2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 r1_bio->bios[j] = bio;
117 * Allocate RESYNC_PAGES data pages and attach them to
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
130 if (bio_alloc_pages(bio, gfp_flags))
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 r1_bio->master_bio = NULL;
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
160 static void r1buf_pool_free(void *__r1_bio, void *data)
162 struct pool_info *pi = data;
164 struct r1bio *r1bio = __r1_bio;
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
176 r1bio_pool_free(r1bio, data);
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
191 static void free_r1bio(struct r1bio *r1_bio)
193 struct r1conf *conf = r1_bio->mddev->private;
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
199 static void put_buf(struct r1bio *r1_bio)
201 struct r1conf *conf = r1_bio->mddev->private;
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 mempool_free(r1_bio, conf->r1buf_pool);
215 static void reschedule_retry(struct r1bio *r1_bio)
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
224 spin_unlock_irqrestore(&conf->device_lock, flags);
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
235 static void call_bio_endio(struct r1bio *r1_bio)
237 struct bio *bio = r1_bio->master_bio;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
243 if (bio->bi_phys_segments) {
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf->wait_barrier);
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
262 * Wake up any possible resync thread that waits for the device
265 allow_barrier(conf, start_next_window, bi_sector);
269 static void raid_end_bio_io(struct r1bio *r1_bio)
271 struct bio *bio = r1_bio->master_bio;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
280 call_bio_endio(r1_bio);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 struct r1conf *conf = r1_bio->mddev->private;
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
315 static void raid1_end_read_request(struct bio *bio, int error)
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
320 struct r1conf *conf = r1_bio->mddev->private;
322 mirror = r1_bio->read_disk;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror, r1_bio);
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
341 spin_unlock_irqrestore(&conf->device_lock, flags);
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
351 char b[BDEVNAME_SIZE];
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
356 bdevname(conf->mirrors[mirror].rdev->bdev,
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio *r1_bio)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
384 static void r1_bio_write_done(struct r1bio *r1_bio)
386 if (!atomic_dec_and_test(&r1_bio->remaining))
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
396 raid_end_bio_io(r1_bio);
400 static void raid1_end_write_request(struct bio *bio, int error)
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
408 mirror = find_bio_disk(r1_bio, bio);
411 * 'one mirror IO has finished' event handler:
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
421 set_bit(R1BIO_WriteError, &r1_bio->state);
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
436 r1_bio->bios[mirror] = NULL;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
488 * Let's see if all mirrored write operations have finished
491 r1_bio_write_done(r1_bio);
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
509 * The rdev for the device selected will have nr_pending incremented.
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 const sector_t this_sector = r1_bio->sector;
515 int best_good_sectors;
516 int best_disk, best_dist_disk, best_pending_disk;
520 unsigned int min_pending;
521 struct md_rdev *rdev;
523 int choose_next_idle;
527 * Check if we can balance. We can balance on the whole
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
532 sectors = r1_bio->sectors;
535 best_dist = MaxSector;
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
538 best_good_sectors = 0;
540 choose_next_idle = 0;
542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
548 unsigned int pending;
551 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 if (r1_bio->bios[disk] == IO_BLOCKED
554 || test_bit(Unmerged, &rdev->flags)
555 || test_bit(Faulty, &rdev->flags))
557 if (!test_bit(In_sync, &rdev->flags) &&
558 rdev->recovery_offset < this_sector + sectors)
560 if (test_bit(WriteMostly, &rdev->flags)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (first_bad < this_sector)
567 /* Cannot use this */
569 best_good_sectors = first_bad - this_sector;
571 best_good_sectors = sectors;
576 /* This is a reasonable device to use. It might
579 if (is_badblock(rdev, this_sector, sectors,
580 &first_bad, &bad_sectors)) {
581 if (best_dist < MaxSector)
582 /* already have a better device */
584 if (first_bad <= this_sector) {
585 /* cannot read here. If this is the 'primary'
586 * device, then we must not read beyond
587 * bad_sectors from another device..
589 bad_sectors -= (this_sector - first_bad);
590 if (choose_first && sectors > bad_sectors)
591 sectors = bad_sectors;
592 if (best_good_sectors > sectors)
593 best_good_sectors = sectors;
596 sector_t good_sectors = first_bad - this_sector;
597 if (good_sectors > best_good_sectors) {
598 best_good_sectors = good_sectors;
606 best_good_sectors = sectors;
608 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 has_nonrot_disk |= nonrot;
610 pending = atomic_read(&rdev->nr_pending);
611 dist = abs(this_sector - conf->mirrors[disk].head_position);
616 /* Don't change to another disk for sequential reads */
617 if (conf->mirrors[disk].next_seq_sect == this_sector
619 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 struct raid1_info *mirror = &conf->mirrors[disk];
624 * If buffered sequential IO size exceeds optimal
625 * iosize, check if there is idle disk. If yes, choose
626 * the idle disk. read_balance could already choose an
627 * idle disk before noticing it's a sequential IO in
628 * this disk. This doesn't matter because this disk
629 * will idle, next time it will be utilized after the
630 * first disk has IO size exceeds optimal iosize. In
631 * this way, iosize of the first disk will be optimal
632 * iosize at least. iosize of the second disk might be
633 * small, but not a big deal since when the second disk
634 * starts IO, the first disk is likely still busy.
636 if (nonrot && opt_iosize > 0 &&
637 mirror->seq_start != MaxSector &&
638 mirror->next_seq_sect > opt_iosize &&
639 mirror->next_seq_sect - opt_iosize >=
641 choose_next_idle = 1;
646 /* If device is idle, use it */
652 if (choose_next_idle)
655 if (min_pending > pending) {
656 min_pending = pending;
657 best_pending_disk = disk;
660 if (dist < best_dist) {
662 best_dist_disk = disk;
667 * If all disks are rotational, choose the closest disk. If any disk is
668 * non-rotational, choose the disk with less pending request even the
669 * disk is rotational, which might/might not be optimal for raids with
670 * mixed ratation/non-rotational disks depending on workload.
672 if (best_disk == -1) {
674 best_disk = best_pending_disk;
676 best_disk = best_dist_disk;
679 if (best_disk >= 0) {
680 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
683 atomic_inc(&rdev->nr_pending);
684 if (test_bit(Faulty, &rdev->flags)) {
685 /* cannot risk returning a device that failed
686 * before we inc'ed nr_pending
688 rdev_dec_pending(rdev, conf->mddev);
691 sectors = best_good_sectors;
693 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 conf->mirrors[best_disk].seq_start = this_sector;
696 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
699 *max_sectors = sectors;
704 static int raid1_mergeable_bvec(struct request_queue *q,
705 struct bvec_merge_data *bvm,
706 struct bio_vec *biovec)
708 struct mddev *mddev = q->queuedata;
709 struct r1conf *conf = mddev->private;
710 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711 int max = biovec->bv_len;
713 if (mddev->merge_check_needed) {
716 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717 struct md_rdev *rdev = rcu_dereference(
718 conf->mirrors[disk].rdev);
719 if (rdev && !test_bit(Faulty, &rdev->flags)) {
720 struct request_queue *q =
721 bdev_get_queue(rdev->bdev);
722 if (q->merge_bvec_fn) {
723 bvm->bi_sector = sector +
725 bvm->bi_bdev = rdev->bdev;
726 max = min(max, q->merge_bvec_fn(
737 int md_raid1_congested(struct mddev *mddev, int bits)
739 struct r1conf *conf = mddev->private;
742 if ((bits & (1 << BDI_async_congested)) &&
743 conf->pending_count >= max_queued_requests)
747 for (i = 0; i < conf->raid_disks * 2; i++) {
748 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
749 if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 struct request_queue *q = bdev_get_queue(rdev->bdev);
754 /* Note the '|| 1' - when read_balance prefers
755 * non-congested targets, it can be removed
757 if ((bits & (1<<BDI_async_congested)) || 1)
758 ret |= bdi_congested(&q->backing_dev_info, bits);
760 ret &= bdi_congested(&q->backing_dev_info, bits);
766 EXPORT_SYMBOL_GPL(md_raid1_congested);
768 static int raid1_congested(void *data, int bits)
770 struct mddev *mddev = data;
772 return mddev_congested(mddev, bits) ||
773 md_raid1_congested(mddev, bits);
776 static void flush_pending_writes(struct r1conf *conf)
778 /* Any writes that have been queued but are awaiting
779 * bitmap updates get flushed here.
