1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
26 #include <asm/tlbflush.h>
29 #define SEQ_PUT_DEC(str, val) \
30 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
31 void task_mem(struct seq_file *m, struct mm_struct *mm)
33 unsigned long text, lib, swap, anon, file, shmem;
34 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
36 anon = get_mm_counter(mm, MM_ANONPAGES);
37 file = get_mm_counter(mm, MM_FILEPAGES);
38 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41 * Note: to minimize their overhead, mm maintains hiwater_vm and
42 * hiwater_rss only when about to *lower* total_vm or rss. Any
43 * collector of these hiwater stats must therefore get total_vm
44 * and rss too, which will usually be the higher. Barriers? not
45 * worth the effort, such snapshots can always be inconsistent.
47 hiwater_vm = total_vm = mm->total_vm;
48 if (hiwater_vm < mm->hiwater_vm)
49 hiwater_vm = mm->hiwater_vm;
50 hiwater_rss = total_rss = anon + file + shmem;
51 if (hiwater_rss < mm->hiwater_rss)
52 hiwater_rss = mm->hiwater_rss;
54 /* split executable areas between text and lib */
55 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56 text = min(text, mm->exec_vm << PAGE_SHIFT);
57 lib = (mm->exec_vm << PAGE_SHIFT) - text;
59 swap = get_mm_counter(mm, MM_SWAPENTS);
60 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71 seq_put_decimal_ull_width(m,
72 " kB\nVmExe:\t", text >> 10, 8);
73 seq_put_decimal_ull_width(m,
74 " kB\nVmLib:\t", lib >> 10, 8);
75 seq_put_decimal_ull_width(m,
76 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
79 hugetlb_report_usage(m, mm);
83 unsigned long task_vsize(struct mm_struct *mm)
85 return PAGE_SIZE * mm->total_vm;
88 unsigned long task_statm(struct mm_struct *mm,
89 unsigned long *shared, unsigned long *text,
90 unsigned long *data, unsigned long *resident)
92 *shared = get_mm_counter(mm, MM_FILEPAGES) +
93 get_mm_counter(mm, MM_SHMEMPAGES);
94 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
96 *data = mm->data_vm + mm->stack_vm;
97 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
103 * Save get_task_policy() for show_numa_map().
105 static void hold_task_mempolicy(struct proc_maps_private *priv)
107 struct task_struct *task = priv->task;
110 priv->task_mempolicy = get_task_policy(task);
111 mpol_get(priv->task_mempolicy);
114 static void release_task_mempolicy(struct proc_maps_private *priv)
116 mpol_put(priv->task_mempolicy);
119 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 static void release_task_mempolicy(struct proc_maps_private *priv)
127 static void *m_start(struct seq_file *m, loff_t *ppos)
129 struct proc_maps_private *priv = m->private;
130 unsigned long last_addr = *ppos;
131 struct mm_struct *mm;
132 struct vm_area_struct *vma;
134 /* See m_next(). Zero at the start or after lseek. */
135 if (last_addr == -1UL)
138 priv->task = get_proc_task(priv->inode);
140 return ERR_PTR(-ESRCH);
143 if (!mm || !mmget_not_zero(mm)) {
144 put_task_struct(priv->task);
149 if (mmap_read_lock_killable(mm)) {
151 put_task_struct(priv->task);
153 return ERR_PTR(-EINTR);
156 hold_task_mempolicy(priv);
157 priv->tail_vma = get_gate_vma(mm);
159 vma = find_vma(mm, last_addr);
163 return priv->tail_vma;
166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
168 struct proc_maps_private *priv = m->private;
169 struct vm_area_struct *next, *vma = v;
171 if (vma == priv->tail_vma)
173 else if (vma->vm_next)
176 next = priv->tail_vma;
178 *ppos = next ? next->vm_start : -1UL;
183 static void m_stop(struct seq_file *m, void *v)
185 struct proc_maps_private *priv = m->private;
186 struct mm_struct *mm = priv->mm;
191 release_task_mempolicy(priv);
192 mmap_read_unlock(mm);
194 put_task_struct(priv->task);
198 static int proc_maps_open(struct inode *inode, struct file *file,
199 const struct seq_operations *ops, int psize)
201 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
207 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208 if (IS_ERR(priv->mm)) {
209 int err = PTR_ERR(priv->mm);
211 seq_release_private(inode, file);
218 static int proc_map_release(struct inode *inode, struct file *file)
220 struct seq_file *seq = file->private_data;
221 struct proc_maps_private *priv = seq->private;
226 return seq_release_private(inode, file);
229 static int do_maps_open(struct inode *inode, struct file *file,
230 const struct seq_operations *ops)
232 return proc_maps_open(inode, file, ops,
233 sizeof(struct proc_maps_private));
237 * Indicate if the VMA is a stack for the given task; for
238 * /proc/PID/maps that is the stack of the main task.
