1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h> /* for syscall_get_* */
63 * SLAB caches for signal bits.
66 static struct kmem_cache *sigqueue_cachep;
68 int print_fatal_signals __read_mostly;
70 static void __user *sig_handler(struct task_struct *t, int sig)
72 return t->sighand->action[sig - 1].sa.sa_handler;
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
77 /* Is it explicitly or implicitly ignored? */
78 return handler == SIG_IGN ||
79 (handler == SIG_DFL && sig_kernel_ignore(sig));
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
86 handler = sig_handler(t, sig);
88 /* SIGKILL and SIGSTOP may not be sent to the global init */
89 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 /* Only allow kernel generated signals to this kthread */
97 if (unlikely((t->flags & PF_KTHREAD) &&
98 (handler == SIG_KTHREAD_KERNEL) && !force))
101 return sig_handler_ignored(handler, sig);
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 * Blocked signals are never ignored, since the
108 * signal handler may change by the time it is
111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
115 * Tracers may want to know about even ignored signal unless it
116 * is SIGKILL which can't be reported anyway but can be ignored
117 * by SIGNAL_UNKILLABLE task.
119 if (t->ptrace && sig != SIGKILL)
122 return sig_task_ignored(t, sig, force);
126 * Re-calculate pending state from the set of locally pending
127 * signals, globally pending signals, and blocked signals.
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
134 switch (_NSIG_WORDS) {
136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 ready |= signal->sig[i] &~ blocked->sig[i];
140 case 4: ready = signal->sig[3] &~ blocked->sig[3];
141 ready |= signal->sig[2] &~ blocked->sig[2];
142 ready |= signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
146 case 2: ready = signal->sig[1] &~ blocked->sig[1];
147 ready |= signal->sig[0] &~ blocked->sig[0];
150 case 1: ready = signal->sig[0] &~ blocked->sig[0];
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
157 static bool recalc_sigpending_tsk(struct task_struct *t)
159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 PENDING(&t->pending, &t->blocked) ||
161 PENDING(&t->signal->shared_pending, &t->blocked) ||
162 cgroup_task_frozen(t)) {
163 set_tsk_thread_flag(t, TIF_SIGPENDING);
168 * We must never clear the flag in another thread, or in current
169 * when it's possible the current syscall is returning -ERESTART*.
170 * So we don't clear it here, and only callers who know they should do.
175 void recalc_sigpending(void)
177 if (!recalc_sigpending_tsk(current) && !freezing(current))
178 clear_thread_flag(TIF_SIGPENDING);
181 EXPORT_SYMBOL(recalc_sigpending);
183 void calculate_sigpending(void)
185 /* Have any signals or users of TIF_SIGPENDING been delayed
188 spin_lock_irq(¤t->sighand->siglock);
189 set_tsk_thread_flag(current, TIF_SIGPENDING);
191 spin_unlock_irq(¤t->sighand->siglock);
194 /* Given the mask, find the first available signal that should be serviced. */
196 #define SYNCHRONOUS_MASK \
197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
200 int next_signal(struct sigpending *pending, sigset_t *mask)
202 unsigned long i, *s, *m, x;
205 s = pending->signal.sig;
209 * Handle the first word specially: it contains the
210 * synchronous signals that need to be dequeued first.
214 if (x & SYNCHRONOUS_MASK)
215 x &= SYNCHRONOUS_MASK;
220 switch (_NSIG_WORDS) {
222 for (i = 1; i < _NSIG_WORDS; ++i) {
226 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 sig = ffz(~x) + _NSIG_BPW + 1;
246 static inline void print_dropped_signal(int sig)
248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
250 if (!print_fatal_signals)
253 if (!__ratelimit(&ratelimit_state))
256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 current->comm, current->pid, sig);
261 * task_set_jobctl_pending - set jobctl pending bits
263 * @mask: pending bits to set
265 * Clear @mask from @task->jobctl. @mask must be subset of
266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
268 * cleared. If @task is already being killed or exiting, this function
272 * Must be called with @task->sighand->siglock held.
275 * %true if @mask is set, %false if made noop because @task was dying.
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 if (mask & JOBCTL_STOP_SIGMASK)
287 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
289 task->jobctl |= mask;
294 * task_clear_jobctl_trapping - clear jobctl trapping bit
297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298 * Clear it and wake up the ptracer. Note that we don't need any further
299 * locking. @task->siglock guarantees that @task->parent points to the
303 * Must be called with @task->sighand->siglock held.
305 void task_clear_jobctl_trapping(struct task_struct *task)
307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 task->jobctl &= ~JOBCTL_TRAPPING;
309 smp_mb(); /* advised by wake_up_bit() */
310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
315 * task_clear_jobctl_pending - clear jobctl pending bits
317 * @mask: pending bits to clear
319 * Clear @mask from @task->jobctl. @mask must be subset of
320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
321 * STOP bits are cleared together.
323 * If clearing of @mask leaves no stop or trap pending, this function calls
324 * task_clear_jobctl_trapping().
327 * Must be called with @task->sighand->siglock held.
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
331 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
333 if (mask & JOBCTL_STOP_PENDING)
334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
336 task->jobctl &= ~mask;
338 if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 task_clear_jobctl_trapping(task);
343 * task_participate_group_stop - participate in a group stop
344 * @task: task participating in a group stop
346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347 * Group stop states are cleared and the group stop count is consumed if
348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
349 * stop, the appropriate `SIGNAL_*` flags are set.
352 * Must be called with @task->sighand->siglock held.
355 * %true if group stop completion should be notified to the parent, %false
358 static bool task_participate_group_stop(struct task_struct *task)
360 struct signal_struct *sig = task->signal;
361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
370 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 sig->group_stop_count--;
374 * Tell the caller to notify completion iff we are entering into a
375 * fresh group stop. Read comment in do_signal_stop() for details.
377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
384 void task_join_group_stop(struct task_struct *task)
386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 struct signal_struct *sig = current->signal;
389 if (sig->group_stop_count) {
390 sig->group_stop_count++;
391 mask |= JOBCTL_STOP_CONSUME;
392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 /* Have the new thread join an on-going signal group stop */
396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
400 * allocate a new signal queue record
401 * - this may be called without locks if and only if t == current, otherwise an
402 * appropriate lock must be held to stop the target task from exiting
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 int override_rlimit, const unsigned int sigqueue_flags)
408 struct sigqueue *q = NULL;
409 struct ucounts *ucounts;
413 * Protect access to @t credentials. This can go away when all
414 * callers hold rcu read lock.
416 * NOTE! A pending signal will hold on to the user refcount,
417 * and we get/put the refcount only when the sigpending count
418 * changes from/to zero.
421 ucounts = task_ucounts(t);
422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
430 print_dropped_signal(sig);
433 if (unlikely(q == NULL)) {
434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
436 INIT_LIST_HEAD(&q->list);
437 q->flags = sigqueue_flags;
438 q->ucounts = ucounts;
443 static void __sigqueue_free(struct sigqueue *q)
445 if (q->flags & SIGQUEUE_PREALLOC)
448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
451 kmem_cache_free(sigqueue_cachep, q);
454 void flush_sigqueue(struct sigpending *queue)
458 sigemptyset(&queue->signal);
459 while (!list_empty(&queue->list)) {
460 q = list_entry(queue->list.next, struct sigqueue , list);
461 list_del_init(&q->list);
467 * Flush all pending signals for this kthread.
469 void flush_signals(struct task_struct *t)
473 spin_lock_irqsave(&t->sighand->siglock, flags);
474 clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 flush_sigqueue(&t->pending);
476 flush_sigqueue(&t->signal->shared_pending);
477 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479 EXPORT_SYMBOL(flush_signals);
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
484 sigset_t signal, retain;
485 struct sigqueue *q, *n;
487 signal = pending->signal;
488 sigemptyset(&retain);
490 list_for_each_entry_safe(q, n, &pending->list, list) {
491 int sig = q->info.si_signo;
493 if (likely(q->info.si_code != SI_TIMER)) {
494 sigaddset(&retain, sig);
496 sigdelset(&signal, sig);
497 list_del_init(&q->list);
502 sigorsets(&pending->signal, &signal, &retain);
505 void flush_itimer_signals(void)
507 struct task_struct *tsk = current;
510 spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 __flush_itimer_signals(&tsk->pending);
512 __flush_itimer_signals(&tsk->signal->shared_pending);
513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
517 void ignore_signals(struct task_struct *t)
521 for (i = 0; i < _NSIG; ++i)
522 t->sighand->action[i].sa.sa_handler = SIG_IGN;
528 * Flush all handlers for a task.
532 flush_signal_handlers(struct task_struct *t, int force_default)
535 struct k_sigaction *ka = &t->sighand->action[0];
536 for (i = _NSIG ; i != 0 ; i--) {
537 if (force_default || ka->sa.sa_handler != SIG_IGN)
538 ka->sa.sa_handler = SIG_DFL;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 ka->sa.sa_restorer = NULL;
543 sigemptyset(&ka->sa.sa_mask);
548 bool unhandled_signal(struct task_struct *tsk, int sig)
550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 if (is_global_init(tsk))
554 if (handler != SIG_IGN && handler != SIG_DFL)
557 /* If dying, we handle all new signals by ignoring them */
558 if (fatal_signal_pending(tsk))
561 /* if ptraced, let the tracer determine */
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 struct sigqueue *q, *first = NULL;
571 * Collect the siginfo appropriate to this signal. Check if
572 * there is another siginfo for the same signal.