781 spin_lock_irq(&conf->device_lock);
783 if (conf->pending_bio_list.head) {
785 bio = bio_list_get(&conf->pending_bio_list);
786 conf->pending_count = 0;
787 spin_unlock_irq(&conf->device_lock);
788 /* flush any pending bitmap writes to
789 * disk before proceeding w/ I/O */
790 bitmap_unplug(conf->mddev->bitmap);
791 wake_up(&conf->wait_barrier);
793 while (bio) { /* submit pending writes */
794 struct bio *next = bio->bi_next;
796 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
797 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
801 generic_make_request(bio);
805 spin_unlock_irq(&conf->device_lock);
809 * Sometimes we need to suspend IO while we do something else,
810 * either some resync/recovery, or reconfigure the array.
811 * To do this we raise a 'barrier'.
812 * The 'barrier' is a counter that can be raised multiple times
813 * to count how many activities are happening which preclude
815 * We can only raise the barrier if there is no pending IO.
816 * i.e. if nr_pending == 0.
817 * We choose only to raise the barrier if no-one is waiting for the
818 * barrier to go down. This means that as soon as an IO request
819 * is ready, no other operations which require a barrier will start
820 * until the IO request has had a chance.
822 * So: regular IO calls 'wait_barrier'. When that returns there
823 * is no backgroup IO happening, It must arrange to call
824 * allow_barrier when it has finished its IO.
825 * backgroup IO calls must call raise_barrier. Once that returns
826 * there is no normal IO happeing. It must arrange to call
827 * lower_barrier when the particular background IO completes.
829 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
831 spin_lock_irq(&conf->resync_lock);
833 /* Wait until no block IO is waiting */
834 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
837 /* block any new IO from starting */
839 conf->next_resync = sector_nr;
841 /* For these conditions we must wait:
842 * A: while the array is in frozen state
843 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
844 * the max count which allowed.
845 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
846 * next resync will reach to the window which normal bios are
848 * D: while there are any active requests in the current window.
850 wait_event_lock_irq(conf->wait_barrier,
851 !conf->array_frozen &&
852 conf->barrier < RESYNC_DEPTH &&
853 conf->current_window_requests == 0 &&
854 (conf->start_next_window >=
855 conf->next_resync + RESYNC_SECTORS),
859 spin_unlock_irq(&conf->resync_lock);
862 static void lower_barrier(struct r1conf *conf)
865 BUG_ON(conf->barrier <= 0);
866 spin_lock_irqsave(&conf->resync_lock, flags);
869 spin_unlock_irqrestore(&conf->resync_lock, flags);
870 wake_up(&conf->wait_barrier);
873 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
877 if (conf->array_frozen || !bio)
879 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880 if ((conf->mddev->curr_resync_completed
881 >= bio_end_sector(bio)) ||
882 (conf->next_resync + NEXT_NORMALIO_DISTANCE
883 <= bio->bi_iter.bi_sector))
892 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
896 spin_lock_irq(&conf->resync_lock);
897 if (need_to_wait_for_sync(conf, bio)) {
899 /* Wait for the barrier to drop.
900 * However if there are already pending
901 * requests (preventing the barrier from
902 * rising completely), and the
903 * per-process bio queue isn't empty,
904 * then don't wait, as we need to empty
905 * that queue to allow conf->start_next_window
908 wait_event_lock_irq(conf->wait_barrier,
909 !conf->array_frozen &&
911 ((conf->start_next_window <
912 conf->next_resync + RESYNC_SECTORS) &&
914 !bio_list_empty(current->bio_list))),
919 if (bio && bio_data_dir(bio) == WRITE) {
920 if (bio->bi_iter.bi_sector >=
921 conf->mddev->curr_resync_completed) {
922 if (conf->start_next_window == MaxSector)
923 conf->start_next_window =
925 NEXT_NORMALIO_DISTANCE;
927 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
928 <= bio->bi_iter.bi_sector)
929 conf->next_window_requests++;
931 conf->current_window_requests++;
932 sector = conf->start_next_window;
937 spin_unlock_irq(&conf->resync_lock);
941 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
946 spin_lock_irqsave(&conf->resync_lock, flags);
948 if (start_next_window) {
949 if (start_next_window == conf->start_next_window) {
950 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
952 conf->next_window_requests--;
954 conf->current_window_requests--;
956 conf->current_window_requests--;
958 if (!conf->current_window_requests) {
959 if (conf->next_window_requests) {
960 conf->current_window_requests =
961 conf->next_window_requests;
962 conf->next_window_requests = 0;
963 conf->start_next_window +=
964 NEXT_NORMALIO_DISTANCE;
966 conf->start_next_window = MaxSector;
969 spin_unlock_irqrestore(&conf->resync_lock, flags);
970 wake_up(&conf->wait_barrier);
973 static void freeze_array(struct r1conf *conf, int extra)
975 /* stop syncio and normal IO and wait for everything to
977 * We wait until nr_pending match nr_queued+extra
978 * This is called in the context of one normal IO request
979 * that has failed. Thus any sync request that might be pending
980 * will be blocked by nr_pending, and we need to wait for
981 * pending IO requests to complete or be queued for re-try.
982 * Thus the number queued (nr_queued) plus this request (extra)
983 * must match the number of pending IOs (nr_pending) before
986 spin_lock_irq(&conf->resync_lock);
987 conf->array_frozen = 1;
988 wait_event_lock_irq_cmd(conf->wait_barrier,
989 conf->nr_pending == conf->nr_queued+extra,
991 flush_pending_writes(conf));
992 spin_unlock_irq(&conf->resync_lock);
994 static void unfreeze_array(struct r1conf *conf)
996 /* reverse the effect of the freeze */
997 spin_lock_irq(&conf->resync_lock);
998 conf->array_frozen = 0;
999 wake_up(&conf->wait_barrier);
1000 spin_unlock_irq(&conf->resync_lock);
1003 /* duplicate the data pages for behind I/O
1005 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1008 struct bio_vec *bvec;
1009 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1011 if (unlikely(!bvecs))
1014 bio_for_each_segment_all(bvec, bio, i) {
1016 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1017 if (unlikely(!bvecs[i].bv_page))
1019 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1020 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1021 kunmap(bvecs[i].bv_page);
1022 kunmap(bvec->bv_page);
1024 r1_bio->behind_bvecs = bvecs;
1025 r1_bio->behind_page_count = bio->bi_vcnt;
1026 set_bit(R1BIO_BehindIO, &r1_bio->state);
1030 for (i = 0; i < bio->bi_vcnt; i++)
1031 if (bvecs[i].bv_page)
1032 put_page(bvecs[i].bv_page);
1034 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1035 bio->bi_iter.bi_size);
1038 struct raid1_plug_cb {
1039 struct blk_plug_cb cb;
1040 struct bio_list pending;
1044 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1046 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1048 struct mddev *mddev = plug->cb.data;
1049 struct r1conf *conf = mddev->private;
1052 if (from_schedule || current->bio_list) {
1053 spin_lock_irq(&conf->device_lock);
1054 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055 conf->pending_count += plug->pending_cnt;
1056 spin_unlock_irq(&conf->device_lock);
1057 wake_up(&conf->wait_barrier);
1058 md_wakeup_thread(mddev->thread);
1063 /* we aren't scheduling, so we can do the write-out directly. */
1064 bio = bio_list_get(&plug->pending);
1065 bitmap_unplug(mddev->bitmap);
1066 wake_up(&conf->wait_barrier);
1068 while (bio) { /* submit pending writes */
1069 struct bio *next = bio->bi_next;
1070 bio->bi_next = NULL;
1071 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1072 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1073 /* Just ignore it */
1076 generic_make_request(bio);
1082 static void make_request(struct mddev *mddev, struct bio * bio)
1084 struct r1conf *conf = mddev->private;
1085 struct raid1_info *mirror;
1086 struct r1bio *r1_bio;
1087 struct bio *read_bio;
1089 struct bitmap *bitmap;
1090 unsigned long flags;
1091 const int rw = bio_data_dir(bio);
1092 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1093 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1094 const unsigned long do_discard = (bio->bi_rw
1095 & (REQ_DISCARD | REQ_SECURE));
1096 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1097 struct md_rdev *blocked_rdev;
1098 struct blk_plug_cb *cb;
1099 struct raid1_plug_cb *plug = NULL;
1101 int sectors_handled;
1103 sector_t start_next_window;
1106 * Register the new request and wait if the reconstruction
1107 * thread has put up a bar for new requests.
1108 * Continue immediately if no resync is active currently.
1111 md_write_start(mddev, bio); /* wait on superblock update early */
1113 if (bio_data_dir(bio) == WRITE &&
1114 bio_end_sector(bio) > mddev->suspend_lo &&
1115 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1116 /* As the suspend_* range is controlled by
1117 * userspace, we want an interruptible
1122 flush_signals(current);
1123 prepare_to_wait(&conf->wait_barrier,
1124 &w, TASK_INTERRUPTIBLE);
1125 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130 finish_wait(&conf->wait_barrier, &w);
1133 start_next_window = wait_barrier(conf, bio);
1135 bitmap = mddev->bitmap;
1138 * make_request() can abort the operation when READA is being
1139 * used and no empty request is available.