240 static int is_stack(struct vm_area_struct *vma)
243 * We make no effort to guess what a given thread considers to be
244 * its "stack". It's not even well-defined for programs written
247 return vma->vm_start <= vma->vm_mm->start_stack &&
248 vma->vm_end >= vma->vm_mm->start_stack;
251 static void show_vma_header_prefix(struct seq_file *m,
252 unsigned long start, unsigned long end,
253 vm_flags_t flags, unsigned long long pgoff,
254 dev_t dev, unsigned long ino)
256 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257 seq_put_hex_ll(m, NULL, start, 8);
258 seq_put_hex_ll(m, "-", end, 8);
260 seq_putc(m, flags & VM_READ ? 'r' : '-');
261 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264 seq_put_hex_ll(m, " ", pgoff, 8);
265 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266 seq_put_hex_ll(m, ":", MINOR(dev), 2);
267 seq_put_decimal_ull(m, " ", ino);
272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
274 struct mm_struct *mm = vma->vm_mm;
275 struct file *file = vma->vm_file;
276 vm_flags_t flags = vma->vm_flags;
277 unsigned long ino = 0;
278 unsigned long long pgoff = 0;
279 unsigned long start, end;
281 const char *name = NULL;
284 struct inode *inode = file_inode(vma->vm_file);
285 dev = inode->i_sb->s_dev;
287 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
290 start = vma->vm_start;
292 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
295 * Print the dentry name for named mappings, and a
296 * special [heap] marker for the heap:
300 seq_file_path(m, file, "\n");
304 if (vma->vm_ops && vma->vm_ops->name) {
305 name = vma->vm_ops->name(vma);
310 name = arch_vma_name(vma);
312 struct anon_vma_name *anon_name;
319 if (vma->vm_start <= mm->brk &&
320 vma->vm_end >= mm->start_brk) {
330 anon_name = anon_vma_name(vma);
333 seq_printf(m, "[anon:%s]", anon_name->name);
345 static int show_map(struct seq_file *m, void *v)
351 static const struct seq_operations proc_pid_maps_op = {
358 static int pid_maps_open(struct inode *inode, struct file *file)
360 return do_maps_open(inode, file, &proc_pid_maps_op);
363 const struct file_operations proc_pid_maps_operations = {
364 .open = pid_maps_open,
367 .release = proc_map_release,
371 * Proportional Set Size(PSS): my share of RSS.
373 * PSS of a process is the count of pages it has in memory, where each
374 * page is divided by the number of processes sharing it. So if a
375 * process has 1000 pages all to itself, and 1000 shared with one other
376 * process, its PSS will be 1500.
378 * To keep (accumulated) division errors low, we adopt a 64bit
379 * fixed-point pss counter to minimize division errors. So (pss >>
380 * PSS_SHIFT) would be the real byte count.
382 * A shift of 12 before division means (assuming 4K page size):
383 * - 1M 3-user-pages add up to 8KB errors;
384 * - supports mapcount up to 2^24, or 16M;
385 * - supports PSS up to 2^52 bytes, or 4PB.
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391 unsigned long resident;
392 unsigned long shared_clean;
393 unsigned long shared_dirty;
394 unsigned long private_clean;
395 unsigned long private_dirty;
396 unsigned long referenced;
397 unsigned long anonymous;
398 unsigned long lazyfree;
399 unsigned long anonymous_thp;
400 unsigned long shmem_thp;
401 unsigned long file_thp;
403 unsigned long shared_hugetlb;
404 unsigned long private_hugetlb;
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414 struct page *page, unsigned long size, unsigned long pss,
415 bool dirty, bool locked, bool private)
420 mss->pss_anon += pss;
421 else if (PageSwapBacked(page))
422 mss->pss_shmem += pss;
424 mss->pss_file += pss;
427 mss->pss_locked += pss;
429 if (dirty || PageDirty(page)) {
431 mss->private_dirty += size;
433 mss->shared_dirty += size;
436 mss->private_clean += size;
438 mss->shared_clean += size;
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443 bool compound, bool young, bool dirty, bool locked,
446 int i, nr = compound ? compound_nr(page) : 1;
447 unsigned long size = nr * PAGE_SIZE;
450 * First accumulate quantities that depend only on |size| and the type
451 * of the compound page.
453 if (PageAnon(page)) {
454 mss->anonymous += size;
455 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
456 mss->lazyfree += size;
459 mss->resident += size;
460 /* Accumulate the size in pages that have been accessed. */
461 if (young || page_is_young(page) || PageReferenced(page))
462 mss->referenced += size;
465 * Then accumulate quantities that may depend on sharing, or that may
466 * differ page-by-page.
468 * page_count(page) == 1 guarantees the page is mapped exactly once.
469 * If any subpage of the compound page mapped with PTE it would elevate
472 * The page_mapcount() is called to get a snapshot of the mapcount.