574 list_for_each_entry(q, &list->list, list) {
575 if (q->info.si_signo == sig) {
582 sigdelset(&list->signal, sig);
586 list_del_init(&first->list);
587 copy_siginfo(info, &first->info);
590 (first->flags & SIGQUEUE_PREALLOC) &&
591 (info->si_code == SI_TIMER) &&
592 (info->si_sys_private);
594 __sigqueue_free(first);
597 * Ok, it wasn't in the queue. This must be
598 * a fast-pathed signal or we must have been
599 * out of queue space. So zero out the info.
602 info->si_signo = sig;
604 info->si_code = SI_USER;
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 kernel_siginfo_t *info, bool *resched_timer)
613 int sig = next_signal(pending, mask);
616 collect_signal(sig, pending, info, resched_timer);
621 * Dequeue a signal and return the element to the caller, which is
622 * expected to free it.
624 * All callers have to hold the siglock.
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 kernel_siginfo_t *info, enum pid_type *type)
629 bool resched_timer = false;
632 /* We only dequeue private signals from ourselves, we don't let
633 * signalfd steal them
636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 *type = PIDTYPE_TGID;
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
672 if (unlikely(sig_kernel_stop(signr))) {
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
687 #ifdef CONFIG_POSIX_TIMERS
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
705 EXPORT_SYMBOL_GPL(dequeue_signal);
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
714 * Might a synchronous signal be in the queue?
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 * Return the first synchronous signal in the queue.
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
733 * Check if there is another siginfo for the same signal.
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
740 sigdelset(&pending->signal, sync->info.si_signo);
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
750 * Tell a process that it has a new active signal..
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
762 lockdep_assert_held(&t->sighand->siglock);
764 set_tsk_thread_flag(t, TIF_SIGPENDING);
767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 * case. We don't check t->state here because there is a race with it
769 * executing another processor and just now entering stopped state.
770 * By using wake_up_state, we ensure the process will wake up and
771 * handle its death signal.
773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
778 * Remove signals in mask from the pending set and queue.
779 * Returns 1 if any signals were found.
781 * All callers must be holding the siglock.
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
785 struct sigqueue *q, *n;
788 sigandsets(&m, mask, &s->signal);
789 if (sigisemptyset(&m))
792 sigandnsets(&s->signal, &s->signal, mask);
793 list_for_each_entry_safe(q, n, &s->list, list) {
794 if (sigismember(mask, q->info.si_signo)) {
795 list_del_init(&q->list);
801 static inline int is_si_special(const struct kernel_siginfo *info)
803 return info <= SEND_SIG_PRIV;
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
808 return info == SEND_SIG_NOINFO ||
809 (!is_si_special(info) && SI_FROMUSER(info));
813 * called with RCU read lock from check_kill_permission()
815 static bool kill_ok_by_cred(struct task_struct *t)
817 const struct cred *cred = current_cred();
818 const struct cred *tcred = __task_cred(t);
820 return uid_eq(cred->euid, tcred->suid) ||
821 uid_eq(cred->euid, tcred->uid) ||
822 uid_eq(cred->uid, tcred->suid) ||
823 uid_eq(cred->uid, tcred->uid) ||
824 ns_capable(tcred->user_ns, CAP_KILL);
828 * Bad permissions for sending the signal
829 * - the caller must hold the RCU read lock
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 struct task_struct *t)
837 if (!valid_signal(sig))
840 if (!si_fromuser(info))
843 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (!same_thread_group(current, t) &&
848 !kill_ok_by_cred(t)) {
851 sid = task_session(t);
853 * We don't return the error if sid == NULL. The
854 * task was unhashed, the caller must notice this.
856 if (!sid || sid == task_session(current))
864 return security_task_kill(t, info, sig, NULL);
868 * ptrace_trap_notify - schedule trap to notify ptracer
869 * @t: tracee wanting to notify tracer
871 * This function schedules sticky ptrace trap which is cleared on the next
872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
875 * If @t is running, STOP trap will be taken. If trapped for STOP and
876 * ptracer is listening for events, tracee is woken up so that it can
877 * re-trap for the new event. If trapped otherwise, STOP trap will be
878 * eventually taken without returning to userland after the existing traps
879 * are finished by PTRACE_CONT.
882 * Must be called with @task->sighand->siglock held.
884 static void ptrace_trap_notify(struct task_struct *t)
886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 lockdep_assert_held(&t->sighand->siglock);
889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 * Handle magic process-wide effects of stop/continue signals. Unlike
895 * the signal actions, these happen immediately at signal-generation
896 * time regardless of blocking, ignoring, or handling. This does the
897 * actual continuing for SIGCONT, but not the actual stopping for stop
898 * signals. The process stop is done as a signal action for SIG_DFL.
900 * Returns true if the signal should be actually delivered, otherwise
901 * it should be dropped.
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
905 struct signal_struct *signal = p->signal;
906 struct task_struct *t;
909 if (signal->flags & SIGNAL_GROUP_EXIT) {
910 if (signal->core_state)
911 return sig == SIGKILL;
913 * The process is in the middle of dying, drop the signal.
916 } else if (sig_kernel_stop(sig)) {
918 * This is a stop signal. Remove SIGCONT from all queues.
920 siginitset(&flush, sigmask(SIGCONT));
921 flush_sigqueue_mask(&flush, &signal->shared_pending);
922 for_each_thread(p, t)
923 flush_sigqueue_mask(&flush, &t->pending);
924 } else if (sig == SIGCONT) {
927 * Remove all stop signals from all queues, wake all threads.
929 siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t) {
932 flush_sigqueue_mask(&flush, &t->pending);
933 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 if (likely(!(t->ptrace & PT_SEIZED))) {
935 t->jobctl &= ~JOBCTL_STOPPED;
936 wake_up_state(t, __TASK_STOPPED);
938 ptrace_trap_notify(t);
942 * Notify the parent with CLD_CONTINUED if we were stopped.
944 * If we were in the middle of a group stop, we pretend it
945 * was already finished, and then continued. Since SIGCHLD
946 * doesn't queue we report only CLD_STOPPED, as if the next
947 * CLD_CONTINUED was dropped.
950 if (signal->flags & SIGNAL_STOP_STOPPED)
951 why |= SIGNAL_CLD_CONTINUED;
952 else if (signal->group_stop_count)
953 why |= SIGNAL_CLD_STOPPED;
957 * The first thread which returns from do_signal_stop()
958 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 * notify its parent. See get_signal().
961 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 signal->group_stop_count = 0;
963 signal->group_exit_code = 0;
967 return !sig_ignored(p, sig, force);
971 * Test if P wants to take SIG. After we've checked all threads with this,
972 * it's equivalent to finding no threads not blocking SIG. Any threads not
973 * blocking SIG were ruled out because they are not running and already
974 * have pending signals. Such threads will dequeue from the shared queue
975 * as soon as they're available, so putting the signal on the shared queue
976 * will be equivalent to sending it to one such thread.
978 static inline bool wants_signal(int sig, struct task_struct *p)
980 if (sigismember(&p->blocked, sig))
983 if (p->flags & PF_EXITING)
989 if (task_is_stopped_or_traced(p))
992 return task_curr(p) || !task_sigpending(p);
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
997 struct signal_struct *signal = p->signal;
998 struct task_struct *t;
1001 * Now find a thread we can wake up to take the signal off the queue.
1003 * Try the suggested task first (may or may not be the main thread).
1005 if (wants_signal(sig, p))
1007 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1009 * There is just one thread and it does not need to be woken.
1010 * It will dequeue unblocked signals before it runs again.
1015 * Otherwise try to find a suitable thread.
1017 t = signal->curr_target;
1018 while (!wants_signal(sig, t)) {
1020 if (t == signal->curr_target)
1022 * No thread needs to be woken.
1023 * Any eligible threads will see
1024 * the signal in the queue soon.
1028 signal->curr_target = t;
1032 * Found a killable thread. If the signal will be fatal,
1033 * then start taking the whole group down immediately.
1035 if (sig_fatal(p, sig) &&
1036 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 !sigismember(&t->real_blocked, sig) &&
1038 (sig == SIGKILL || !p->ptrace)) {
1040 * This signal will be fatal to the whole group.
1042 if (!sig_kernel_coredump(sig)) {
1044 * Start a group exit and wake everybody up.
1045 * This way we don't have other threads
1046 * running and doing things after a slower
1047 * thread has the fatal signal pending.
1049 signal->flags = SIGNAL_GROUP_EXIT;
1050 signal->group_exit_code = sig;
1051 signal->group_stop_count = 0;
1052 __for_each_thread(signal, t) {
1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 sigaddset(&t->pending.signal, SIGKILL);
1055 signal_wake_up(t, 1);
1062 * The signal is already in the shared-pending queue.
1063 * Tell the chosen thread to wake up and dequeue it.
1065 signal_wake_up(t, sig == SIGKILL);
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 struct task_struct *t, enum pid_type type, bool force)
1077 struct sigpending *pending;
1079 int override_rlimit;
1080 int ret = 0, result;
1082 lockdep_assert_held(&t->sighand->siglock);
1084 result = TRACE_SIGNAL_IGNORED;
1085 if (!prepare_signal(sig, t, force))
1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1090 * Short-circuit ignored signals and support queuing
1091 * exactly one non-rt signal, so that we can get more
1092 * detailed information about the cause of the signal.