1142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1144 r1_bio->master_bio = bio;
1145 r1_bio->sectors = bio_sectors(bio);
1147 r1_bio->mddev = mddev;
1148 r1_bio->sector = bio->bi_iter.bi_sector;
1150 /* We might need to issue multiple reads to different
1151 * devices if there are bad blocks around, so we keep
1152 * track of the number of reads in bio->bi_phys_segments.
1153 * If this is 0, there is only one r1_bio and no locking
1154 * will be needed when requests complete. If it is
1155 * non-zero, then it is the number of not-completed requests.
1157 bio->bi_phys_segments = 0;
1158 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162 * read balancing logic:
1167 rdisk = read_balance(conf, r1_bio, &max_sectors);
1170 /* couldn't find anywhere to read from */
1171 raid_end_bio_io(r1_bio);
1174 mirror = conf->mirrors + rdisk;
1176 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1178 /* Reading from a write-mostly device must
1179 * take care not to over-take any writes
1182 wait_event(bitmap->behind_wait,
1183 atomic_read(&bitmap->behind_writes) == 0);
1185 r1_bio->read_disk = rdisk;
1186 r1_bio->start_next_window = 0;
1188 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1189 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192 r1_bio->bios[rdisk] = read_bio;
1194 read_bio->bi_iter.bi_sector = r1_bio->sector +
1195 mirror->rdev->data_offset;
1196 read_bio->bi_bdev = mirror->rdev->bdev;
1197 read_bio->bi_end_io = raid1_end_read_request;
1198 read_bio->bi_rw = READ | do_sync;
1199 read_bio->bi_private = r1_bio;
1201 if (max_sectors < r1_bio->sectors) {
1202 /* could not read all from this device, so we will
1203 * need another r1_bio.
1206 sectors_handled = (r1_bio->sector + max_sectors
1207 - bio->bi_iter.bi_sector);
1208 r1_bio->sectors = max_sectors;
1209 spin_lock_irq(&conf->device_lock);
1210 if (bio->bi_phys_segments == 0)
1211 bio->bi_phys_segments = 2;
1213 bio->bi_phys_segments++;
1214 spin_unlock_irq(&conf->device_lock);
1215 /* Cannot call generic_make_request directly
1216 * as that will be queued in __make_request
1217 * and subsequent mempool_alloc might block waiting
1218 * for it. So hand bio over to raid1d.
1220 reschedule_retry(r1_bio);
1222 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1224 r1_bio->master_bio = bio;
1225 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1227 r1_bio->mddev = mddev;
1228 r1_bio->sector = bio->bi_iter.bi_sector +
1232 generic_make_request(read_bio);
1239 if (conf->pending_count >= max_queued_requests) {
1240 md_wakeup_thread(mddev->thread);
1241 wait_event(conf->wait_barrier,
1242 conf->pending_count < max_queued_requests);
1244 /* first select target devices under rcu_lock and
1245 * inc refcount on their rdev. Record them by setting
1247 * If there are known/acknowledged bad blocks on any device on
1248 * which we have seen a write error, we want to avoid writing those
1250 * This potentially requires several writes to write around
1251 * the bad blocks. Each set of writes gets it's own r1bio
1252 * with a set of bios attached.
1255 disks = conf->raid_disks * 2;
1257 r1_bio->start_next_window = start_next_window;
1258 blocked_rdev = NULL;
1260 max_sectors = r1_bio->sectors;
1261 for (i = 0; i < disks; i++) {
1262 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1263 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1264 atomic_inc(&rdev->nr_pending);
1265 blocked_rdev = rdev;
1268 r1_bio->bios[i] = NULL;
1269 if (!rdev || test_bit(Faulty, &rdev->flags)
1270 || test_bit(Unmerged, &rdev->flags)) {
1271 if (i < conf->raid_disks)
1272 set_bit(R1BIO_Degraded, &r1_bio->state);
1276 atomic_inc(&rdev->nr_pending);
1277 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1282 is_bad = is_badblock(rdev, r1_bio->sector,
1284 &first_bad, &bad_sectors);
1286 /* mustn't write here until the bad block is
1288 set_bit(BlockedBadBlocks, &rdev->flags);
1289 blocked_rdev = rdev;
1292 if (is_bad && first_bad <= r1_bio->sector) {
1293 /* Cannot write here at all */
1294 bad_sectors -= (r1_bio->sector - first_bad);
1295 if (bad_sectors < max_sectors)
1296 /* mustn't write more than bad_sectors
1297 * to other devices yet
1299 max_sectors = bad_sectors;
1300 rdev_dec_pending(rdev, mddev);
1301 /* We don't set R1BIO_Degraded as that
1302 * only applies if the disk is
1303 * missing, so it might be re-added,
1304 * and we want to know to recover this
1306 * In this case the device is here,
1307 * and the fact that this chunk is not
1308 * in-sync is recorded in the bad
1314 int good_sectors = first_bad - r1_bio->sector;
1315 if (good_sectors < max_sectors)
1316 max_sectors = good_sectors;
1319 r1_bio->bios[i] = bio;
1323 if (unlikely(blocked_rdev)) {
1324 /* Wait for this device to become unblocked */
1326 sector_t old = start_next_window;
1328 for (j = 0; j < i; j++)
1329 if (r1_bio->bios[j])
1330 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1332 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1333 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1334 start_next_window = wait_barrier(conf, bio);
1336 * We must make sure the multi r1bios of bio have
1337 * the same value of bi_phys_segments
1339 if (bio->bi_phys_segments && old &&
1340 old != start_next_window)
1341 /* Wait for the former r1bio(s) to complete */
1342 wait_event(conf->wait_barrier,
1343 bio->bi_phys_segments == 1);
1347 if (max_sectors < r1_bio->sectors) {
1348 /* We are splitting this write into multiple parts, so
1349 * we need to prepare for allocating another r1_bio.
1351 r1_bio->sectors = max_sectors;
1352 spin_lock_irq(&conf->device_lock);
1353 if (bio->bi_phys_segments == 0)
1354 bio->bi_phys_segments = 2;
1356 bio->bi_phys_segments++;
1357 spin_unlock_irq(&conf->device_lock);
1359 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1361 atomic_set(&r1_bio->remaining, 1);
1362 atomic_set(&r1_bio->behind_remaining, 0);
1365 for (i = 0; i < disks; i++) {
1367 if (!r1_bio->bios[i])
1370 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1371 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375 * Not if there are too many, or cannot
1376 * allocate memory, or a reader on WriteMostly
1377 * is waiting for behind writes to flush */
1379 (atomic_read(&bitmap->behind_writes)
1380 < mddev->bitmap_info.max_write_behind) &&
1381 !waitqueue_active(&bitmap->behind_wait))
1382 alloc_behind_pages(mbio, r1_bio);
1384 bitmap_startwrite(bitmap, r1_bio->sector,
1386 test_bit(R1BIO_BehindIO,
1390 if (r1_bio->behind_bvecs) {
1391 struct bio_vec *bvec;
1395 * We trimmed the bio, so _all is legit
1397 bio_for_each_segment_all(bvec, mbio, j)
1398 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1399 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1400 atomic_inc(&r1_bio->behind_remaining);
1403 r1_bio->bios[i] = mbio;
1405 mbio->bi_iter.bi_sector = (r1_bio->sector +
1406 conf->mirrors[i].rdev->data_offset);
1407 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1408 mbio->bi_end_io = raid1_end_write_request;
1410 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1411 mbio->bi_private = r1_bio;
1413 atomic_inc(&r1_bio->remaining);
1415 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1417 plug = container_of(cb, struct raid1_plug_cb, cb);
1420 spin_lock_irqsave(&conf->device_lock, flags);
1422 bio_list_add(&plug->pending, mbio);
1423 plug->pending_cnt++;
1425 bio_list_add(&conf->pending_bio_list, mbio);
1426 conf->pending_count++;
1428 spin_unlock_irqrestore(&conf->device_lock, flags);
1430 md_wakeup_thread(mddev->thread);
1432 /* Mustn't call r1_bio_write_done before this next test,
1433 * as it could result in the bio being freed.
