2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "compression.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 #define LOG_OTHER_INODE 2
43 * directory trouble cases
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
52 * rename foo/some_dir foo2/some_dir
54 * fsync foo/some_dir/some_file
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_DIR_INDEX 2
97 #define LOG_WALK_REPLAY_ALL 3
99 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root, struct btrfs_inode *inode,
104 struct btrfs_log_ctx *ctx);
105 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
108 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
142 static int start_log_trans(struct btrfs_trans_handle *trans,
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
146 struct btrfs_fs_info *fs_info = root->fs_info;
149 mutex_lock(&root->log_mutex);
151 if (root->log_root) {
152 if (btrfs_need_log_full_commit(fs_info, trans)) {
157 if (!root->log_start_pid) {
158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 root->log_start_pid = current->pid;
160 } else if (root->log_start_pid != current->pid) {
161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
171 ret = btrfs_add_log_tree(trans, root);
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
179 atomic_inc(&root->log_batch);
180 atomic_inc(&root->log_writers);
182 int index = root->log_transid % 2;
183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 ctx->log_transid = root->log_transid;
188 mutex_unlock(&root->log_mutex);
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
197 static int join_running_log_trans(struct btrfs_root *root)
205 mutex_lock(&root->log_mutex);
206 if (root->log_root) {
208 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
219 int btrfs_pin_log_trans(struct btrfs_root *root)
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
233 void btrfs_end_log_trans(struct btrfs_root *root)
235 if (atomic_dec_and_test(&root->log_writers)) {
237 * Implicit memory barrier after atomic_dec_and_test
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
251 struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
267 /* pin only walk, we record which extents on disk belong to the
272 /* what stage of the replay code we're currently in */
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
291 * process_func used to pin down extents, write them or wait on them
293 static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
297 struct btrfs_fs_info *fs_info = log->fs_info;
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 ret = btrfs_read_buffer(eb, gen);
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 if (wc->pin && btrfs_header_level(eb) == 0)
316 ret = btrfs_exclude_logged_extents(fs_info, eb);
318 btrfs_write_tree_block(eb);
320 btrfs_wait_tree_block_writeback(eb);
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
337 * If the key isn't in the destination yet, a new item is inserted.
339 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
345 struct btrfs_fs_info *fs_info = root->fs_info;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 if (dst_size != item_size)
374 if (item_size == 0) {
375 btrfs_release_path(path);
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
380 if (!dst_copy || !src_copy) {
381 btrfs_release_path(path);
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 ret = memcmp(dst_copy, src_copy, item_size);
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
403 btrfs_release_path(path);
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
412 struct btrfs_inode_item *item;
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
428 mode = btrfs_inode_mode(eb, item);
430 btrfs_set_inode_size(eb, item, 0);
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
448 mode = btrfs_inode_mode(eb, item);
450 btrfs_set_inode_size(eb, item, 0);
453 btrfs_release_path(path);
454 /* try to insert the key into the destination tree */
455 path->skip_release_on_error = 1;
456 ret = btrfs_insert_empty_item(trans, root, path,
458 path->skip_release_on_error = 0;
460 /* make sure any existing item is the correct size */
461 if (ret == -EEXIST || ret == -EOVERFLOW) {
463 found_size = btrfs_item_size_nr(path->nodes[0],
465 if (found_size > item_size)
466 btrfs_truncate_item(fs_info, path, item_size, 1);
467 else if (found_size < item_size)
468 btrfs_extend_item(fs_info, path,
469 item_size - found_size);
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
494 const u64 ino_size = btrfs_inode_size(eb, src_item);
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 struct btrfs_map_token token;
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 saved_i_size = btrfs_inode_size(path->nodes[0],
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
543 btrfs_mark_buffer_dirty(path->nodes[0]);
544 btrfs_release_path(path);
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
552 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 struct btrfs_key key;
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
564 } else if (is_bad_inode(inode)) {
571 /* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
583 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
589 struct btrfs_fs_info *fs_info = root->fs_info;
592 u64 start = key->offset;
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
602 if (found_type == BTRFS_FILE_EXTENT_REG ||
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
608 * We don't add to the inodes nbytes if we are prealloc or a
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 size = btrfs_file_extent_inline_len(eb, slot, item);
615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 extent_end = ALIGN(start + size,
617 fs_info->sectorsize);
623 inode = read_one_inode(root, key->objectid);
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
634 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(BTRFS_I(inode)),
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 btrfs_release_path(path);
663 btrfs_release_path(path);
665 /* drop any overlapping extents */
666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
673 unsigned long dest_offset;
674 struct btrfs_key ins;
676 ret = btrfs_insert_empty_item(trans, root, path, key,
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
688 offset = key->offset - btrfs_file_extent_offset(eb, item);
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 ret = btrfs_qgroup_trace_extent(trans, fs_info,
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
705 if (ins.objectid > 0) {
708 LIST_HEAD(ordered_sums);
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
716 ret = btrfs_inc_extent_ref(trans, fs_info,
717 ins.objectid, ins.offset,
718 0, root->root_key.objectid,
719 key->objectid, offset);
724 * insert the extent pointer in the extent
727 ret = btrfs_alloc_logged_file_extent(trans,
729 root->root_key.objectid,
730 key->objectid, offset, &ins);
734 btrfs_release_path(path);
736 if (btrfs_file_extent_compression(eb, item)) {
737 csum_start = ins.objectid;
738 csum_end = csum_start + ins.offset;
740 csum_start = ins.objectid +
741 btrfs_file_extent_offset(eb, item);
742 csum_end = csum_start +
743 btrfs_file_extent_num_bytes(eb, item);
746 ret = btrfs_lookup_csums_range(root->log_root,
747 csum_start, csum_end - 1,
752 * Now delete all existing cums in the csum root that
753 * cover our range. We do this because we can have an
754 * extent that is completely referenced by one file
755 * extent item and partially referenced by another
756 * file extent item (like after using the clone or
757 * extent_same ioctls). In this case if we end up doing
758 * the replay of the one that partially references the
759 * extent first, and we do not do the csum deletion
760 * below, we can get 2 csum items in the csum tree that
761 * overlap each other. For example, imagine our log has
762 * the two following file extent items:
764 * key (257 EXTENT_DATA 409600)
765 * extent data disk byte 12845056 nr 102400
766 * extent data offset 20480 nr 20480 ram 102400
768 * key (257 EXTENT_DATA 819200)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 0 nr 102400 ram 102400
772 * Where the second one fully references the 100K extent
773 * that starts at disk byte 12845056, and the log tree
774 * has a single csum item that covers the entire range
777 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
779 * After the first file extent item is replayed, the
780 * csum tree gets the following csum item:
782 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
784 * Which covers the 20K sub-range starting at offset 20K
785 * of our extent. Now when we replay the second file
786 * extent item, if we do not delete existing csum items
787 * that cover any of its blocks, we end up getting two
788 * csum items in our csum tree that overlap each other:
790 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
793 * Which is a problem, because after this anyone trying
794 * to lookup up for the checksum of any block of our
795 * extent starting at an offset of 40K or higher, will
796 * end up looking at the second csum item only, which
797 * does not contain the checksum for any block starting
798 * at offset 40K or higher of our extent.
800 while (!list_empty(&ordered_sums)) {
801 struct btrfs_ordered_sum *sums;
802 sums = list_entry(ordered_sums.next,
803 struct btrfs_ordered_sum,
806 ret = btrfs_del_csums(trans, fs_info,
810 ret = btrfs_csum_file_blocks(trans,
811 fs_info->csum_root, sums);
812 list_del(&sums->list);
818 btrfs_release_path(path);
820 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
821 /* inline extents are easy, we just overwrite them */
822 ret = overwrite_item(trans, root, path, eb, slot, key);
827 inode_add_bytes(inode, nbytes);
828 ret = btrfs_update_inode(trans, root, inode);
836 * when cleaning up conflicts between the directory names in the
837 * subvolume, directory names in the log and directory names in the
838 * inode back references, we may have to unlink inodes from directories.
840 * This is a helper function to do the unlink of a specific directory
843 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct btrfs_inode *dir,
847 struct btrfs_dir_item *di)
849 struct btrfs_fs_info *fs_info = root->fs_info;
853 struct extent_buffer *leaf;
854 struct btrfs_key location;
857 leaf = path->nodes[0];
859 btrfs_dir_item_key_to_cpu(leaf, di, &location);
860 name_len = btrfs_dir_name_len(leaf, di);
861 name = kmalloc(name_len, GFP_NOFS);
865 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
866 btrfs_release_path(path);
868 inode = read_one_inode(root, location.objectid);
874 ret = link_to_fixup_dir(trans, root, path, location.objectid);
878 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 ret = btrfs_run_delayed_items(trans, fs_info);
891 * helper function to see if a given name and sequence number found
892 * in an inode back reference are already in a directory and correctly
893 * point to this inode
895 static noinline int inode_in_dir(struct btrfs_root *root,
896 struct btrfs_path *path,
897 u64 dirid, u64 objectid, u64 index,
898 const char *name, int name_len)
900 struct btrfs_dir_item *di;
901 struct btrfs_key location;
904 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
905 index, name, name_len, 0);
906 if (di && !IS_ERR(di)) {
907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
908 if (location.objectid != objectid)
912 btrfs_release_path(path);
914 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
915 if (di && !IS_ERR(di)) {
916 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
917 if (location.objectid != objectid)
923 btrfs_release_path(path);
928 * helper function to check a log tree for a named back reference in
929 * an inode. This is used to decide if a back reference that is
930 * found in the subvolume conflicts with what we find in the log.
932 * inode backreferences may have multiple refs in a single item,
933 * during replay we process one reference at a time, and we don't
934 * want to delete valid links to a file from the subvolume if that
935 * link is also in the log.
937 static noinline int backref_in_log(struct btrfs_root *log,
938 struct btrfs_key *key,
940 const char *name, int namelen)
942 struct btrfs_path *path;
943 struct btrfs_inode_ref *ref;
945 unsigned long ptr_end;
946 unsigned long name_ptr;
952 path = btrfs_alloc_path();
956 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
960 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
962 if (key->type == BTRFS_INODE_EXTREF_KEY) {
963 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
964 name, namelen, NULL))
970 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
971 ptr_end = ptr + item_size;
972 while (ptr < ptr_end) {
973 ref = (struct btrfs_inode_ref *)ptr;
974 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
975 if (found_name_len == namelen) {
976 name_ptr = (unsigned long)(ref + 1);
977 ret = memcmp_extent_buffer(path->nodes[0], name,
984 ptr = (unsigned long)(ref + 1) + found_name_len;
987 btrfs_free_path(path);
991 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
993 struct btrfs_path *path,
994 struct btrfs_root *log_root,
995 struct btrfs_inode *dir,
996 struct btrfs_inode *inode,
997 struct extent_buffer *eb,
998 u64 inode_objectid, u64 parent_objectid,
999 u64 ref_index, char *name, int namelen,
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1005 int victim_name_len;
1006 struct extent_buffer *leaf;
1007 struct btrfs_dir_item *di;
1008 struct btrfs_key search_key;
1009 struct btrfs_inode_extref *extref;
1012 /* Search old style refs */
1013 search_key.objectid = inode_objectid;
1014 search_key.type = BTRFS_INODE_REF_KEY;
1015 search_key.offset = parent_objectid;
1016 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1018 struct btrfs_inode_ref *victim_ref;
1020 unsigned long ptr_end;
1022 leaf = path->nodes[0];
1024 /* are we trying to overwrite a back ref for the root directory
1025 * if so, just jump out, we're done
1027 if (search_key.objectid == search_key.offset)
1030 /* check all the names in this back reference to see
1031 * if they are in the log. if so, we allow them to stay
1032 * otherwise they must be unlinked as a conflict
1034 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1035 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1036 while (ptr < ptr_end) {
1037 victim_ref = (struct btrfs_inode_ref *)ptr;
1038 victim_name_len = btrfs_inode_ref_name_len(leaf,
1040 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1044 read_extent_buffer(leaf, victim_name,
1045 (unsigned long)(victim_ref + 1),
1048 if (!backref_in_log(log_root, &search_key,
1052 inc_nlink(&inode->vfs_inode);
1053 btrfs_release_path(path);
1055 ret = btrfs_unlink_inode(trans, root, dir, inode,
1056 victim_name, victim_name_len);
1060 ret = btrfs_run_delayed_items(trans, fs_info);
1068 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1072 * NOTE: we have searched root tree and checked the
1073 * corresponding ref, it does not need to check again.
1077 btrfs_release_path(path);
1079 /* Same search but for extended refs */
1080 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1081 inode_objectid, parent_objectid, 0,
1083 if (!IS_ERR_OR_NULL(extref)) {
1087 struct inode *victim_parent;
1089 leaf = path->nodes[0];
1091 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1092 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1094 while (cur_offset < item_size) {
1095 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1097 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1099 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1102 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1105 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1108 search_key.objectid = inode_objectid;
1109 search_key.type = BTRFS_INODE_EXTREF_KEY;
1110 search_key.offset = btrfs_extref_hash(parent_objectid,
1114 if (!backref_in_log(log_root, &search_key,
1115 parent_objectid, victim_name,
1118 victim_parent = read_one_inode(root,
1120 if (victim_parent) {
1121 inc_nlink(&inode->vfs_inode);
1122 btrfs_release_path(path);
1124 ret = btrfs_unlink_inode(trans, root,
1125 BTRFS_I(victim_parent),
1130 ret = btrfs_run_delayed_items(
1134 iput(victim_parent);
1145 cur_offset += victim_name_len + sizeof(*extref);
1149 btrfs_release_path(path);
1151 /* look for a conflicting sequence number */
1152 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1153 ref_index, name, namelen, 0);
1154 if (di && !IS_ERR(di)) {
1155 ret = drop_one_dir_item(trans, root, path, dir, di);
1159 btrfs_release_path(path);
1161 /* look for a conflicing name */
1162 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1164 if (di && !IS_ERR(di)) {
1165 ret = drop_one_dir_item(trans, root, path, dir, di);
1169 btrfs_release_path(path);
1174 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1175 u32 *namelen, char **name, u64 *index,
1176 u64 *parent_objectid)
1178 struct btrfs_inode_extref *extref;
1180 extref = (struct btrfs_inode_extref *)ref_ptr;
1182 *namelen = btrfs_inode_extref_name_len(eb, extref);
1183 *name = kmalloc(*namelen, GFP_NOFS);
1187 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190 *index = btrfs_inode_extref_index(eb, extref);
1191 if (parent_objectid)
1192 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1198 u32 *namelen, char **name, u64 *index)
1200 struct btrfs_inode_ref *ref;
1202 ref = (struct btrfs_inode_ref *)ref_ptr;
1204 *namelen = btrfs_inode_ref_name_len(eb, ref);
1205 *name = kmalloc(*namelen, GFP_NOFS);
1209 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1211 *index = btrfs_inode_ref_index(eb, ref);
1217 * replay one inode back reference item found in the log tree.