473 * Without holding the page lock this snapshot can be slightly wrong as
474 * we cannot always read the mapcount atomically. It is not safe to
475 * call page_mapcount() even with PTL held if the page is not mapped,
476 * especially for migration entries. Treat regular migration entries
479 if ((page_count(page) == 1) || migration) {
480 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
484 for (i = 0; i < nr; i++, page++) {
485 int mapcount = page_mapcount(page);
486 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
489 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
495 static int smaps_pte_hole(unsigned long addr, unsigned long end,
496 __always_unused int depth, struct mm_walk *walk)
498 struct mem_size_stats *mss = walk->private;
499 struct vm_area_struct *vma = walk->vma;
501 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
502 linear_page_index(vma, addr),
503 linear_page_index(vma, end));
508 #define smaps_pte_hole NULL
509 #endif /* CONFIG_SHMEM */
511 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
514 if (walk->ops->pte_hole) {
515 /* depth is not used */
516 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
521 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
522 struct mm_walk *walk)
524 struct mem_size_stats *mss = walk->private;
525 struct vm_area_struct *vma = walk->vma;
526 bool locked = !!(vma->vm_flags & VM_LOCKED);
527 struct page *page = NULL;
528 bool migration = false;
530 if (pte_present(*pte)) {
531 page = vm_normal_page(vma, addr, *pte);
532 } else if (is_swap_pte(*pte)) {
533 swp_entry_t swpent = pte_to_swp_entry(*pte);
535 if (!non_swap_entry(swpent)) {
538 mss->swap += PAGE_SIZE;
539 mapcount = swp_swapcount(swpent);
541 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
543 do_div(pss_delta, mapcount);
544 mss->swap_pss += pss_delta;
546 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
548 } else if (is_pfn_swap_entry(swpent)) {
549 if (is_migration_entry(swpent))
551 page = pfn_swap_entry_to_page(swpent);
554 smaps_pte_hole_lookup(addr, walk);
561 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte),
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567 struct mm_walk *walk)
569 struct mem_size_stats *mss = walk->private;
570 struct vm_area_struct *vma = walk->vma;
571 bool locked = !!(vma->vm_flags & VM_LOCKED);
572 struct page *page = NULL;
573 bool migration = false;
575 if (pmd_present(*pmd)) {
576 /* FOLL_DUMP will return -EFAULT on huge zero page */
577 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
579 swp_entry_t entry = pmd_to_swp_entry(*pmd);
581 if (is_migration_entry(entry)) {
583 page = pfn_swap_entry_to_page(entry);
586 if (IS_ERR_OR_NULL(page))
589 mss->anonymous_thp += HPAGE_PMD_SIZE;
590 else if (PageSwapBacked(page))
591 mss->shmem_thp += HPAGE_PMD_SIZE;
592 else if (is_zone_device_page(page))
595 mss->file_thp += HPAGE_PMD_SIZE;
597 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
601 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
602 struct mm_walk *walk)
607 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
608 struct mm_walk *walk)
610 struct vm_area_struct *vma = walk->vma;
614 ptl = pmd_trans_huge_lock(pmd, vma);
616 smaps_pmd_entry(pmd, addr, walk);
621 if (pmd_trans_unstable(pmd))
624 * The mmap_lock held all the way back in m_start() is what
625 * keeps khugepaged out of here and from collapsing things
628 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
629 for (; addr != end; pte++, addr += PAGE_SIZE)
630 smaps_pte_entry(pte, addr, walk);
631 pte_unmap_unlock(pte - 1, ptl);
637 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640 * Don't forget to update Documentation/ on changes.
642 static const char mnemonics[BITS_PER_LONG][2] = {
644 * In case if we meet a flag we don't know about.
646 [0 ... (BITS_PER_LONG-1)] = "??",
648 [ilog2(VM_READ)] = "rd",
649 [ilog2(VM_WRITE)] = "wr",
650 [ilog2(VM_EXEC)] = "ex",
651 [ilog2(VM_SHARED)] = "sh",
652 [ilog2(VM_MAYREAD)] = "mr",
653 [ilog2(VM_MAYWRITE)] = "mw",
654 [ilog2(VM_MAYEXEC)] = "me",
655 [ilog2(VM_MAYSHARE)] = "ms",
656 [ilog2(VM_GROWSDOWN)] = "gd",
657 [ilog2(VM_PFNMAP)] = "pf",
658 [ilog2(VM_LOCKED)] = "lo",
659 [ilog2(VM_IO)] = "io",
660 [ilog2(VM_SEQ_READ)] = "sr",
661 [ilog2(VM_RAND_READ)] = "rr",
662 [ilog2(VM_DONTCOPY)] = "dc",
663 [ilog2(VM_DONTEXPAND)] = "de",
664 [ilog2(VM_ACCOUNT)] = "ac",
665 [ilog2(VM_NORESERVE)] = "nr",
666 [ilog2(VM_HUGETLB)] = "ht",
667 [ilog2(VM_SYNC)] = "sf",
668 [ilog2(VM_ARCH_1)] = "ar",
669 [ilog2(VM_WIPEONFORK)] = "wf",
670 [ilog2(VM_DONTDUMP)] = "dd",
671 #ifdef CONFIG_ARM64_BTI
672 [ilog2(VM_ARM64_BTI)] = "bt",
674 #ifdef CONFIG_MEM_SOFT_DIRTY
675 [ilog2(VM_SOFTDIRTY)] = "sd",
677 [ilog2(VM_MIXEDMAP)] = "mm",
678 [ilog2(VM_HUGEPAGE)] = "hg",
679 [ilog2(VM_NOHUGEPAGE)] = "nh",
680 [ilog2(VM_MERGEABLE)] = "mg",
681 [ilog2(VM_UFFD_MISSING)]= "um",
682 [ilog2(VM_UFFD_WP)] = "uw",
683 #ifdef CONFIG_ARM64_MTE
684 [ilog2(VM_MTE)] = "mt",
685 [ilog2(VM_MTE_ALLOWED)] = "",
687 #ifdef CONFIG_ARCH_HAS_PKEYS
688 /* These come out via ProtectionKey: */
689 [ilog2(VM_PKEY_BIT0)] = "",
690 [ilog2(VM_PKEY_BIT1)] = "",
691 [ilog2(VM_PKEY_BIT2)] = "",
692 [ilog2(VM_PKEY_BIT3)] = "",
694 [ilog2(VM_PKEY_BIT4)] = "",
696 #endif /* CONFIG_ARCH_HAS_PKEYS */
697 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
698 [ilog2(VM_UFFD_MINOR)] = "ui",
699 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
703 seq_puts(m, "VmFlags: ");
704 for (i = 0; i < BITS_PER_LONG; i++) {
705 if (!mnemonics[i][0])
707 if (vma->vm_flags & (1UL << i)) {
708 seq_putc(m, mnemonics[i][0]);
709 seq_putc(m, mnemonics[i][1]);
716 #ifdef CONFIG_HUGETLB_PAGE
717 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
718 unsigned long addr, unsigned long end,
719 struct mm_walk *walk)
721 struct mem_size_stats *mss = walk->private;
722 struct vm_area_struct *vma = walk->vma;
723 struct page *page = NULL;
725 if (pte_present(*pte)) {
726 page = vm_normal_page(vma, addr, *pte);
727 } else if (is_swap_pte(*pte)) {
728 swp_entry_t swpent = pte_to_swp_entry(*pte);
730 if (is_pfn_swap_entry(swpent))
731 page = pfn_swap_entry_to_page(swpent);
734 int mapcount = page_mapcount(page);
737 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
739 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
744 #define smaps_hugetlb_range NULL
745 #endif /* HUGETLB_PAGE */
747 static const struct mm_walk_ops smaps_walk_ops = {
748 .pmd_entry = smaps_pte_range,
749 .hugetlb_entry = smaps_hugetlb_range,
752 static const struct mm_walk_ops smaps_shmem_walk_ops = {
753 .pmd_entry = smaps_pte_range,
754 .hugetlb_entry = smaps_hugetlb_range,
755 .pte_hole = smaps_pte_hole,
759 * Gather mem stats from @vma with the indicated beginning
760 * address @start, and keep them in @mss.