1435 if (sectors_handled < bio_sectors(bio)) {
1436 r1_bio_write_done(r1_bio);
1437 /* We need another r1_bio. It has already been counted
1438 * in bio->bi_phys_segments
1440 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1441 r1_bio->master_bio = bio;
1442 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1444 r1_bio->mddev = mddev;
1445 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449 r1_bio_write_done(r1_bio);
1451 /* In case raid1d snuck in to freeze_array */
1452 wake_up(&conf->wait_barrier);
1455 static void status(struct seq_file *seq, struct mddev *mddev)
1457 struct r1conf *conf = mddev->private;
1460 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1461 conf->raid_disks - mddev->degraded);
1463 for (i = 0; i < conf->raid_disks; i++) {
1464 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1465 seq_printf(seq, "%s",
1466 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469 seq_printf(seq, "]");
1472 static void error(struct mddev *mddev, struct md_rdev *rdev)
1474 char b[BDEVNAME_SIZE];
1475 struct r1conf *conf = mddev->private;
1478 * If it is not operational, then we have already marked it as dead
1479 * else if it is the last working disks, ignore the error, let the
1480 * next level up know.
1481 * else mark the drive as failed
1483 if (test_bit(In_sync, &rdev->flags)
1484 && (conf->raid_disks - mddev->degraded) == 1) {
1486 * Don't fail the drive, act as though we were just a
1487 * normal single drive.
1488 * However don't try a recovery from this drive as
1489 * it is very likely to fail.
1491 conf->recovery_disabled = mddev->recovery_disabled;
1494 set_bit(Blocked, &rdev->flags);
1495 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1496 unsigned long flags;
1497 spin_lock_irqsave(&conf->device_lock, flags);
1499 set_bit(Faulty, &rdev->flags);
1500 spin_unlock_irqrestore(&conf->device_lock, flags);
1502 set_bit(Faulty, &rdev->flags);
1504 * if recovery is running, make sure it aborts.
1506 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1507 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1509 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1510 "md/raid1:%s: Operation continuing on %d devices.\n",
1511 mdname(mddev), bdevname(rdev->bdev, b),
1512 mdname(mddev), conf->raid_disks - mddev->degraded);
1515 static void print_conf(struct r1conf *conf)
1519 printk(KERN_DEBUG "RAID1 conf printout:\n");
1521 printk(KERN_DEBUG "(!conf)\n");
1524 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528 for (i = 0; i < conf->raid_disks; i++) {
1529 char b[BDEVNAME_SIZE];
1530 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1532 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1533 i, !test_bit(In_sync, &rdev->flags),
1534 !test_bit(Faulty, &rdev->flags),
1535 bdevname(rdev->bdev,b));
1540 static void close_sync(struct r1conf *conf)
1542 wait_barrier(conf, NULL);
1543 allow_barrier(conf, 0, 0);
1545 mempool_destroy(conf->r1buf_pool);
1546 conf->r1buf_pool = NULL;
1548 spin_lock_irq(&conf->resync_lock);
1549 conf->next_resync = 0;
1550 conf->start_next_window = MaxSector;
1551 conf->current_window_requests +=
1552 conf->next_window_requests;
1553 conf->next_window_requests = 0;
1554 spin_unlock_irq(&conf->resync_lock);
1557 static int raid1_spare_active(struct mddev *mddev)
1560 struct r1conf *conf = mddev->private;
1562 unsigned long flags;
1565 * Find all failed disks within the RAID1 configuration
1566 * and mark them readable.
1567 * Called under mddev lock, so rcu protection not needed.
1569 for (i = 0; i < conf->raid_disks; i++) {
1570 struct md_rdev *rdev = conf->mirrors[i].rdev;
1571 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1573 && repl->recovery_offset == MaxSector
1574 && !test_bit(Faulty, &repl->flags)
1575 && !test_and_set_bit(In_sync, &repl->flags)) {
1576 /* replacement has just become active */
1578 !test_and_clear_bit(In_sync, &rdev->flags))
1581 /* Replaced device not technically
1582 * faulty, but we need to be sure
1583 * it gets removed and never re-added
1585 set_bit(Faulty, &rdev->flags);
1586 sysfs_notify_dirent_safe(
1591 && rdev->recovery_offset == MaxSector
1592 && !test_bit(Faulty, &rdev->flags)
1593 && !test_and_set_bit(In_sync, &rdev->flags)) {
1595 sysfs_notify_dirent_safe(rdev->sysfs_state);
1598 spin_lock_irqsave(&conf->device_lock, flags);
1599 mddev->degraded -= count;
1600 spin_unlock_irqrestore(&conf->device_lock, flags);
1606 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1608 struct r1conf *conf = mddev->private;
1611 struct raid1_info *p;
1613 int last = conf->raid_disks - 1;
1614 struct request_queue *q = bdev_get_queue(rdev->bdev);
1616 if (mddev->recovery_disabled == conf->recovery_disabled)
1619 if (rdev->raid_disk >= 0)
1620 first = last = rdev->raid_disk;
1622 if (q->merge_bvec_fn) {
1623 set_bit(Unmerged, &rdev->flags);
1624 mddev->merge_check_needed = 1;
1627 for (mirror = first; mirror <= last; mirror++) {
1628 p = conf->mirrors+mirror;
1632 disk_stack_limits(mddev->gendisk, rdev->bdev,
1633 rdev->data_offset << 9);
1635 p->head_position = 0;
1636 rdev->raid_disk = mirror;
1638 /* As all devices are equivalent, we don't need a full recovery
1639 * if this was recently any drive of the array
1641 if (rdev->saved_raid_disk < 0)
1643 rcu_assign_pointer(p->rdev, rdev);
1646 if (test_bit(WantReplacement, &p->rdev->flags) &&
1647 p[conf->raid_disks].rdev == NULL) {
1648 /* Add this device as a replacement */
1649 clear_bit(In_sync, &rdev->flags);
1650 set_bit(Replacement, &rdev->flags);
1651 rdev->raid_disk = mirror;
1654 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1658 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659 /* Some requests might not have seen this new
1660 * merge_bvec_fn. We must wait for them to complete
1661 * before merging the device fully.
1662 * First we make sure any code which has tested
1663 * our function has submitted the request, then
1664 * we wait for all outstanding requests to complete.
1666 synchronize_sched();
1667 freeze_array(conf, 0);
1668 unfreeze_array(conf);
1669 clear_bit(Unmerged, &rdev->flags);
1671 md_integrity_add_rdev(rdev, mddev);
1672 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1673 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1678 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 struct r1conf *conf = mddev->private;
1682 int number = rdev->raid_disk;
1683 struct raid1_info *p = conf->mirrors + number;
1685 if (rdev != p->rdev)
1686 p = conf->mirrors + conf->raid_disks + number;
1689 if (rdev == p->rdev) {
1690 if (test_bit(In_sync, &rdev->flags) ||
1691 atomic_read(&rdev->nr_pending)) {
1695 /* Only remove non-faulty devices if recovery
1698 if (!test_bit(Faulty, &rdev->flags) &&
1699 mddev->recovery_disabled != conf->recovery_disabled &&
1700 mddev->degraded < conf->raid_disks) {
1706 if (atomic_read(&rdev->nr_pending)) {
1707 /* lost the race, try later */
1711 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712 /* We just removed a device that is being replaced.
1713 * Move down the replacement. We drain all IO before
1714 * doing this to avoid confusion.
1716 struct md_rdev *repl =
1717 conf->mirrors[conf->raid_disks + number].rdev;
1718 freeze_array(conf, 0);
1719 clear_bit(Replacement, &repl->flags);
1721 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1722 unfreeze_array(conf);
1723 clear_bit(WantReplacement, &rdev->flags);
1725 clear_bit(WantReplacement, &rdev->flags);
1726 err = md_integrity_register(mddev);
1734 static void end_sync_read(struct bio *bio, int error)
1736 struct r1bio *r1_bio = bio->bi_private;
1738 update_head_pos(r1_bio->read_disk, r1_bio);
1741 * we have read a block, now it needs to be re-written,
1742 * or re-read if the read failed.
1743 * We don't do much here, just schedule handling by raid1d
1745 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746 set_bit(R1BIO_Uptodate, &r1_bio->state);
1748 if (atomic_dec_and_test(&r1_bio->remaining))
1749 reschedule_retry(r1_bio);
1752 static void end_sync_write(struct bio *bio, int error)
1754 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755 struct r1bio *r1_bio = bio->bi_private;
1756 struct mddev *mddev = r1_bio->mddev;
1757 struct r1conf *conf = mddev->private;
1762 mirror = find_bio_disk(r1_bio, bio);
1765 sector_t sync_blocks = 0;
1766 sector_t s = r1_bio->sector;
1767 long sectors_to_go = r1_bio->sectors;
1768 /* make sure these bits doesn't get cleared. */
1770 bitmap_end_sync(mddev->bitmap, s,
1773 sectors_to_go -= sync_blocks;
1774 } while (sectors_to_go > 0);
1775 set_bit(WriteErrorSeen,
1776 &conf->mirrors[mirror].rdev->flags);
1777 if (!test_and_set_bit(WantReplacement,
1778 &conf->mirrors[mirror].rdev->flags))
1779 set_bit(MD_RECOVERY_NEEDED, &
1781 set_bit(R1BIO_WriteError, &r1_bio->state);
1782 } else if (is_badblock(conf->mirrors[mirror].rdev,
1785 &first_bad, &bad_sectors) &&
1786 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1789 &first_bad, &bad_sectors)
1791 set_bit(R1BIO_MadeGood, &r1_bio->state);
1793 if (atomic_dec_and_test(&r1_bio->remaining)) {
1794 int s = r1_bio->sectors;
1795 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796 test_bit(R1BIO_WriteError, &r1_bio->state))
1797 reschedule_retry(r1_bio);
1800 md_done_sync(mddev, s, uptodate);
1805 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806 int sectors, struct page *page, int rw)
1808 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1812 set_bit(WriteErrorSeen, &rdev->flags);
1813 if (!test_and_set_bit(WantReplacement,
1815 set_bit(MD_RECOVERY_NEEDED, &
1816 rdev->mddev->recovery);
1818 /* need to record an error - either for the block or the device */
1819 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820 md_error(rdev->mddev, rdev);
1824 static int fix_sync_read_error(struct r1bio *r1_bio)
1826 /* Try some synchronous reads of other devices to get
1827 * good data, much like with normal read errors. Only
1828 * read into the pages we already have so we don't
1829 * need to re-issue the read request.
