 order = slab_order(size, 1, MAX_ORDER, 1);
3484 if (order < MAX_ORDER)
3490 init_kmem_cache_node(struct kmem_cache_node *n)
3493 spin_lock_init(&n->list_lock);
3494 INIT_LIST_HEAD(&n->partial);
3495 #ifdef CONFIG_SLUB_DEBUG
3496 atomic_long_set(&n->nr_slabs, 0);
3497 atomic_long_set(&n->total_objects, 0);
3498 INIT_LIST_HEAD(&n->full);
3502 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3504 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3505 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3508 * Must align to double word boundary for the double cmpxchg
3509 * instructions to work; see __pcpu_double_call_return_bool().
3511 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3512 2 * sizeof(void *));
3517 init_kmem_cache_cpus(s);
3522 static struct kmem_cache *kmem_cache_node;
3525 * No kmalloc_node yet so do it by hand. We know that this is the first
3526 * slab on the node for this slabcache. There are no concurrent accesses
3529 * Note that this function only works on the kmem_cache_node
3530 * when allocating for the kmem_cache_node. This is used for bootstrapping
3531 * memory on a fresh node that has no slab structures yet.
3533 static void early_kmem_cache_node_alloc(int node)
3536 struct kmem_cache_node *n;
3538 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3540 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3543 if (page_to_nid(page) != node) {
3544 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3545 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3550 #ifdef CONFIG_SLUB_DEBUG
3551 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3552 init_tracking(kmem_cache_node, n);
3554 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3556 page->freelist = get_freepointer(kmem_cache_node, n);
3559 kmem_cache_node->node[node] = n;
3560 init_kmem_cache_node(n);
3561 inc_slabs_node(kmem_cache_node, node, page->objects);
3564 * No locks need to be taken here as it has just been
3565 * initialized and there is no concurrent access.
3567 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3570 static void free_kmem_cache_nodes(struct kmem_cache *s)
3573 struct kmem_cache_node *n;
3575 for_each_kmem_cache_node(s, node, n) {
3576 s->node[node] = NULL;
3577 kmem_cache_free(kmem_cache_node, n);
3581 void __kmem_cache_release(struct kmem_cache *s)
3583 cache_random_seq_destroy(s);
3584 free_percpu(s->cpu_slab);
3585 free_kmem_cache_nodes(s);
3588 static int init_kmem_cache_nodes(struct kmem_cache *s)
3592 for_each_node_mask(node, slab_nodes) {
3593 struct kmem_cache_node *n;
3595 if (slab_state == DOWN) {
3596 early_kmem_cache_node_alloc(node);
3599 n = kmem_cache_alloc_node(kmem_cache_node,
3603 free_kmem_cache_nodes(s);
3607 init_kmem_cache_node(n);
3613 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3615 if (min < MIN_PARTIAL)
3617 else if (min > MAX_PARTIAL)
3619 s->min_partial = min;
3622 static void set_cpu_partial(struct kmem_cache *s)
3624 #ifdef CONFIG_SLUB_CPU_PARTIAL
3626 * cpu_partial determined the maximum number of objects kept in the
3627 * per cpu partial lists of a processor.
3629 * Per cpu partial lists mainly contain slabs that just have one
3630 * object freed. If they are used for allocation then they can be
3631 * filled up again with minimal effort. The slab will never hit the
3632 * per node partial lists and therefore no locking will be required.
3634 * This setting also determines
3636 * A) The number of objects from per cpu partial slabs dumped to the
3637 * per node list when we reach the limit.
3638 * B) The number of objects in cpu partial slabs to extract from the
3639 * per node list when we run out of per cpu objects. We only fetch
3640 * 50% to keep some capacity around for frees.
3642 if (!kmem_cache_has_cpu_partial(s))
3643 slub_set_cpu_partial(s, 0);
3644 else if (s->size >= PAGE_SIZE)
3645 slub_set_cpu_partial(s, 2);
3646 else if (s->size >= 1024)
3647 slub_set_cpu_partial(s, 6);
3648 else if (s->size >= 256)
3649 slub_set_cpu_partial(s, 13);
3651 slub_set_cpu_partial(s, 30);
3656 * calculate_sizes() determines the order and the distribution of data within
3659 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3661 slab_flags_t flags = s->flags;
3662 unsigned int size = s->object_size;
3663 unsigned int freepointer_area;
3667 * Round up object size to the next word boundary. We can only
3668 * place the free pointer at word boundaries and this determines
3669 * the possible location of the free pointer.
3671 size = ALIGN(size, sizeof(void *));
3673 * This is the area of the object where a freepointer can be
3674 * safely written. If redzoning adds more to the inuse size, we
3675 * can't use that portion for writing the freepointer, so
3676 * s->offset must be limited within this for the general case.
3678 freepointer_area = size;
3680 #ifdef CONFIG_SLUB_DEBUG
3682 * Determine if we can poison the object itself. If the user of
3683 * the slab may touch the object after free or before allocation
3684 * then we should never poison the object itself.
3686 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3688 s->flags |= __OBJECT_POISON;
3690 s->flags &= ~__OBJECT_POISON;
3694 * If we are Redzoning then check if there is some space between the
3695 * end of the object and the free pointer. If not then add an
3696 * additional word to have some bytes to store Redzone information.
3698 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3699 size += sizeof(void *);
3703 * With that we have determined the number of bytes in actual use
3704 * by the object. This is the potential offset to the free pointer.
3708 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3711 * Relocate free pointer after the object if it is not
3712 * permitted to overwrite the first word of the object on
3715 * This is the case if we do RCU, have a constructor or
3716 * destructor or are poisoning the objects.
3718 * The assumption that s->offset >= s->inuse means free
3719 * pointer is outside of the object is used in the
3720 * freeptr_outside_object() function. If that is no
3721 * longer true, the function needs to be modified.
3724 size += sizeof(void *);
3725 } else if (freepointer_area > sizeof(void *)) {
3727 * Store freelist pointer near middle of object to keep
3728 * it away from the edges of the object to avoid small
3729 * sized over/underflows from neighboring allocations.