762 * Use vm_start of @vma as the beginning address if @start is 0.
764 static void smap_gather_stats(struct vm_area_struct *vma,
765 struct mem_size_stats *mss, unsigned long start)
767 const struct mm_walk_ops *ops = &smaps_walk_ops;
770 if (start >= vma->vm_end)
774 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
776 * For shared or readonly shmem mappings we know that all
777 * swapped out pages belong to the shmem object, and we can
778 * obtain the swap value much more efficiently. For private
779 * writable mappings, we might have COW pages that are
780 * not affected by the parent swapped out pages of the shmem
781 * object, so we have to distinguish them during the page walk.
782 * Unless we know that the shmem object (or the part mapped by
783 * our VMA) has no swapped out pages at all.
785 unsigned long shmem_swapped = shmem_swap_usage(vma);
787 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
788 !(vma->vm_flags & VM_WRITE))) {
789 mss->swap += shmem_swapped;
791 ops = &smaps_shmem_walk_ops;
795 /* mmap_lock is held in m_start */
797 walk_page_vma(vma, ops, mss);
799 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
802 #define SEQ_PUT_DEC(str, val) \
803 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
805 /* Show the contents common for smaps and smaps_rollup */
806 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
809 SEQ_PUT_DEC("Rss: ", mss->resident);
810 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
813 * These are meaningful only for smaps_rollup, otherwise two of
814 * them are zero, and the other one is the same as Pss.
816 SEQ_PUT_DEC(" kB\nPss_Anon: ",
817 mss->pss_anon >> PSS_SHIFT);
818 SEQ_PUT_DEC(" kB\nPss_File: ",
819 mss->pss_file >> PSS_SHIFT);
820 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
821 mss->pss_shmem >> PSS_SHIFT);
823 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
824 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
825 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
826 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
827 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
828 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
829 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
830 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
831 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
832 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
833 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
834 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
835 mss->private_hugetlb >> 10, 7);
836 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
837 SEQ_PUT_DEC(" kB\nSwapPss: ",
838 mss->swap_pss >> PSS_SHIFT);
839 SEQ_PUT_DEC(" kB\nLocked: ",
840 mss->pss_locked >> PSS_SHIFT);
841 seq_puts(m, " kB\n");
844 static int show_smap(struct seq_file *m, void *v)
846 struct vm_area_struct *vma = v;
847 struct mem_size_stats mss;
849 memset(&mss, 0, sizeof(mss));
851 smap_gather_stats(vma, &mss, 0);
853 show_map_vma(m, vma);
855 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
856 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
857 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
858 seq_puts(m, " kB\n");
860 __show_smap(m, &mss, false);
862 seq_printf(m, "THPeligible: %d\n",
863 transparent_hugepage_active(vma));
865 if (arch_pkeys_enabled())
866 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
867 show_smap_vma_flags(m, vma);
872 static int show_smaps_rollup(struct seq_file *m, void *v)
874 struct proc_maps_private *priv = m->private;
875 struct mem_size_stats mss;
876 struct mm_struct *mm;
877 struct vm_area_struct *vma;
878 unsigned long last_vma_end = 0;
881 priv->task = get_proc_task(priv->inode);
886 if (!mm || !mmget_not_zero(mm)) {
891 memset(&mss, 0, sizeof(mss));
893 ret = mmap_read_lock_killable(mm);
897 hold_task_mempolicy(priv);
899 for (vma = priv->mm->mmap; vma;) {
900 smap_gather_stats(vma, &mss, 0);
901 last_vma_end = vma->vm_end;
904 * Release mmap_lock temporarily if someone wants to
905 * access it for write request.
907 if (mmap_lock_is_contended(mm)) {
908 mmap_read_unlock(mm);
909 ret = mmap_read_lock_killable(mm);
911 release_task_mempolicy(priv);
916 * After dropping the lock, there are four cases to
917 * consider. See the following example for explanation.
919 * +------+------+-----------+
920 * | VMA1 | VMA2 | VMA3 |
921 * +------+------+-----------+
925 * Suppose we drop the lock after reading VMA2 due to
926 * contention, then we get:
930 * 1) VMA2 is freed, but VMA3 exists:
932 * find_vma(mm, 16k - 1) will return VMA3.
933 * In this case, just continue from VMA3.
935 * 2) VMA2 still exists:
937 * find_vma(mm, 16k - 1) will return VMA2.
938 * Iterate the loop like the original one.
940 * 3) No more VMAs can be found:
942 * find_vma(mm, 16k - 1) will return NULL.
943 * No more things to do, just break.
945 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
947 * find_vma(mm, 16k - 1) will return VMA' whose range
948 * contains last_vma_end.