1094 result = TRACE_SIGNAL_ALREADY_PENDING;
1095 if (legacy_queue(pending, sig))
1098 result = TRACE_SIGNAL_DELIVERED;
1100 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1106 * Real-time signals must be queued if sent by sigqueue, or
1107 * some other real-time mechanism. It is implementation
1108 * defined whether kill() does so. We attempt to do so, on
1109 * the principle of least surprise, but since kill is not
1110 * allowed to fail with EAGAIN when low on memory we just
1111 * make sure at least one signal gets delivered and don't
1112 * pass on the info struct.
1115 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1117 override_rlimit = 0;
1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1122 list_add_tail(&q->list, &pending->list);
1123 switch ((unsigned long) info) {
1124 case (unsigned long) SEND_SIG_NOINFO:
1125 clear_siginfo(&q->info);
1126 q->info.si_signo = sig;
1127 q->info.si_errno = 0;
1128 q->info.si_code = SI_USER;
1129 q->info.si_pid = task_tgid_nr_ns(current,
1130 task_active_pid_ns(t));
1133 from_kuid_munged(task_cred_xxx(t, user_ns),
1137 case (unsigned long) SEND_SIG_PRIV:
1138 clear_siginfo(&q->info);
1139 q->info.si_signo = sig;
1140 q->info.si_errno = 0;
1141 q->info.si_code = SI_KERNEL;
1146 copy_siginfo(&q->info, info);
1149 } else if (!is_si_special(info) &&
1150 sig >= SIGRTMIN && info->si_code != SI_USER) {
1152 * Queue overflow, abort. We may abort if the
1153 * signal was rt and sent by user using something
1154 * other than kill().
1156 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 * This is a silent loss of information. We still
1162 * send the signal, but the *info bits are lost.
1164 result = TRACE_SIGNAL_LOSE_INFO;
1168 signalfd_notify(t, sig);
1169 sigaddset(&pending->signal, sig);
1171 /* Let multiprocess signals appear after on-going forks */
1172 if (type > PIDTYPE_TGID) {
1173 struct multiprocess_signals *delayed;
1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 sigset_t *signal = &delayed->signal;
1176 /* Can't queue both a stop and a continue signal */
1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 else if (sig_kernel_stop(sig))
1180 sigdelset(signal, SIGCONT);
1181 sigaddset(signal, sig);
1185 complete_signal(sig, t, type);
1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1194 switch (siginfo_layout(info->si_signo, info->si_code)) {
1203 case SIL_FAULT_TRAPNO:
1204 case SIL_FAULT_MCEERR:
1205 case SIL_FAULT_BNDERR:
1206 case SIL_FAULT_PKUERR:
1207 case SIL_FAULT_PERF_EVENT:
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 struct task_struct *t, enum pid_type type)
1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1221 if (info == SEND_SIG_NOINFO) {
1222 /* Force if sent from an ancestor pid namespace */
1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 } else if (info == SEND_SIG_PRIV) {
1225 /* Don't ignore kernel generated signals */
1227 } else if (has_si_pid_and_uid(info)) {
1228 /* SIGKILL and SIGSTOP is special or has ids */
1229 struct user_namespace *t_user_ns;
1232 t_user_ns = task_cred_xxx(t, user_ns);
1233 if (current_user_ns() != t_user_ns) {
1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 info->si_uid = from_kuid_munged(t_user_ns, uid);
1239 /* A kernel generated signal? */
1240 force = (info->si_code == SI_KERNEL);
1242 /* From an ancestor pid namespace? */
1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 return __send_signal_locked(sig, info, t, type, force);
1251 static void print_fatal_signal(int signr)
1253 struct pt_regs *regs = task_pt_regs(current);
1254 struct file *exe_file;
1256 exe_file = get_task_exe_file(current);
1258 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 exe_file, current->comm, signr);
1262 pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 current->comm, signr);
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 pr_info("code at %08lx: ", regs->ip);
1270 for (i = 0; i < 16; i++) {
1273 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1275 pr_cont("%02x ", insn);
1285 static int __init setup_print_fatal_signals(char *str)
1287 get_option (&str, &print_fatal_signals);
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1297 unsigned long flags;
1300 if (lock_task_sighand(p, &flags)) {
1301 ret = send_signal_locked(sig, info, p, type);
1302 unlock_task_sighand(p, &flags);
1309 HANDLER_CURRENT, /* If reachable use the current handler */
1310 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 HANDLER_EXIT, /* Only visible as the process exit code */
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 enum sig_handler handler)
1329 unsigned long int flags;
1330 int ret, blocked, ignored;
1331 struct k_sigaction *action;
1332 int sig = info->si_signo;
1334 spin_lock_irqsave(&t->sighand->siglock, flags);
1335 action = &t->sighand->action[sig-1];
1336 ignored = action->sa.sa_handler == SIG_IGN;
1337 blocked = sigismember(&t->blocked, sig);
1338 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 action->sa.sa_handler = SIG_DFL;
1340 if (handler == HANDLER_EXIT)
1341 action->sa.sa_flags |= SA_IMMUTABLE;
1343 sigdelset(&t->blocked, sig);
1346 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1349 if (action->sa.sa_handler == SIG_DFL &&
1350 (!t->ptrace || (handler == HANDLER_EXIT)))
1351 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 /* This can happen if the signal was already pending and blocked */
1354 if (!task_sigpending(t))
1355 signal_wake_up(t, 0);
1356 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1361 int force_sig_info(struct kernel_siginfo *info)
1363 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1367 * Nuke all other threads in the group.
1369 int zap_other_threads(struct task_struct *p)
1371 struct task_struct *t;
1374 p->signal->group_stop_count = 0;
1376 for_other_threads(p, t) {
1377 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1380 /* Don't bother with already dead threads */
1383 sigaddset(&t->pending.signal, SIGKILL);
1384 signal_wake_up(t, 1);
1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1391 unsigned long *flags)
1393 struct sighand_struct *sighand;
1397 sighand = rcu_dereference(tsk->sighand);
1398 if (unlikely(sighand == NULL))
1402 * This sighand can be already freed and even reused, but
1403 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1404 * initializes ->siglock: this slab can't go away, it has
1405 * the same object type, ->siglock can't be reinitialized.
1407 * We need to ensure that tsk->sighand is still the same
1408 * after we take the lock, we can race with de_thread() or
1409 * __exit_signal(). In the latter case the next iteration
1410 * must see ->sighand == NULL.
1412 spin_lock_irqsave(&sighand->siglock, *flags);
1413 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1415 spin_unlock_irqrestore(&sighand->siglock, *flags);
1422 #ifdef CONFIG_LOCKDEP
1423 void lockdep_assert_task_sighand_held(struct task_struct *task)
1425 struct sighand_struct *sighand;
1428 sighand = rcu_dereference(task->sighand);
1430 lockdep_assert_held(&sighand->siglock);
1438 * send signal info to all the members of a thread group or to the
1439 * individual thread if type == PIDTYPE_PID.
1441 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442 struct task_struct *p, enum pid_type type)
1447 ret = check_kill_permission(sig, info, p);
1451 ret = do_send_sig_info(sig, info, p, type);
1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458 * control characters do (^C, ^Z etc)
1459 * - the caller must hold at least a readlock on tasklist_lock
1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1463 struct task_struct *p = NULL;
1466 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1469 * If group_send_sig_info() succeeds at least once ret
1470 * becomes 0 and after that the code below has no effect.
1471 * Otherwise we return the last err or -ESRCH if this
1472 * process group is empty.
1476 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1481 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1482 struct pid *pid, enum pid_type type)
1485 struct task_struct *p;
1489 p = pid_task(pid, PIDTYPE_PID);
1491 error = group_send_sig_info(sig, info, p, type);
1493 if (likely(!p || error != -ESRCH))
1496 * The task was unhashed in between, try again. If it
1497 * is dead, pid_task() will return NULL, if we race with
1498 * de_thread() it will find the new leader.
1503 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1505 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1512 error = kill_pid_info(sig, info, find_vpid(pid));
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 struct task_struct *target)
1520 const struct cred *pcred = __task_cred(target);
1522 return uid_eq(cred->euid, pcred->suid) ||
1523 uid_eq(cred->euid, pcred->uid) ||
1524 uid_eq(cred->uid, pcred->suid) ||
1525 uid_eq(cred->uid, pcred->uid);
1529 * The usb asyncio usage of siginfo is wrong. The glibc support
1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531 * AKA after the generic fields:
1532 * kernel_pid_t si_pid;
1533 * kernel_uid32_t si_uid;
1534 * sigval_t si_value;
1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537 * after the generic fields is:
1538 * void __user *si_addr;
1540 * This is a practical problem when there is a 64bit big endian kernel
1541 * and a 32bit userspace. As the 32bit address will encoded in the low
1542 * 32bits of the pointer. Those low 32bits will be stored at higher
1543 * address than appear in a 32 bit pointer. So userspace will not
1544 * see the address it was expecting for it's completions.
1546 * There is nothing in the encoding that can allow
1547 * copy_siginfo_to_user32 to detect this confusion of formats, so
1548 * handle this by requiring the caller of kill_pid_usb_asyncio to
1549 * notice when this situration takes place and to store the 32bit
1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 struct pid *pid, const struct cred *cred)
1556 struct kernel_siginfo info;
1557 struct task_struct *p;
1558 unsigned long flags;
1561 if (!valid_signal(sig))
1564 clear_siginfo(&info);
1565 info.si_signo = sig;
1566 info.si_errno = errno;
1567 info.si_code = SI_ASYNCIO;
1568 *((sigval_t *)&info.si_pid) = addr;
1571 p = pid_task(pid, PIDTYPE_PID);
1576 if (!kill_as_cred_perm(cred, p)) {
1580 ret = security_task_kill(p, &info, sig, cred);
1585 if (lock_task_sighand(p, &flags)) {
1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 unlock_task_sighand(p, &flags);
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598 * kill_something_info() interprets pid in interesting ways just like kill(2).