3731 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3734 #ifdef CONFIG_SLUB_DEBUG
3735 if (flags & SLAB_STORE_USER)
3737 * Need to store information about allocs and frees after
3740 size += 2 * sizeof(struct track);
3743 kasan_cache_create(s, &size, &s->flags);
3744 #ifdef CONFIG_SLUB_DEBUG
3745 if (flags & SLAB_RED_ZONE) {
3747 * Add some empty padding so that we can catch
3748 * overwrites from earlier objects rather than let
3749 * tracking information or the free pointer be
3750 * corrupted if a user writes before the start
3753 size += sizeof(void *);
3755 s->red_left_pad = sizeof(void *);
3756 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3757 size += s->red_left_pad;
3762 * SLUB stores one object immediately after another beginning from
3763 * offset 0. In order to align the objects we have to simply size
3764 * each object to conform to the alignment.
3766 size = ALIGN(size, s->align);
3768 s->reciprocal_size = reciprocal_value(size);
3769 if (forced_order >= 0)
3770 order = forced_order;
3772 order = calculate_order(size);
3779 s->allocflags |= __GFP_COMP;
3781 if (s->flags & SLAB_CACHE_DMA)
3782 s->allocflags |= GFP_DMA;
3784 if (s->flags & SLAB_CACHE_DMA32)
3785 s->allocflags |= GFP_DMA32;
3787 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3788 s->allocflags |= __GFP_RECLAIMABLE;
3791 * Determine the number of objects per slab
3793 s->oo = oo_make(order, size);
3794 s->min = oo_make(get_order(size), size);
3795 if (oo_objects(s->oo) > oo_objects(s->max))
3798 return !!oo_objects(s->oo);
3801 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3803 s->flags = kmem_cache_flags(s->size, flags, s->name);
3804 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3805 s->random = get_random_long();
3808 if (!calculate_sizes(s, -1))
3810 if (disable_higher_order_debug) {
3812 * Disable debugging flags that store metadata if the min slab
3815 if (get_order(s->size) > get_order(s->object_size)) {
3816 s->flags &= ~DEBUG_METADATA_FLAGS;
3818 if (!calculate_sizes(s, -1))
3823 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3824 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3825 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3826 /* Enable fast mode */
3827 s->flags |= __CMPXCHG_DOUBLE;
3831 * The larger the object size is, the more pages we want on the partial
3832 * list to avoid pounding the page allocator excessively.
3834 set_min_partial(s, ilog2(s->size) / 2);
3839 s->remote_node_defrag_ratio = 1000;
3842 /* Initialize the pre-computed randomized freelist if slab is up */
3843 if (slab_state >= UP) {
3844 if (init_cache_random_seq(s))
3848 if (!init_kmem_cache_nodes(s))
3851 if (alloc_kmem_cache_cpus(s))
3854 free_kmem_cache_nodes(s);
3859 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3862 #ifdef CONFIG_SLUB_DEBUG
3863 void *addr = page_address(page);
3867 slab_err(s, page, text, s->name);
3870 map = get_map(s, page);
3871 for_each_object(p, s, addr, page->objects) {
3873 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3874 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3875 print_tracking(s, p);
3884 * Attempt to free all partial slabs on a node.
3885 * This is called from __kmem_cache_shutdown(). We must take list_lock
3886 * because sysfs file might still access partial list after the shutdowning.
3888 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3891 struct page *page, *h;
3893 BUG_ON(irqs_disabled());
3894 spin_lock_irq(&n->list_lock);
3895 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3897 remove_partial(n, page);
3898 list_add(&page->slab_list, &discard);
3900 list_slab_objects(s, page,
3901 "Objects remaining in %s on __kmem_cache_shutdown()");
3904 spin_unlock_irq(&n->list_lock);
3906 list_for_each_entry_safe(page, h, &discard, slab_list)
3907 discard_slab(s, page);
3910 bool __kmem_cache_empty(struct kmem_cache *s)
3913 struct kmem_cache_node *n;
3915 for_each_kmem_cache_node(s, node, n)
3916 if (n->nr_partial || slabs_node(s, node))
3922 * Release all resources used by a slab cache.
3924 int __kmem_cache_shutdown(struct kmem_cache *s)
3927 struct kmem_cache_node *n;
3930 /* Attempt to free all objects */
3931 for_each_kmem_cache_node(s, node, n) {
3933 if (n->nr_partial || slabs_node(s, node))
3939 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3942 int __maybe_unused i;
3946 struct kmem_cache *s = page->slab_cache;
3947 struct track __maybe_unused *trackp;
3949 kpp->kp_ptr = object;
3950 kpp->kp_page = page;
3951 kpp->kp_slab_cache = s;
3952 base = page_address(page);
3953 objp0 = kasan_reset_tag(object);
3954 #ifdef CONFIG_SLUB_DEBUG
3955 objp = restore_red_left(s, objp0);
3959 objnr = obj_to_index(s, page, objp);
3960 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3961 objp = base + s->size * objnr;
3962 kpp->kp_objp = objp;
3963 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3964 !(s->flags & SLAB_STORE_USER))
3966 #ifdef CONFIG_SLUB_DEBUG
3967 trackp = get_track(s, objp, TRACK_ALLOC);
3968 kpp->kp_ret = (void *)trackp->addr;
3969 #ifdef CONFIG_STACKTRACE
3970 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3971 kpp->kp_stack[i] = (void *)trackp->addrs[i];
3972 if (!kpp->kp_stack[i])
3979 /********************************************************************
3981 *******************************************************************/
3983 static int __init setup_slub_min_order(char *str)
3985 get_option(&str, (int *)&slub_min_order);
3990 __setup("slub_min_order=", setup_slub_min_order);
3992 static int __init setup_slub_max_order(char *str)
3994 get_option(&str, (int *)&slub_max_order);
3995 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4000 __setup("slub_max_order=", setup_slub_max_order);
4002 static int __init setup_slub_min_objects(char *str)
4004 get_option(&str, (int *)&slub_min_objects);
4009 __setup("slub_min_objects=", setup_slub_min_objects);
4011 void *__kmalloc(size_t size, gfp_t flags)
4013 struct kmem_cache *s;
4016 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4017 return kmalloc_large(size, flags);
4019 s = kmalloc_slab(size, flags);
4021 if (unlikely(ZERO_OR_NULL_PTR(s)))
4024 ret = slab_alloc(s, flags, _RET_IP_);
4026 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4028 ret = kasan_kmalloc(s, ret, size, flags);
4032 EXPORT_SYMBOL(__kmalloc);
4035 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4039 unsigned int order = get_order(size);
4041 flags |= __GFP_COMP;
4042 page = alloc_pages_node(node, flags, order);
4044 ptr = page_address(page);
4045 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4046 PAGE_SIZE << order);
4049 return kmalloc_large_node_hook(ptr, size, flags);
4052 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4054 struct kmem_cache *s;
4057 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4058 ret = kmalloc_large_node(size, flags, node);
4060 trace_kmalloc_node(_RET_IP_, ret,
4061 size, PAGE_SIZE << get_order(size),
4067 s = kmalloc_slab(size, flags);
4069 if (unlikely(ZERO_OR_NULL_PTR(s)))
4072 ret = slab_alloc_node(s, flags, node, _RET_IP_);
4074 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4076 ret = kasan_kmalloc(s, ret, size, flags);
4080 EXPORT_SYMBOL(__kmalloc_node);
4081 #endif /* CONFIG_NUMA */
4083 #ifdef CONFIG_HARDENED_USERCOPY
4085 * Rejects incorrectly sized objects and objects that are to be copied
4086 * to/from userspace but do not fall entirely within the containing slab
4087 * cache's usercopy region.