949 * Iterate VMA' from last_vma_end.
951 vma = find_vma(mm, last_vma_end - 1);
957 if (vma->vm_start >= last_vma_end)
961 if (vma->vm_end > last_vma_end)
962 smap_gather_stats(vma, &mss, last_vma_end);
968 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
969 last_vma_end, 0, 0, 0, 0);
971 seq_puts(m, "[rollup]\n");
973 __show_smap(m, &mss, true);
975 release_task_mempolicy(priv);
976 mmap_read_unlock(mm);
981 put_task_struct(priv->task);
988 static const struct seq_operations proc_pid_smaps_op = {
995 static int pid_smaps_open(struct inode *inode, struct file *file)
997 return do_maps_open(inode, file, &proc_pid_smaps_op);
1000 static int smaps_rollup_open(struct inode *inode, struct file *file)
1003 struct proc_maps_private *priv;
1005 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1009 ret = single_open(file, show_smaps_rollup, priv);
1013 priv->inode = inode;
1014 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1015 if (IS_ERR(priv->mm)) {
1016 ret = PTR_ERR(priv->mm);
1018 single_release(inode, file);
1029 static int smaps_rollup_release(struct inode *inode, struct file *file)
1031 struct seq_file *seq = file->private_data;
1032 struct proc_maps_private *priv = seq->private;
1038 return single_release(inode, file);
1041 const struct file_operations proc_pid_smaps_operations = {
1042 .open = pid_smaps_open,
1044 .llseek = seq_lseek,
1045 .release = proc_map_release,
1048 const struct file_operations proc_pid_smaps_rollup_operations = {
1049 .open = smaps_rollup_open,
1051 .llseek = seq_lseek,
1052 .release = smaps_rollup_release,
1055 enum clear_refs_types {
1059 CLEAR_REFS_SOFT_DIRTY,
1060 CLEAR_REFS_MM_HIWATER_RSS,
1064 struct clear_refs_private {
1065 enum clear_refs_types type;
1068 #ifdef CONFIG_MEM_SOFT_DIRTY
1070 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1074 if (!pte_write(pte))
1076 if (!is_cow_mapping(vma->vm_flags))
1078 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1080 page = vm_normal_page(vma, addr, pte);
1083 return page_maybe_dma_pinned(page);
1086 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1087 unsigned long addr, pte_t *pte)
1090 * The soft-dirty tracker uses #PF-s to catch writes
1091 * to pages, so write-protect the pte as well. See the
1092 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1093 * of how soft-dirty works.
1097 if (pte_present(ptent)) {
1100 if (pte_is_pinned(vma, addr, ptent))
1102 old_pte = ptep_modify_prot_start(vma, addr, pte);
1103 ptent = pte_wrprotect(old_pte);
1104 ptent = pte_clear_soft_dirty(ptent);
1105 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1106 } else if (is_swap_pte(ptent)) {
1107 ptent = pte_swp_clear_soft_dirty(ptent);
1108 set_pte_at(vma->vm_mm, addr, pte, ptent);
1112 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1113 unsigned long addr, pte_t *pte)
1118 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1119 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1120 unsigned long addr, pmd_t *pmdp)
1122 pmd_t old, pmd = *pmdp;
1124 if (pmd_present(pmd)) {
1125 /* See comment in change_huge_pmd() */
1126 old = pmdp_invalidate(vma, addr, pmdp);
1128 pmd = pmd_mkdirty(pmd);
1130 pmd = pmd_mkyoung(pmd);
1132 pmd = pmd_wrprotect(pmd);
1133 pmd = pmd_clear_soft_dirty(pmd);
1135 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1136 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1137 pmd = pmd_swp_clear_soft_dirty(pmd);
1138 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1142 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1143 unsigned long addr, pmd_t *pmdp)
1148 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1149 unsigned long end, struct mm_walk *walk)
1151 struct clear_refs_private *cp = walk->private;
1152 struct vm_area_struct *vma = walk->vma;
1157 ptl = pmd_trans_huge_lock(pmd, vma);
1159 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1160 clear_soft_dirty_pmd(vma, addr, pmd);
1164 if (!pmd_present(*pmd))
1167 page = pmd_page(*pmd);
1169 /* Clear accessed and referenced bits. */
1170 pmdp_test_and_clear_young(vma, addr, pmd);
1171 test_and_clear_page_young(page);
1172 ClearPageReferenced(page);
1178 if (pmd_trans_unstable(pmd))
1181 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1182 for (; addr != end; pte++, addr += PAGE_SIZE) {
1185 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1186 clear_soft_dirty(vma, addr, pte);
1190 if (!pte_present(ptent))
1193 page = vm_normal_page(vma, addr, ptent);
1197 /* Clear accessed and referenced bits. */
1198 ptep_test_and_clear_young(vma, addr, pte);
1199 test_and_clear_page_young(page);
1200 ClearPageReferenced(page);
1202 pte_unmap_unlock(pte - 1, ptl);
1207 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1208 struct mm_walk *walk)
1210 struct clear_refs_private *cp = walk->private;
1211 struct vm_area_struct *vma = walk->vma;
1213 if (vma->vm_flags & VM_PFNMAP)
1217 * Writing 1 to /proc/pid/clear_refs affects all pages.
1218 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1219 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1220 * Writing 4 to /proc/pid/clear_refs affects all pages.