1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601 * is probably wrong. Should make it like BSD or SYSV.
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1609 return kill_proc_info(sig, info, pid);
1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1615 read_lock(&tasklist_lock);
1617 ret = __kill_pgrp_info(sig, info,
1618 pid ? find_vpid(-pid) : task_pgrp(current));
1620 int retval = 0, count = 0;
1621 struct task_struct * p;
1623 for_each_process(p) {
1624 if (task_pid_vnr(p) > 1 &&
1625 !same_thread_group(p, current)) {
1626 int err = group_send_sig_info(sig, info, p,
1633 ret = count ? retval : -ESRCH;
1635 read_unlock(&tasklist_lock);
1641 * These are for backward compatibility with the rest of the kernel source.
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647 * Make sure legacy kernel users don't send in bad values
1648 * (normal paths check this in check_kill_permission).
1650 if (!valid_signal(sig))
1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1655 EXPORT_SYMBOL(send_sig_info);
1657 #define __si_special(priv) \
1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661 send_sig(int sig, struct task_struct *p, int priv)
1663 return send_sig_info(sig, __si_special(priv), p);
1665 EXPORT_SYMBOL(send_sig);
1667 void force_sig(int sig)
1669 struct kernel_siginfo info;
1671 clear_siginfo(&info);
1672 info.si_signo = sig;
1674 info.si_code = SI_KERNEL;
1677 force_sig_info(&info);
1679 EXPORT_SYMBOL(force_sig);
1681 void force_fatal_sig(int sig)
1683 struct kernel_siginfo info;
1685 clear_siginfo(&info);
1686 info.si_signo = sig;
1688 info.si_code = SI_KERNEL;
1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694 void force_exit_sig(int sig)
1696 struct kernel_siginfo info;
1698 clear_siginfo(&info);
1699 info.si_signo = sig;
1701 info.si_code = SI_KERNEL;
1704 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1708 * When things go south during signal handling, we
1709 * will force a SIGSEGV. And if the signal that caused
1710 * the problem was already a SIGSEGV, we'll want to
1711 * make sure we don't even try to deliver the signal..
1713 void force_sigsegv(int sig)
1716 force_fatal_sig(SIGSEGV);
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1722 struct task_struct *t)
1724 struct kernel_siginfo info;
1726 clear_siginfo(&info);
1727 info.si_signo = sig;
1729 info.si_code = code;
1730 info.si_addr = addr;
1731 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734 int force_sig_fault(int sig, int code, void __user *addr)
1736 return force_sig_fault_to_task(sig, code, addr, current);
1739 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1741 struct kernel_siginfo info;
1743 clear_siginfo(&info);
1744 info.si_signo = sig;
1746 info.si_code = code;
1747 info.si_addr = addr;
1748 return send_sig_info(info.si_signo, &info, t);
1751 int force_sig_mceerr(int code, void __user *addr, short lsb)
1753 struct kernel_siginfo info;
1755 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1756 clear_siginfo(&info);
1757 info.si_signo = SIGBUS;
1759 info.si_code = code;
1760 info.si_addr = addr;
1761 info.si_addr_lsb = lsb;
1762 return force_sig_info(&info);
1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1767 struct kernel_siginfo info;
1769 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1770 clear_siginfo(&info);
1771 info.si_signo = SIGBUS;
1773 info.si_code = code;
1774 info.si_addr = addr;
1775 info.si_addr_lsb = lsb;
1776 return send_sig_info(info.si_signo, &info, t);
1778 EXPORT_SYMBOL(send_sig_mceerr);
1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1782 struct kernel_siginfo info;
1784 clear_siginfo(&info);
1785 info.si_signo = SIGSEGV;
1787 info.si_code = SEGV_BNDERR;
1788 info.si_addr = addr;
1789 info.si_lower = lower;
1790 info.si_upper = upper;
1791 return force_sig_info(&info);
1795 int force_sig_pkuerr(void __user *addr, u32 pkey)
1797 struct kernel_siginfo info;
1799 clear_siginfo(&info);
1800 info.si_signo = SIGSEGV;
1802 info.si_code = SEGV_PKUERR;
1803 info.si_addr = addr;
1804 info.si_pkey = pkey;
1805 return force_sig_info(&info);
1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1811 struct kernel_siginfo info;
1813 clear_siginfo(&info);
1814 info.si_signo = SIGTRAP;
1816 info.si_code = TRAP_PERF;
1817 info.si_addr = addr;
1818 info.si_perf_data = sig_data;
1819 info.si_perf_type = type;
1822 * Signals generated by perf events should not terminate the whole
1823 * process if SIGTRAP is blocked, however, delivering the signal
1824 * asynchronously is better than not delivering at all. But tell user
1825 * space if the signal was asynchronous, so it can clearly be
1826 * distinguished from normal synchronous ones.
1828 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1829 TRAP_PERF_FLAG_ASYNC :
1832 return send_sig_info(info.si_signo, &info, current);
1836 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1837 * @syscall: syscall number to send to userland
1838 * @reason: filter-supplied reason code to send to userland (via si_errno)
1839 * @force_coredump: true to trigger a coredump
1841 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1845 struct kernel_siginfo info;
1847 clear_siginfo(&info);
1848 info.si_signo = SIGSYS;
1849 info.si_code = SYS_SECCOMP;
1850 info.si_call_addr = (void __user *)KSTK_EIP(current);
1851 info.si_errno = reason;
1852 info.si_arch = syscall_get_arch(current);
1853 info.si_syscall = syscall;
1854 return force_sig_info_to_task(&info, current,
1855 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858 /* For the crazy architectures that include trap information in
1859 * the errno field, instead of an actual errno value.
1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1863 struct kernel_siginfo info;
1865 clear_siginfo(&info);
1866 info.si_signo = SIGTRAP;
1867 info.si_errno = errno;
1868 info.si_code = TRAP_HWBKPT;
1869 info.si_addr = addr;
1870 return force_sig_info(&info);
1873 /* For the rare architectures that include trap information using
1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1878 struct kernel_siginfo info;
1880 clear_siginfo(&info);
1881 info.si_signo = sig;
1883 info.si_code = code;
1884 info.si_addr = addr;
1885 info.si_trapno = trapno;
1886 return force_sig_info(&info);
1889 /* For the rare architectures that include trap information using
1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1893 struct task_struct *t)
1895 struct kernel_siginfo info;
1897 clear_siginfo(&info);
1898 info.si_signo = sig;
1900 info.si_code = code;
1901 info.si_addr = addr;
1902 info.si_trapno = trapno;
1903 return send_sig_info(info.si_signo, &info, t);
1906 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909 read_lock(&tasklist_lock);
1910 ret = __kill_pgrp_info(sig, info, pgrp);
1911 read_unlock(&tasklist_lock);
1915 int kill_pgrp(struct pid *pid, int sig, int priv)
1917 return kill_pgrp_info(sig, __si_special(priv), pid);
1919 EXPORT_SYMBOL(kill_pgrp);
1921 int kill_pid(struct pid *pid, int sig, int priv)
1923 return kill_pid_info(sig, __si_special(priv), pid);
1925 EXPORT_SYMBOL(kill_pid);
1928 * These functions support sending signals using preallocated sigqueue
1929 * structures. This is needed "because realtime applications cannot
1930 * afford to lose notifications of asynchronous events, like timer
1931 * expirations or I/O completions". In the case of POSIX Timers
1932 * we allocate the sigqueue structure from the timer_create. If this
1933 * allocation fails we are able to report the failure to the application
1934 * with an EAGAIN error.
1936 struct sigqueue *sigqueue_alloc(void)
1938 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941 void sigqueue_free(struct sigqueue *q)
1943 unsigned long flags;
1944 spinlock_t *lock = ¤t->sighand->siglock;
1946 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1948 * We must hold ->siglock while testing q->list
1949 * to serialize with collect_signal() or with
1950 * __exit_signal()->flush_sigqueue().
1952 spin_lock_irqsave(lock, flags);
1953 q->flags &= ~SIGQUEUE_PREALLOC;
1955 * If it is queued it will be freed when dequeued,
1956 * like the "regular" sigqueue.
1958 if (!list_empty(&q->list))
1960 spin_unlock_irqrestore(lock, flags);
1966 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1968 int sig = q->info.si_signo;
1969 struct sigpending *pending;
1970 struct task_struct *t;
1971 unsigned long flags;
1974 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1980 * This function is used by POSIX timers to deliver a timer signal.
1981 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1982 * set), the signal must be delivered to the specific thread (queues
1985 * Where type is not PIDTYPE_PID, signals must be delivered to the
1986 * process. In this case, prefer to deliver to current if it is in
1987 * the same thread group as the target process, which avoids
1988 * unnecessarily waking up a potentially idle task.
1990 t = pid_task(pid, type);
1993 if (type != PIDTYPE_PID && same_thread_group(t, current))
1995 if (!likely(lock_task_sighand(t, &flags)))
1998 ret = 1; /* the signal is ignored */
1999 result = TRACE_SIGNAL_IGNORED;
2000 if (!prepare_signal(sig, t, false))
2004 if (unlikely(!list_empty(&q->list))) {
2006 * If an SI_TIMER entry is already queue just increment
2007 * the overrun count.