4089 * Returns NULL if check passes, otherwise const char * to name of cache
4090 * to indicate an error.
4092 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4095 struct kmem_cache *s;
4096 unsigned int offset;
4099 ptr = kasan_reset_tag(ptr);
4101 /* Find object and usable object size. */
4102 s = page->slab_cache;
4104 /* Reject impossible pointers. */
4105 if (ptr < page_address(page))
4106 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4109 /* Find offset within object. */
4110 offset = (ptr - page_address(page)) % s->size;
4112 /* Adjust for redzone and reject if within the redzone. */
4113 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4114 if (offset < s->red_left_pad)
4115 usercopy_abort("SLUB object in left red zone",
4116 s->name, to_user, offset, n);
4117 offset -= s->red_left_pad;
4120 /* Allow address range falling entirely within usercopy region. */
4121 if (offset >= s->useroffset &&
4122 offset - s->useroffset <= s->usersize &&
4123 n <= s->useroffset - offset + s->usersize)
4127 * If the copy is still within the allocated object, produce
4128 * a warning instead of rejecting the copy. This is intended
4129 * to be a temporary method to find any missing usercopy
4132 object_size = slab_ksize(s);
4133 if (usercopy_fallback &&
4134 offset <= object_size && n <= object_size - offset) {
4135 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4139 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4141 #endif /* CONFIG_HARDENED_USERCOPY */
4143 size_t __ksize(const void *object)
4147 if (unlikely(object == ZERO_SIZE_PTR))
4150 page = virt_to_head_page(object);
4152 if (unlikely(!PageSlab(page))) {
4153 WARN_ON(!PageCompound(page));
4154 return page_size(page);
4157 return slab_ksize(page->slab_cache);
4159 EXPORT_SYMBOL(__ksize);
4161 void kfree(const void *x)
4164 void *object = (void *)x;
4166 trace_kfree(_RET_IP_, x);
4168 if (unlikely(ZERO_OR_NULL_PTR(x)))
4171 page = virt_to_head_page(x);
4172 if (unlikely(!PageSlab(page))) {
4173 unsigned int order = compound_order(page);
4175 BUG_ON(!PageCompound(page));
4177 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4178 -(PAGE_SIZE << order));
4179 __free_pages(page, order);
4182 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4184 EXPORT_SYMBOL(kfree);
4186 #define SHRINK_PROMOTE_MAX 32
4189 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4190 * up most to the head of the partial lists. New allocations will then
4191 * fill those up and thus they can be removed from the partial lists.
4193 * The slabs with the least items are placed last. This results in them
4194 * being allocated from last increasing the chance that the last objects
4195 * are freed in them.
4197 int __kmem_cache_shrink(struct kmem_cache *s)
4201 struct kmem_cache_node *n;
4204 struct list_head discard;
4205 struct list_head promote[SHRINK_PROMOTE_MAX];
4206 unsigned long flags;
4210 for_each_kmem_cache_node(s, node, n) {
4211 INIT_LIST_HEAD(&discard);
4212 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4213 INIT_LIST_HEAD(promote + i);
4215 spin_lock_irqsave(&n->list_lock, flags);
4218 * Build lists of slabs to discard or promote.
4220 * Note that concurrent frees may occur while we hold the
4221 * list_lock. page->inuse here is the upper limit.
4223 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4224 int free = page->objects - page->inuse;
4226 /* Do not reread page->inuse */
4229 /* We do not keep full slabs on the list */
4232 if (free == page->objects) {
4233 list_move(&page->slab_list, &discard);
4235 } else if (free <= SHRINK_PROMOTE_MAX)
4236 list_move(&page->slab_list, promote + free - 1);
4240 * Promote the slabs filled up most to the head of the
4243 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4244 list_splice(promote + i, &n->partial);
4246 spin_unlock_irqrestore(&n->list_lock, flags);
4248 /* Release empty slabs */
4249 list_for_each_entry_safe(page, t, &discard, slab_list)
4250 discard_slab(s, page);
4252 if (slabs_node(s, node))
4259 static int slab_mem_going_offline_callback(void *arg)
4261 struct kmem_cache *s;
4263 mutex_lock(&slab_mutex);
4264 list_for_each_entry(s, &slab_caches, list)
4265 __kmem_cache_shrink(s);
4266 mutex_unlock(&slab_mutex);
4271 static void slab_mem_offline_callback(void *arg)
4273 struct memory_notify *marg = arg;
4276 offline_node = marg->status_change_nid_normal;
4279 * If the node still has available memory. we need kmem_cache_node
4282 if (offline_node < 0)
4285 mutex_lock(&slab_mutex);
4286 node_clear(offline_node, slab_nodes);
4288 * We no longer free kmem_cache_node structures here, as it would be
4289 * racy with all get_node() users, and infeasible to protect them with
4292 mutex_unlock(&slab_mutex);
4295 static int slab_mem_going_online_callback(void *arg)
4297 struct kmem_cache_node *n;
4298 struct kmem_cache *s;
4299 struct memory_notify *marg = arg;
4300 int nid = marg->status_change_nid_normal;
4304 * If the node's memory is already available, then kmem_cache_node is
4305 * already created. Nothing to do.