1218 * eb, slot and key refer to the buffer and key found in the log tree.
1219 * root is the destination we are replaying into, and path is for temp
1220 * use by this function. (it should be released on return).
1222 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root,
1224 struct btrfs_root *log,
1225 struct btrfs_path *path,
1226 struct extent_buffer *eb, int slot,
1227 struct btrfs_key *key)
1229 struct inode *dir = NULL;
1230 struct inode *inode = NULL;
1231 unsigned long ref_ptr;
1232 unsigned long ref_end;
1236 int search_done = 0;
1237 int log_ref_ver = 0;
1238 u64 parent_objectid;
1241 int ref_struct_size;
1243 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1244 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 struct btrfs_inode_extref *r;
1249 ref_struct_size = sizeof(struct btrfs_inode_extref);
1251 r = (struct btrfs_inode_extref *)ref_ptr;
1252 parent_objectid = btrfs_inode_extref_parent(eb, r);
1254 ref_struct_size = sizeof(struct btrfs_inode_ref);
1255 parent_objectid = key->offset;
1257 inode_objectid = key->objectid;
1260 * it is possible that we didn't log all the parent directories
1261 * for a given inode. If we don't find the dir, just don't
1262 * copy the back ref in. The link count fixup code will take
1265 dir = read_one_inode(root, parent_objectid);
1271 inode = read_one_inode(root, inode_objectid);
1277 while (ref_ptr < ref_end) {
1279 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1280 &ref_index, &parent_objectid);
1282 * parent object can change from one array
1286 dir = read_one_inode(root, parent_objectid);
1292 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1298 /* if we already have a perfect match, we're done */
1299 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), btrfs_ino(BTRFS_I(inode)),
1300 ref_index, name, namelen)) {
1302 * look for a conflicting back reference in the
1303 * metadata. if we find one we have to unlink that name
1304 * of the file before we add our new link. Later on, we
1305 * overwrite any existing back reference, and we don't
1306 * want to create dangling pointers in the directory.
1310 ret = __add_inode_ref(trans, root, path, log,
1315 ref_index, name, namelen,
1324 /* insert our name */
1325 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1330 btrfs_update_inode(trans, root, inode);
1333 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1342 /* finally write the back reference in the inode */
1343 ret = overwrite_item(trans, root, path, eb, slot, key);
1345 btrfs_release_path(path);
1352 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root, u64 ino)
1357 ret = btrfs_insert_orphan_item(trans, root, ino);
1364 static int count_inode_extrefs(struct btrfs_root *root,
1365 struct btrfs_inode *inode, struct btrfs_path *path)
1369 unsigned int nlink = 0;
1372 u64 inode_objectid = btrfs_ino(inode);
1375 struct btrfs_inode_extref *extref;
1376 struct extent_buffer *leaf;
1379 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1384 leaf = path->nodes[0];
1385 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1386 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1389 while (cur_offset < item_size) {
1390 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1391 name_len = btrfs_inode_extref_name_len(leaf, extref);
1395 cur_offset += name_len + sizeof(*extref);
1399 btrfs_release_path(path);
1401 btrfs_release_path(path);
1403 if (ret < 0 && ret != -ENOENT)
1408 static int count_inode_refs(struct btrfs_root *root,
1409 struct btrfs_inode *inode, struct btrfs_path *path)
1412 struct btrfs_key key;
1413 unsigned int nlink = 0;
1415 unsigned long ptr_end;
1417 u64 ino = btrfs_ino(inode);
1420 key.type = BTRFS_INODE_REF_KEY;
1421 key.offset = (u64)-1;
1424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1428 if (path->slots[0] == 0)
1433 btrfs_item_key_to_cpu(path->nodes[0], &key,
1435 if (key.objectid != ino ||
1436 key.type != BTRFS_INODE_REF_KEY)
1438 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1439 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1441 while (ptr < ptr_end) {
1442 struct btrfs_inode_ref *ref;
1444 ref = (struct btrfs_inode_ref *)ptr;
1445 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1447 ptr = (unsigned long)(ref + 1) + name_len;
1451 if (key.offset == 0)
1453 if (path->slots[0] > 0) {
1458 btrfs_release_path(path);
1460 btrfs_release_path(path);
1466 * There are a few corners where the link count of the file can't
1467 * be properly maintained during replay. So, instead of adding
1468 * lots of complexity to the log code, we just scan the backrefs
1469 * for any file that has been through replay.
1471 * The scan will update the link count on the inode to reflect the
1472 * number of back refs found. If it goes down to zero, the iput
1473 * will free the inode.
1475 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1476 struct btrfs_root *root,
1477 struct inode *inode)
1479 struct btrfs_path *path;
1482 u64 ino = btrfs_ino(BTRFS_I(inode));
1484 path = btrfs_alloc_path();
1488 ret = count_inode_refs(root, BTRFS_I(inode), path);
1494 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1502 if (nlink != inode->i_nlink) {
1503 set_nlink(inode, nlink);
1504 btrfs_update_inode(trans, root, inode);
1506 BTRFS_I(inode)->index_cnt = (u64)-1;
1508 if (inode->i_nlink == 0) {
1509 if (S_ISDIR(inode->i_mode)) {
1510 ret = replay_dir_deletes(trans, root, NULL, path,
1515 ret = insert_orphan_item(trans, root, ino);
1519 btrfs_free_path(path);
1523 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1524 struct btrfs_root *root,
1525 struct btrfs_path *path)
1528 struct btrfs_key key;
1529 struct inode *inode;
1531 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1532 key.type = BTRFS_ORPHAN_ITEM_KEY;
1533 key.offset = (u64)-1;
1535 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1540 if (path->slots[0] == 0)
1545 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1546 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1547 key.type != BTRFS_ORPHAN_ITEM_KEY)
1550 ret = btrfs_del_item(trans, root, path);
1554 btrfs_release_path(path);
1555 inode = read_one_inode(root, key.offset);
1559 ret = fixup_inode_link_count(trans, root, inode);
1565 * fixup on a directory may create new entries,
1566 * make sure we always look for the highset possible
1569 key.offset = (u64)-1;
1573 btrfs_release_path(path);
1579 * record a given inode in the fixup dir so we can check its link
1580 * count when replay is done. The link count is incremented here
1581 * so the inode won't go away until we check it
1583 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1584 struct btrfs_root *root,
1585 struct btrfs_path *path,
1588 struct btrfs_key key;
1590 struct inode *inode;
1592 inode = read_one_inode(root, objectid);
1596 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1597 key.type = BTRFS_ORPHAN_ITEM_KEY;
1598 key.offset = objectid;
1600 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1602 btrfs_release_path(path);
1604 if (!inode->i_nlink)
1605 set_nlink(inode, 1);
1608 ret = btrfs_update_inode(trans, root, inode);
1609 } else if (ret == -EEXIST) {
1612 BUG(); /* Logic Error */
1620 * when replaying the log for a directory, we only insert names
1621 * for inodes that actually exist. This means an fsync on a directory
1622 * does not implicitly fsync all the new files in it
1624 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1625 struct btrfs_root *root,
1626 u64 dirid, u64 index,
1627 char *name, int name_len,
1628 struct btrfs_key *location)
1630 struct inode *inode;
1634 inode = read_one_inode(root, location->objectid);
1638 dir = read_one_inode(root, dirid);
1644 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1646 /* FIXME, put inode into FIXUP list */
1654 * Return true if an inode reference exists in the log for the given name,
1655 * inode and parent inode.
1657 static bool name_in_log_ref(struct btrfs_root *log_root,
1658 const char *name, const int name_len,
1659 const u64 dirid, const u64 ino)
1661 struct btrfs_key search_key;
1663 search_key.objectid = ino;
1664 search_key.type = BTRFS_INODE_REF_KEY;
1665 search_key.offset = dirid;
1666 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1669 search_key.type = BTRFS_INODE_EXTREF_KEY;
1670 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1671 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1678 * take a single entry in a log directory item and replay it into
1681 * if a conflicting item exists in the subdirectory already,
1682 * the inode it points to is unlinked and put into the link count
1685 * If a name from the log points to a file or directory that does
1686 * not exist in the FS, it is skipped. fsyncs on directories
1687 * do not force down inodes inside that directory, just changes to the
1688 * names or unlinks in a directory.
1690 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1691 * non-existing inode) and 1 if the name was replayed.
1693 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct extent_buffer *eb,
1697 struct btrfs_dir_item *di,
1698 struct btrfs_key *key)
1702 struct btrfs_dir_item *dst_di;
1703 struct btrfs_key found_key;
1704 struct btrfs_key log_key;
1709 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1710 bool name_added = false;
1712 dir = read_one_inode(root, key->objectid);
1716 name_len = btrfs_dir_name_len(eb, di);
1717 name = kmalloc(name_len, GFP_NOFS);
1723 log_type = btrfs_dir_type(eb, di);
1724 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1727 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1728 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1733 btrfs_release_path(path);
1735 if (key->type == BTRFS_DIR_ITEM_KEY) {
1736 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1738 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1739 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1748 if (IS_ERR_OR_NULL(dst_di)) {
1749 /* we need a sequence number to insert, so we only
1750 * do inserts for the BTRFS_DIR_INDEX_KEY types
1752 if (key->type != BTRFS_DIR_INDEX_KEY)
1757 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1758 /* the existing item matches the logged item */
1759 if (found_key.objectid == log_key.objectid &&
1760 found_key.type == log_key.type &&
1761 found_key.offset == log_key.offset &&
1762 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1763 update_size = false;
1768 * don't drop the conflicting directory entry if the inode
1769 * for the new entry doesn't exist
1774 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1778 if (key->type == BTRFS_DIR_INDEX_KEY)
1781 btrfs_release_path(path);
1782 if (!ret && update_size) {
1783 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1784 ret = btrfs_update_inode(trans, root, dir);
1788 if (!ret && name_added)
1793 if (name_in_log_ref(root->log_root, name, name_len,
1794 key->objectid, log_key.objectid)) {
1795 /* The dentry will be added later. */
1797 update_size = false;
1800 btrfs_release_path(path);
1801 ret = insert_one_name(trans, root, key->objectid, key->offset,
1802 name, name_len, &log_key);
1803 if (ret && ret != -ENOENT && ret != -EEXIST)
1807 update_size = false;
1813 * find all the names in a directory item and reconcile them into
1814 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1815 * one name in a directory item, but the same code gets used for
1816 * both directory index types
1818 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 struct extent_buffer *eb, int slot,
1822 struct btrfs_key *key)
1824 struct btrfs_fs_info *fs_info = root->fs_info;
1826 u32 item_size = btrfs_item_size_nr(eb, slot);
1827 struct btrfs_dir_item *di;
1830 unsigned long ptr_end;
1831 struct btrfs_path *fixup_path = NULL;
1833 ptr = btrfs_item_ptr_offset(eb, slot);
1834 ptr_end = ptr + item_size;
1835 while (ptr < ptr_end) {
1836 di = (struct btrfs_dir_item *)ptr;
1837 if (verify_dir_item(fs_info, eb, di))
1839 name_len = btrfs_dir_name_len(eb, di);
1840 ret = replay_one_name(trans, root, path, eb, di, key);
1843 ptr = (unsigned long)(di + 1);
1847 * If this entry refers to a non-directory (directories can not
1848 * have a link count > 1) and it was added in the transaction
1849 * that was not committed, make sure we fixup the link count of
1850 * the inode it the entry points to. Otherwise something like
1851 * the following would result in a directory pointing to an
1852 * inode with a wrong link that does not account for this dir
1860 * ln testdir/bar testdir/bar_link
1861 * ln testdir/foo testdir/foo_link
1862 * xfs_io -c "fsync" testdir/bar
1866 * mount fs, log replay happens
1868 * File foo would remain with a link count of 1 when it has two
1869 * entries pointing to it in the directory testdir. This would
1870 * make it impossible to ever delete the parent directory has
1871 * it would result in stale dentries that can never be deleted.
1873 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1874 struct btrfs_key di_key;
1877 fixup_path = btrfs_alloc_path();
1884 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1885 ret = link_to_fixup_dir(trans, root, fixup_path,
1892 btrfs_free_path(fixup_path);
1897 * directory replay has two parts. There are the standard directory
1898 * items in the log copied from the subvolume, and range items
1899 * created in the log while the subvolume was logged.
1901 * The range items tell us which parts of the key space the log
1902 * is authoritative for. During replay, if a key in the subvolume
1903 * directory is in a logged range item, but not actually in the log
1904 * that means it was deleted from the directory before the fsync
1905 * and should be removed.