2009 BUG_ON(q->info.si_code != SI_TIMER);
2010 q->info.si_overrun++;
2011 result = TRACE_SIGNAL_ALREADY_PENDING;
2014 q->info.si_overrun = 0;
2016 signalfd_notify(t, sig);
2017 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2018 list_add_tail(&q->list, &pending->list);
2019 sigaddset(&pending->signal, sig);
2020 complete_signal(sig, t, type);
2021 result = TRACE_SIGNAL_DELIVERED;
2023 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2024 unlock_task_sighand(t, &flags);
2030 void do_notify_pidfd(struct task_struct *task)
2032 struct pid *pid = task_pid(task);
2034 WARN_ON(task->exit_state == 0);
2036 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2037 poll_to_key(EPOLLIN | EPOLLRDNORM));
2041 * Let a parent know about the death of a child.
2042 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2044 * Returns true if our parent ignored us and so we've switched to
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2049 struct kernel_siginfo info;
2050 unsigned long flags;
2051 struct sighand_struct *psig;
2052 bool autoreap = false;
2055 WARN_ON_ONCE(sig == -1);
2057 /* do_notify_parent_cldstop should have been called instead. */
2058 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2060 WARN_ON_ONCE(!tsk->ptrace &&
2061 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2063 * tsk is a group leader and has no threads, wake up the
2064 * non-PIDFD_THREAD waiters.
2066 if (thread_group_empty(tsk))
2067 do_notify_pidfd(tsk);
2069 if (sig != SIGCHLD) {
2071 * This is only possible if parent == real_parent.
2072 * Check if it has changed security domain.
2074 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2078 clear_siginfo(&info);
2079 info.si_signo = sig;
2082 * We are under tasklist_lock here so our parent is tied to
2083 * us and cannot change.
2085 * task_active_pid_ns will always return the same pid namespace
2086 * until a task passes through release_task.
2088 * write_lock() currently calls preempt_disable() which is the
2089 * same as rcu_read_lock(), but according to Oleg, this is not
2090 * correct to rely on this
2093 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2094 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2098 task_cputime(tsk, &utime, &stime);
2099 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2100 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2102 info.si_status = tsk->exit_code & 0x7f;
2103 if (tsk->exit_code & 0x80)
2104 info.si_code = CLD_DUMPED;
2105 else if (tsk->exit_code & 0x7f)
2106 info.si_code = CLD_KILLED;
2108 info.si_code = CLD_EXITED;
2109 info.si_status = tsk->exit_code >> 8;
2112 psig = tsk->parent->sighand;
2113 spin_lock_irqsave(&psig->siglock, flags);
2114 if (!tsk->ptrace && sig == SIGCHLD &&
2115 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2116 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2118 * We are exiting and our parent doesn't care. POSIX.1
2119 * defines special semantics for setting SIGCHLD to SIG_IGN
2120 * or setting the SA_NOCLDWAIT flag: we should be reaped
2121 * automatically and not left for our parent's wait4 call.
2122 * Rather than having the parent do it as a magic kind of
2123 * signal handler, we just set this to tell do_exit that we
2124 * can be cleaned up without becoming a zombie. Note that
2125 * we still call __wake_up_parent in this case, because a
2126 * blocked sys_wait4 might now return -ECHILD.
2128 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2129 * is implementation-defined: we do (if you don't want
2130 * it, just use SIG_IGN instead).
2133 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2137 * Send with __send_signal as si_pid and si_uid are in the
2138 * parent's namespaces.
2140 if (valid_signal(sig) && sig)
2141 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2142 __wake_up_parent(tsk, tsk->parent);
2143 spin_unlock_irqrestore(&psig->siglock, flags);
2149 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2150 * @tsk: task reporting the state change
2151 * @for_ptracer: the notification is for ptracer
2152 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2154 * Notify @tsk's parent that the stopped/continued state has changed. If
2155 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2156 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 * Must be called with tasklist_lock at least read locked.
2161 static void do_notify_parent_cldstop(struct task_struct *tsk,
2162 bool for_ptracer, int why)
2164 struct kernel_siginfo info;
2165 unsigned long flags;
2166 struct task_struct *parent;
2167 struct sighand_struct *sighand;
2171 parent = tsk->parent;
2173 tsk = tsk->group_leader;
2174 parent = tsk->real_parent;
2177 clear_siginfo(&info);
2178 info.si_signo = SIGCHLD;
2181 * see comment in do_notify_parent() about the following 4 lines
2184 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2185 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188 task_cputime(tsk, &utime, &stime);
2189 info.si_utime = nsec_to_clock_t(utime);
2190 info.si_stime = nsec_to_clock_t(stime);
2195 info.si_status = SIGCONT;
2198 info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 info.si_status = tsk->exit_code & 0x7f;
2207 sighand = parent->sighand;
2208 spin_lock_irqsave(&sighand->siglock, flags);
2209 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2210 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2211 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2213 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2215 __wake_up_parent(tsk, parent);
2216 spin_unlock_irqrestore(&sighand->siglock, flags);
2220 * This must be called with current->sighand->siglock held.
2222 * This should be the path for all ptrace stops.
2223 * We always set current->last_siginfo while stopped here.
2224 * That makes it a way to test a stopped process for
2225 * being ptrace-stopped vs being job-control-stopped.
2227 * Returns the signal the ptracer requested the code resume
2228 * with. If the code did not stop because the tracer is gone,
2229 * the stop signal remains unchanged unless clear_code.
2231 static int ptrace_stop(int exit_code, int why, unsigned long message,
2232 kernel_siginfo_t *info)
2233 __releases(¤t->sighand->siglock)
2234 __acquires(¤t->sighand->siglock)
2236 bool gstop_done = false;
2238 if (arch_ptrace_stop_needed()) {
2240 * The arch code has something special to do before a
2241 * ptrace stop. This is allowed to block, e.g. for faults
2242 * on user stack pages. We can't keep the siglock while
2243 * calling arch_ptrace_stop, so we must release it now.
2244 * To preserve proper semantics, we must do this before
2245 * any signal bookkeeping like checking group_stop_count.
2247 spin_unlock_irq(¤t->sighand->siglock);
2249 spin_lock_irq(¤t->sighand->siglock);
2253 * After this point ptrace_signal_wake_up or signal_wake_up
2254 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2255 * signal comes in. Handle previous ptrace_unlinks and fatal
2256 * signals here to prevent ptrace_stop sleeping in schedule.
2258 if (!current->ptrace || __fatal_signal_pending(current))
2261 set_special_state(TASK_TRACED);
2262 current->jobctl |= JOBCTL_TRACED;
2265 * We're committing to trapping. TRACED should be visible before
2266 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2267 * Also, transition to TRACED and updates to ->jobctl should be
2268 * atomic with respect to siglock and should be done after the arch
2269 * hook as siglock is released and regrabbed across it.
2274 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2276 * set_current_state() smp_wmb();
2278 * wait_task_stopped()
2279 * task_stopped_code()
2280 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2284 current->ptrace_message = message;
2285 current->last_siginfo = info;
2286 current->exit_code = exit_code;
2289 * If @why is CLD_STOPPED, we're trapping to participate in a group
2290 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2291 * across siglock relocks since INTERRUPT was scheduled, PENDING
2292 * could be clear now. We act as if SIGCONT is received after
2293 * TASK_TRACED is entered - ignore it.
2295 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2296 gstop_done = task_participate_group_stop(current);
2298 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2299 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2300 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2303 /* entering a trap, clear TRAPPING */
2304 task_clear_jobctl_trapping(current);
2306 spin_unlock_irq(¤t->sighand->siglock);
2307 read_lock(&tasklist_lock);
2309 * Notify parents of the stop.
2311 * While ptraced, there are two parents - the ptracer and
2312 * the real_parent of the group_leader. The ptracer should
2313 * know about every stop while the real parent is only
2314 * interested in the completion of group stop. The states
2315 * for the two don't interact with each other. Notify
2316 * separately unless they're gonna be duplicates.
2318 if (current->ptrace)
2319 do_notify_parent_cldstop(current, true, why);
2320 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2321 do_notify_parent_cldstop(current, false, why);
2324 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2325 * One a PREEMPTION kernel this can result in preemption requirement
2326 * which will be fulfilled after read_unlock() and the ptracer will be
2328 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2329 * this task wait in schedule(). If this task gets preempted then it
2330 * remains enqueued on the runqueue. The ptracer will observe this and
2331 * then sleep for a delay of one HZ tick. In the meantime this task
2332 * gets scheduled, enters schedule() and will wait for the ptracer.
2334 * This preemption point is not bad from a correctness point of
2335 * view but extends the runtime by one HZ tick time due to the
2336 * ptracer's sleep. The preempt-disable section ensures that there
2337 * will be no preemption between unlock and schedule() and so
2338 * improving the performance since the ptracer will observe that
2339 * the tracee is scheduled out once it gets on the CPU.
2341 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2342 * Therefore the task can be preempted after do_notify_parent_cldstop()
2343 * before unlocking tasklist_lock so there is no benefit in doing this.
2345 * In fact disabling preemption is harmful on PREEMPT_RT because
2346 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2347 * with preemption disabled due to the 'sleeping' spinlock
2348 * substitution of RT.
2350 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2352 read_unlock(&tasklist_lock);
2353 cgroup_enter_frozen();
2354 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2355 preempt_enable_no_resched();
2357 cgroup_leave_frozen(true);
2360 * We are back. Now reacquire the siglock before touching
2361 * last_siginfo, so that we are sure to have synchronized with
2362 * any signal-sending on another CPU that wants to examine it.