4311 * We are bringing a node online. No memory is available yet. We must
4312 * allocate a kmem_cache_node structure in order to bring the node
4315 mutex_lock(&slab_mutex);
4316 list_for_each_entry(s, &slab_caches, list) {
4318 * The structure may already exist if the node was previously
4319 * onlined and offlined.
4321 if (get_node(s, nid))
4324 * XXX: kmem_cache_alloc_node will fallback to other nodes
4325 * since memory is not yet available from the node that
4328 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4333 init_kmem_cache_node(n);
4337 * Any cache created after this point will also have kmem_cache_node
4338 * initialized for the new node.
4340 node_set(nid, slab_nodes);
4342 mutex_unlock(&slab_mutex);
4346 static int slab_memory_callback(struct notifier_block *self,
4347 unsigned long action, void *arg)
4352 case MEM_GOING_ONLINE:
4353 ret = slab_mem_going_online_callback(arg);
4355 case MEM_GOING_OFFLINE:
4356 ret = slab_mem_going_offline_callback(arg);
4359 case MEM_CANCEL_ONLINE:
4360 slab_mem_offline_callback(arg);
4363 case MEM_CANCEL_OFFLINE:
4367 ret = notifier_from_errno(ret);
4373 static struct notifier_block slab_memory_callback_nb = {
4374 .notifier_call = slab_memory_callback,
4375 .priority = SLAB_CALLBACK_PRI,
4378 /********************************************************************
4379 * Basic setup of slabs
4380 *******************************************************************/
4383 * Used for early kmem_cache structures that were allocated using
4384 * the page allocator. Allocate them properly then fix up the pointers
4385 * that may be pointing to the wrong kmem_cache structure.
4388 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4391 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4392 struct kmem_cache_node *n;
4394 memcpy(s, static_cache, kmem_cache->object_size);
4397 * This runs very early, and only the boot processor is supposed to be
4398 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4401 __flush_cpu_slab(s, smp_processor_id());
4402 for_each_kmem_cache_node(s, node, n) {
4405 list_for_each_entry(p, &n->partial, slab_list)
4408 #ifdef CONFIG_SLUB_DEBUG
4409 list_for_each_entry(p, &n->full, slab_list)
4413 list_add(&s->list, &slab_caches);
4417 void __init kmem_cache_init(void)
4419 static __initdata struct kmem_cache boot_kmem_cache,
4420 boot_kmem_cache_node;
4423 if (debug_guardpage_minorder())
4426 kmem_cache_node = &boot_kmem_cache_node;
4427 kmem_cache = &boot_kmem_cache;
4430 * Initialize the nodemask for which we will allocate per node
4431 * structures. Here we don't need taking slab_mutex yet.
4433 for_each_node_state(node, N_NORMAL_MEMORY)
4434 node_set(node, slab_nodes);
4436 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4437 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4439 register_hotmemory_notifier(&slab_memory_callback_nb);
4441 /* Able to allocate the per node structures */
4442 slab_state = PARTIAL;
4444 create_boot_cache(kmem_cache, "kmem_cache",
4445 offsetof(struct kmem_cache, node) +
4446 nr_node_ids * sizeof(struct kmem_cache_node *),
4447 SLAB_HWCACHE_ALIGN, 0, 0);
4449 kmem_cache = bootstrap(&boot_kmem_cache);
4450 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4452 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4453 setup_kmalloc_cache_index_table();
4454 create_kmalloc_caches(0);
4456 /* Setup random freelists for each cache */
4457 init_freelist_randomization();
4459 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4462 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4464 slub_min_order, slub_max_order, slub_min_objects,
4465 nr_cpu_ids, nr_node_ids);
4468 void __init kmem_cache_init_late(void)
4473 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4474 slab_flags_t flags, void (*ctor)(void *))
4476 struct kmem_cache *s;
4478 s = find_mergeable(size, align, flags, name, ctor);
4483 * Adjust the object sizes so that we clear
4484 * the complete object on kzalloc.