1830 * We don't need to freeze the array, because being in an
1831 * active sync request, there is no normal IO, and
1832 * no overlapping syncs.
1833 * We don't need to check is_badblock() again as we
1834 * made sure that anything with a bad block in range
1835 * will have bi_end_io clear.
1837 struct mddev *mddev = r1_bio->mddev;
1838 struct r1conf *conf = mddev->private;
1839 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840 sector_t sect = r1_bio->sector;
1841 int sectors = r1_bio->sectors;
1846 int d = r1_bio->read_disk;
1848 struct md_rdev *rdev;
1851 if (s > (PAGE_SIZE>>9))
1854 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855 /* No rcu protection needed here devices
1856 * can only be removed when no resync is
1857 * active, and resync is currently active
1859 rdev = conf->mirrors[d].rdev;
1860 if (sync_page_io(rdev, sect, s<<9,
1861 bio->bi_io_vec[idx].bv_page,
1868 if (d == conf->raid_disks * 2)
1870 } while (!success && d != r1_bio->read_disk);
1873 char b[BDEVNAME_SIZE];
1875 /* Cannot read from anywhere, this block is lost.
1876 * Record a bad block on each device. If that doesn't
1877 * work just disable and interrupt the recovery.
1878 * Don't fail devices as that won't really help.
1880 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881 " for block %llu\n",
1883 bdevname(bio->bi_bdev, b),
1884 (unsigned long long)r1_bio->sector);
1885 for (d = 0; d < conf->raid_disks * 2; d++) {
1886 rdev = conf->mirrors[d].rdev;
1887 if (!rdev || test_bit(Faulty, &rdev->flags))
1889 if (!rdev_set_badblocks(rdev, sect, s, 0))
1893 conf->recovery_disabled =
1894 mddev->recovery_disabled;
1895 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896 md_done_sync(mddev, r1_bio->sectors, 0);
1908 /* write it back and re-read */
1909 while (d != r1_bio->read_disk) {
1911 d = conf->raid_disks * 2;
1913 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1915 rdev = conf->mirrors[d].rdev;
1916 if (r1_sync_page_io(rdev, sect, s,
1917 bio->bi_io_vec[idx].bv_page,
1919 r1_bio->bios[d]->bi_end_io = NULL;
1920 rdev_dec_pending(rdev, mddev);
1924 while (d != r1_bio->read_disk) {
1926 d = conf->raid_disks * 2;
1928 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1930 rdev = conf->mirrors[d].rdev;
1931 if (r1_sync_page_io(rdev, sect, s,
1932 bio->bi_io_vec[idx].bv_page,
1934 atomic_add(s, &rdev->corrected_errors);
1940 set_bit(R1BIO_Uptodate, &r1_bio->state);
1941 set_bit(BIO_UPTODATE, &bio->bi_flags);
1945 static void process_checks(struct r1bio *r1_bio)
1947 /* We have read all readable devices. If we haven't
1948 * got the block, then there is no hope left.
1949 * If we have, then we want to do a comparison
1950 * and skip the write if everything is the same.
1951 * If any blocks failed to read, then we need to
1952 * attempt an over-write
1954 struct mddev *mddev = r1_bio->mddev;
1955 struct r1conf *conf = mddev->private;
1960 /* Fix variable parts of all bios */
1961 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962 for (i = 0; i < conf->raid_disks * 2; i++) {
1966 struct bio *b = r1_bio->bios[i];
1967 if (b->bi_end_io != end_sync_read)
1969 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1973 clear_bit(BIO_UPTODATE, &b->bi_flags);
1975 b->bi_iter.bi_size = r1_bio->sectors << 9;
1976 b->bi_iter.bi_sector = r1_bio->sector +
1977 conf->mirrors[i].rdev->data_offset;
1978 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979 b->bi_end_io = end_sync_read;
1980 b->bi_private = r1_bio;
1982 size = b->bi_iter.bi_size;
1983 for (j = 0; j < vcnt ; j++) {
1985 bi = &b->bi_io_vec[j];
1987 if (size > PAGE_SIZE)
1988 bi->bv_len = PAGE_SIZE;
1994 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997 r1_bio->bios[primary]->bi_end_io = NULL;
1998 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2001 r1_bio->read_disk = primary;
2002 for (i = 0; i < conf->raid_disks * 2; i++) {
2004 struct bio *pbio = r1_bio->bios[primary];
2005 struct bio *sbio = r1_bio->bios[i];
2006 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2008 if (sbio->bi_end_io != end_sync_read)
2010 /* Now we can 'fixup' the BIO_UPTODATE flag */
2011 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2014 for (j = vcnt; j-- ; ) {
2016 p = pbio->bi_io_vec[j].bv_page;
2017 s = sbio->bi_io_vec[j].bv_page;
2018 if (memcmp(page_address(p),
2020 sbio->bi_io_vec[j].bv_len))
2026 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2029 /* No need to write to this device. */
2030 sbio->bi_end_io = NULL;
2031 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2035 bio_copy_data(sbio, pbio);
2039 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041 struct r1conf *conf = mddev->private;
2043 int disks = conf->raid_disks * 2;
2044 struct bio *bio, *wbio;
2046 bio = r1_bio->bios[r1_bio->read_disk];
2048 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2049 /* ouch - failed to read all of that. */
2050 if (!fix_sync_read_error(r1_bio))
2053 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2054 process_checks(r1_bio);
2059 atomic_set(&r1_bio->remaining, 1);
2060 for (i = 0; i < disks ; i++) {
2061 wbio = r1_bio->bios[i];
2062 if (wbio->bi_end_io == NULL ||
2063 (wbio->bi_end_io == end_sync_read &&
2064 (i == r1_bio->read_disk ||
2065 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2068 wbio->bi_rw = WRITE;
2069 wbio->bi_end_io = end_sync_write;
2070 atomic_inc(&r1_bio->remaining);
2071 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073 generic_make_request(wbio);
2076 if (atomic_dec_and_test(&r1_bio->remaining)) {
2077 /* if we're here, all write(s) have completed, so clean up */
2078 int s = r1_bio->sectors;
2079 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2080 test_bit(R1BIO_WriteError, &r1_bio->state))
2081 reschedule_retry(r1_bio);
2084 md_done_sync(mddev, s, 1);
2090 * This is a kernel thread which:
2092 * 1. Retries failed read operations on working mirrors.
2093 * 2. Updates the raid superblock when problems encounter.
2094 * 3. Performs writes following reads for array synchronising.
2097 static void fix_read_error(struct r1conf *conf, int read_disk,
2098 sector_t sect, int sectors)
2100 struct mddev *mddev = conf->mddev;
2106 struct md_rdev *rdev;
2108 if (s > (PAGE_SIZE>>9))
2112 /* Note: no rcu protection needed here
2113 * as this is synchronous in the raid1d thread
2114 * which is the thread that might remove
2115 * a device. If raid1d ever becomes multi-threaded....