1907 static noinline int find_dir_range(struct btrfs_root *root,
1908 struct btrfs_path *path,
1909 u64 dirid, int key_type,
1910 u64 *start_ret, u64 *end_ret)
1912 struct btrfs_key key;
1914 struct btrfs_dir_log_item *item;
1918 if (*start_ret == (u64)-1)
1921 key.objectid = dirid;
1922 key.type = key_type;
1923 key.offset = *start_ret;
1925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1929 if (path->slots[0] == 0)
1934 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936 if (key.type != key_type || key.objectid != dirid) {
1940 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1941 struct btrfs_dir_log_item);
1942 found_end = btrfs_dir_log_end(path->nodes[0], item);
1944 if (*start_ret >= key.offset && *start_ret <= found_end) {
1946 *start_ret = key.offset;
1947 *end_ret = found_end;
1952 /* check the next slot in the tree to see if it is a valid item */
1953 nritems = btrfs_header_nritems(path->nodes[0]);
1955 if (path->slots[0] >= nritems) {
1956 ret = btrfs_next_leaf(root, path);
1961 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1963 if (key.type != key_type || key.objectid != dirid) {
1967 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1968 struct btrfs_dir_log_item);
1969 found_end = btrfs_dir_log_end(path->nodes[0], item);
1970 *start_ret = key.offset;
1971 *end_ret = found_end;
1974 btrfs_release_path(path);
1979 * this looks for a given directory item in the log. If the directory
1980 * item is not in the log, the item is removed and the inode it points
1983 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1984 struct btrfs_root *root,
1985 struct btrfs_root *log,
1986 struct btrfs_path *path,
1987 struct btrfs_path *log_path,
1989 struct btrfs_key *dir_key)
1991 struct btrfs_fs_info *fs_info = root->fs_info;
1993 struct extent_buffer *eb;
1996 struct btrfs_dir_item *di;
1997 struct btrfs_dir_item *log_di;
2000 unsigned long ptr_end;
2002 struct inode *inode;
2003 struct btrfs_key location;
2006 eb = path->nodes[0];
2007 slot = path->slots[0];
2008 item_size = btrfs_item_size_nr(eb, slot);
2009 ptr = btrfs_item_ptr_offset(eb, slot);
2010 ptr_end = ptr + item_size;
2011 while (ptr < ptr_end) {
2012 di = (struct btrfs_dir_item *)ptr;
2013 if (verify_dir_item(fs_info, eb, di)) {
2018 name_len = btrfs_dir_name_len(eb, di);
2019 name = kmalloc(name_len, GFP_NOFS);
2024 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2027 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2028 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2031 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2032 log_di = btrfs_lookup_dir_index_item(trans, log,
2038 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2039 btrfs_dir_item_key_to_cpu(eb, di, &location);
2040 btrfs_release_path(path);
2041 btrfs_release_path(log_path);
2042 inode = read_one_inode(root, location.objectid);
2048 ret = link_to_fixup_dir(trans, root,
2049 path, location.objectid);
2057 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2058 BTRFS_I(inode), name, name_len);
2060 ret = btrfs_run_delayed_items(trans, fs_info);
2066 /* there might still be more names under this key
2067 * check and repeat if required
2069 ret = btrfs_search_slot(NULL, root, dir_key, path,
2075 } else if (IS_ERR(log_di)) {
2077 return PTR_ERR(log_di);
2079 btrfs_release_path(log_path);
2082 ptr = (unsigned long)(di + 1);
2087 btrfs_release_path(path);
2088 btrfs_release_path(log_path);
2092 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2093 struct btrfs_root *root,
2094 struct btrfs_root *log,
2095 struct btrfs_path *path,
2098 struct btrfs_key search_key;
2099 struct btrfs_path *log_path;
2104 log_path = btrfs_alloc_path();
2108 search_key.objectid = ino;
2109 search_key.type = BTRFS_XATTR_ITEM_KEY;
2110 search_key.offset = 0;
2112 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2116 nritems = btrfs_header_nritems(path->nodes[0]);
2117 for (i = path->slots[0]; i < nritems; i++) {
2118 struct btrfs_key key;
2119 struct btrfs_dir_item *di;
2120 struct btrfs_dir_item *log_di;
2124 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2125 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2130 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2131 total_size = btrfs_item_size_nr(path->nodes[0], i);
2133 while (cur < total_size) {
2134 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2135 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2136 u32 this_len = sizeof(*di) + name_len + data_len;
2139 name = kmalloc(name_len, GFP_NOFS);
2144 read_extent_buffer(path->nodes[0], name,
2145 (unsigned long)(di + 1), name_len);
2147 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2149 btrfs_release_path(log_path);
2151 /* Doesn't exist in log tree, so delete it. */
2152 btrfs_release_path(path);
2153 di = btrfs_lookup_xattr(trans, root, path, ino,
2154 name, name_len, -1);
2161 ret = btrfs_delete_one_dir_name(trans, root,
2165 btrfs_release_path(path);
2170 if (IS_ERR(log_di)) {
2171 ret = PTR_ERR(log_di);
2175 di = (struct btrfs_dir_item *)((char *)di + this_len);
2178 ret = btrfs_next_leaf(root, path);
2184 btrfs_free_path(log_path);
2185 btrfs_release_path(path);
2191 * deletion replay happens before we copy any new directory items
2192 * out of the log or out of backreferences from inodes. It
2193 * scans the log to find ranges of keys that log is authoritative for,
2194 * and then scans the directory to find items in those ranges that are
2195 * not present in the log.
2197 * Anything we don't find in the log is unlinked and removed from the
2200 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct btrfs_root *log,
2203 struct btrfs_path *path,
2204 u64 dirid, int del_all)
2208 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2210 struct btrfs_key dir_key;
2211 struct btrfs_key found_key;
2212 struct btrfs_path *log_path;
2215 dir_key.objectid = dirid;
2216 dir_key.type = BTRFS_DIR_ITEM_KEY;
2217 log_path = btrfs_alloc_path();
2221 dir = read_one_inode(root, dirid);
2222 /* it isn't an error if the inode isn't there, that can happen
2223 * because we replay the deletes before we copy in the inode item
2227 btrfs_free_path(log_path);
2235 range_end = (u64)-1;
2237 ret = find_dir_range(log, path, dirid, key_type,
2238 &range_start, &range_end);
2243 dir_key.offset = range_start;
2246 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2251 nritems = btrfs_header_nritems(path->nodes[0]);
2252 if (path->slots[0] >= nritems) {
2253 ret = btrfs_next_leaf(root, path);
2257 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2259 if (found_key.objectid != dirid ||
2260 found_key.type != dir_key.type)
2263 if (found_key.offset > range_end)
2266 ret = check_item_in_log(trans, root, log, path,
2271 if (found_key.offset == (u64)-1)
2273 dir_key.offset = found_key.offset + 1;
2275 btrfs_release_path(path);
2276 if (range_end == (u64)-1)
2278 range_start = range_end + 1;
2283 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2284 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2285 dir_key.type = BTRFS_DIR_INDEX_KEY;
2286 btrfs_release_path(path);
2290 btrfs_release_path(path);
2291 btrfs_free_path(log_path);
2297 * the process_func used to replay items from the log tree. This
2298 * gets called in two different stages. The first stage just looks
2299 * for inodes and makes sure they are all copied into the subvolume.
2301 * The second stage copies all the other item types from the log into
2302 * the subvolume. The two stage approach is slower, but gets rid of
2303 * lots of complexity around inodes referencing other inodes that exist
2304 * only in the log (references come from either directory items or inode
2307 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2308 struct walk_control *wc, u64 gen)
2311 struct btrfs_path *path;
2312 struct btrfs_root *root = wc->replay_dest;
2313 struct btrfs_key key;
2318 ret = btrfs_read_buffer(eb, gen);
2322 level = btrfs_header_level(eb);
2327 path = btrfs_alloc_path();
2331 nritems = btrfs_header_nritems(eb);
2332 for (i = 0; i < nritems; i++) {
2333 btrfs_item_key_to_cpu(eb, &key, i);
2335 /* inode keys are done during the first stage */
2336 if (key.type == BTRFS_INODE_ITEM_KEY &&
2337 wc->stage == LOG_WALK_REPLAY_INODES) {
2338 struct btrfs_inode_item *inode_item;
2341 inode_item = btrfs_item_ptr(eb, i,
2342 struct btrfs_inode_item);
2343 ret = replay_xattr_deletes(wc->trans, root, log,
2344 path, key.objectid);
2347 mode = btrfs_inode_mode(eb, inode_item);
2348 if (S_ISDIR(mode)) {
2349 ret = replay_dir_deletes(wc->trans,
2350 root, log, path, key.objectid, 0);
2354 ret = overwrite_item(wc->trans, root, path,
2359 /* for regular files, make sure corresponding
2360 * orphan item exist. extents past the new EOF
2361 * will be truncated later by orphan cleanup.
2363 if (S_ISREG(mode)) {
2364 ret = insert_orphan_item(wc->trans, root,
2370 ret = link_to_fixup_dir(wc->trans, root,
2371 path, key.objectid);
2376 if (key.type == BTRFS_DIR_INDEX_KEY &&
2377 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2378 ret = replay_one_dir_item(wc->trans, root, path,
2384 if (wc->stage < LOG_WALK_REPLAY_ALL)
2387 /* these keys are simply copied */
2388 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2389 ret = overwrite_item(wc->trans, root, path,
2393 } else if (key.type == BTRFS_INODE_REF_KEY ||
2394 key.type == BTRFS_INODE_EXTREF_KEY) {
2395 ret = add_inode_ref(wc->trans, root, log, path,
2397 if (ret && ret != -ENOENT)
2400 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2401 ret = replay_one_extent(wc->trans, root, path,
2405 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2406 ret = replay_one_dir_item(wc->trans, root, path,
2412 btrfs_free_path(path);
2416 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct btrfs_path *path, int *level,
2419 struct walk_control *wc)
2421 struct btrfs_fs_info *fs_info = root->fs_info;
2425 struct extent_buffer *next;
2426 struct extent_buffer *cur;
2427 struct extent_buffer *parent;
2431 WARN_ON(*level < 0);
2432 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2434 while (*level > 0) {
2435 WARN_ON(*level < 0);
2436 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2437 cur = path->nodes[*level];
2439 WARN_ON(btrfs_header_level(cur) != *level);
2441 if (path->slots[*level] >=
2442 btrfs_header_nritems(cur))
2445 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2446 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2447 blocksize = fs_info->nodesize;
2449 parent = path->nodes[*level];
2450 root_owner = btrfs_header_owner(parent);
2452 next = btrfs_find_create_tree_block(fs_info, bytenr);
2454 return PTR_ERR(next);
2457 ret = wc->process_func(root, next, wc, ptr_gen);
2459 free_extent_buffer(next);
2463 path->slots[*level]++;
2465 ret = btrfs_read_buffer(next, ptr_gen);
2467 free_extent_buffer(next);
2472 btrfs_tree_lock(next);
2473 btrfs_set_lock_blocking(next);
2474 clean_tree_block(trans, fs_info, next);
2475 btrfs_wait_tree_block_writeback(next);
2476 btrfs_tree_unlock(next);
2479 WARN_ON(root_owner !=
2480 BTRFS_TREE_LOG_OBJECTID);
2481 ret = btrfs_free_and_pin_reserved_extent(
2485 free_extent_buffer(next);
2489 free_extent_buffer(next);
2492 ret = btrfs_read_buffer(next, ptr_gen);
2494 free_extent_buffer(next);
2498 WARN_ON(*level <= 0);
2499 if (path->nodes[*level-1])
2500 free_extent_buffer(path->nodes[*level-1]);
2501 path->nodes[*level-1] = next;
2502 *level = btrfs_header_level(next);
2503 path->slots[*level] = 0;
2506 WARN_ON(*level < 0);
2507 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2509 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2515 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2516 struct btrfs_root *root,
2517 struct btrfs_path *path, int *level,
2518 struct walk_control *wc)
2520 struct btrfs_fs_info *fs_info = root->fs_info;
2526 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2527 slot = path->slots[i];
2528 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2531 WARN_ON(*level == 0);
2534 struct extent_buffer *parent;
2535 if (path->nodes[*level] == root->node)
2536 parent = path->nodes[*level];
2538 parent = path->nodes[*level + 1];
2540 root_owner = btrfs_header_owner(parent);
2541 ret = wc->process_func(root, path->nodes[*level], wc,
2542 btrfs_header_generation(path->nodes[*level]));
2547 struct extent_buffer *next;
2549 next = path->nodes[*level];
2552 btrfs_tree_lock(next);
2553 btrfs_set_lock_blocking(next);
2554 clean_tree_block(trans, fs_info, next);
2555 btrfs_wait_tree_block_writeback(next);
2556 btrfs_tree_unlock(next);
2559 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2560 ret = btrfs_free_and_pin_reserved_extent(
2562 path->nodes[*level]->start,
2563 path->nodes[*level]->len);
2567 free_extent_buffer(path->nodes[*level]);
2568 path->nodes[*level] = NULL;
2576 * drop the reference count on the tree rooted at 'snap'. This traverses
2577 * the tree freeing any blocks that have a ref count of zero after being
2580 static int walk_log_tree(struct btrfs_trans_handle *trans,
2581 struct btrfs_root *log, struct walk_control *wc)
2583 struct btrfs_fs_info *fs_info = log->fs_info;
2587 struct btrfs_path *path;
2590 path = btrfs_alloc_path();
2594 level = btrfs_header_level(log->node);
2596 path->nodes[level] = log->node;
2597 extent_buffer_get(log->node);
2598 path->slots[level] = 0;
2601 wret = walk_down_log_tree(trans, log, path, &level, wc);
2609 wret = walk_up_log_tree(trans, log, path, &level, wc);
2618 /* was the root node processed? if not, catch it here */
2619 if (path->nodes[orig_level]) {
2620 ret = wc->process_func(log, path->nodes[orig_level], wc,
2621 btrfs_header_generation(path->nodes[orig_level]));
2625 struct extent_buffer *next;
2627 next = path->nodes[orig_level];
2630 btrfs_tree_lock(next);
2631 btrfs_set_lock_blocking(next);
2632 clean_tree_block(trans, fs_info, next);
2633 btrfs_wait_tree_block_writeback(next);
2634 btrfs_tree_unlock(next);
2637 WARN_ON(log->root_key.objectid !=
2638 BTRFS_TREE_LOG_OBJECTID);
2639 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2640 next->start, next->len);
2647 btrfs_free_path(path);
2652 * helper function to update the item for a given subvolumes log root
2653 * in the tree of log roots
2655 static int update_log_root(struct btrfs_trans_handle *trans,
2656 struct btrfs_root *log)
2658 struct btrfs_fs_info *fs_info = log->fs_info;
2661 if (log->log_transid == 1) {
2662 /* insert root item on the first sync */
2663 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2664 &log->root_key, &log->root_item);
2666 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2667 &log->root_key, &log->root_item);
2672 static void wait_log_commit(struct btrfs_root *root, int transid)
2675 int index = transid % 2;
2678 * we only allow two pending log transactions at a time,
2679 * so we know that if ours is more than 2 older than the
2680 * current transaction, we're done
2683 prepare_to_wait(&root->log_commit_wait[index],
2684 &wait, TASK_UNINTERRUPTIBLE);
2685 mutex_unlock(&root->log_mutex);
2687 if (root->log_transid_committed < transid &&
2688 atomic_read(&root->log_commit[index]))
2691 finish_wait(&root->log_commit_wait[index], &wait);
2692 mutex_lock(&root->log_mutex);
2693 } while (root->log_transid_committed < transid &&
2694 atomic_read(&root->log_commit[index]));
2697 static void wait_for_writer(struct btrfs_root *root)
2701 while (atomic_read(&root->log_writers)) {
2702 prepare_to_wait(&root->log_writer_wait,
2703 &wait, TASK_UNINTERRUPTIBLE);
2704 mutex_unlock(&root->log_mutex);
2705 if (atomic_read(&root->log_writers))
2707 finish_wait(&root->log_writer_wait, &wait);
2708 mutex_lock(&root->log_mutex);
2712 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2713 struct btrfs_log_ctx *ctx)
2718 mutex_lock(&root->log_mutex);
2719 list_del_init(&ctx->list);
2720 mutex_unlock(&root->log_mutex);
2724 * Invoked in log mutex context, or be sure there is no other task which
2725 * can access the list.