4486 s->object_size = max(s->object_size, size);
4487 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4489 if (sysfs_slab_alias(s, name)) {
4498 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4502 err = kmem_cache_open(s, flags);
4506 /* Mutex is not taken during early boot */
4507 if (slab_state <= UP)
4510 err = sysfs_slab_add(s);
4512 __kmem_cache_release(s);
4517 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4519 struct kmem_cache *s;
4522 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4523 return kmalloc_large(size, gfpflags);
4525 s = kmalloc_slab(size, gfpflags);
4527 if (unlikely(ZERO_OR_NULL_PTR(s)))
4530 ret = slab_alloc(s, gfpflags, caller);
4532 /* Honor the call site pointer we received. */
4533 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4537 EXPORT_SYMBOL(__kmalloc_track_caller);
4540 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4541 int node, unsigned long caller)
4543 struct kmem_cache *s;
4546 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4547 ret = kmalloc_large_node(size, gfpflags, node);
4549 trace_kmalloc_node(caller, ret,
4550 size, PAGE_SIZE << get_order(size),
4556 s = kmalloc_slab(size, gfpflags);
4558 if (unlikely(ZERO_OR_NULL_PTR(s)))
4561 ret = slab_alloc_node(s, gfpflags, node, caller);
4563 /* Honor the call site pointer we received. */
4564 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4568 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4572 static int count_inuse(struct page *page)
4577 static int count_total(struct page *page)
4579 return page->objects;
4583 #ifdef CONFIG_SLUB_DEBUG
4584 static void validate_slab(struct kmem_cache *s, struct page *page)
4587 void *addr = page_address(page);
4592 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4595 /* Now we know that a valid freelist exists */
4596 map = get_map(s, page);
4597 for_each_object(p, s, addr, page->objects) {
4598 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4599 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4601 if (!check_object(s, page, p, val))
4609 static int validate_slab_node(struct kmem_cache *s,
4610 struct kmem_cache_node *n)
4612 unsigned long count = 0;
4614 unsigned long flags;
4616 spin_lock_irqsave(&n->list_lock, flags);
4618 list_for_each_entry(page, &n->partial, slab_list) {
4619 validate_slab(s, page);
4622 if (count != n->nr_partial)
4623 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4624 s->name, count, n->nr_partial);
4626 if (!(s->flags & SLAB_STORE_USER))
4629 list_for_each_entry(page, &n->full, slab_list) {
4630 validate_slab(s, page);
4633 if (count != atomic_long_read(&n->nr_slabs))
4634 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4635 s->name, count, atomic_long_read(&n->nr_slabs));
4638 spin_unlock_irqrestore(&n->list_lock, flags);
4642 static long validate_slab_cache(struct kmem_cache *s)
4645 unsigned long count = 0;
4646 struct kmem_cache_node *n;
4649 for_each_kmem_cache_node(s, node, n)
4650 count += validate_slab_node(s, n);
4655 * Generate lists of code addresses where slabcache objects are allocated
4660 unsigned long count;
4667 DECLARE_BITMAP(cpus, NR_CPUS);
4673 unsigned long count;
4674 struct location *loc;
4677 static void free_loc_track(struct loc_track *t)
4680 free_pages((unsigned long)t->loc,
4681 get_order(sizeof(struct location) * t->max));
4684 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4689 order = get_order(sizeof(struct location) * max);
4691 l = (void *)__get_free_pages(flags, order);
4696 memcpy(l, t->loc, sizeof(struct location) * t->count);
4704 static int add_location(struct loc_track *t, struct kmem_cache *s,
4705 const struct track *track)
4707 long start, end, pos;
4709 unsigned long caddr;
4710 unsigned long age = jiffies - track->when;
4716 pos = start + (end - start + 1) / 2;
4719 * There is nothing at "end". If we end up there
4720 * we need to add something to before end.
4725 caddr = t->loc[pos].addr;
4726 if (track->addr == caddr) {
4732 if (age < l->min_time)
4734 if (age > l->max_time)
4737 if (track->pid < l->min_pid)
4738 l->min_pid = track->pid;
4739 if (track->pid > l->max_pid)
4740 l->max_pid = track->pid;
4742 cpumask_set_cpu(track->cpu,
4743 to_cpumask(l->cpus));
4745 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4749 if (track->addr < caddr)
4756 * Not found. Insert new tracking element.
4758 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4764 (t->count - pos) * sizeof(struct location));
4767 l->addr = track->addr;
4771 l->min_pid = track->pid;
4772 l->max_pid = track->pid;
4773 cpumask_clear(to_cpumask(l->cpus));
4774 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4775 nodes_clear(l->nodes);
4776 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4780 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4781 struct page *page, enum track_item alloc)
4783 void *addr = page_address(page);
4787 map = get_map(s, page);
4788 for_each_object(p, s, addr, page->objects)
4789 if (!test_bit(__obj_to_index(s, addr, p), map))
4790 add_location(t, s, get_track(s, p, alloc));
4794 static int list_locations(struct kmem_cache *s, char *buf,
4795 enum track_item alloc)
4799 struct loc_track t = { 0, 0, NULL };
4801 struct kmem_cache_node *n;
4803 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4805 return sysfs_emit(buf, "Out of memory\n");
4807 /* Push back cpu slabs */
4810 for_each_kmem_cache_node(s, node, n) {
4811 unsigned long flags;
4814 if (!atomic_long_read(&n->nr_slabs))
4817 spin_lock_irqsave(&n->list_lock, flags);
4818 list_for_each_entry(page, &n->partial, slab_list)
4819 process_slab(&t, s, page, alloc);
4820 list_for_each_entry(page, &n->full, slab_list)
4821 process_slab(&t, s, page, alloc);
4822 spin_unlock_irqrestore(&n->list_lock, flags);
4825 for (i = 0; i < t.count; i++) {
4826 struct location *l = &t.loc[i];
4828 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4831 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4833 len += sysfs_emit_at(buf, len, "<not-available>");
4835 if (l->sum_time != l->min_time)
4836 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4838 (long)div_u64(l->sum_time,
4842 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4844 if (l->min_pid != l->max_pid)
4845 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4846 l->min_pid, l->max_pid);
4848 len += sysfs_emit_at(buf, len, " pid=%ld",
4851 if (num_online_cpus() > 1 &&
4852 !cpumask_empty(to_cpumask(l->cpus)))
4853 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4854 cpumask_pr_args(to_cpumask(l->cpus)));