2364 spin_lock_irq(¤t->sighand->siglock);
2365 exit_code = current->exit_code;
2366 current->last_siginfo = NULL;
2367 current->ptrace_message = 0;
2368 current->exit_code = 0;
2370 /* LISTENING can be set only during STOP traps, clear it */
2371 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374 * Queued signals ignored us while we were stopped for tracing.
2375 * So check for any that we should take before resuming user mode.
2376 * This sets TIF_SIGPENDING, but never clears it.
2378 recalc_sigpending_tsk(current);
2382 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2384 kernel_siginfo_t info;
2386 clear_siginfo(&info);
2387 info.si_signo = signr;
2388 info.si_code = exit_code;
2389 info.si_pid = task_pid_vnr(current);
2390 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2392 /* Let the debugger run. */
2393 return ptrace_stop(exit_code, why, message, &info);
2396 int ptrace_notify(int exit_code, unsigned long message)
2400 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2401 if (unlikely(task_work_pending(current)))
2404 spin_lock_irq(¤t->sighand->siglock);
2405 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2406 spin_unlock_irq(¤t->sighand->siglock);
2411 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2412 * @signr: signr causing group stop if initiating
2414 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2415 * and participate in it. If already set, participate in the existing
2416 * group stop. If participated in a group stop (and thus slept), %true is
2417 * returned with siglock released.
2419 * If ptraced, this function doesn't handle stop itself. Instead,
2420 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2421 * untouched. The caller must ensure that INTERRUPT trap handling takes
2422 * places afterwards.
2425 * Must be called with @current->sighand->siglock held, which is released
2429 * %false if group stop is already cancelled or ptrace trap is scheduled.
2430 * %true if participated in group stop.
2432 static bool do_signal_stop(int signr)
2433 __releases(¤t->sighand->siglock)
2435 struct signal_struct *sig = current->signal;
2437 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2438 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2439 struct task_struct *t;
2441 /* signr will be recorded in task->jobctl for retries */
2442 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2444 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2445 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2446 unlikely(sig->group_exec_task))
2449 * There is no group stop already in progress. We must
2452 * While ptraced, a task may be resumed while group stop is
2453 * still in effect and then receive a stop signal and
2454 * initiate another group stop. This deviates from the
2455 * usual behavior as two consecutive stop signals can't
2456 * cause two group stops when !ptraced. That is why we
2457 * also check !task_is_stopped(t) below.
2459 * The condition can be distinguished by testing whether
2460 * SIGNAL_STOP_STOPPED is already set. Don't generate
2461 * group_exit_code in such case.
2463 * This is not necessary for SIGNAL_STOP_CONTINUED because
2464 * an intervening stop signal is required to cause two
2465 * continued events regardless of ptrace.
2467 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2468 sig->group_exit_code = signr;
2470 sig->group_stop_count = 0;
2471 if (task_set_jobctl_pending(current, signr | gstop))
2472 sig->group_stop_count++;
2474 for_other_threads(current, t) {
2476 * Setting state to TASK_STOPPED for a group
2477 * stop is always done with the siglock held,
2478 * so this check has no races.
2480 if (!task_is_stopped(t) &&
2481 task_set_jobctl_pending(t, signr | gstop)) {
2482 sig->group_stop_count++;
2483 if (likely(!(t->ptrace & PT_SEIZED)))
2484 signal_wake_up(t, 0);
2486 ptrace_trap_notify(t);
2491 if (likely(!current->ptrace)) {
2495 * If there are no other threads in the group, or if there
2496 * is a group stop in progress and we are the last to stop,
2497 * report to the parent.
2499 if (task_participate_group_stop(current))
2500 notify = CLD_STOPPED;
2502 current->jobctl |= JOBCTL_STOPPED;
2503 set_special_state(TASK_STOPPED);
2504 spin_unlock_irq(¤t->sighand->siglock);
2507 * Notify the parent of the group stop completion. Because
2508 * we're not holding either the siglock or tasklist_lock
2509 * here, ptracer may attach inbetween; however, this is for
2510 * group stop and should always be delivered to the real
2511 * parent of the group leader. The new ptracer will get
2512 * its notification when this task transitions into
2516 read_lock(&tasklist_lock);
2517 do_notify_parent_cldstop(current, false, notify);
2518 read_unlock(&tasklist_lock);
2521 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2522 cgroup_enter_frozen();
2527 * While ptraced, group stop is handled by STOP trap.
2528 * Schedule it and let the caller deal with it.
2530 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2536 * do_jobctl_trap - take care of ptrace jobctl traps
2538 * When PT_SEIZED, it's used for both group stop and explicit
2539 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2540 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2541 * the stop signal; otherwise, %SIGTRAP.
2543 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2544 * number as exit_code and no siginfo.
2547 * Must be called with @current->sighand->siglock held, which may be
2548 * released and re-acquired before returning with intervening sleep.
2550 static void do_jobctl_trap(void)
2552 struct signal_struct *signal = current->signal;
2553 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2555 if (current->ptrace & PT_SEIZED) {
2556 if (!signal->group_stop_count &&
2557 !(signal->flags & SIGNAL_STOP_STOPPED))
2559 WARN_ON_ONCE(!signr);
2560 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563 WARN_ON_ONCE(!signr);
2564 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2569 * do_freezer_trap - handle the freezer jobctl trap
2571 * Puts the task into frozen state, if only the task is not about to quit.
2572 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 * Must be called with @current->sighand->siglock held,
2576 * which is always released before returning.
2578 static void do_freezer_trap(void)
2579 __releases(¤t->sighand->siglock)
2582 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2583 * let's make another loop to give it a chance to be handled.
2584 * In any case, we'll return back.
2586 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2587 JOBCTL_TRAP_FREEZE) {
2588 spin_unlock_irq(¤t->sighand->siglock);
2593 * Now we're sure that there is no pending fatal signal and no
2594 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2595 * immediately (if there is a non-fatal signal pending), and
2596 * put the task into sleep.
2598 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2599 clear_thread_flag(TIF_SIGPENDING);
2600 spin_unlock_irq(¤t->sighand->siglock);
2601 cgroup_enter_frozen();
2605 * We could've been woken by task_work, run it to clear
2606 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2608 clear_notify_signal();
2609 if (unlikely(task_work_pending(current)))
2613 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2616 * We do not check sig_kernel_stop(signr) but set this marker
2617 * unconditionally because we do not know whether debugger will
2618 * change signr. This flag has no meaning unless we are going
2619 * to stop after return from ptrace_stop(). In this case it will
2620 * be checked in do_signal_stop(), we should only stop if it was
2621 * not cleared by SIGCONT while we were sleeping. See also the
2622 * comment in dequeue_signal().
2624 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2625 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2627 /* We're back. Did the debugger cancel the sig? */
2632 * Update the siginfo structure if the signal has
2633 * changed. If the debugger wanted something
2634 * specific in the siginfo structure then it should
2635 * have updated *info via PTRACE_SETSIGINFO.
2637 if (signr != info->si_signo) {
2638 clear_siginfo(info);
2639 info->si_signo = signr;
2641 info->si_code = SI_USER;
2643 info->si_pid = task_pid_vnr(current->parent);
2644 info->si_uid = from_kuid_munged(current_user_ns(),
2645 task_uid(current->parent));
2649 /* If the (new) signal is now blocked, requeue it. */
2650 if (sigismember(¤t->blocked, signr) ||
2651 fatal_signal_pending(current)) {
2652 send_signal_locked(signr, info, current, type);
2659 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2661 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2663 case SIL_FAULT_TRAPNO:
2664 case SIL_FAULT_MCEERR:
2665 case SIL_FAULT_BNDERR:
2666 case SIL_FAULT_PKUERR:
2667 case SIL_FAULT_PERF_EVENT:
2668 ksig->info.si_addr = arch_untagged_si_addr(
2669 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2681 bool get_signal(struct ksignal *ksig)
2683 struct sighand_struct *sighand = current->sighand;
2684 struct signal_struct *signal = current->signal;
2687 clear_notify_signal();
2688 if (unlikely(task_work_pending(current)))
2691 if (!task_sigpending(current))
2694 if (unlikely(uprobe_deny_signal()))
2698 * Do this once, we can't return to user-mode if freezing() == T.
2699 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2700 * thus do not need another check after return.
2705 spin_lock_irq(&sighand->siglock);
2708 * Every stopped thread goes here after wakeup. Check to see if
2709 * we should notify the parent, prepare_signal(SIGCONT) encodes
2710 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2712 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2715 if (signal->flags & SIGNAL_CLD_CONTINUED)
2716 why = CLD_CONTINUED;
2720 signal->flags &= ~SIGNAL_CLD_MASK;
2722 spin_unlock_irq(&sighand->siglock);
2725 * Notify the parent that we're continuing. This event is
2726 * always per-process and doesn't make whole lot of sense
2727 * for ptracers, who shouldn't consume the state via
2728 * wait(2) either, but, for backward compatibility, notify
2729 * the ptracer of the group leader too unless it's gonna be
2732 read_lock(&tasklist_lock);
2733 do_notify_parent_cldstop(current, false, why);
2735 if (ptrace_reparented(current->group_leader))
2736 do_notify_parent_cldstop(current->group_leader,
2738 read_unlock(&tasklist_lock);
2744 struct k_sigaction *ka;
2747 /* Has this task already been marked for death? */
2748 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2749 signal->group_exec_task) {
2751 sigdelset(¤t->pending.signal, SIGKILL);
2752 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2753 &sighand->action[SIGKILL-1]);
2754 recalc_sigpending();
2756 * implies do_group_exit() or return to PF_USER_WORKER,
2757 * no need to initialize ksig->info/etc.