2727 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2728 int index, int error)
2730 struct btrfs_log_ctx *ctx;
2731 struct btrfs_log_ctx *safe;
2733 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2734 list_del_init(&ctx->list);
2735 ctx->log_ret = error;
2738 INIT_LIST_HEAD(&root->log_ctxs[index]);
2742 * btrfs_sync_log does sends a given tree log down to the disk and
2743 * updates the super blocks to record it. When this call is done,
2744 * you know that any inodes previously logged are safely on disk only
2747 * Any other return value means you need to call btrfs_commit_transaction.
2748 * Some of the edge cases for fsyncing directories that have had unlinks
2749 * or renames done in the past mean that sometimes the only safe
2750 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2751 * that has happened.
2753 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2760 struct btrfs_fs_info *fs_info = root->fs_info;
2761 struct btrfs_root *log = root->log_root;
2762 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2763 int log_transid = 0;
2764 struct btrfs_log_ctx root_log_ctx;
2765 struct blk_plug plug;
2767 mutex_lock(&root->log_mutex);
2768 log_transid = ctx->log_transid;
2769 if (root->log_transid_committed >= log_transid) {
2770 mutex_unlock(&root->log_mutex);
2771 return ctx->log_ret;
2774 index1 = log_transid % 2;
2775 if (atomic_read(&root->log_commit[index1])) {
2776 wait_log_commit(root, log_transid);
2777 mutex_unlock(&root->log_mutex);
2778 return ctx->log_ret;
2780 ASSERT(log_transid == root->log_transid);
2781 atomic_set(&root->log_commit[index1], 1);
2783 /* wait for previous tree log sync to complete */
2784 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2785 wait_log_commit(root, log_transid - 1);
2788 int batch = atomic_read(&root->log_batch);
2789 /* when we're on an ssd, just kick the log commit out */
2790 if (!btrfs_test_opt(fs_info, SSD) &&
2791 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2792 mutex_unlock(&root->log_mutex);
2793 schedule_timeout_uninterruptible(1);
2794 mutex_lock(&root->log_mutex);
2796 wait_for_writer(root);
2797 if (batch == atomic_read(&root->log_batch))
2801 /* bail out if we need to do a full commit */
2802 if (btrfs_need_log_full_commit(fs_info, trans)) {
2804 btrfs_free_logged_extents(log, log_transid);
2805 mutex_unlock(&root->log_mutex);
2809 if (log_transid % 2 == 0)
2810 mark = EXTENT_DIRTY;
2814 /* we start IO on all the marked extents here, but we don't actually
2815 * wait for them until later.
2817 blk_start_plug(&plug);
2818 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2820 blk_finish_plug(&plug);
2821 btrfs_abort_transaction(trans, ret);
2822 btrfs_free_logged_extents(log, log_transid);
2823 btrfs_set_log_full_commit(fs_info, trans);
2824 mutex_unlock(&root->log_mutex);
2828 btrfs_set_root_node(&log->root_item, log->node);
2830 root->log_transid++;
2831 log->log_transid = root->log_transid;
2832 root->log_start_pid = 0;
2834 * IO has been started, blocks of the log tree have WRITTEN flag set
2835 * in their headers. new modifications of the log will be written to
2836 * new positions. so it's safe to allow log writers to go in.
2838 mutex_unlock(&root->log_mutex);
2840 btrfs_init_log_ctx(&root_log_ctx, NULL);
2842 mutex_lock(&log_root_tree->log_mutex);
2843 atomic_inc(&log_root_tree->log_batch);
2844 atomic_inc(&log_root_tree->log_writers);
2846 index2 = log_root_tree->log_transid % 2;
2847 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2848 root_log_ctx.log_transid = log_root_tree->log_transid;
2850 mutex_unlock(&log_root_tree->log_mutex);
2852 ret = update_log_root(trans, log);
2854 mutex_lock(&log_root_tree->log_mutex);
2855 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2857 * Implicit memory barrier after atomic_dec_and_test
2859 if (waitqueue_active(&log_root_tree->log_writer_wait))
2860 wake_up(&log_root_tree->log_writer_wait);
2864 if (!list_empty(&root_log_ctx.list))
2865 list_del_init(&root_log_ctx.list);
2867 blk_finish_plug(&plug);
2868 btrfs_set_log_full_commit(fs_info, trans);
2870 if (ret != -ENOSPC) {
2871 btrfs_abort_transaction(trans, ret);
2872 mutex_unlock(&log_root_tree->log_mutex);
2875 btrfs_wait_tree_log_extents(log, mark);
2876 btrfs_free_logged_extents(log, log_transid);
2877 mutex_unlock(&log_root_tree->log_mutex);
2882 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2883 blk_finish_plug(&plug);
2884 list_del_init(&root_log_ctx.list);
2885 mutex_unlock(&log_root_tree->log_mutex);
2886 ret = root_log_ctx.log_ret;
2890 index2 = root_log_ctx.log_transid % 2;
2891 if (atomic_read(&log_root_tree->log_commit[index2])) {
2892 blk_finish_plug(&plug);
2893 ret = btrfs_wait_tree_log_extents(log, mark);
2894 btrfs_wait_logged_extents(trans, log, log_transid);
2895 wait_log_commit(log_root_tree,
2896 root_log_ctx.log_transid);
2897 mutex_unlock(&log_root_tree->log_mutex);
2899 ret = root_log_ctx.log_ret;
2902 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2903 atomic_set(&log_root_tree->log_commit[index2], 1);
2905 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2906 wait_log_commit(log_root_tree,
2907 root_log_ctx.log_transid - 1);
2910 wait_for_writer(log_root_tree);
2913 * now that we've moved on to the tree of log tree roots,
2914 * check the full commit flag again
2916 if (btrfs_need_log_full_commit(fs_info, trans)) {
2917 blk_finish_plug(&plug);
2918 btrfs_wait_tree_log_extents(log, mark);
2919 btrfs_free_logged_extents(log, log_transid);
2920 mutex_unlock(&log_root_tree->log_mutex);
2922 goto out_wake_log_root;
2925 ret = btrfs_write_marked_extents(fs_info,
2926 &log_root_tree->dirty_log_pages,
2927 EXTENT_DIRTY | EXTENT_NEW);
2928 blk_finish_plug(&plug);
2930 btrfs_set_log_full_commit(fs_info, trans);
2931 btrfs_abort_transaction(trans, ret);
2932 btrfs_free_logged_extents(log, log_transid);
2933 mutex_unlock(&log_root_tree->log_mutex);
2934 goto out_wake_log_root;
2936 ret = btrfs_wait_tree_log_extents(log, mark);
2938 ret = btrfs_wait_tree_log_extents(log_root_tree,
2939 EXTENT_NEW | EXTENT_DIRTY);
2941 btrfs_set_log_full_commit(fs_info, trans);
2942 btrfs_free_logged_extents(log, log_transid);
2943 mutex_unlock(&log_root_tree->log_mutex);
2944 goto out_wake_log_root;
2946 btrfs_wait_logged_extents(trans, log, log_transid);
2948 btrfs_set_super_log_root(fs_info->super_for_commit,
2949 log_root_tree->node->start);
2950 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2951 btrfs_header_level(log_root_tree->node));
2953 log_root_tree->log_transid++;
2954 mutex_unlock(&log_root_tree->log_mutex);
2957 * nobody else is going to jump in and write the the ctree
2958 * super here because the log_commit atomic below is protecting
2959 * us. We must be called with a transaction handle pinning
2960 * the running transaction open, so a full commit can't hop
2961 * in and cause problems either.
2963 ret = write_ctree_super(trans, fs_info, 1);
2965 btrfs_set_log_full_commit(fs_info, trans);
2966 btrfs_abort_transaction(trans, ret);
2967 goto out_wake_log_root;
2970 mutex_lock(&root->log_mutex);
2971 if (root->last_log_commit < log_transid)
2972 root->last_log_commit = log_transid;
2973 mutex_unlock(&root->log_mutex);
2976 mutex_lock(&log_root_tree->log_mutex);
2977 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2979 log_root_tree->log_transid_committed++;
2980 atomic_set(&log_root_tree->log_commit[index2], 0);
2981 mutex_unlock(&log_root_tree->log_mutex);
2984 * The barrier before waitqueue_active is implied by mutex_unlock
2986 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2987 wake_up(&log_root_tree->log_commit_wait[index2]);
2989 mutex_lock(&root->log_mutex);
2990 btrfs_remove_all_log_ctxs(root, index1, ret);
2991 root->log_transid_committed++;
2992 atomic_set(&root->log_commit[index1], 0);
2993 mutex_unlock(&root->log_mutex);
2996 * The barrier before waitqueue_active is implied by mutex_unlock
2998 if (waitqueue_active(&root->log_commit_wait[index1]))
2999 wake_up(&root->log_commit_wait[index1]);
3003 static void free_log_tree(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *log)
3009 struct walk_control wc = {
3011 .process_func = process_one_buffer
3014 ret = walk_log_tree(trans, log, &wc);
3015 /* I don't think this can happen but just in case */
3017 btrfs_abort_transaction(trans, ret);
3020 ret = find_first_extent_bit(&log->dirty_log_pages,
3021 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3026 clear_extent_bits(&log->dirty_log_pages, start, end,
3027 EXTENT_DIRTY | EXTENT_NEW);
3031 * We may have short-circuited the log tree with the full commit logic
3032 * and left ordered extents on our list, so clear these out to keep us
3033 * from leaking inodes and memory.
3035 btrfs_free_logged_extents(log, 0);
3036 btrfs_free_logged_extents(log, 1);
3038 free_extent_buffer(log->node);
3043 * free all the extents used by the tree log. This should be called
3044 * at commit time of the full transaction
3046 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3048 if (root->log_root) {
3049 free_log_tree(trans, root->log_root);
3050 root->log_root = NULL;
3055 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3056 struct btrfs_fs_info *fs_info)
3058 if (fs_info->log_root_tree) {
3059 free_log_tree(trans, fs_info->log_root_tree);
3060 fs_info->log_root_tree = NULL;
3066 * If both a file and directory are logged, and unlinks or renames are
3067 * mixed in, we have a few interesting corners:
3069 * create file X in dir Y
3070 * link file X to X.link in dir Y
3072 * unlink file X but leave X.link
3075 * After a crash we would expect only X.link to exist. But file X
3076 * didn't get fsync'd again so the log has back refs for X and X.link.
3078 * We solve this by removing directory entries and inode backrefs from the
3079 * log when a file that was logged in the current transaction is
3080 * unlinked. Any later fsync will include the updated log entries, and
3081 * we'll be able to reconstruct the proper directory items from backrefs.
3083 * This optimizations allows us to avoid relogging the entire inode
3084 * or the entire directory.
3086 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root,
3088 const char *name, int name_len,
3089 struct btrfs_inode *dir, u64 index)
3091 struct btrfs_root *log;
3092 struct btrfs_dir_item *di;
3093 struct btrfs_path *path;
3097 u64 dir_ino = btrfs_ino(dir);
3099 if (dir->logged_trans < trans->transid)
3102 ret = join_running_log_trans(root);
3106 mutex_lock(&dir->log_mutex);
3108 log = root->log_root;
3109 path = btrfs_alloc_path();
3115 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3116 name, name_len, -1);
3122 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3123 bytes_del += name_len;
3129 btrfs_release_path(path);
3130 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3131 index, name, name_len, -1);
3137 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3138 bytes_del += name_len;
3145 /* update the directory size in the log to reflect the names
3149 struct btrfs_key key;
3151 key.objectid = dir_ino;
3153 key.type = BTRFS_INODE_ITEM_KEY;
3154 btrfs_release_path(path);
3156 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3162 struct btrfs_inode_item *item;
3165 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3166 struct btrfs_inode_item);
3167 i_size = btrfs_inode_size(path->nodes[0], item);
3168 if (i_size > bytes_del)
3169 i_size -= bytes_del;
3172 btrfs_set_inode_size(path->nodes[0], item, i_size);
3173 btrfs_mark_buffer_dirty(path->nodes[0]);
3176 btrfs_release_path(path);
3179 btrfs_free_path(path);
3181 mutex_unlock(&dir->log_mutex);
3182 if (ret == -ENOSPC) {
3183 btrfs_set_log_full_commit(root->fs_info, trans);
3186 btrfs_abort_transaction(trans, ret);
3188 btrfs_end_log_trans(root);
3193 /* see comments for btrfs_del_dir_entries_in_log */
3194 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3195 struct btrfs_root *root,
3196 const char *name, int name_len,
3197 struct btrfs_inode *inode, u64 dirid)
3199 struct btrfs_fs_info *fs_info = root->fs_info;
3200 struct btrfs_root *log;
3204 if (inode->logged_trans < trans->transid)
3207 ret = join_running_log_trans(root);
3210 log = root->log_root;
3211 mutex_lock(&inode->log_mutex);
3213 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3215 mutex_unlock(&inode->log_mutex);
3216 if (ret == -ENOSPC) {
3217 btrfs_set_log_full_commit(fs_info, trans);
3219 } else if (ret < 0 && ret != -ENOENT)
3220 btrfs_abort_transaction(trans, ret);
3221 btrfs_end_log_trans(root);
3227 * creates a range item in the log for 'dirid'. first_offset and
3228 * last_offset tell us which parts of the key space the log should
3229 * be considered authoritative for.