4856 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4857 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4858 nodemask_pr_args(&l->nodes));
4860 len += sysfs_emit_at(buf, len, "\n");
4865 len += sysfs_emit_at(buf, len, "No data\n");
4869 #endif /* CONFIG_SLUB_DEBUG */
4871 #ifdef SLUB_RESILIENCY_TEST
4872 static void __init resiliency_test(void)
4875 int type = KMALLOC_NORMAL;
4877 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4879 pr_err("SLUB resiliency testing\n");
4880 pr_err("-----------------------\n");
4881 pr_err("A. Corruption after allocation\n");
4883 p = kzalloc(16, GFP_KERNEL);
4885 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4888 validate_slab_cache(kmalloc_caches[type][4]);
4890 /* Hmmm... The next two are dangerous */
4891 p = kzalloc(32, GFP_KERNEL);
4892 p[32 + sizeof(void *)] = 0x34;
4893 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4895 pr_err("If allocated object is overwritten then not detectable\n\n");
4897 validate_slab_cache(kmalloc_caches[type][5]);
4898 p = kzalloc(64, GFP_KERNEL);
4899 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4901 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4903 pr_err("If allocated object is overwritten then not detectable\n\n");
4904 validate_slab_cache(kmalloc_caches[type][6]);
4906 pr_err("\nB. Corruption after free\n");
4907 p = kzalloc(128, GFP_KERNEL);
4910 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4911 validate_slab_cache(kmalloc_caches[type][7]);
4913 p = kzalloc(256, GFP_KERNEL);
4916 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4917 validate_slab_cache(kmalloc_caches[type][8]);
4919 p = kzalloc(512, GFP_KERNEL);
4922 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4923 validate_slab_cache(kmalloc_caches[type][9]);
4927 static void resiliency_test(void) {};
4929 #endif /* SLUB_RESILIENCY_TEST */
4932 enum slab_stat_type {
4933 SL_ALL, /* All slabs */
4934 SL_PARTIAL, /* Only partially allocated slabs */
4935 SL_CPU, /* Only slabs used for cpu caches */
4936 SL_OBJECTS, /* Determine allocated objects not slabs */
4937 SL_TOTAL /* Determine object capacity not slabs */
4940 #define SO_ALL (1 << SL_ALL)
4941 #define SO_PARTIAL (1 << SL_PARTIAL)
4942 #define SO_CPU (1 << SL_CPU)
4943 #define SO_OBJECTS (1 << SL_OBJECTS)
4944 #define SO_TOTAL (1 << SL_TOTAL)
4946 static ssize_t show_slab_objects(struct kmem_cache *s,
4947 char *buf, unsigned long flags)
4949 unsigned long total = 0;
4952 unsigned long *nodes;
4955 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4959 if (flags & SO_CPU) {
4962 for_each_possible_cpu(cpu) {
4963 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4968 page = READ_ONCE(c->page);
4972 node = page_to_nid(page);
4973 if (flags & SO_TOTAL)
4975 else if (flags & SO_OBJECTS)
4983 page = slub_percpu_partial_read_once(c);
4985 node = page_to_nid(page);
4986 if (flags & SO_TOTAL)
4988 else if (flags & SO_OBJECTS)
4999 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5000 * already held which will conflict with an existing lock order:
5002 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5004 * We don't really need mem_hotplug_lock (to hold off
5005 * slab_mem_going_offline_callback) here because slab's memory hot
5006 * unplug code doesn't destroy the kmem_cache->node[] data.
5009 #ifdef CONFIG_SLUB_DEBUG
5010 if (flags & SO_ALL) {
5011 struct kmem_cache_node *n;
5013 for_each_kmem_cache_node(s, node, n) {
5015 if (flags & SO_TOTAL)
5016 x = atomic_long_read(&n->total_objects);
5017 else if (flags & SO_OBJECTS)
5018 x = atomic_long_read(&n->total_objects) -
5019 count_partial(n, count_free);
5021 x = atomic_long_read(&n->nr_slabs);
5028 if (flags & SO_PARTIAL) {
5029 struct kmem_cache_node *n;
5031 for_each_kmem_cache_node(s, node, n) {
5032 if (flags & SO_TOTAL)
5033 x = count_partial(n, count_total);
5034 else if (flags & SO_OBJECTS)
5035 x = count_partial(n, count_inuse);
5043 len += sysfs_emit_at(buf, len, "%lu", total);
5045 for (node = 0; node < nr_node_ids; node++) {
5047 len += sysfs_emit_at(buf, len, " N%d=%lu",
5051 len += sysfs_emit_at(buf, len, "\n");
5057 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5058 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5060 struct slab_attribute {
5061 struct attribute attr;
5062 ssize_t (*show)(struct kmem_cache *s, char *buf);
5063 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5066 #define SLAB_ATTR_RO(_name) \
5067 static struct slab_attribute _name##_attr = \
5068 __ATTR(_name, 0400, _name##_show, NULL)
5070 #define SLAB_ATTR(_name) \
5071 static struct slab_attribute _name##_attr = \
5072 __ATTR(_name, 0600, _name##_show, _name##_store)
5074 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5076 return sysfs_emit(buf, "%u\n", s->size);
5078 SLAB_ATTR_RO(slab_size);
5080 static ssize_t align_show(struct kmem_cache *s, char *buf)
5082 return sysfs_emit(buf, "%u\n", s->align);
5084 SLAB_ATTR_RO(align);
5086 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5088 return sysfs_emit(buf, "%u\n", s->object_size);
5090 SLAB_ATTR_RO(object_size);
5092 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5094 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5096 SLAB_ATTR_RO(objs_per_slab);
5098 static ssize_t order_show(struct kmem_cache *s, char *buf)
5100 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5102 SLAB_ATTR_RO(order);
5104 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5106 return sysfs_emit(buf, "%lu\n", s->min_partial);
5109 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5115 err = kstrtoul(buf, 10, &min);
5119 set_min_partial(s, min);
5122 SLAB_ATTR(min_partial);
5124 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5126 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5129 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5132 unsigned int objects;
5135 err = kstrtouint(buf, 10, &objects);
5138 if (objects && !kmem_cache_has_cpu_partial(s))
5141 slub_set_cpu_partial(s, objects);
5145 SLAB_ATTR(cpu_partial);
5147 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5151 return sysfs_emit(buf, "%pS\n", s->ctor);
5155 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5157 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5159 SLAB_ATTR_RO(aliases);
5161 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5163 return show_slab_objects(s, buf, SO_PARTIAL);
5165 SLAB_ATTR_RO(partial);
5167 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5169 return show_slab_objects(s, buf, SO_CPU);
5171 SLAB_ATTR_RO(cpu_slabs);