2120 rdev = conf->mirrors[d].rdev;
2122 (test_bit(In_sync, &rdev->flags) ||
2123 (!test_bit(Faulty, &rdev->flags) &&
2124 rdev->recovery_offset >= sect + s)) &&
2125 is_badblock(rdev, sect, s,
2126 &first_bad, &bad_sectors) == 0 &&
2127 sync_page_io(rdev, sect, s<<9,
2128 conf->tmppage, READ, false))
2132 if (d == conf->raid_disks * 2)
2135 } while (!success && d != read_disk);
2138 /* Cannot read from anywhere - mark it bad */
2139 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2140 if (!rdev_set_badblocks(rdev, sect, s, 0))
2141 md_error(mddev, rdev);
2144 /* write it back and re-read */
2146 while (d != read_disk) {
2148 d = conf->raid_disks * 2;
2150 rdev = conf->mirrors[d].rdev;
2152 !test_bit(Faulty, &rdev->flags))
2153 r1_sync_page_io(rdev, sect, s,
2154 conf->tmppage, WRITE);
2157 while (d != read_disk) {
2158 char b[BDEVNAME_SIZE];
2160 d = conf->raid_disks * 2;
2162 rdev = conf->mirrors[d].rdev;
2164 !test_bit(Faulty, &rdev->flags)) {
2165 if (r1_sync_page_io(rdev, sect, s,
2166 conf->tmppage, READ)) {
2167 atomic_add(s, &rdev->corrected_errors);
2169 "md/raid1:%s: read error corrected "
2170 "(%d sectors at %llu on %s)\n",
2172 (unsigned long long)(sect +
2174 bdevname(rdev->bdev, b));
2183 static int narrow_write_error(struct r1bio *r1_bio, int i)
2185 struct mddev *mddev = r1_bio->mddev;
2186 struct r1conf *conf = mddev->private;
2187 struct md_rdev *rdev = conf->mirrors[i].rdev;
2189 /* bio has the data to be written to device 'i' where
2190 * we just recently had a write error.
2191 * We repeatedly clone the bio and trim down to one block,
2192 * then try the write. Where the write fails we record
2194 * It is conceivable that the bio doesn't exactly align with
2195 * blocks. We must handle this somehow.
2197 * We currently own a reference on the rdev.
2203 int sect_to_write = r1_bio->sectors;
2206 if (rdev->badblocks.shift < 0)
2209 block_sectors = 1 << rdev->badblocks.shift;
2210 sector = r1_bio->sector;
2211 sectors = ((sector + block_sectors)
2212 & ~(sector_t)(block_sectors - 1))
2215 while (sect_to_write) {
2217 if (sectors > sect_to_write)
2218 sectors = sect_to_write;
2219 /* Write at 'sector' for 'sectors'*/
2221 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2222 unsigned vcnt = r1_bio->behind_page_count;
2223 struct bio_vec *vec = r1_bio->behind_bvecs;
2225 while (!vec->bv_page) {
2230 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2231 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2233 wbio->bi_vcnt = vcnt;
2235 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2238 wbio->bi_rw = WRITE;
2239 wbio->bi_iter.bi_sector = r1_bio->sector;
2240 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2242 bio_trim(wbio, sector - r1_bio->sector, sectors);
2243 wbio->bi_iter.bi_sector += rdev->data_offset;
2244 wbio->bi_bdev = rdev->bdev;
2245 if (submit_bio_wait(WRITE, wbio) == 0)
2247 ok = rdev_set_badblocks(rdev, sector,
2252 sect_to_write -= sectors;
2254 sectors = block_sectors;
2259 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2262 int s = r1_bio->sectors;
2263 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2264 struct md_rdev *rdev = conf->mirrors[m].rdev;
2265 struct bio *bio = r1_bio->bios[m];
2266 if (bio->bi_end_io == NULL)
2268 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2270 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2272 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2274 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2275 md_error(conf->mddev, rdev);
2279 md_done_sync(conf->mddev, s, 1);
2282 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2285 for (m = 0; m < conf->raid_disks * 2 ; m++)
2286 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2287 struct md_rdev *rdev = conf->mirrors[m].rdev;
2288 rdev_clear_badblocks(rdev,
2290 r1_bio->sectors, 0);
2291 rdev_dec_pending(rdev, conf->mddev);
2292 } else if (r1_bio->bios[m] != NULL) {
2293 /* This drive got a write error. We need to
2294 * narrow down and record precise write
2297 if (!narrow_write_error(r1_bio, m)) {
2298 md_error(conf->mddev,
2299 conf->mirrors[m].rdev);
2300 /* an I/O failed, we can't clear the bitmap */
2301 set_bit(R1BIO_Degraded, &r1_bio->state);
2303 rdev_dec_pending(conf->mirrors[m].rdev,
2306 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2307 close_write(r1_bio);
2308 raid_end_bio_io(r1_bio);
2311 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2315 struct mddev *mddev = conf->mddev;
2317 char b[BDEVNAME_SIZE];
2318 struct md_rdev *rdev;
2320 clear_bit(R1BIO_ReadError, &r1_bio->state);
2321 /* we got a read error. Maybe the drive is bad. Maybe just
2322 * the block and we can fix it.
2323 * We freeze all other IO, and try reading the block from
2324 * other devices. When we find one, we re-write
2325 * and check it that fixes the read error.
2326 * This is all done synchronously while the array is
2329 if (mddev->ro == 0) {
2330 freeze_array(conf, 1);
2331 fix_read_error(conf, r1_bio->read_disk,
2332 r1_bio->sector, r1_bio->sectors);
2333 unfreeze_array(conf);
2335 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2336 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2338 bio = r1_bio->bios[r1_bio->read_disk];
2339 bdevname(bio->bi_bdev, b);
2341 disk = read_balance(conf, r1_bio, &max_sectors);
2343 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2344 " read error for block %llu\n",
2345 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2346 raid_end_bio_io(r1_bio);
2348 const unsigned long do_sync
2349 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2351 r1_bio->bios[r1_bio->read_disk] =
2352 mddev->ro ? IO_BLOCKED : NULL;
2355 r1_bio->read_disk = disk;
2356 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2357 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359 r1_bio->bios[r1_bio->read_disk] = bio;
2360 rdev = conf->mirrors[disk].rdev;
2361 printk_ratelimited(KERN_ERR
2362 "md/raid1:%s: redirecting sector %llu"
2363 " to other mirror: %s\n",
2365 (unsigned long long)r1_bio->sector,
2366 bdevname(rdev->bdev, b));
2367 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2368 bio->bi_bdev = rdev->bdev;
2369 bio->bi_end_io = raid1_end_read_request;
2370 bio->bi_rw = READ | do_sync;
2371 bio->bi_private = r1_bio;
2372 if (max_sectors < r1_bio->sectors) {
2373 /* Drat - have to split this up more */
2374 struct bio *mbio = r1_bio->master_bio;
2375 int sectors_handled = (r1_bio->sector + max_sectors
2376 - mbio->bi_iter.bi_sector);
2377 r1_bio->sectors = max_sectors;
2378 spin_lock_irq(&conf->device_lock);
2379 if (mbio->bi_phys_segments == 0)
2380 mbio->bi_phys_segments = 2;
2382 mbio->bi_phys_segments++;
2383 spin_unlock_irq(&conf->device_lock);
2384 generic_make_request(bio);
2387 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2389 r1_bio->master_bio = mbio;
2390 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392 set_bit(R1BIO_ReadError, &r1_bio->state);
2393 r1_bio->mddev = mddev;
2394 r1_bio->sector = mbio->bi_iter.bi_sector +
2399 generic_make_request(bio);
2403 static void raid1d(struct md_thread *thread)
2405 struct mddev *mddev = thread->mddev;
2406 struct r1bio *r1_bio;
2407 unsigned long flags;
2408 struct r1conf *conf = mddev->private;
2409 struct list_head *head = &conf->retry_list;
2410 struct blk_plug plug;
2412 md_check_recovery(mddev);
2414 blk_start_plug(&plug);
2417 flush_pending_writes(conf);
2419 spin_lock_irqsave(&conf->device_lock, flags);
2420 if (list_empty(head)) {
2421 spin_unlock_irqrestore(&conf->device_lock, flags);
2424 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2425 list_del(head->prev);
2427 spin_unlock_irqrestore(&conf->device_lock, flags);
2429 mddev = r1_bio->mddev;
2430 conf = mddev->private;
2431 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2432 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433 test_bit(R1BIO_WriteError, &r1_bio->state))
2434 handle_sync_write_finished(conf, r1_bio);
2436 sync_request_write(mddev, r1_bio);
2437 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2438 test_bit(R1BIO_WriteError, &r1_bio->state))
2439 handle_write_finished(conf, r1_bio);
2440 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2441 handle_read_error(conf, r1_bio);
2443 /* just a partial read to be scheduled from separate
2446 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2449 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2450 md_check_recovery(mddev);
2452 blk_finish_plug(&plug);
2455 static int init_resync(struct r1conf *conf)
2459 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2460 BUG_ON(conf->r1buf_pool);
2461 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2463 if (!conf->r1buf_pool)
2465 conf->next_resync = 0;
2470 * perform a "sync" on one "block"
2472 * We need to make sure that no normal I/O request - particularly write
2473 * requests - conflict with active sync requests.
2475 * This is achieved by tracking pending requests and a 'barrier' concept
2476 * that can be installed to exclude normal IO requests.