3231 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *log,
3233 struct btrfs_path *path,
3234 int key_type, u64 dirid,
3235 u64 first_offset, u64 last_offset)
3238 struct btrfs_key key;
3239 struct btrfs_dir_log_item *item;
3241 key.objectid = dirid;
3242 key.offset = first_offset;
3243 if (key_type == BTRFS_DIR_ITEM_KEY)
3244 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3246 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3247 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3251 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3252 struct btrfs_dir_log_item);
3253 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3254 btrfs_mark_buffer_dirty(path->nodes[0]);
3255 btrfs_release_path(path);
3260 * log all the items included in the current transaction for a given
3261 * directory. This also creates the range items in the log tree required
3262 * to replay anything deleted before the fsync
3264 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *root, struct btrfs_inode *inode,
3266 struct btrfs_path *path,
3267 struct btrfs_path *dst_path, int key_type,
3268 struct btrfs_log_ctx *ctx,
3269 u64 min_offset, u64 *last_offset_ret)
3271 struct btrfs_key min_key;
3272 struct btrfs_root *log = root->log_root;
3273 struct extent_buffer *src;
3278 u64 first_offset = min_offset;
3279 u64 last_offset = (u64)-1;
3280 u64 ino = btrfs_ino(inode);
3282 log = root->log_root;
3284 min_key.objectid = ino;
3285 min_key.type = key_type;
3286 min_key.offset = min_offset;
3288 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3291 * we didn't find anything from this transaction, see if there
3292 * is anything at all
3294 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3295 min_key.objectid = ino;
3296 min_key.type = key_type;
3297 min_key.offset = (u64)-1;
3298 btrfs_release_path(path);
3299 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3301 btrfs_release_path(path);
3304 ret = btrfs_previous_item(root, path, ino, key_type);
3306 /* if ret == 0 there are items for this type,
3307 * create a range to tell us the last key of this type.
3308 * otherwise, there are no items in this directory after
3309 * *min_offset, and we create a range to indicate that.
3312 struct btrfs_key tmp;
3313 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3315 if (key_type == tmp.type)
3316 first_offset = max(min_offset, tmp.offset) + 1;
3321 /* go backward to find any previous key */
3322 ret = btrfs_previous_item(root, path, ino, key_type);
3324 struct btrfs_key tmp;
3325 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3326 if (key_type == tmp.type) {
3327 first_offset = tmp.offset;
3328 ret = overwrite_item(trans, log, dst_path,
3329 path->nodes[0], path->slots[0],
3337 btrfs_release_path(path);
3339 /* find the first key from this transaction again */
3340 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3341 if (WARN_ON(ret != 0))
3345 * we have a block from this transaction, log every item in it
3346 * from our directory
3349 struct btrfs_key tmp;
3350 src = path->nodes[0];
3351 nritems = btrfs_header_nritems(src);
3352 for (i = path->slots[0]; i < nritems; i++) {
3353 struct btrfs_dir_item *di;
3355 btrfs_item_key_to_cpu(src, &min_key, i);
3357 if (min_key.objectid != ino || min_key.type != key_type)
3359 ret = overwrite_item(trans, log, dst_path, src, i,
3367 * We must make sure that when we log a directory entry,
3368 * the corresponding inode, after log replay, has a
3369 * matching link count. For example:
3375 * xfs_io -c "fsync" mydir
3377 * <mount fs and log replay>
3379 * Would result in a fsync log that when replayed, our
3380 * file inode would have a link count of 1, but we get
3381 * two directory entries pointing to the same inode.
3382 * After removing one of the names, it would not be
3383 * possible to remove the other name, which resulted
3384 * always in stale file handle errors, and would not
3385 * be possible to rmdir the parent directory, since
3386 * its i_size could never decrement to the value
3387 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3389 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3390 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3392 (btrfs_dir_transid(src, di) == trans->transid ||
3393 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3394 tmp.type != BTRFS_ROOT_ITEM_KEY)
3395 ctx->log_new_dentries = true;
3397 path->slots[0] = nritems;
3400 * look ahead to the next item and see if it is also
3401 * from this directory and from this transaction
3403 ret = btrfs_next_leaf(root, path);
3405 last_offset = (u64)-1;
3408 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3409 if (tmp.objectid != ino || tmp.type != key_type) {
3410 last_offset = (u64)-1;
3413 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3414 ret = overwrite_item(trans, log, dst_path,
3415 path->nodes[0], path->slots[0],
3420 last_offset = tmp.offset;
3425 btrfs_release_path(path);
3426 btrfs_release_path(dst_path);
3429 *last_offset_ret = last_offset;
3431 * insert the log range keys to indicate where the log
3434 ret = insert_dir_log_key(trans, log, path, key_type,
3435 ino, first_offset, last_offset);
3443 * logging directories is very similar to logging inodes, We find all the items
3444 * from the current transaction and write them to the log.
3446 * The recovery code scans the directory in the subvolume, and if it finds a
3447 * key in the range logged that is not present in the log tree, then it means
3448 * that dir entry was unlinked during the transaction.
3450 * In order for that scan to work, we must include one key smaller than
3451 * the smallest logged by this transaction and one key larger than the largest
3452 * key logged by this transaction.
3454 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root, struct btrfs_inode *inode,
3456 struct btrfs_path *path,
3457 struct btrfs_path *dst_path,
3458 struct btrfs_log_ctx *ctx)
3463 int key_type = BTRFS_DIR_ITEM_KEY;
3469 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3470 ctx, min_key, &max_key);
3473 if (max_key == (u64)-1)
3475 min_key = max_key + 1;
3478 if (key_type == BTRFS_DIR_ITEM_KEY) {
3479 key_type = BTRFS_DIR_INDEX_KEY;
3486 * a helper function to drop items from the log before we relog an
3487 * inode. max_key_type indicates the highest item type to remove.
3488 * This cannot be run for file data extents because it does not
3489 * free the extents they point to.
3491 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *log,
3493 struct btrfs_path *path,
3494 u64 objectid, int max_key_type)
3497 struct btrfs_key key;
3498 struct btrfs_key found_key;
3501 key.objectid = objectid;
3502 key.type = max_key_type;
3503 key.offset = (u64)-1;
3506 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3507 BUG_ON(ret == 0); /* Logic error */
3511 if (path->slots[0] == 0)
3515 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3518 if (found_key.objectid != objectid)
3521 found_key.offset = 0;
3523 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3526 ret = btrfs_del_items(trans, log, path, start_slot,
3527 path->slots[0] - start_slot + 1);
3529 * If start slot isn't 0 then we don't need to re-search, we've
3530 * found the last guy with the objectid in this tree.
3532 if (ret || start_slot != 0)
3534 btrfs_release_path(path);
3536 btrfs_release_path(path);
3542 static void fill_inode_item(struct btrfs_trans_handle *trans,
3543 struct extent_buffer *leaf,
3544 struct btrfs_inode_item *item,
3545 struct inode *inode, int log_inode_only,
3548 struct btrfs_map_token token;
3550 btrfs_init_map_token(&token);
3552 if (log_inode_only) {
3553 /* set the generation to zero so the recover code
3554 * can tell the difference between an logging
3555 * just to say 'this inode exists' and a logging
3556 * to say 'update this inode with these values'
3558 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3559 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3561 btrfs_set_token_inode_generation(leaf, item,
3562 BTRFS_I(inode)->generation,
3564 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3567 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3568 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3569 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3570 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3572 btrfs_set_token_timespec_sec(leaf, &item->atime,
3573 inode->i_atime.tv_sec, &token);
3574 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3575 inode->i_atime.tv_nsec, &token);
3577 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3578 inode->i_mtime.tv_sec, &token);
3579 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3580 inode->i_mtime.tv_nsec, &token);
3582 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3583 inode->i_ctime.tv_sec, &token);
3584 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3585 inode->i_ctime.tv_nsec, &token);
3587 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3590 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3591 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3592 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3593 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3594 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3597 static int log_inode_item(struct btrfs_trans_handle *trans,
3598 struct btrfs_root *log, struct btrfs_path *path,
3599 struct btrfs_inode *inode)
3601 struct btrfs_inode_item *inode_item;
3604 ret = btrfs_insert_empty_item(trans, log, path,
3605 &inode->location, sizeof(*inode_item));
3606 if (ret && ret != -EEXIST)
3608 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609 struct btrfs_inode_item);
3610 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3612 btrfs_release_path(path);
3616 static noinline int copy_items(struct btrfs_trans_handle *trans,
3617 struct btrfs_inode *inode,
3618 struct btrfs_path *dst_path,
3619 struct btrfs_path *src_path, u64 *last_extent,
3620 int start_slot, int nr, int inode_only,
3623 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3624 unsigned long src_offset;
3625 unsigned long dst_offset;
3626 struct btrfs_root *log = inode->root->log_root;
3627 struct btrfs_file_extent_item *extent;
3628 struct btrfs_inode_item *inode_item;
3629 struct extent_buffer *src = src_path->nodes[0];
3630 struct btrfs_key first_key, last_key, key;
3632 struct btrfs_key *ins_keys;
3636 struct list_head ordered_sums;
3637 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3638 bool has_extents = false;
3639 bool need_find_last_extent = true;
3642 INIT_LIST_HEAD(&ordered_sums);
3644 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3645 nr * sizeof(u32), GFP_NOFS);
3649 first_key.objectid = (u64)-1;
3651 ins_sizes = (u32 *)ins_data;
3652 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3654 for (i = 0; i < nr; i++) {
3655 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3656 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3658 ret = btrfs_insert_empty_items(trans, log, dst_path,
3659 ins_keys, ins_sizes, nr);
3665 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3666 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3667 dst_path->slots[0]);
3669 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3671 if ((i == (nr - 1)))
3672 last_key = ins_keys[i];
3674 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3675 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3677 struct btrfs_inode_item);
3678 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3679 &inode->vfs_inode, inode_only == LOG_INODE_EXISTS,
3682 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3683 src_offset, ins_sizes[i]);
3687 * We set need_find_last_extent here in case we know we were
3688 * processing other items and then walk into the first extent in
3689 * the inode. If we don't hit an extent then nothing changes,
3690 * we'll do the last search the next time around.
3692 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3694 if (first_key.objectid == (u64)-1)
3695 first_key = ins_keys[i];
3697 need_find_last_extent = false;
3700 /* take a reference on file data extents so that truncates
3701 * or deletes of this inode don't have to relog the inode
3704 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3707 extent = btrfs_item_ptr(src, start_slot + i,
3708 struct btrfs_file_extent_item);
3710 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3713 found_type = btrfs_file_extent_type(src, extent);
3714 if (found_type == BTRFS_FILE_EXTENT_REG) {
3716 ds = btrfs_file_extent_disk_bytenr(src,
3718 /* ds == 0 is a hole */
3722 dl = btrfs_file_extent_disk_num_bytes(src,
3724 cs = btrfs_file_extent_offset(src, extent);
3725 cl = btrfs_file_extent_num_bytes(src,
3727 if (btrfs_file_extent_compression(src,
3733 ret = btrfs_lookup_csums_range(
3735 ds + cs, ds + cs + cl - 1,
3738 btrfs_release_path(dst_path);
3746 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3747 btrfs_release_path(dst_path);
3751 * we have to do this after the loop above to avoid changing the
3752 * log tree while trying to change the log tree.
3755 while (!list_empty(&ordered_sums)) {
3756 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3757 struct btrfs_ordered_sum,
3760 ret = btrfs_csum_file_blocks(trans, log, sums);
3761 list_del(&sums->list);
3768 if (need_find_last_extent && *last_extent == first_key.offset) {
3770 * We don't have any leafs between our current one and the one
3771 * we processed before that can have file extent items for our
3772 * inode (and have a generation number smaller than our current
3775 need_find_last_extent = false;
3779 * Because we use btrfs_search_forward we could skip leaves that were
3780 * not modified and then assume *last_extent is valid when it really
3781 * isn't. So back up to the previous leaf and read the end of the last
3782 * extent before we go and fill in holes.
3784 if (need_find_last_extent) {
3787 ret = btrfs_prev_leaf(inode->root, src_path);
3792 if (src_path->slots[0])
3793 src_path->slots[0]--;
3794 src = src_path->nodes[0];
3795 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3796 if (key.objectid != btrfs_ino(inode) ||
3797 key.type != BTRFS_EXTENT_DATA_KEY)
3799 extent = btrfs_item_ptr(src, src_path->slots[0],
3800 struct btrfs_file_extent_item);
3801 if (btrfs_file_extent_type(src, extent) ==
3802 BTRFS_FILE_EXTENT_INLINE) {
3803 len = btrfs_file_extent_inline_len(src,
3806 *last_extent = ALIGN(key.offset + len,
3807 fs_info->sectorsize);
3809 len = btrfs_file_extent_num_bytes(src, extent);
3810 *last_extent = key.offset + len;
3814 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3815 * things could have happened
3817 * 1) A merge could have happened, so we could currently be on a leaf
3818 * that holds what we were copying in the first place.
3819 * 2) A split could have happened, and now not all of the items we want
3820 * are on the same leaf.
3822 * So we need to adjust how we search for holes, we need to drop the
3823 * path and re-search for the first extent key we found, and then walk
3824 * forward until we hit the last one we copied.
3826 if (need_find_last_extent) {
3827 /* btrfs_prev_leaf could return 1 without releasing the path */
3828 btrfs_release_path(src_path);
3829 ret = btrfs_search_slot(NULL, inode->root, &first_key, src_path, 0, 0);
3833 src = src_path->nodes[0];
3834 i = src_path->slots[0];
3840 * Ok so here we need to go through and fill in any holes we may have
3841 * to make sure that holes are punched for those areas in case they had
3842 * extents previously.