5173 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5175 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5177 SLAB_ATTR_RO(objects);
5179 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5181 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5183 SLAB_ATTR_RO(objects_partial);
5185 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5192 for_each_online_cpu(cpu) {
5195 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5198 pages += page->pages;
5199 objects += page->pobjects;
5203 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5206 for_each_online_cpu(cpu) {
5209 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5211 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5212 cpu, page->pobjects, page->pages);
5215 len += sysfs_emit_at(buf, len, "\n");
5219 SLAB_ATTR_RO(slabs_cpu_partial);
5221 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5223 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5225 SLAB_ATTR_RO(reclaim_account);
5227 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5229 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5231 SLAB_ATTR_RO(hwcache_align);
5233 #ifdef CONFIG_ZONE_DMA
5234 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5236 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5238 SLAB_ATTR_RO(cache_dma);
5241 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5243 return sysfs_emit(buf, "%u\n", s->usersize);
5245 SLAB_ATTR_RO(usersize);
5247 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5249 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5251 SLAB_ATTR_RO(destroy_by_rcu);
5253 #ifdef CONFIG_SLUB_DEBUG
5254 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5256 return show_slab_objects(s, buf, SO_ALL);
5258 SLAB_ATTR_RO(slabs);
5260 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5262 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5264 SLAB_ATTR_RO(total_objects);
5266 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5268 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5270 SLAB_ATTR_RO(sanity_checks);
5272 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5274 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5276 SLAB_ATTR_RO(trace);
5278 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5280 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5283 SLAB_ATTR_RO(red_zone);
5285 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5287 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5290 SLAB_ATTR_RO(poison);
5292 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5294 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5297 SLAB_ATTR_RO(store_user);
5299 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5304 static ssize_t validate_store(struct kmem_cache *s,
5305 const char *buf, size_t length)
5309 if (buf[0] == '1') {
5310 ret = validate_slab_cache(s);
5316 SLAB_ATTR(validate);
5318 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5320 if (!(s->flags & SLAB_STORE_USER))
5322 return list_locations(s, buf, TRACK_ALLOC);
5324 SLAB_ATTR_RO(alloc_calls);
5326 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5328 if (!(s->flags & SLAB_STORE_USER))
5330 return list_locations(s, buf, TRACK_FREE);
5332 SLAB_ATTR_RO(free_calls);
5333 #endif /* CONFIG_SLUB_DEBUG */
5335 #ifdef CONFIG_FAILSLAB
5336 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5338 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5340 SLAB_ATTR_RO(failslab);
5343 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5348 static ssize_t shrink_store(struct kmem_cache *s,
5349 const char *buf, size_t length)
5352 kmem_cache_shrink(s);
5360 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5362 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5365 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5366 const char *buf, size_t length)
5371 err = kstrtouint(buf, 10, &ratio);
5377 s->remote_node_defrag_ratio = ratio * 10;
5381 SLAB_ATTR(remote_node_defrag_ratio);
5384 #ifdef CONFIG_SLUB_STATS
5385 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5387 unsigned long sum = 0;
5390 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5395 for_each_online_cpu(cpu) {
5396 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5402 len += sysfs_emit_at(buf, len, "%lu", sum);
5405 for_each_online_cpu(cpu) {
5407 len += sysfs_emit_at(buf, len, " C%d=%u",
5412 len += sysfs_emit_at(buf, len, "\n");
5417 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5421 for_each_online_cpu(cpu)
5422 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5425 #define STAT_ATTR(si, text) \
5426 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5428 return show_stat(s, buf, si); \
5430 static ssize_t text##_store(struct kmem_cache *s, \
5431 const char *buf, size_t length) \
5433 if (buf[0] != '0') \
5435 clear_stat(s, si); \
5440 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5441 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5442 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5443 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5444 STAT_ATTR(FREE_FROZEN, free_frozen);
5445 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5446 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5447 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5448 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5449 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5450 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5451 STAT_ATTR(FREE_SLAB, free_slab);
5452 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5453 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5454 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5455 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5456 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5457 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5458 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5459 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5460 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5461 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5462 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5463 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5464 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5465 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5466 #endif /* CONFIG_SLUB_STATS */
5468 static struct attribute *slab_attrs[] = {
5469 &slab_size_attr.attr,
5470 &object_size_attr.attr,
5471 &objs_per_slab_attr.attr,
5473 &min_partial_attr.attr,
5474 &cpu_partial_attr.attr,