2762 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2766 if (unlikely(current->jobctl &
2767 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2768 if (current->jobctl & JOBCTL_TRAP_MASK) {
2770 spin_unlock_irq(&sighand->siglock);
2771 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2778 * If the task is leaving the frozen state, let's update
2779 * cgroup counters and reset the frozen bit.
2781 if (unlikely(cgroup_task_frozen(current))) {
2782 spin_unlock_irq(&sighand->siglock);
2783 cgroup_leave_frozen(false);
2788 * Signals generated by the execution of an instruction
2789 * need to be delivered before any other pending signals
2790 * so that the instruction pointer in the signal stack
2791 * frame points to the faulting instruction.
2794 signr = dequeue_synchronous_signal(&ksig->info);
2796 signr = dequeue_signal(current, ¤t->blocked,
2797 &ksig->info, &type);
2800 break; /* will return 0 */
2802 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2803 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2804 signr = ptrace_signal(signr, &ksig->info, type);
2809 ka = &sighand->action[signr-1];
2811 /* Trace actually delivered signals. */
2812 trace_signal_deliver(signr, &ksig->info, ka);
2814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2816 if (ka->sa.sa_handler != SIG_DFL) {
2817 /* Run the handler. */
2820 if (ka->sa.sa_flags & SA_ONESHOT)
2821 ka->sa.sa_handler = SIG_DFL;
2823 break; /* will return non-zero "signr" value */
2827 * Now we are doing the default action for this signal.
2829 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2833 * Global init gets no signals it doesn't want.
2834 * Container-init gets no signals it doesn't want from same
2837 * Note that if global/container-init sees a sig_kernel_only()
2838 * signal here, the signal must have been generated internally
2839 * or must have come from an ancestor namespace. In either
2840 * case, the signal cannot be dropped.
2842 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2843 !sig_kernel_only(signr))
2846 if (sig_kernel_stop(signr)) {
2848 * The default action is to stop all threads in
2849 * the thread group. The job control signals
2850 * do nothing in an orphaned pgrp, but SIGSTOP
2851 * always works. Note that siglock needs to be
2852 * dropped during the call to is_orphaned_pgrp()
2853 * because of lock ordering with tasklist_lock.
2854 * This allows an intervening SIGCONT to be posted.
2855 * We need to check for that and bail out if necessary.
2857 if (signr != SIGSTOP) {
2858 spin_unlock_irq(&sighand->siglock);
2860 /* signals can be posted during this window */
2862 if (is_current_pgrp_orphaned())
2865 spin_lock_irq(&sighand->siglock);
2868 if (likely(do_signal_stop(signr))) {
2869 /* It released the siglock. */
2874 * We didn't actually stop, due to a race
2875 * with SIGCONT or something like that.
2881 spin_unlock_irq(&sighand->siglock);
2882 if (unlikely(cgroup_task_frozen(current)))
2883 cgroup_leave_frozen(true);
2886 * Anything else is fatal, maybe with a core dump.
2888 current->flags |= PF_SIGNALED;
2890 if (sig_kernel_coredump(signr)) {
2891 if (print_fatal_signals)
2892 print_fatal_signal(signr);
2893 proc_coredump_connector(current);
2895 * If it was able to dump core, this kills all
2896 * other threads in the group and synchronizes with
2897 * their demise. If we lost the race with another
2898 * thread getting here, it set group_exit_code
2899 * first and our do_group_exit call below will use
2900 * that value and ignore the one we pass it.
2902 do_coredump(&ksig->info);
2906 * PF_USER_WORKER threads will catch and exit on fatal signals
2907 * themselves. They have cleanup that must be performed, so we
2908 * cannot call do_exit() on their behalf. Note that ksig won't
2909 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2911 if (current->flags & PF_USER_WORKER)
2915 * Death signals, no core dump.
2917 do_group_exit(signr);
2920 spin_unlock_irq(&sighand->siglock);
2924 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2925 hide_si_addr_tag_bits(ksig);
2931 * signal_delivered - called after signal delivery to update blocked signals
2932 * @ksig: kernel signal struct
2933 * @stepping: nonzero if debugger single-step or block-step in use
2935 * This function should be called when a signal has successfully been
2936 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2937 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2938 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2940 static void signal_delivered(struct ksignal *ksig, int stepping)
2944 /* A signal was successfully delivered, and the
2945 saved sigmask was stored on the signal frame,
2946 and will be restored by sigreturn. So we can
2947 simply clear the restore sigmask flag. */
2948 clear_restore_sigmask();
2950 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2951 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2952 sigaddset(&blocked, ksig->sig);
2953 set_current_blocked(&blocked);
2954 if (current->sas_ss_flags & SS_AUTODISARM)
2955 sas_ss_reset(current);
2957 ptrace_notify(SIGTRAP, 0);
2960 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2963 force_sigsegv(ksig->sig);
2965 signal_delivered(ksig, stepping);
2969 * It could be that complete_signal() picked us to notify about the
2970 * group-wide signal. Other threads should be notified now to take
2971 * the shared signals in @which since we will not.
2973 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2976 struct task_struct *t;
2978 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2979 if (sigisemptyset(&retarget))
2982 for_other_threads(tsk, t) {
2983 if (t->flags & PF_EXITING)
2986 if (!has_pending_signals(&retarget, &t->blocked))
2988 /* Remove the signals this thread can handle. */
2989 sigandsets(&retarget, &retarget, &t->blocked);
2991 if (!task_sigpending(t))
2992 signal_wake_up(t, 0);
2994 if (sigisemptyset(&retarget))
2999 void exit_signals(struct task_struct *tsk)
3005 * @tsk is about to have PF_EXITING set - lock out users which
3006 * expect stable threadgroup.
3008 cgroup_threadgroup_change_begin(tsk);
3010 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3011 sched_mm_cid_exit_signals(tsk);
3012 tsk->flags |= PF_EXITING;
3013 cgroup_threadgroup_change_end(tsk);
3017 spin_lock_irq(&tsk->sighand->siglock);
3019 * From now this task is not visible for group-wide signals,
3020 * see wants_signal(), do_signal_stop().
3022 sched_mm_cid_exit_signals(tsk);
3023 tsk->flags |= PF_EXITING;
3025 cgroup_threadgroup_change_end(tsk);
3027 if (!task_sigpending(tsk))
3030 unblocked = tsk->blocked;
3031 signotset(&unblocked);
3032 retarget_shared_pending(tsk, &unblocked);
3034 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3035 task_participate_group_stop(tsk))
3036 group_stop = CLD_STOPPED;
3038 spin_unlock_irq(&tsk->sighand->siglock);
3041 * If group stop has completed, deliver the notification. This
3042 * should always go to the real parent of the group leader.
3044 if (unlikely(group_stop)) {
3045 read_lock(&tasklist_lock);
3046 do_notify_parent_cldstop(tsk, false, group_stop);
3047 read_unlock(&tasklist_lock);
3052 * System call entry points.
3056 * sys_restart_syscall - restart a system call
3058 SYSCALL_DEFINE0(restart_syscall)
3060 struct restart_block *restart = ¤t->restart_block;
3061 return restart->fn(restart);
3064 long do_no_restart_syscall(struct restart_block *param)
3069 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3071 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3072 sigset_t newblocked;
3073 /* A set of now blocked but previously unblocked signals. */
3074 sigandnsets(&newblocked, newset, ¤t->blocked);
3075 retarget_shared_pending(tsk, &newblocked);
3077 tsk->blocked = *newset;
3078 recalc_sigpending();
3082 * set_current_blocked - change current->blocked mask
3085 * It is wrong to change ->blocked directly, this helper should be used
3086 * to ensure the process can't miss a shared signal we are going to block.
3088 void set_current_blocked(sigset_t *newset)
3090 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3091 __set_current_blocked(newset);
3094 void __set_current_blocked(const sigset_t *newset)
3096 struct task_struct *tsk = current;
3099 * In case the signal mask hasn't changed, there is nothing we need
3100 * to do. The current->blocked shouldn't be modified by other task.
3102 if (sigequalsets(&tsk->blocked, newset))
3105 spin_lock_irq(&tsk->sighand->siglock);
3106 __set_task_blocked(tsk, newset);
3107 spin_unlock_irq(&tsk->sighand->siglock);
3111 * This is also useful for kernel threads that want to temporarily
3112 * (or permanently) block certain signals.
3114 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3115 * interface happily blocks "unblockable" signals like SIGKILL
3118 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3120 struct task_struct *tsk = current;
3123 /* Lockless, only current can change ->blocked, never from irq */
3125 *oldset = tsk->blocked;
3129 sigorsets(&newset, &tsk->blocked, set);
3132 sigandnsets(&newset, &tsk->blocked, set);
3141 __set_current_blocked(&newset);
3144 EXPORT_SYMBOL(sigprocmask);
3147 * The api helps set app-provided sigmasks.
3149 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3150 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3152 * Note that it does set_restore_sigmask() in advance, so it must be always
3153 * paired with restore_saved_sigmask_unless() before return from syscall.