3848 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849 ret = btrfs_next_leaf(inode->root, src_path);
3853 src = src_path->nodes[0];
3857 btrfs_item_key_to_cpu(src, &key, i);
3858 if (!btrfs_comp_cpu_keys(&key, &last_key))
3860 if (key.objectid != btrfs_ino(inode) ||
3861 key.type != BTRFS_EXTENT_DATA_KEY) {
3865 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866 if (btrfs_file_extent_type(src, extent) ==
3867 BTRFS_FILE_EXTENT_INLINE) {
3868 len = btrfs_file_extent_inline_len(src, i, extent);
3869 extent_end = ALIGN(key.offset + len,
3870 fs_info->sectorsize);
3872 len = btrfs_file_extent_num_bytes(src, extent);
3873 extent_end = key.offset + len;
3877 if (*last_extent == key.offset) {
3878 *last_extent = extent_end;
3881 offset = *last_extent;
3882 len = key.offset - *last_extent;
3883 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884 offset, 0, 0, len, 0, len, 0, 0, 0);
3887 *last_extent = extent_end;
3890 * Need to let the callers know we dropped the path so they should
3893 if (!ret && need_find_last_extent)
3898 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3900 struct extent_map *em1, *em2;
3902 em1 = list_entry(a, struct extent_map, list);
3903 em2 = list_entry(b, struct extent_map, list);
3905 if (em1->start < em2->start)
3907 else if (em1->start > em2->start)
3912 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3913 struct inode *inode,
3914 struct btrfs_root *root,
3915 const struct extent_map *em,
3916 const struct list_head *logged_list,
3917 bool *ordered_io_error)
3919 struct btrfs_fs_info *fs_info = root->fs_info;
3920 struct btrfs_ordered_extent *ordered;
3921 struct btrfs_root *log = root->log_root;
3922 u64 mod_start = em->mod_start;
3923 u64 mod_len = em->mod_len;
3924 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3927 LIST_HEAD(ordered_sums);
3930 *ordered_io_error = false;
3932 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3933 em->block_start == EXTENT_MAP_HOLE)
3937 * Wait far any ordered extent that covers our extent map. If it
3938 * finishes without an error, first check and see if our csums are on
3939 * our outstanding ordered extents.
3941 list_for_each_entry(ordered, logged_list, log_list) {
3942 struct btrfs_ordered_sum *sum;
3947 if (ordered->file_offset + ordered->len <= mod_start ||
3948 mod_start + mod_len <= ordered->file_offset)
3951 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3952 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3953 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3954 const u64 start = ordered->file_offset;
3955 const u64 end = ordered->file_offset + ordered->len - 1;
3957 WARN_ON(ordered->inode != inode);
3958 filemap_fdatawrite_range(inode->i_mapping, start, end);
3961 wait_event(ordered->wait,
3962 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3963 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3968 * i_mapping flags, so that the next fsync won't get
3969 * an outdated io error too.
3971 filemap_check_errors(inode->i_mapping);
3972 *ordered_io_error = true;
3976 * We are going to copy all the csums on this ordered extent, so
3977 * go ahead and adjust mod_start and mod_len in case this
3978 * ordered extent has already been logged.
3980 if (ordered->file_offset > mod_start) {
3981 if (ordered->file_offset + ordered->len >=
3982 mod_start + mod_len)
3983 mod_len = ordered->file_offset - mod_start;
3985 * If we have this case
3987 * |--------- logged extent ---------|
3988 * |----- ordered extent ----|
3990 * Just don't mess with mod_start and mod_len, we'll
3991 * just end up logging more csums than we need and it
3995 if (ordered->file_offset + ordered->len <
3996 mod_start + mod_len) {
3997 mod_len = (mod_start + mod_len) -
3998 (ordered->file_offset + ordered->len);
3999 mod_start = ordered->file_offset +
4010 * To keep us from looping for the above case of an ordered
4011 * extent that falls inside of the logged extent.
4013 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4017 list_for_each_entry(sum, &ordered->list, list) {
4018 ret = btrfs_csum_file_blocks(trans, log, sum);
4024 if (*ordered_io_error || !mod_len || ret || skip_csum)
4027 if (em->compress_type) {
4029 csum_len = max(em->block_len, em->orig_block_len);
4031 csum_offset = mod_start - em->start;
4035 /* block start is already adjusted for the file extent offset. */
4036 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4037 em->block_start + csum_offset,
4038 em->block_start + csum_offset +
4039 csum_len - 1, &ordered_sums, 0);
4043 while (!list_empty(&ordered_sums)) {
4044 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4045 struct btrfs_ordered_sum,
4048 ret = btrfs_csum_file_blocks(trans, log, sums);
4049 list_del(&sums->list);
4056 static int log_one_extent(struct btrfs_trans_handle *trans,
4057 struct btrfs_inode *inode, struct btrfs_root *root,
4058 const struct extent_map *em,
4059 struct btrfs_path *path,
4060 const struct list_head *logged_list,
4061 struct btrfs_log_ctx *ctx)
4063 struct btrfs_root *log = root->log_root;
4064 struct btrfs_file_extent_item *fi;
4065 struct extent_buffer *leaf;
4066 struct btrfs_map_token token;
4067 struct btrfs_key key;
4068 u64 extent_offset = em->start - em->orig_start;
4071 int extent_inserted = 0;
4072 bool ordered_io_err = false;
4074 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em, logged_list,
4079 if (ordered_io_err) {
4084 btrfs_init_map_token(&token);
4086 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4087 em->start + em->len, NULL, 0, 1,
4088 sizeof(*fi), &extent_inserted);
4092 if (!extent_inserted) {
4093 key.objectid = btrfs_ino(inode);
4094 key.type = BTRFS_EXTENT_DATA_KEY;
4095 key.offset = em->start;
4097 ret = btrfs_insert_empty_item(trans, log, path, &key,
4102 leaf = path->nodes[0];
4103 fi = btrfs_item_ptr(leaf, path->slots[0],
4104 struct btrfs_file_extent_item);
4106 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4109 btrfs_set_token_file_extent_type(leaf, fi,
4110 BTRFS_FILE_EXTENT_PREALLOC,
4113 btrfs_set_token_file_extent_type(leaf, fi,
4114 BTRFS_FILE_EXTENT_REG,
4117 block_len = max(em->block_len, em->orig_block_len);
4118 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4119 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4122 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4125 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 extent_offset, &token);
4128 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4131 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4132 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4136 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4137 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4138 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4139 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4142 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4143 btrfs_mark_buffer_dirty(leaf);
4145 btrfs_release_path(path);
4150 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
4152 struct btrfs_inode *inode,
4153 struct btrfs_path *path,
4154 struct list_head *logged_list,
4155 struct btrfs_log_ctx *ctx,
4159 struct extent_map *em, *n;
4160 struct list_head extents;
4161 struct extent_map_tree *tree = &inode->extent_tree;
4166 INIT_LIST_HEAD(&extents);
4168 down_write(&inode->dio_sem);
4169 write_lock(&tree->lock);
4170 test_gen = root->fs_info->last_trans_committed;
4172 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4173 list_del_init(&em->list);
4176 * Just an arbitrary number, this can be really CPU intensive
4177 * once we start getting a lot of extents, and really once we
4178 * have a bunch of extents we just want to commit since it will
4181 if (++num > 32768) {
4182 list_del_init(&tree->modified_extents);
4187 if (em->generation <= test_gen)
4189 /* Need a ref to keep it from getting evicted from cache */
4190 atomic_inc(&em->refs);
4191 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4192 list_add_tail(&em->list, &extents);
4196 list_sort(NULL, &extents, extent_cmp);
4197 btrfs_get_logged_extents(inode, logged_list, start, end);
4199 * Some ordered extents started by fsync might have completed
4200 * before we could collect them into the list logged_list, which
4201 * means they're gone, not in our logged_list nor in the inode's
4202 * ordered tree. We want the application/user space to know an
4203 * error happened while attempting to persist file data so that
4204 * it can take proper action. If such error happened, we leave
4205 * without writing to the log tree and the fsync must report the
4206 * file data write error and not commit the current transaction.
4208 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4212 while (!list_empty(&extents)) {
4213 em = list_entry(extents.next, struct extent_map, list);
4215 list_del_init(&em->list);
4218 * If we had an error we just need to delete everybody from our
4222 clear_em_logging(tree, em);
4223 free_extent_map(em);
4227 write_unlock(&tree->lock);
4229 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231 write_lock(&tree->lock);
4232 clear_em_logging(tree, em);
4233 free_extent_map(em);
4235 WARN_ON(!list_empty(&extents));
4236 write_unlock(&tree->lock);
4237 up_write(&inode->dio_sem);
4239 btrfs_release_path(path);
4243 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4244 struct btrfs_path *path, u64 *size_ret)
4246 struct btrfs_key key;
4249 key.objectid = btrfs_ino(inode);
4250 key.type = BTRFS_INODE_ITEM_KEY;
4253 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4256 } else if (ret > 0) {
4259 struct btrfs_inode_item *item;
4261 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4262 struct btrfs_inode_item);
4263 *size_ret = btrfs_inode_size(path->nodes[0], item);
4266 btrfs_release_path(path);
4271 * At the moment we always log all xattrs. This is to figure out at log replay
4272 * time which xattrs must have their deletion replayed. If a xattr is missing
4273 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4274 * because if a xattr is deleted, the inode is fsynced and a power failure
4275 * happens, causing the log to be replayed the next time the fs is mounted,
4276 * we want the xattr to not exist anymore (same behaviour as other filesystems
4277 * with a journal, ext3/4, xfs, f2fs, etc).
4279 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
4281 struct btrfs_inode *inode,
4282 struct btrfs_path *path,
4283 struct btrfs_path *dst_path)
4286 struct btrfs_key key;
4287 const u64 ino = btrfs_ino(inode);
4292 key.type = BTRFS_XATTR_ITEM_KEY;
4295 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4300 int slot = path->slots[0];
4301 struct extent_buffer *leaf = path->nodes[0];
4302 int nritems = btrfs_header_nritems(leaf);
4304 if (slot >= nritems) {
4306 u64 last_extent = 0;
4308 ret = copy_items(trans, inode, dst_path, path,
4309 &last_extent, start_slot,
4311 /* can't be 1, extent items aren't processed */
4317 ret = btrfs_next_leaf(root, path);
4325 btrfs_item_key_to_cpu(leaf, &key, slot);
4326 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4336 u64 last_extent = 0;
4338 ret = copy_items(trans, inode, dst_path, path,
4339 &last_extent, start_slot,
4341 /* can't be 1, extent items aren't processed */
4351 * If the no holes feature is enabled we need to make sure any hole between the
4352 * last extent and the i_size of our inode is explicitly marked in the log. This
4353 * is to make sure that doing something like:
4355 * 1) create file with 128Kb of data
4356 * 2) truncate file to 64Kb
4357 * 3) truncate file to 256Kb
4359 * 5) <crash/power failure>
4360 * 6) mount fs and trigger log replay
4362 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4363 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4364 * file correspond to a hole. The presence of explicit holes in a log tree is
4365 * what guarantees that log replay will remove/adjust file extent items in the
4368 * Here we do not need to care about holes between extents, that is already done
4369 * by copy_items(). We also only need to do this in the full sync path, where we
4370 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4371 * lookup the list of modified extent maps and if any represents a hole, we
4372 * insert a corresponding extent representing a hole in the log tree.
4374 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4375 struct btrfs_root *root,
4376 struct btrfs_inode *inode,
4377 struct btrfs_path *path)
4379 struct btrfs_fs_info *fs_info = root->fs_info;
4381 struct btrfs_key key;
4384 struct extent_buffer *leaf;
4385 struct btrfs_root *log = root->log_root;
4386 const u64 ino = btrfs_ino(inode);
4387 const u64 i_size = i_size_read(&inode->vfs_inode);
4389 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4393 key.type = BTRFS_EXTENT_DATA_KEY;
4394 key.offset = (u64)-1;
4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4401 ASSERT(path->slots[0] > 0);
4403 leaf = path->nodes[0];
4404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4407 /* inode does not have any extents */
4411 struct btrfs_file_extent_item *extent;
4415 * If there's an extent beyond i_size, an explicit hole was
4416 * already inserted by copy_items().
4418 if (key.offset >= i_size)
4421 extent = btrfs_item_ptr(leaf, path->slots[0],
4422 struct btrfs_file_extent_item);
4424 if (btrfs_file_extent_type(leaf, extent) ==
4425 BTRFS_FILE_EXTENT_INLINE) {
4426 len = btrfs_file_extent_inline_len(leaf,
4429 ASSERT(len == i_size);
4433 len = btrfs_file_extent_num_bytes(leaf, extent);
4434 /* Last extent goes beyond i_size, no need to log a hole. */
4435 if (key.offset + len > i_size)
4437 hole_start = key.offset + len;
4438 hole_size = i_size - hole_start;
4440 btrfs_release_path(path);
4442 /* Last extent ends at i_size. */
4446 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4447 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4448 hole_size, 0, hole_size, 0, 0, 0);
4453 * When we are logging a new inode X, check if it doesn't have a reference that
4454 * matches the reference from some other inode Y created in a past transaction
4455 * and that was renamed in the current transaction. If we don't do this, then at
4456 * log replay time we can lose inode Y (and all its files if it's a directory):
4459 * echo "hello world" > /mnt/x/foobar
4462 * mkdir /mnt/x # or touch /mnt/x
4463 * xfs_io -c fsync /mnt/x
4465 * mount fs, trigger log replay
4467 * After the log replay procedure, we would lose the first directory and all its
4468 * files (file foobar).
4469 * For the case where inode Y is not a directory we simply end up losing it:
4471 * echo "123" > /mnt/foo
4473 * mv /mnt/foo /mnt/bar
4474 * echo "abc" > /mnt/foo
4475 * xfs_io -c fsync /mnt/foo
4478 * We also need this for cases where a snapshot entry is replaced by some other
4479 * entry (file or directory) otherwise we end up with an unreplayable log due to
4480 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4481 * if it were a regular entry:
4484 * btrfs subvolume snapshot /mnt /mnt/x/snap
4485 * btrfs subvolume delete /mnt/x/snap
4488 * fsync /mnt/x or fsync some new file inside it
4491 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4492 * the same transaction.
4494 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496 const struct btrfs_key *key,
4497 struct btrfs_inode *inode,
4501 struct btrfs_path *search_path;
4504 u32 item_size = btrfs_item_size_nr(eb, slot);
4506 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508 search_path = btrfs_alloc_path();
4511 search_path->search_commit_root = 1;
4512 search_path->skip_locking = 1;
4514 while (cur_offset < item_size) {
4518 unsigned long name_ptr;
4519 struct btrfs_dir_item *di;
4521 if (key->type == BTRFS_INODE_REF_KEY) {
4522 struct btrfs_inode_ref *iref;
4524 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4525 parent = key->offset;
4526 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4527 name_ptr = (unsigned long)(iref + 1);
4528 this_len = sizeof(*iref) + this_name_len;
4530 struct btrfs_inode_extref *extref;
4532 extref = (struct btrfs_inode_extref *)(ptr +
4534 parent = btrfs_inode_extref_parent(eb, extref);
4535 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4536 name_ptr = (unsigned long)&extref->name;
4537 this_len = sizeof(*extref) + this_name_len;
4540 if (this_name_len > name_len) {
4543 new_name = krealloc(name, this_name_len, GFP_NOFS);
4548 name_len = this_name_len;
4552 read_extent_buffer(eb, name, name_ptr, this_name_len);
4553 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4554 parent, name, this_name_len, 0);
4555 if (di && !IS_ERR(di)) {
4556 struct btrfs_key di_key;
4558 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4560 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4562 *other_ino = di_key.objectid;
4567 } else if (IS_ERR(di)) {
4571 btrfs_release_path(search_path);
4573 cur_offset += this_len;
4577 btrfs_free_path(search_path);
4582 /* log a single inode in the tree log.