2479 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2481 struct r1conf *conf = mddev->private;
2482 struct r1bio *r1_bio;
2484 sector_t max_sector, nr_sectors;
2488 int write_targets = 0, read_targets = 0;
2489 sector_t sync_blocks;
2490 int still_degraded = 0;
2491 int good_sectors = RESYNC_SECTORS;
2492 int min_bad = 0; /* number of sectors that are bad in all devices */
2494 if (!conf->r1buf_pool)
2495 if (init_resync(conf))
2498 max_sector = mddev->dev_sectors;
2499 if (sector_nr >= max_sector) {
2500 /* If we aborted, we need to abort the
2501 * sync on the 'current' bitmap chunk (there will
2502 * only be one in raid1 resync.
2503 * We can find the current addess in mddev->curr_resync
2505 if (mddev->curr_resync < max_sector) /* aborted */
2506 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2508 else /* completed sync */
2511 bitmap_close_sync(mddev->bitmap);
2516 if (mddev->bitmap == NULL &&
2517 mddev->recovery_cp == MaxSector &&
2518 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2519 conf->fullsync == 0) {
2521 return max_sector - sector_nr;
2523 /* before building a request, check if we can skip these blocks..
2524 * This call the bitmap_start_sync doesn't actually record anything
2526 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2527 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2528 /* We can skip this block, and probably several more */
2533 * If there is non-resync activity waiting for a turn,
2534 * and resync is going fast enough,
2535 * then let it though before starting on this new sync request.
2537 if (!go_faster && conf->nr_waiting)
2538 msleep_interruptible(1000);
2540 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2541 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2543 raise_barrier(conf, sector_nr);
2547 * If we get a correctably read error during resync or recovery,
2548 * we might want to read from a different device. So we
2549 * flag all drives that could conceivably be read from for READ,
2550 * and any others (which will be non-In_sync devices) for WRITE.
2551 * If a read fails, we try reading from something else for which READ
2555 r1_bio->mddev = mddev;
2556 r1_bio->sector = sector_nr;
2558 set_bit(R1BIO_IsSync, &r1_bio->state);
2560 for (i = 0; i < conf->raid_disks * 2; i++) {
2561 struct md_rdev *rdev;
2562 bio = r1_bio->bios[i];
2565 rdev = rcu_dereference(conf->mirrors[i].rdev);
2567 test_bit(Faulty, &rdev->flags)) {
2568 if (i < conf->raid_disks)
2570 } else if (!test_bit(In_sync, &rdev->flags)) {
2572 bio->bi_end_io = end_sync_write;
2575 /* may need to read from here */
2576 sector_t first_bad = MaxSector;
2579 if (is_badblock(rdev, sector_nr, good_sectors,
2580 &first_bad, &bad_sectors)) {
2581 if (first_bad > sector_nr)
2582 good_sectors = first_bad - sector_nr;
2584 bad_sectors -= (sector_nr - first_bad);
2586 min_bad > bad_sectors)
2587 min_bad = bad_sectors;
2590 if (sector_nr < first_bad) {
2591 if (test_bit(WriteMostly, &rdev->flags)) {
2599 bio->bi_end_io = end_sync_read;
2601 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2605 * The device is suitable for reading (InSync),
2606 * but has bad block(s) here. Let's try to correct them,
2607 * if we are doing resync or repair. Otherwise, leave
2608 * this device alone for this sync request.
2611 bio->bi_end_io = end_sync_write;
2615 if (bio->bi_end_io) {
2616 atomic_inc(&rdev->nr_pending);
2617 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618 bio->bi_bdev = rdev->bdev;
2619 bio->bi_private = r1_bio;
2625 r1_bio->read_disk = disk;
2627 if (read_targets == 0 && min_bad > 0) {
2628 /* These sectors are bad on all InSync devices, so we
2629 * need to mark them bad on all write targets
2632 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634 struct md_rdev *rdev = conf->mirrors[i].rdev;
2635 ok = rdev_set_badblocks(rdev, sector_nr,
2639 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2644 /* Cannot record the badblocks, so need to
2646 * If there are multiple read targets, could just
2647 * fail the really bad ones ???
2649 conf->recovery_disabled = mddev->recovery_disabled;
2650 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2656 if (min_bad > 0 && min_bad < good_sectors) {
2657 /* only resync enough to reach the next bad->good
2659 good_sectors = min_bad;
2662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 /* extra read targets are also write targets */
2664 write_targets += read_targets-1;
2666 if (write_targets == 0 || read_targets == 0) {
2667 /* There is nowhere to write, so all non-sync
2668 * drives must be failed - so we are finished
2672 max_sector = sector_nr + min_bad;
2673 rv = max_sector - sector_nr;
2679 if (max_sector > mddev->resync_max)
2680 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681 if (max_sector > sector_nr + good_sectors)
2682 max_sector = sector_nr + good_sectors;
2687 int len = PAGE_SIZE;
2688 if (sector_nr + (len>>9) > max_sector)
2689 len = (max_sector - sector_nr) << 9;
2692 if (sync_blocks == 0) {
2693 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694 &sync_blocks, still_degraded) &&
2696 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2698 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699 if ((len >> 9) > sync_blocks)
2700 len = sync_blocks<<9;
2703 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704 bio = r1_bio->bios[i];
2705 if (bio->bi_end_io) {
2706 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707 if (bio_add_page(bio, page, len, 0) == 0) {
2709 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712 bio = r1_bio->bios[i];
2713 if (bio->bi_end_io==NULL)
2715 /* remove last page from this bio */
2717 bio->bi_iter.bi_size -= len;
2718 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2724 nr_sectors += len>>9;
2725 sector_nr += len>>9;
2726 sync_blocks -= (len>>9);
2727 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2729 r1_bio->sectors = nr_sectors;
2731 /* For a user-requested sync, we read all readable devices and do a
2734 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 atomic_set(&r1_bio->remaining, read_targets);
2736 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737 bio = r1_bio->bios[i];
2738 if (bio->bi_end_io == end_sync_read) {
2740 md_sync_acct(bio->bi_bdev, nr_sectors);
2741 generic_make_request(bio);
2745 atomic_set(&r1_bio->remaining, 1);
2746 bio = r1_bio->bios[r1_bio->read_disk];
2747 md_sync_acct(bio->bi_bdev, nr_sectors);
2748 generic_make_request(bio);
2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2759 return mddev->dev_sectors;
2762 static struct r1conf *setup_conf(struct mddev *mddev)
2764 struct r1conf *conf;
2766 struct raid1_info *disk;
2767 struct md_rdev *rdev;
2770 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775 * mddev->raid_disks * 2,
2780 conf->tmppage = alloc_page(GFP_KERNEL);
2784 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785 if (!conf->poolinfo)
2787 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2791 if (!conf->r1bio_pool)
2794 conf->poolinfo->mddev = mddev;
2797 spin_lock_init(&conf->device_lock);
2798 rdev_for_each(rdev, mddev) {
2799 struct request_queue *q;
2800 int disk_idx = rdev->raid_disk;
2801 if (disk_idx >= mddev->raid_disks
2804 if (test_bit(Replacement, &rdev->flags))
2805 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2807 disk = conf->mirrors + disk_idx;
2812 q = bdev_get_queue(rdev->bdev);
2813 if (q->merge_bvec_fn)
2814 mddev->merge_check_needed = 1;
2816 disk->head_position = 0;
2817 disk->seq_start = MaxSector;
2819 conf->raid_disks = mddev->raid_disks;
2820 conf->mddev = mddev;
2821 INIT_LIST_HEAD(&conf->retry_list);
2823 spin_lock_init(&conf->resync_lock);
2824 init_waitqueue_head(&conf->wait_barrier);
2826 bio_list_init(&conf->pending_bio_list);
2827 conf->pending_count = 0;
2828 conf->recovery_disabled = mddev->recovery_disabled - 1;
2830 conf->start_next_window = MaxSector;
2831 conf->current_window_requests = conf->next_window_requests = 0;
2834 for (i = 0; i < conf->raid_disks * 2; i++) {
2836 disk = conf->mirrors + i;
2838 if (i < conf->raid_disks &&
2839 disk[conf->raid_disks].rdev) {
2840 /* This slot has a replacement. */
2842 /* No original, just make the replacement
2843 * a recovering spare
2846 disk[conf->raid_disks].rdev;
2847 disk[conf->raid_disks].rdev = NULL;
2848 } else if (!test_bit(In_sync, &disk->rdev->flags))