1222 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1224 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1229 static const struct mm_walk_ops clear_refs_walk_ops = {
1230 .pmd_entry = clear_refs_pte_range,
1231 .test_walk = clear_refs_test_walk,
1234 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1235 size_t count, loff_t *ppos)
1237 struct task_struct *task;
1238 char buffer[PROC_NUMBUF];
1239 struct mm_struct *mm;
1240 struct vm_area_struct *vma;
1241 enum clear_refs_types type;
1245 memset(buffer, 0, sizeof(buffer));
1246 if (count > sizeof(buffer) - 1)
1247 count = sizeof(buffer) - 1;
1248 if (copy_from_user(buffer, buf, count))
1250 rv = kstrtoint(strstrip(buffer), 10, &itype);
1253 type = (enum clear_refs_types)itype;
1254 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1257 task = get_proc_task(file_inode(file));
1260 mm = get_task_mm(task);
1262 struct mmu_notifier_range range;
1263 struct clear_refs_private cp = {
1267 if (mmap_write_lock_killable(mm)) {
1271 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1273 * Writing 5 to /proc/pid/clear_refs resets the peak
1274 * resident set size to this mm's current rss value.
1276 reset_mm_hiwater_rss(mm);
1280 if (type == CLEAR_REFS_SOFT_DIRTY) {
1281 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1282 if (!(vma->vm_flags & VM_SOFTDIRTY))
1284 vma->vm_flags &= ~VM_SOFTDIRTY;
1285 vma_set_page_prot(vma);
1288 inc_tlb_flush_pending(mm);
1289 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1290 0, NULL, mm, 0, -1UL);
1291 mmu_notifier_invalidate_range_start(&range);
1293 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1295 if (type == CLEAR_REFS_SOFT_DIRTY) {
1296 mmu_notifier_invalidate_range_end(&range);
1298 dec_tlb_flush_pending(mm);
1301 mmap_write_unlock(mm);
1305 put_task_struct(task);
1310 const struct file_operations proc_clear_refs_operations = {
1311 .write = clear_refs_write,
1312 .llseek = noop_llseek,
1319 struct pagemapread {
1320 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1321 pagemap_entry_t *buffer;
1325 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1326 #define PAGEMAP_WALK_MASK (PMD_MASK)
1328 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1329 #define PM_PFRAME_BITS 55
1330 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1331 #define PM_SOFT_DIRTY BIT_ULL(55)
1332 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1333 #define PM_UFFD_WP BIT_ULL(57)
1334 #define PM_FILE BIT_ULL(61)
1335 #define PM_SWAP BIT_ULL(62)
1336 #define PM_PRESENT BIT_ULL(63)
1338 #define PM_END_OF_BUFFER 1
1340 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1342 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1345 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1346 struct pagemapread *pm)
1348 pm->buffer[pm->pos++] = *pme;
1349 if (pm->pos >= pm->len)
1350 return PM_END_OF_BUFFER;
1354 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1355 __always_unused int depth, struct mm_walk *walk)
1357 struct pagemapread *pm = walk->private;
1358 unsigned long addr = start;
1361 while (addr < end) {
1362 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1363 pagemap_entry_t pme = make_pme(0, 0);
1364 /* End of address space hole, which we mark as non-present. */
1365 unsigned long hole_end;
1368 hole_end = min(end, vma->vm_start);
1372 for (; addr < hole_end; addr += PAGE_SIZE) {
1373 err = add_to_pagemap(addr, &pme, pm);
1381 /* Addresses in the VMA. */
1382 if (vma->vm_flags & VM_SOFTDIRTY)
1383 pme = make_pme(0, PM_SOFT_DIRTY);
1384 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1385 err = add_to_pagemap(addr, &pme, pm);
1394 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1395 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1397 u64 frame = 0, flags = 0;
1398 struct page *page = NULL;
1399 bool migration = false;
1401 if (pte_present(pte)) {
1403 frame = pte_pfn(pte);
1404 flags |= PM_PRESENT;
1405 page = vm_normal_page(vma, addr, pte);
1406 if (pte_soft_dirty(pte))
1407 flags |= PM_SOFT_DIRTY;
1408 if (pte_uffd_wp(pte))
1409 flags |= PM_UFFD_WP;
1410 } else if (is_swap_pte(pte)) {
1412 if (pte_swp_soft_dirty(pte))
1413 flags |= PM_SOFT_DIRTY;
1414 if (pte_swp_uffd_wp(pte))
1415 flags |= PM_UFFD_WP;
1416 entry = pte_to_swp_entry(pte);
1418 frame = swp_type(entry) |
1419 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1421 migration = is_migration_entry(entry);
1422 if (is_pfn_swap_entry(entry))
1423 page = pfn_swap_entry_to_page(entry);
1426 if (page && !PageAnon(page))
1428 if (page && !migration && page_mapcount(page) == 1)
1429 flags |= PM_MMAP_EXCLUSIVE;
1430 if (vma->vm_flags & VM_SOFTDIRTY)
1431 flags |= PM_SOFT_DIRTY;
1433 return make_pme(frame, flags);
1436 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1437 struct mm_walk *walk)
1439 struct vm_area_struct *vma = walk->vma;
1440 struct pagemapread *pm = walk->private;
1442 pte_t *pte, *orig_pte;
1444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445 bool migration = false;
1447 ptl = pmd_trans_huge_lock(pmdp, vma);
1449 u64 flags = 0, frame = 0;
1451 struct page *page = NULL;
1453 if (vma->vm_flags & VM_SOFTDIRTY)
1454 flags |= PM_SOFT_DIRTY;
1456 if (pmd_present(pmd)) {
1457 page = pmd_page(pmd);
1459 flags |= PM_PRESENT;
1460 if (pmd_soft_dirty(pmd))
1461 flags |= PM_SOFT_DIRTY;
1462 if (pmd_uffd_wp(pmd))
1463 flags |= PM_UFFD_WP;
1465 frame = pmd_pfn(pmd) +
1466 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1468 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1469 else if (is_swap_pmd(pmd)) {
1470 swp_entry_t entry = pmd_to_swp_entry(pmd);
1471 unsigned long offset;
1474 offset = swp_offset(entry) +
1475 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1476 frame = swp_type(entry) |
1477 (offset << MAX_SWAPFILES_SHIFT);
1480 if (pmd_swp_soft_dirty(pmd))
1481 flags |= PM_SOFT_DIRTY;
1482 if (pmd_swp_uffd_wp(pmd))
1483 flags |= PM_UFFD_WP;
1484 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1485 migration = is_migration_entry(entry);
1486 page = pfn_swap_entry_to_page(entry);
1490 if (page && !migration && page_mapcount(page) == 1)
1491 flags |= PM_MMAP_EXCLUSIVE;
1493 for (; addr != end; addr += PAGE_SIZE) {
1494 pagemap_entry_t pme = make_pme(frame, flags);
1496 err = add_to_pagemap(addr, &pme, pm);
1500 if (flags & PM_PRESENT)
1502 else if (flags & PM_SWAP)
1503 frame += (1 << MAX_SWAPFILES_SHIFT);
1510 if (pmd_trans_unstable(pmdp))
1512 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1515 * We can assume that @vma always points to a valid one and @end never
1516 * goes beyond vma->vm_end.