4583 * At least one parent directory for this inode must exist in the tree
4584 * or be logged already.
4586 * Any items from this inode changed by the current transaction are copied
4587 * to the log tree. An extra reference is taken on any extents in this
4588 * file, allowing us to avoid a whole pile of corner cases around logging
4589 * blocks that have been removed from the tree.
4591 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * This handles both files and directories.
4596 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4597 struct btrfs_root *root, struct btrfs_inode *inode,
4601 struct btrfs_log_ctx *ctx)
4603 struct btrfs_fs_info *fs_info = root->fs_info;
4604 struct btrfs_path *path;
4605 struct btrfs_path *dst_path;
4606 struct btrfs_key min_key;
4607 struct btrfs_key max_key;
4608 struct btrfs_root *log = root->log_root;
4609 struct extent_buffer *src = NULL;
4610 LIST_HEAD(logged_list);
4611 u64 last_extent = 0;
4615 int ins_start_slot = 0;
4617 bool fast_search = false;
4618 u64 ino = btrfs_ino(inode);
4619 struct extent_map_tree *em_tree = &inode->extent_tree;
4620 u64 logged_isize = 0;
4621 bool need_log_inode_item = true;
4623 path = btrfs_alloc_path();
4626 dst_path = btrfs_alloc_path();
4628 btrfs_free_path(path);
4632 min_key.objectid = ino;
4633 min_key.type = BTRFS_INODE_ITEM_KEY;
4636 max_key.objectid = ino;
4639 /* today the code can only do partial logging of directories */
4640 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4641 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4642 &inode->runtime_flags) &&
4643 inode_only >= LOG_INODE_EXISTS))
4644 max_key.type = BTRFS_XATTR_ITEM_KEY;
4646 max_key.type = (u8)-1;
4647 max_key.offset = (u64)-1;
4650 * Only run delayed items if we are a dir or a new file.
4651 * Otherwise commit the delayed inode only, which is needed in
4652 * order for the log replay code to mark inodes for link count
4653 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4655 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4656 inode->generation > fs_info->last_trans_committed)
4657 ret = btrfs_commit_inode_delayed_items(trans, inode);
4659 ret = btrfs_commit_inode_delayed_inode(inode);
4662 btrfs_free_path(path);
4663 btrfs_free_path(dst_path);
4667 if (inode_only == LOG_OTHER_INODE) {
4668 inode_only = LOG_INODE_EXISTS;
4669 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4671 mutex_lock(&inode->log_mutex);
4675 * a brute force approach to making sure we get the most uptodate
4676 * copies of everything.
4678 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4679 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4681 if (inode_only == LOG_INODE_EXISTS)
4682 max_key_type = BTRFS_XATTR_ITEM_KEY;
4683 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4685 if (inode_only == LOG_INODE_EXISTS) {
4687 * Make sure the new inode item we write to the log has
4688 * the same isize as the current one (if it exists).
4689 * This is necessary to prevent data loss after log
4690 * replay, and also to prevent doing a wrong expanding
4691 * truncate - for e.g. create file, write 4K into offset
4692 * 0, fsync, write 4K into offset 4096, add hard link,
4693 * fsync some other file (to sync log), power fail - if
4694 * we use the inode's current i_size, after log replay
4695 * we get a 8Kb file, with the last 4Kb extent as a hole
4696 * (zeroes), as if an expanding truncate happened,
4697 * instead of getting a file of 4Kb only.
4699 err = logged_inode_size(log, inode, path, &logged_isize);
4703 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4704 &inode->runtime_flags)) {
4705 if (inode_only == LOG_INODE_EXISTS) {
4706 max_key.type = BTRFS_XATTR_ITEM_KEY;
4707 ret = drop_objectid_items(trans, log, path, ino,
4710 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4711 &inode->runtime_flags);
4712 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4713 &inode->runtime_flags);
4715 ret = btrfs_truncate_inode_items(trans,
4716 log, &inode->vfs_inode, 0, 0);
4721 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4722 &inode->runtime_flags) ||
4723 inode_only == LOG_INODE_EXISTS) {
4724 if (inode_only == LOG_INODE_ALL)
4726 max_key.type = BTRFS_XATTR_ITEM_KEY;
4727 ret = drop_objectid_items(trans, log, path, ino,
4730 if (inode_only == LOG_INODE_ALL)
4743 ret = btrfs_search_forward(root, &min_key,
4744 path, trans->transid);
4752 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4753 if (min_key.objectid != ino)
4755 if (min_key.type > max_key.type)
4758 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4759 need_log_inode_item = false;
4761 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4762 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4763 inode->generation == trans->transid) {
4766 ret = btrfs_check_ref_name_override(path->nodes[0],
4767 path->slots[0], &min_key, inode,
4772 } else if (ret > 0 && ctx &&
4773 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4774 struct btrfs_key inode_key;
4775 struct inode *other_inode;
4781 ins_start_slot = path->slots[0];
4783 ret = copy_items(trans, inode, dst_path, path,
4784 &last_extent, ins_start_slot,
4792 btrfs_release_path(path);
4793 inode_key.objectid = other_ino;
4794 inode_key.type = BTRFS_INODE_ITEM_KEY;
4795 inode_key.offset = 0;
4796 other_inode = btrfs_iget(fs_info->sb,
4800 * If the other inode that had a conflicting dir
4801 * entry was deleted in the current transaction,
4802 * we don't need to do more work nor fallback to
4803 * a transaction commit.
4805 if (IS_ERR(other_inode) &&
4806 PTR_ERR(other_inode) == -ENOENT) {
4808 } else if (IS_ERR(other_inode)) {
4809 err = PTR_ERR(other_inode);
4813 * We are safe logging the other inode without
4814 * acquiring its i_mutex as long as we log with
4815 * the LOG_INODE_EXISTS mode. We're safe against
4816 * concurrent renames of the other inode as well
4817 * because during a rename we pin the log and
4818 * update the log with the new name before we
4821 err = btrfs_log_inode(trans, root,
4822 BTRFS_I(other_inode),
4823 LOG_OTHER_INODE, 0, LLONG_MAX,
4833 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4834 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4837 ret = copy_items(trans, inode, dst_path, path,
4838 &last_extent, ins_start_slot,
4839 ins_nr, inode_only, logged_isize);
4846 btrfs_release_path(path);
4852 src = path->nodes[0];
4853 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4856 } else if (!ins_nr) {
4857 ins_start_slot = path->slots[0];
4862 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4863 ins_start_slot, ins_nr, inode_only,
4871 btrfs_release_path(path);
4875 ins_start_slot = path->slots[0];
4878 nritems = btrfs_header_nritems(path->nodes[0]);
4880 if (path->slots[0] < nritems) {
4881 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886 ret = copy_items(trans, inode, dst_path, path,
4887 &last_extent, ins_start_slot,
4888 ins_nr, inode_only, logged_isize);
4896 btrfs_release_path(path);
4898 if (min_key.offset < (u64)-1) {
4900 } else if (min_key.type < max_key.type) {
4908 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4909 ins_start_slot, ins_nr, inode_only,
4919 btrfs_release_path(path);
4920 btrfs_release_path(dst_path);
4921 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4924 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4925 btrfs_release_path(path);
4926 btrfs_release_path(dst_path);
4927 err = btrfs_log_trailing_hole(trans, root, inode, path);
4932 btrfs_release_path(path);
4933 btrfs_release_path(dst_path);
4934 if (need_log_inode_item) {
4935 err = log_inode_item(trans, log, dst_path, inode);
4940 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4941 &logged_list, ctx, start, end);
4946 } else if (inode_only == LOG_INODE_ALL) {
4947 struct extent_map *em, *n;
4949 write_lock(&em_tree->lock);
4951 * We can't just remove every em if we're called for a ranged
4952 * fsync - that is, one that doesn't cover the whole possible
4953 * file range (0 to LLONG_MAX). This is because we can have
4954 * em's that fall outside the range we're logging and therefore
4955 * their ordered operations haven't completed yet
4956 * (btrfs_finish_ordered_io() not invoked yet). This means we
4957 * didn't get their respective file extent item in the fs/subvol
4958 * tree yet, and need to let the next fast fsync (one which
4959 * consults the list of modified extent maps) find the em so
4960 * that it logs a matching file extent item and waits for the
4961 * respective ordered operation to complete (if it's still
4964 * Removing every em outside the range we're logging would make
4965 * the next fast fsync not log their matching file extent items,
4966 * therefore making us lose data after a log replay.
4968 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4970 const u64 mod_end = em->mod_start + em->mod_len - 1;
4972 if (em->mod_start >= start && mod_end <= end)
4973 list_del_init(&em->list);
4975 write_unlock(&em_tree->lock);
4978 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
4979 ret = log_directory_changes(trans, root, inode, path, dst_path,
4987 spin_lock(&inode->lock);
4988 inode->logged_trans = trans->transid;
4989 inode->last_log_commit = inode->last_sub_trans;
4990 spin_unlock(&inode->lock);
4993 btrfs_put_logged_extents(&logged_list);
4995 btrfs_submit_logged_extents(&logged_list, log);
4996 mutex_unlock(&inode->log_mutex);
4998 btrfs_free_path(path);
4999 btrfs_free_path(dst_path);
5004 * Check if we must fallback to a transaction commit when logging an inode.
5005 * This must be called after logging the inode and is used only in the context
5006 * when fsyncing an inode requires the need to log some other inode - in which
5007 * case we can't lock the i_mutex of each other inode we need to log as that
5008 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5009 * log inodes up or down in the hierarchy) or rename operations for example. So
5010 * we take the log_mutex of the inode after we have logged it and then check for
5011 * its last_unlink_trans value - this is safe because any task setting
5012 * last_unlink_trans must take the log_mutex and it must do this before it does
5013 * the actual unlink operation, so if we do this check before a concurrent task
5014 * sets last_unlink_trans it means we've logged a consistent version/state of
5015 * all the inode items, otherwise we are not sure and must do a transaction
5016 * commit (the concurrent task might have only updated last_unlink_trans before
5017 * we logged the inode or it might have also done the unlink).
5019 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5020 struct btrfs_inode *inode)
5022 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5025 mutex_lock(&inode->log_mutex);
5026 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5028 * Make sure any commits to the log are forced to be full
5031 btrfs_set_log_full_commit(fs_info, trans);
5034 mutex_unlock(&inode->log_mutex);
5040 * follow the dentry parent pointers up the chain and see if any
5041 * of the directories in it require a full commit before they can
5042 * be logged. Returns zero if nothing special needs to be done or 1 if
5043 * a full commit is required.
5045 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5046 struct inode *inode,
5047 struct dentry *parent,
5048 struct super_block *sb,
5052 struct dentry *old_parent = NULL;
5053 struct inode *orig_inode = inode;
5056 * for regular files, if its inode is already on disk, we don't
5057 * have to worry about the parents at all. This is because
5058 * we can use the last_unlink_trans field to record renames
5059 * and other fun in this file.
5061 if (S_ISREG(inode->i_mode) &&
5062 BTRFS_I(inode)->generation <= last_committed &&
5063 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5066 if (!S_ISDIR(inode->i_mode)) {
5067 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5069 inode = d_inode(parent);
5074 * If we are logging a directory then we start with our inode,
5075 * not our parent's inode, so we need to skip setting the
5076 * logged_trans so that further down in the log code we don't
5077 * think this inode has already been logged.
5079 if (inode != orig_inode)
5080 BTRFS_I(inode)->logged_trans = trans->transid;
5083 if (btrfs_must_commit_transaction(trans, BTRFS_I(inode))) {
5088 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5091 if (IS_ROOT(parent)) {
5092 inode = d_inode(parent);
5093 if (btrfs_must_commit_transaction(trans, BTRFS_I(inode)))
5098 parent = dget_parent(parent);
5100 old_parent = parent;
5101 inode = d_inode(parent);
5109 struct btrfs_dir_list {
5111 struct list_head list;
5115 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5116 * details about the why it is needed.
5117 * This is a recursive operation - if an existing dentry corresponds to a
5118 * directory, that directory's new entries are logged too (same behaviour as
5119 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5120 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5121 * complains about the following circular lock dependency / possible deadlock:
5125 * lock(&type->i_mutex_dir_key#3/2);
5126 * lock(sb_internal#2);
5127 * lock(&type->i_mutex_dir_key#3/2);
5128 * lock(&sb->s_type->i_mutex_key#14);
5130 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5131 * sb_start_intwrite() in btrfs_start_transaction().
5132 * Not locking i_mutex of the inodes is still safe because:
5134 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5135 * that while logging the inode new references (names) are added or removed
5136 * from the inode, leaving the logged inode item with a link count that does
5137 * not match the number of logged inode reference items. This is fine because
5138 * at log replay time we compute the real number of links and correct the
5139 * link count in the inode item (see replay_one_buffer() and
5140 * link_to_fixup_dir());
5142 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5143 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5144 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5145 * has a size that doesn't match the sum of the lengths of all the logged
5146 * names. This does not result in a problem because if a dir_item key is
5147 * logged but its matching dir_index key is not logged, at log replay time we
5148 * don't use it to replay the respective name (see replay_one_name()). On the
5149 * other hand if only the dir_index key ends up being logged, the respective
5150 * name is added to the fs/subvol tree with both the dir_item and dir_index
5151 * keys created (see replay_one_name()).
5152 * The directory's inode item with a wrong i_size is not a problem as well,
5153 * since we don't use it at log replay time to set the i_size in the inode
5154 * item of the fs/subvol tree (see overwrite_item()).