2849 /* Original is not in_sync - bad */
2854 !test_bit(In_sync, &disk->rdev->flags)) {
2855 disk->head_position = 0;
2857 (disk->rdev->saved_raid_disk < 0))
2863 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864 if (!conf->thread) {
2866 "md/raid1:%s: couldn't allocate thread\n",
2875 if (conf->r1bio_pool)
2876 mempool_destroy(conf->r1bio_pool);
2877 kfree(conf->mirrors);
2878 safe_put_page(conf->tmppage);
2879 kfree(conf->poolinfo);
2882 return ERR_PTR(err);
2885 static int stop(struct mddev *mddev);
2886 static int run(struct mddev *mddev)
2888 struct r1conf *conf;
2890 struct md_rdev *rdev;
2892 bool discard_supported = false;
2894 if (mddev->level != 1) {
2895 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896 mdname(mddev), mddev->level);
2899 if (mddev->reshape_position != MaxSector) {
2900 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2905 * copy the already verified devices into our private RAID1
2906 * bookkeeping area. [whatever we allocate in run(),
2907 * should be freed in stop()]
2909 if (mddev->private == NULL)
2910 conf = setup_conf(mddev);
2912 conf = mddev->private;
2915 return PTR_ERR(conf);
2918 blk_queue_max_write_same_sectors(mddev->queue, 0);
2920 rdev_for_each(rdev, mddev) {
2921 if (!mddev->gendisk)
2923 disk_stack_limits(mddev->gendisk, rdev->bdev,
2924 rdev->data_offset << 9);
2925 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926 discard_supported = true;
2929 mddev->degraded = 0;
2930 for (i=0; i < conf->raid_disks; i++)
2931 if (conf->mirrors[i].rdev == NULL ||
2932 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2936 if (conf->raid_disks - mddev->degraded == 1)
2937 mddev->recovery_cp = MaxSector;
2939 if (mddev->recovery_cp != MaxSector)
2940 printk(KERN_NOTICE "md/raid1:%s: not clean"
2941 " -- starting background reconstruction\n",
2944 "md/raid1:%s: active with %d out of %d mirrors\n",
2945 mdname(mddev), mddev->raid_disks - mddev->degraded,
2949 * Ok, everything is just fine now
2951 mddev->thread = conf->thread;
2952 conf->thread = NULL;
2953 mddev->private = conf;
2955 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2958 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2959 mddev->queue->backing_dev_info.congested_data = mddev;
2960 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2962 if (discard_supported)
2963 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2966 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 ret = md_integrity_register(mddev);
2976 static int stop(struct mddev *mddev)
2978 struct r1conf *conf = mddev->private;
2979 struct bitmap *bitmap = mddev->bitmap;
2981 /* wait for behind writes to complete */
2982 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2983 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2985 /* need to kick something here to make sure I/O goes? */
2986 wait_event(bitmap->behind_wait,
2987 atomic_read(&bitmap->behind_writes) == 0);
2990 freeze_array(conf, 0);
2991 unfreeze_array(conf);
2993 md_unregister_thread(&mddev->thread);
2994 if (conf->r1bio_pool)
2995 mempool_destroy(conf->r1bio_pool);
2996 kfree(conf->mirrors);
2997 safe_put_page(conf->tmppage);
2998 kfree(conf->poolinfo);
3000 mddev->private = NULL;
3004 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3006 /* no resync is happening, and there is enough space
3007 * on all devices, so we can resize.
3008 * We need to make sure resync covers any new space.
3009 * If the array is shrinking we should possibly wait until
3010 * any io in the removed space completes, but it hardly seems
3013 sector_t newsize = raid1_size(mddev, sectors, 0);
3014 if (mddev->external_size &&
3015 mddev->array_sectors > newsize)
3017 if (mddev->bitmap) {
3018 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022 md_set_array_sectors(mddev, newsize);
3023 set_capacity(mddev->gendisk, mddev->array_sectors);
3024 revalidate_disk(mddev->gendisk);
3025 if (sectors > mddev->dev_sectors &&
3026 mddev->recovery_cp > mddev->dev_sectors) {
3027 mddev->recovery_cp = mddev->dev_sectors;
3028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3030 mddev->dev_sectors = sectors;
3031 mddev->resync_max_sectors = sectors;
3035 static int raid1_reshape(struct mddev *mddev)
3038 * 1/ resize the r1bio_pool
3039 * 2/ resize conf->mirrors
3041 * We allocate a new r1bio_pool if we can.
3042 * Then raise a device barrier and wait until all IO stops.
3043 * Then resize conf->mirrors and swap in the new r1bio pool.
3045 * At the same time, we "pack" the devices so that all the missing
3046 * devices have the higher raid_disk numbers.
3048 mempool_t *newpool, *oldpool;
3049 struct pool_info *newpoolinfo;
3050 struct raid1_info *newmirrors;
3051 struct r1conf *conf = mddev->private;
3052 int cnt, raid_disks;
3053 unsigned long flags;
3056 /* Cannot change chunk_size, layout, or level */
3057 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3058 mddev->layout != mddev->new_layout ||
3059 mddev->level != mddev->new_level) {
3060 mddev->new_chunk_sectors = mddev->chunk_sectors;
3061 mddev->new_layout = mddev->layout;
3062 mddev->new_level = mddev->level;
3066 err = md_allow_write(mddev);
3070 raid_disks = mddev->raid_disks + mddev->delta_disks;
3072 if (raid_disks < conf->raid_disks) {
3074 for (d= 0; d < conf->raid_disks; d++)
3075 if (conf->mirrors[d].rdev)
3077 if (cnt > raid_disks)
3081 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3084 newpoolinfo->mddev = mddev;
3085 newpoolinfo->raid_disks = raid_disks * 2;
3087 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3088 r1bio_pool_free, newpoolinfo);
3093 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3097 mempool_destroy(newpool);
3101 freeze_array(conf, 0);
3103 /* ok, everything is stopped */
3104 oldpool = conf->r1bio_pool;
3105 conf->r1bio_pool = newpool;
3107 for (d = d2 = 0; d < conf->raid_disks; d++) {
3108 struct md_rdev *rdev = conf->mirrors[d].rdev;
3109 if (rdev && rdev->raid_disk != d2) {
3110 sysfs_unlink_rdev(mddev, rdev);
3111 rdev->raid_disk = d2;
3112 sysfs_unlink_rdev(mddev, rdev);
3113 if (sysfs_link_rdev(mddev, rdev))
3115 "md/raid1:%s: cannot register rd%d\n",
3116 mdname(mddev), rdev->raid_disk);
3119 newmirrors[d2++].rdev = rdev;
3121 kfree(conf->mirrors);
3122 conf->mirrors = newmirrors;
3123 kfree(conf->poolinfo);
3124 conf->poolinfo = newpoolinfo;
3126 spin_lock_irqsave(&conf->device_lock, flags);
3127 mddev->degraded += (raid_disks - conf->raid_disks);
3128 spin_unlock_irqrestore(&conf->device_lock, flags);
3129 conf->raid_disks = mddev->raid_disks = raid_disks;
3130 mddev->delta_disks = 0;
3132 unfreeze_array(conf);
3134 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135 md_wakeup_thread(mddev->thread);
3137 mempool_destroy(oldpool);
3141 static void raid1_quiesce(struct mddev *mddev, int state)
3143 struct r1conf *conf = mddev->private;
3146 case 2: /* wake for suspend */
3147 wake_up(&conf->wait_barrier);
3150 freeze_array(conf, 0);
3153 unfreeze_array(conf);
3158 static void *raid1_takeover(struct mddev *mddev)
3160 /* raid1 can take over:
3161 * raid5 with 2 devices, any layout or chunk size
3163 if (mddev->level == 5 && mddev->raid_disks == 2) {
3164 struct r1conf *conf;
3165 mddev->new_level = 1;
3166 mddev->new_layout = 0;
3167 mddev->new_chunk_sectors = 0;
3168 conf = setup_conf(mddev);
3170 /* Array must appear to be quiesced */
3171 conf->array_frozen = 1;
3174 return ERR_PTR(-EINVAL);
3177 static struct md_personality raid1_personality =
3181 .owner = THIS_MODULE,
3182 .make_request = make_request,
3186 .error_handler = error,
3187 .hot_add_disk = raid1_add_disk,
3188 .hot_remove_disk= raid1_remove_disk,
3189 .spare_active = raid1_spare_active,
3190 .sync_request = sync_request,
3191 .resize = raid1_resize,
3193 .check_reshape = raid1_reshape,
3194 .quiesce = raid1_quiesce,
3195 .takeover = raid1_takeover,
3198 static int __init raid_init(void)
3200 return register_md_personality(&raid1_personality);
3203 static void raid_exit(void)
3205 unregister_md_personality(&raid1_personality);
3208 module_init(raid_init);
3209 module_exit(raid_exit);
3210 MODULE_LICENSE("GPL");
3211 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3212 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3213 MODULE_ALIAS("md-raid1");
3214 MODULE_ALIAS("md-level-1");
3216 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);