5476 &objects_partial_attr.attr,
5478 &cpu_slabs_attr.attr,
5482 &hwcache_align_attr.attr,
5483 &reclaim_account_attr.attr,
5484 &destroy_by_rcu_attr.attr,
5486 &slabs_cpu_partial_attr.attr,
5487 #ifdef CONFIG_SLUB_DEBUG
5488 &total_objects_attr.attr,
5490 &sanity_checks_attr.attr,
5492 &red_zone_attr.attr,
5494 &store_user_attr.attr,
5495 &validate_attr.attr,
5496 &alloc_calls_attr.attr,
5497 &free_calls_attr.attr,
5499 #ifdef CONFIG_ZONE_DMA
5500 &cache_dma_attr.attr,
5503 &remote_node_defrag_ratio_attr.attr,
5505 #ifdef CONFIG_SLUB_STATS
5506 &alloc_fastpath_attr.attr,
5507 &alloc_slowpath_attr.attr,
5508 &free_fastpath_attr.attr,
5509 &free_slowpath_attr.attr,
5510 &free_frozen_attr.attr,
5511 &free_add_partial_attr.attr,
5512 &free_remove_partial_attr.attr,
5513 &alloc_from_partial_attr.attr,
5514 &alloc_slab_attr.attr,
5515 &alloc_refill_attr.attr,
5516 &alloc_node_mismatch_attr.attr,
5517 &free_slab_attr.attr,
5518 &cpuslab_flush_attr.attr,
5519 &deactivate_full_attr.attr,
5520 &deactivate_empty_attr.attr,
5521 &deactivate_to_head_attr.attr,
5522 &deactivate_to_tail_attr.attr,
5523 &deactivate_remote_frees_attr.attr,
5524 &deactivate_bypass_attr.attr,
5525 &order_fallback_attr.attr,
5526 &cmpxchg_double_fail_attr.attr,
5527 &cmpxchg_double_cpu_fail_attr.attr,
5528 &cpu_partial_alloc_attr.attr,
5529 &cpu_partial_free_attr.attr,
5530 &cpu_partial_node_attr.attr,
5531 &cpu_partial_drain_attr.attr,
5533 #ifdef CONFIG_FAILSLAB
5534 &failslab_attr.attr,
5536 &usersize_attr.attr,
5541 static const struct attribute_group slab_attr_group = {
5542 .attrs = slab_attrs,
5545 static ssize_t slab_attr_show(struct kobject *kobj,
5546 struct attribute *attr,
5549 struct slab_attribute *attribute;
5550 struct kmem_cache *s;
5553 attribute = to_slab_attr(attr);
5556 if (!attribute->show)
5559 err = attribute->show(s, buf);
5564 static ssize_t slab_attr_store(struct kobject *kobj,
5565 struct attribute *attr,
5566 const char *buf, size_t len)
5568 struct slab_attribute *attribute;
5569 struct kmem_cache *s;
5572 attribute = to_slab_attr(attr);
5575 if (!attribute->store)
5578 err = attribute->store(s, buf, len);
5582 static void kmem_cache_release(struct kobject *k)
5584 slab_kmem_cache_release(to_slab(k));
5587 static const struct sysfs_ops slab_sysfs_ops = {
5588 .show = slab_attr_show,
5589 .store = slab_attr_store,
5592 static struct kobj_type slab_ktype = {
5593 .sysfs_ops = &slab_sysfs_ops,
5594 .release = kmem_cache_release,
5597 static struct kset *slab_kset;
5599 static inline struct kset *cache_kset(struct kmem_cache *s)
5604 #define ID_STR_LENGTH 64
5606 /* Create a unique string id for a slab cache:
5608 * Format :[flags-]size
5610 static char *create_unique_id(struct kmem_cache *s)
5612 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5619 * First flags affecting slabcache operations. We will only
5620 * get here for aliasable slabs so we do not need to support
5621 * too many flags. The flags here must cover all flags that
5622 * are matched during merging to guarantee that the id is
5625 if (s->flags & SLAB_CACHE_DMA)
5627 if (s->flags & SLAB_CACHE_DMA32)
5629 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5631 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5633 if (s->flags & SLAB_ACCOUNT)
5637 p += sprintf(p, "%07u", s->size);
5639 BUG_ON(p > name + ID_STR_LENGTH - 1);
5643 static int sysfs_slab_add(struct kmem_cache *s)
5647 struct kset *kset = cache_kset(s);
5648 int unmergeable = slab_unmergeable(s);
5651 kobject_init(&s->kobj, &slab_ktype);
5655 if (!unmergeable && disable_higher_order_debug &&
5656 (slub_debug & DEBUG_METADATA_FLAGS))
5661 * Slabcache can never be merged so we can use the name proper.
5662 * This is typically the case for debug situations. In that
5663 * case we can catch duplicate names easily.
5665 sysfs_remove_link(&slab_kset->kobj, s->name);
5669 * Create a unique name for the slab as a target
5672 name = create_unique_id(s);
5675 s->kobj.kset = kset;
5676 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5680 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5685 /* Setup first alias */
5686 sysfs_slab_alias(s, s->name);
5693 kobject_del(&s->kobj);
5697 void sysfs_slab_unlink(struct kmem_cache *s)
5699 if (slab_state >= FULL)
5700 kobject_del(&s->kobj);
5703 void sysfs_slab_release(struct kmem_cache *s)
5705 if (slab_state >= FULL)
5706 kobject_put(&s->kobj);
5710 * Need to buffer aliases during bootup until sysfs becomes
5711 * available lest we lose that information.
5713 struct saved_alias {
5714 struct kmem_cache *s;
5716 struct saved_alias *next;
5719 static struct saved_alias *alias_list;
5721 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5723 struct saved_alias *al;
5725 if (slab_state == FULL) {
5727 * If we have a leftover link then remove it.
5729 sysfs_remove_link(&slab_kset->kobj, name);
5730 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5733 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5739 al->next = alias_list;
5744 static int __init slab_sysfs_init(void)
5746 struct kmem_cache *s;
5749 mutex_lock(&slab_mutex);
5751 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5753 mutex_unlock(&slab_mutex);
5754 pr_err("Cannot register slab subsystem.\n");
5760 list_for_each_entry(s, &slab_caches, list) {
5761 err = sysfs_slab_add(s);
5763 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5767 while (alias_list) {
5768 struct saved_alias *al = alias_list;
5770 alias_list = alias_list->next;
5771 err = sysfs_slab_alias(al->s, al->name);
5773 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5778 mutex_unlock(&slab_mutex);
5783 __initcall(slab_sysfs_init);
5784 #endif /* CONFIG_SYSFS */
5787 * The /proc/slabinfo ABI
5789 #ifdef CONFIG_SLUB_DEBUG
5790 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5792 unsigned long nr_slabs = 0;
5793 unsigned long nr_objs = 0;
5794 unsigned long nr_free = 0;
5796 struct kmem_cache_node *n;
5798 for_each_kmem_cache_node(s, node, n) {
5799 nr_slabs += node_nr_slabs(n);
5800 nr_objs += node_nr_objs(n);
5801 nr_free += count_partial(n, count_free);
5804 sinfo->active_objs = nr_objs - nr_free;
5805 sinfo->num_objs = nr_objs;
5806 sinfo->active_slabs = nr_slabs;
5807 sinfo->num_slabs = nr_slabs;
5808 sinfo->objects_per_slab = oo_objects(s->oo);
5809 sinfo->cache_order = oo_order(s->oo);
5812 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5816 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5817 size_t count, loff_t *ppos)
5821 #endif /* CONFIG_SLUB_DEBUG */