1518 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1519 for (; addr < end; pte++, addr += PAGE_SIZE) {
1520 pagemap_entry_t pme;
1522 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1523 err = add_to_pagemap(addr, &pme, pm);
1527 pte_unmap_unlock(orig_pte, ptl);
1534 #ifdef CONFIG_HUGETLB_PAGE
1535 /* This function walks within one hugetlb entry in the single call */
1536 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1537 unsigned long addr, unsigned long end,
1538 struct mm_walk *walk)
1540 struct pagemapread *pm = walk->private;
1541 struct vm_area_struct *vma = walk->vma;
1542 u64 flags = 0, frame = 0;
1546 if (vma->vm_flags & VM_SOFTDIRTY)
1547 flags |= PM_SOFT_DIRTY;
1549 pte = huge_ptep_get(ptep);
1550 if (pte_present(pte)) {
1551 struct page *page = pte_page(pte);
1553 if (!PageAnon(page))
1556 if (page_mapcount(page) == 1)
1557 flags |= PM_MMAP_EXCLUSIVE;
1559 flags |= PM_PRESENT;
1561 frame = pte_pfn(pte) +
1562 ((addr & ~hmask) >> PAGE_SHIFT);
1565 for (; addr != end; addr += PAGE_SIZE) {
1566 pagemap_entry_t pme = make_pme(frame, flags);
1568 err = add_to_pagemap(addr, &pme, pm);
1571 if (pm->show_pfn && (flags & PM_PRESENT))
1580 #define pagemap_hugetlb_range NULL
1581 #endif /* HUGETLB_PAGE */
1583 static const struct mm_walk_ops pagemap_ops = {
1584 .pmd_entry = pagemap_pmd_range,
1585 .pte_hole = pagemap_pte_hole,
1586 .hugetlb_entry = pagemap_hugetlb_range,
1590 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1592 * For each page in the address space, this file contains one 64-bit entry
1593 * consisting of the following:
1595 * Bits 0-54 page frame number (PFN) if present
1596 * Bits 0-4 swap type if swapped
1597 * Bits 5-54 swap offset if swapped
1598 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1599 * Bit 56 page exclusively mapped
1600 * Bit 57 pte is uffd-wp write-protected
1602 * Bit 61 page is file-page or shared-anon
1603 * Bit 62 page swapped
1604 * Bit 63 page present
1606 * If the page is not present but in swap, then the PFN contains an
1607 * encoding of the swap file number and the page's offset into the
1608 * swap. Unmapped pages return a null PFN. This allows determining
1609 * precisely which pages are mapped (or in swap) and comparing mapped
1610 * pages between processes.
1612 * Efficient users of this interface will use /proc/pid/maps to
1613 * determine which areas of memory are actually mapped and llseek to
1614 * skip over unmapped regions.
1616 static ssize_t pagemap_read(struct file *file, char __user *buf,
1617 size_t count, loff_t *ppos)
1619 struct mm_struct *mm = file->private_data;
1620 struct pagemapread pm;
1622 unsigned long svpfn;
1623 unsigned long start_vaddr;
1624 unsigned long end_vaddr;
1625 int ret = 0, copied = 0;
1627 if (!mm || !mmget_not_zero(mm))
1631 /* file position must be aligned */
1632 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1639 /* do not disclose physical addresses: attack vector */
1640 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1642 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1643 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1649 svpfn = src / PM_ENTRY_BYTES;
1650 end_vaddr = mm->task_size;
1652 /* watch out for wraparound */
1653 start_vaddr = end_vaddr;
1654 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1655 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1657 /* Ensure the address is inside the task */
1658 if (start_vaddr > mm->task_size)
1659 start_vaddr = end_vaddr;
1662 * The odds are that this will stop walking way
1663 * before end_vaddr, because the length of the
1664 * user buffer is tracked in "pm", and the walk
1665 * will stop when we hit the end of the buffer.