5156 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5157 struct btrfs_root *root,
5158 struct btrfs_inode *start_inode,
5159 struct btrfs_log_ctx *ctx)
5161 struct btrfs_fs_info *fs_info = root->fs_info;
5162 struct btrfs_root *log = root->log_root;
5163 struct btrfs_path *path;
5164 LIST_HEAD(dir_list);
5165 struct btrfs_dir_list *dir_elem;
5168 path = btrfs_alloc_path();
5172 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5174 btrfs_free_path(path);
5177 dir_elem->ino = btrfs_ino(start_inode);
5178 list_add_tail(&dir_elem->list, &dir_list);
5180 while (!list_empty(&dir_list)) {
5181 struct extent_buffer *leaf;
5182 struct btrfs_key min_key;
5186 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5189 goto next_dir_inode;
5191 min_key.objectid = dir_elem->ino;
5192 min_key.type = BTRFS_DIR_ITEM_KEY;
5195 btrfs_release_path(path);
5196 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5198 goto next_dir_inode;
5199 } else if (ret > 0) {
5201 goto next_dir_inode;
5205 leaf = path->nodes[0];
5206 nritems = btrfs_header_nritems(leaf);
5207 for (i = path->slots[0]; i < nritems; i++) {
5208 struct btrfs_dir_item *di;
5209 struct btrfs_key di_key;
5210 struct inode *di_inode;
5211 struct btrfs_dir_list *new_dir_elem;
5212 int log_mode = LOG_INODE_EXISTS;
5215 btrfs_item_key_to_cpu(leaf, &min_key, i);
5216 if (min_key.objectid != dir_elem->ino ||
5217 min_key.type != BTRFS_DIR_ITEM_KEY)
5218 goto next_dir_inode;
5220 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5221 type = btrfs_dir_type(leaf, di);
5222 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5223 type != BTRFS_FT_DIR)
5225 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5226 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5229 btrfs_release_path(path);
5230 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5231 if (IS_ERR(di_inode)) {
5232 ret = PTR_ERR(di_inode);
5233 goto next_dir_inode;
5236 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5241 ctx->log_new_dentries = false;
5242 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5243 log_mode = LOG_INODE_ALL;
5244 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5245 log_mode, 0, LLONG_MAX, ctx);
5247 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5251 goto next_dir_inode;
5252 if (ctx->log_new_dentries) {
5253 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5255 if (!new_dir_elem) {
5257 goto next_dir_inode;
5259 new_dir_elem->ino = di_key.objectid;
5260 list_add_tail(&new_dir_elem->list, &dir_list);
5265 ret = btrfs_next_leaf(log, path);
5267 goto next_dir_inode;
5268 } else if (ret > 0) {
5270 goto next_dir_inode;
5274 if (min_key.offset < (u64)-1) {
5279 list_del(&dir_elem->list);
5283 btrfs_free_path(path);
5287 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5288 struct inode *inode,
5289 struct btrfs_log_ctx *ctx)
5291 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5293 struct btrfs_path *path;
5294 struct btrfs_key key;
5295 struct btrfs_root *root = BTRFS_I(inode)->root;
5296 const u64 ino = btrfs_ino(BTRFS_I(inode));
5298 path = btrfs_alloc_path();
5301 path->skip_locking = 1;
5302 path->search_commit_root = 1;
5305 key.type = BTRFS_INODE_REF_KEY;
5307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312 struct extent_buffer *leaf = path->nodes[0];
5313 int slot = path->slots[0];
5318 if (slot >= btrfs_header_nritems(leaf)) {
5319 ret = btrfs_next_leaf(root, path);
5327 btrfs_item_key_to_cpu(leaf, &key, slot);
5328 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5329 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5332 item_size = btrfs_item_size_nr(leaf, slot);
5333 ptr = btrfs_item_ptr_offset(leaf, slot);
5334 while (cur_offset < item_size) {
5335 struct btrfs_key inode_key;
5336 struct inode *dir_inode;
5338 inode_key.type = BTRFS_INODE_ITEM_KEY;
5339 inode_key.offset = 0;
5341 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5342 struct btrfs_inode_extref *extref;
5344 extref = (struct btrfs_inode_extref *)
5346 inode_key.objectid = btrfs_inode_extref_parent(
5348 cur_offset += sizeof(*extref);
5349 cur_offset += btrfs_inode_extref_name_len(leaf,
5352 inode_key.objectid = key.offset;
5353 cur_offset = item_size;
5356 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5358 /* If parent inode was deleted, skip it. */
5359 if (IS_ERR(dir_inode))
5363 ctx->log_new_dentries = false;
5364 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5365 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5367 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5369 if (!ret && ctx && ctx->log_new_dentries)
5370 ret = log_new_dir_dentries(trans, root,
5371 BTRFS_I(dir_inode), ctx);
5380 btrfs_free_path(path);
5385 * helper function around btrfs_log_inode to make sure newly created
5386 * parent directories also end up in the log. A minimal inode and backref
5387 * only logging is done of any parent directories that are older than
5388 * the last committed transaction
5390 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5391 struct btrfs_root *root, struct inode *inode,
5392 struct dentry *parent,
5396 struct btrfs_log_ctx *ctx)
5398 struct btrfs_fs_info *fs_info = root->fs_info;
5399 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5400 struct super_block *sb;
5401 struct dentry *old_parent = NULL;
5403 u64 last_committed = fs_info->last_trans_committed;
5404 bool log_dentries = false;
5405 struct inode *orig_inode = inode;
5409 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5415 * The prev transaction commit doesn't complete, we need do
5416 * full commit by ourselves.
5418 if (fs_info->last_trans_log_full_commit >
5419 fs_info->last_trans_committed) {
5424 if (root != BTRFS_I(inode)->root ||
5425 btrfs_root_refs(&root->root_item) == 0) {
5430 ret = check_parent_dirs_for_sync(trans, inode, parent,
5431 sb, last_committed);
5435 if (btrfs_inode_in_log(BTRFS_I(inode), trans->transid)) {
5436 ret = BTRFS_NO_LOG_SYNC;
5440 ret = start_log_trans(trans, root, ctx);
5444 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), inode_only,
5450 * for regular files, if its inode is already on disk, we don't
5451 * have to worry about the parents at all. This is because
5452 * we can use the last_unlink_trans field to record renames
5453 * and other fun in this file.
5455 if (S_ISREG(inode->i_mode) &&
5456 BTRFS_I(inode)->generation <= last_committed &&
5457 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5462 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5463 log_dentries = true;
5466 * On unlink we must make sure all our current and old parent directory
5467 * inodes are fully logged. This is to prevent leaving dangling
5468 * directory index entries in directories that were our parents but are
5469 * not anymore. Not doing this results in old parent directory being
5470 * impossible to delete after log replay (rmdir will always fail with
5471 * error -ENOTEMPTY).
5477 * ln testdir/foo testdir/bar
5479 * unlink testdir/bar
5480 * xfs_io -c fsync testdir/foo
5482 * mount fs, triggers log replay
5484 * If we don't log the parent directory (testdir), after log replay the
5485 * directory still has an entry pointing to the file inode using the bar
5486 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5487 * the file inode has a link count of 1.
5493 * ln foo testdir/foo2
5494 * ln foo testdir/foo3
5496 * unlink testdir/foo3
5497 * xfs_io -c fsync foo
5499 * mount fs, triggers log replay
5501 * Similar as the first example, after log replay the parent directory
5502 * testdir still has an entry pointing to the inode file with name foo3
5503 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5504 * and has a link count of 2.
5506 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5507 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5513 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5516 inode = d_inode(parent);
5517 if (root != BTRFS_I(inode)->root)
5520 if (BTRFS_I(inode)->generation > last_committed) {
5521 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5527 if (IS_ROOT(parent))
5530 parent = dget_parent(parent);
5532 old_parent = parent;
5535 ret = log_new_dir_dentries(trans, root, BTRFS_I(orig_inode), ctx);
5541 btrfs_set_log_full_commit(fs_info, trans);
5546 btrfs_remove_log_ctx(root, ctx);
5547 btrfs_end_log_trans(root);
5553 * it is not safe to log dentry if the chunk root has added new
5554 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5555 * If this returns 1, you must commit the transaction to safely get your
5558 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5559 struct btrfs_root *root, struct dentry *dentry,
5562 struct btrfs_log_ctx *ctx)
5564 struct dentry *parent = dget_parent(dentry);
5567 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5568 start, end, 0, ctx);
5575 * should be called during mount to recover any replay any log trees
5578 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5581 struct btrfs_path *path;
5582 struct btrfs_trans_handle *trans;
5583 struct btrfs_key key;
5584 struct btrfs_key found_key;
5585 struct btrfs_key tmp_key;
5586 struct btrfs_root *log;
5587 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5588 struct walk_control wc = {
5589 .process_func = process_one_buffer,
5593 path = btrfs_alloc_path();
5597 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5599 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5600 if (IS_ERR(trans)) {
5601 ret = PTR_ERR(trans);
5608 ret = walk_log_tree(trans, log_root_tree, &wc);
5610 btrfs_handle_fs_error(fs_info, ret,
5611 "Failed to pin buffers while recovering log root tree.");
5616 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5617 key.offset = (u64)-1;
5618 key.type = BTRFS_ROOT_ITEM_KEY;
5621 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5624 btrfs_handle_fs_error(fs_info, ret,
5625 "Couldn't find tree log root.");
5629 if (path->slots[0] == 0)
5633 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5635 btrfs_release_path(path);
5636 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5639 log = btrfs_read_fs_root(log_root_tree, &found_key);
5642 btrfs_handle_fs_error(fs_info, ret,
5643 "Couldn't read tree log root.");
5647 tmp_key.objectid = found_key.offset;
5648 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5649 tmp_key.offset = (u64)-1;
5651 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5652 if (IS_ERR(wc.replay_dest)) {
5653 ret = PTR_ERR(wc.replay_dest);
5654 free_extent_buffer(log->node);
5655 free_extent_buffer(log->commit_root);
5657 btrfs_handle_fs_error(fs_info, ret,
5658 "Couldn't read target root for tree log recovery.");
5662 wc.replay_dest->log_root = log;
5663 btrfs_record_root_in_trans(trans, wc.replay_dest);
5664 ret = walk_log_tree(trans, log, &wc);
5666 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5667 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671 key.offset = found_key.offset - 1;
5672 wc.replay_dest->log_root = NULL;
5673 free_extent_buffer(log->node);
5674 free_extent_buffer(log->commit_root);
5680 if (found_key.offset == 0)
5683 btrfs_release_path(path);
5685 /* step one is to pin it all, step two is to replay just inodes */
5688 wc.process_func = replay_one_buffer;
5689 wc.stage = LOG_WALK_REPLAY_INODES;
5692 /* step three is to replay everything */
5693 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5698 btrfs_free_path(path);
5700 /* step 4: commit the transaction, which also unpins the blocks */
5701 ret = btrfs_commit_transaction(trans);
5705 free_extent_buffer(log_root_tree->node);
5706 log_root_tree->log_root = NULL;
5707 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5708 kfree(log_root_tree);
5713 btrfs_end_transaction(wc.trans);
5714 btrfs_free_path(path);
5719 * there are some corner cases where we want to force a full
5720 * commit instead of allowing a directory to be logged.
5722 * They revolve around files there were unlinked from the directory, and
5723 * this function updates the parent directory so that a full commit is
5724 * properly done if it is fsync'd later after the unlinks are done.
5726 * Must be called before the unlink operations (updates to the subvolume tree,
5727 * inodes, etc) are done.
5729 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5730 struct btrfs_inode *dir, struct btrfs_inode *inode,
5734 * when we're logging a file, if it hasn't been renamed
5735 * or unlinked, and its inode is fully committed on disk,
5736 * we don't have to worry about walking up the directory chain
5737 * to log its parents.
5739 * So, we use the last_unlink_trans field to put this transid
5740 * into the file. When the file is logged we check it and
5741 * don't log the parents if the file is fully on disk.
5743 mutex_lock(&inode->log_mutex);
5744 inode->last_unlink_trans = trans->transid;
5745 mutex_unlock(&inode->log_mutex);
5748 * if this directory was already logged any new
5749 * names for this file/dir will get recorded
5752 if (dir->logged_trans == trans->transid)
5756 * if the inode we're about to unlink was logged,
5757 * the log will be properly updated for any new names
5759 if (inode->logged_trans == trans->transid)
5763 * when renaming files across directories, if the directory
5764 * there we're unlinking from gets fsync'd later on, there's
5765 * no way to find the destination directory later and fsync it
5766 * properly. So, we have to be conservative and force commits
5767 * so the new name gets discovered.
5772 /* we can safely do the unlink without any special recording */
5776 mutex_lock(&dir->log_mutex);
5777 dir->last_unlink_trans = trans->transid;
5778 mutex_unlock(&dir->log_mutex);
5782 * Make sure that if someone attempts to fsync the parent directory of a deleted
5783 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5784 * that after replaying the log tree of the parent directory's root we will not
5785 * see the snapshot anymore and at log replay time we will not see any log tree
5786 * corresponding to the deleted snapshot's root, which could lead to replaying
5787 * it after replaying the log tree of the parent directory (which would replay
5788 * the snapshot delete operation).
5790 * Must be called before the actual snapshot destroy operation (updates to the
5791 * parent root and tree of tree roots trees, etc) are done.
5793 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5794 struct btrfs_inode *dir)
5796 mutex_lock(&dir->log_mutex);
5797 dir->last_unlink_trans = trans->transid;
5798 mutex_unlock(&dir->log_mutex);
5802 * Call this after adding a new name for a file and it will properly
5803 * update the log to reflect the new name.
5805 * It will return zero if all goes well, and it will return 1 if a
5806 * full transaction commit is required.
5808 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5809 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5810 struct dentry *parent)
5812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5813 struct btrfs_root * root = inode->root;
5816 * this will force the logging code to walk the dentry chain
5819 if (S_ISREG(inode->vfs_inode.i_mode))
5820 inode->last_unlink_trans = trans->transid;
5823 * if this inode hasn't been logged and directory we're renaming it
5824 * from hasn't been logged, we don't need to log it
5826 if (inode->logged_trans <= fs_info->last_trans_committed &&
5827 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5830 return btrfs_log_inode_parent(trans, root, &inode->vfs_inode, parent, 0,
5831 LLONG_MAX, 1, NULL);