1668 while (count && (start_vaddr < end_vaddr)) {
1673 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1675 if (end < start_vaddr || end > end_vaddr)
1677 ret = mmap_read_lock_killable(mm);
1680 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1681 mmap_read_unlock(mm);
1684 len = min(count, PM_ENTRY_BYTES * pm.pos);
1685 if (copy_to_user(buf, pm.buffer, len)) {
1694 if (!ret || ret == PM_END_OF_BUFFER)
1705 static int pagemap_open(struct inode *inode, struct file *file)
1707 struct mm_struct *mm;
1709 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1712 file->private_data = mm;
1716 static int pagemap_release(struct inode *inode, struct file *file)
1718 struct mm_struct *mm = file->private_data;
1725 const struct file_operations proc_pagemap_operations = {
1726 .llseek = mem_lseek, /* borrow this */
1727 .read = pagemap_read,
1728 .open = pagemap_open,
1729 .release = pagemap_release,
1731 #endif /* CONFIG_PROC_PAGE_MONITOR */
1736 unsigned long pages;
1738 unsigned long active;
1739 unsigned long writeback;
1740 unsigned long mapcount_max;
1741 unsigned long dirty;
1742 unsigned long swapcache;
1743 unsigned long node[MAX_NUMNODES];
1746 struct numa_maps_private {
1747 struct proc_maps_private proc_maps;
1748 struct numa_maps md;
1751 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1752 unsigned long nr_pages)
1754 int count = page_mapcount(page);
1756 md->pages += nr_pages;
1757 if (pte_dirty || PageDirty(page))
1758 md->dirty += nr_pages;
1760 if (PageSwapCache(page))
1761 md->swapcache += nr_pages;
1763 if (PageActive(page) || PageUnevictable(page))
1764 md->active += nr_pages;
1766 if (PageWriteback(page))
1767 md->writeback += nr_pages;
1770 md->anon += nr_pages;
1772 if (count > md->mapcount_max)
1773 md->mapcount_max = count;
1775 md->node[page_to_nid(page)] += nr_pages;
1778 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1784 if (!pte_present(pte))
1787 page = vm_normal_page(vma, addr, pte);
1791 if (PageReserved(page))
1794 nid = page_to_nid(page);
1795 if (!node_isset(nid, node_states[N_MEMORY]))
1801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1802 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1803 struct vm_area_struct *vma,
1809 if (!pmd_present(pmd))
1812 page = vm_normal_page_pmd(vma, addr, pmd);
1816 if (PageReserved(page))
1819 nid = page_to_nid(page);
1820 if (!node_isset(nid, node_states[N_MEMORY]))
1827 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1828 unsigned long end, struct mm_walk *walk)
1830 struct numa_maps *md = walk->private;
1831 struct vm_area_struct *vma = walk->vma;
1836 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1837 ptl = pmd_trans_huge_lock(pmd, vma);
1841 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1843 gather_stats(page, md, pmd_dirty(*pmd),
1844 HPAGE_PMD_SIZE/PAGE_SIZE);
1849 if (pmd_trans_unstable(pmd))
1852 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1854 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1857 gather_stats(page, md, pte_dirty(*pte), 1);
1859 } while (pte++, addr += PAGE_SIZE, addr != end);
1860 pte_unmap_unlock(orig_pte, ptl);
1864 #ifdef CONFIG_HUGETLB_PAGE
1865 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1866 unsigned long addr, unsigned long end, struct mm_walk *walk)
1868 pte_t huge_pte = huge_ptep_get(pte);
1869 struct numa_maps *md;
1872 if (!pte_present(huge_pte))
1875 page = pte_page(huge_pte);
1880 gather_stats(page, md, pte_dirty(huge_pte), 1);
1885 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1886 unsigned long addr, unsigned long end, struct mm_walk *walk)
1892 static const struct mm_walk_ops show_numa_ops = {
1893 .hugetlb_entry = gather_hugetlb_stats,
1894 .pmd_entry = gather_pte_stats,
1898 * Display pages allocated per node and memory policy via /proc.
1900 static int show_numa_map(struct seq_file *m, void *v)
1902 struct numa_maps_private *numa_priv = m->private;
1903 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1904 struct vm_area_struct *vma = v;
1905 struct numa_maps *md = &numa_priv->md;
1906 struct file *file = vma->vm_file;
1907 struct mm_struct *mm = vma->vm_mm;
1908 struct mempolicy *pol;
1915 /* Ensure we start with an empty set of numa_maps statistics. */
1916 memset(md, 0, sizeof(*md));
1918 pol = __get_vma_policy(vma, vma->vm_start);
1920 mpol_to_str(buffer, sizeof(buffer), pol);
1923 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1926 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1929 seq_puts(m, " file=");
1930 seq_file_path(m, file, "\n\t= ");
1931 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1932 seq_puts(m, " heap");
1933 } else if (is_stack(vma)) {
1934 seq_puts(m, " stack");
1937 if (is_vm_hugetlb_page(vma))
1938 seq_puts(m, " huge");
1940 /* mmap_lock is held by m_start */
1941 walk_page_vma(vma, &show_numa_ops, md);
1947 seq_printf(m, " anon=%lu", md->anon);
1950 seq_printf(m, " dirty=%lu", md->dirty);
1952 if (md->pages != md->anon && md->pages != md->dirty)
1953 seq_printf(m, " mapped=%lu", md->pages);
1955 if (md->mapcount_max > 1)
1956 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1959 seq_printf(m, " swapcache=%lu", md->swapcache);
1961 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1962 seq_printf(m, " active=%lu", md->active);
1965 seq_printf(m, " writeback=%lu", md->writeback);
1967 for_each_node_state(nid, N_MEMORY)
1969 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1971 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1977 static const struct seq_operations proc_pid_numa_maps_op = {
1981 .show = show_numa_map,
1984 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1986 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1987 sizeof(struct numa_maps_private));
1990 const struct file_operations proc_pid_numa_maps_operations = {
1991 .open = pid_numa_maps_open,
1993 .llseek = seq_lseek,
1994 .release = proc_map_release,
1997 #endif /* CONFIG_NUMA */