3155 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3161 if (sigsetsize != sizeof(sigset_t))
3163 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3166 set_restore_sigmask();
3167 current->saved_sigmask = current->blocked;
3168 set_current_blocked(&kmask);
3173 #ifdef CONFIG_COMPAT
3174 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3181 if (sigsetsize != sizeof(compat_sigset_t))
3183 if (get_compat_sigset(&kmask, umask))
3186 set_restore_sigmask();
3187 current->saved_sigmask = current->blocked;
3188 set_current_blocked(&kmask);
3195 * sys_rt_sigprocmask - change the list of currently blocked signals
3196 * @how: whether to add, remove, or set signals
3197 * @nset: stores pending signals
3198 * @oset: previous value of signal mask if non-null
3199 * @sigsetsize: size of sigset_t type
3201 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3202 sigset_t __user *, oset, size_t, sigsetsize)
3204 sigset_t old_set, new_set;
3207 /* XXX: Don't preclude handling different sized sigset_t's. */
3208 if (sigsetsize != sizeof(sigset_t))
3211 old_set = current->blocked;
3214 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3216 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3218 error = sigprocmask(how, &new_set, NULL);
3224 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3231 #ifdef CONFIG_COMPAT
3232 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3233 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3235 sigset_t old_set = current->blocked;
3237 /* XXX: Don't preclude handling different sized sigset_t's. */
3238 if (sigsetsize != sizeof(sigset_t))
3244 if (get_compat_sigset(&new_set, nset))
3246 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3248 error = sigprocmask(how, &new_set, NULL);
3252 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3256 static void do_sigpending(sigset_t *set)
3258 spin_lock_irq(¤t->sighand->siglock);
3259 sigorsets(set, ¤t->pending.signal,
3260 ¤t->signal->shared_pending.signal);
3261 spin_unlock_irq(¤t->sighand->siglock);
3263 /* Outside the lock because only this thread touches it. */
3264 sigandsets(set, ¤t->blocked, set);
3268 * sys_rt_sigpending - examine a pending signal that has been raised
3270 * @uset: stores pending signals
3271 * @sigsetsize: size of sigset_t type or larger
3273 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3277 if (sigsetsize > sizeof(*uset))
3280 do_sigpending(&set);
3282 if (copy_to_user(uset, &set, sigsetsize))
3288 #ifdef CONFIG_COMPAT
3289 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3290 compat_size_t, sigsetsize)
3294 if (sigsetsize > sizeof(*uset))
3297 do_sigpending(&set);
3299 return put_compat_sigset(uset, &set, sigsetsize);
3303 static const struct {
3304 unsigned char limit, layout;
3306 [SIGILL] = { NSIGILL, SIL_FAULT },
3307 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3308 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3309 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3310 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3312 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3314 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3315 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3316 [SIGSYS] = { NSIGSYS, SIL_SYS },
3319 static bool known_siginfo_layout(unsigned sig, int si_code)
3321 if (si_code == SI_KERNEL)
3323 else if ((si_code > SI_USER)) {
3324 if (sig_specific_sicodes(sig)) {
3325 if (si_code <= sig_sicodes[sig].limit)
3328 else if (si_code <= NSIGPOLL)
3331 else if (si_code >= SI_DETHREAD)
3333 else if (si_code == SI_ASYNCNL)
3338 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3340 enum siginfo_layout layout = SIL_KILL;
3341 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3342 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3343 (si_code <= sig_sicodes[sig].limit)) {
3344 layout = sig_sicodes[sig].layout;
3345 /* Handle the exceptions */
3346 if ((sig == SIGBUS) &&
3347 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3348 layout = SIL_FAULT_MCEERR;
3349 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3350 layout = SIL_FAULT_BNDERR;
3352 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3353 layout = SIL_FAULT_PKUERR;
3355 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3356 layout = SIL_FAULT_PERF_EVENT;
3357 else if (IS_ENABLED(CONFIG_SPARC) &&
3358 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3359 layout = SIL_FAULT_TRAPNO;
3360 else if (IS_ENABLED(CONFIG_ALPHA) &&
3362 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3363 layout = SIL_FAULT_TRAPNO;
3365 else if (si_code <= NSIGPOLL)
3368 if (si_code == SI_TIMER)
3370 else if (si_code == SI_SIGIO)
3372 else if (si_code < 0)
3378 static inline char __user *si_expansion(const siginfo_t __user *info)
3380 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3383 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3385 char __user *expansion = si_expansion(to);
3386 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3388 if (clear_user(expansion, SI_EXPANSION_SIZE))
3393 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3394 const siginfo_t __user *from)
3396 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3397 char __user *expansion = si_expansion(from);
3398 char buf[SI_EXPANSION_SIZE];
3401 * An unknown si_code might need more than
3402 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3403 * extra bytes are 0. This guarantees copy_siginfo_to_user
3404 * will return this data to userspace exactly.
3406 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3408 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3416 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3417 const siginfo_t __user *from)
3419 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3421 to->si_signo = signo;
3422 return post_copy_siginfo_from_user(to, from);
3425 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3427 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3429 return post_copy_siginfo_from_user(to, from);
3432 #ifdef CONFIG_COMPAT
3434 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3435 * @to: compat siginfo destination
3436 * @from: kernel siginfo source
3438 * Note: This function does not work properly for the SIGCHLD on x32, but
3439 * fortunately it doesn't have to. The only valid callers for this function are
3440 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3441 * The latter does not care because SIGCHLD will never cause a coredump.
3443 void copy_siginfo_to_external32(struct compat_siginfo *to,
3444 const struct kernel_siginfo *from)
3446 memset(to, 0, sizeof(*to));
3448 to->si_signo = from->si_signo;
3449 to->si_errno = from->si_errno;
3450 to->si_code = from->si_code;
3451 switch(siginfo_layout(from->si_signo, from->si_code)) {
3453 to->si_pid = from->si_pid;
3454 to->si_uid = from->si_uid;
3457 to->si_tid = from->si_tid;
3458 to->si_overrun = from->si_overrun;
3459 to->si_int = from->si_int;
3462 to->si_band = from->si_band;
3463 to->si_fd = from->si_fd;
3466 to->si_addr = ptr_to_compat(from->si_addr);
3468 case SIL_FAULT_TRAPNO:
3469 to->si_addr = ptr_to_compat(from->si_addr);
3470 to->si_trapno = from->si_trapno;
3472 case SIL_FAULT_MCEERR:
3473 to->si_addr = ptr_to_compat(from->si_addr);
3474 to->si_addr_lsb = from->si_addr_lsb;
3476 case SIL_FAULT_BNDERR:
3477 to->si_addr = ptr_to_compat(from->si_addr);
3478 to->si_lower = ptr_to_compat(from->si_lower);
3479 to->si_upper = ptr_to_compat(from->si_upper);
3481 case SIL_FAULT_PKUERR:
3482 to->si_addr = ptr_to_compat(from->si_addr);
3483 to->si_pkey = from->si_pkey;
3485 case SIL_FAULT_PERF_EVENT:
3486 to->si_addr = ptr_to_compat(from->si_addr);
3487 to->si_perf_data = from->si_perf_data;
3488 to->si_perf_type = from->si_perf_type;
3489 to->si_perf_flags = from->si_perf_flags;
3492 to->si_pid = from->si_pid;
3493 to->si_uid = from->si_uid;
3494 to->si_status = from->si_status;
3495 to->si_utime = from->si_utime;
3496 to->si_stime = from->si_stime;
3499 to->si_pid = from->si_pid;
3500 to->si_uid = from->si_uid;
3501 to->si_int = from->si_int;
3504 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3505 to->si_syscall = from->si_syscall;
3506 to->si_arch = from->si_arch;
3511 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3512 const struct kernel_siginfo *from)
3514 struct compat_siginfo new;
3516 copy_siginfo_to_external32(&new, from);
3517 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3522 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3523 const struct compat_siginfo *from)
3526 to->si_signo = from->si_signo;
3527 to->si_errno = from->si_errno;
3528 to->si_code = from->si_code;
3529 switch(siginfo_layout(from->si_signo, from->si_code)) {
3531 to->si_pid = from->si_pid;
3532 to->si_uid = from->si_uid;
3535 to->si_tid = from->si_tid;
3536 to->si_overrun = from->si_overrun;
3537 to->si_int = from->si_int;
3540 to->si_band = from->si_band;
3541 to->si_fd = from->si_fd;
3544 to->si_addr = compat_ptr(from->si_addr);
3546 case SIL_FAULT_TRAPNO:
3547 to->si_addr = compat_ptr(from->si_addr);
3548 to->si_trapno = from->si_trapno;
3550 case SIL_FAULT_MCEERR:
3551 to->si_addr = compat_ptr(from->si_addr);
3552 to->si_addr_lsb = from->si_addr_lsb;
3554 case SIL_FAULT_BNDERR:
3555 to->si_addr = compat_ptr(from->si_addr);
3556 to->si_lower = compat_ptr(from->si_lower);
3557 to->si_upper = compat_ptr(from->si_upper);
3559 case SIL_FAULT_PKUERR:
3560 to->si_addr = compat_ptr(from->si_addr);
3561 to->si_pkey = from->si_pkey;
3563 case SIL_FAULT_PERF_EVENT:
3564 to->si_addr = compat_ptr(from->si_addr);
3565 to->si_perf_data = from->si_perf_data;
3566 to->si_perf_type = from->si_perf_type;
3567 to->si_perf_flags = from->si_perf_flags;
3570 to->si_pid = from->si_pid;
3571 to->si_uid = from->si_uid;
3572 to->si_status = from->si_status;
3573 #ifdef CONFIG_X86_X32_ABI
3574 if (in_x32_syscall()) {
3575 to->si_utime = from->_sifields._sigchld_x32._utime;
3576 to->si_stime = from->_sifields._sigchld_x32._stime;
3580 to->si_utime = from->si_utime;
3581 to->si_stime = from->si_stime;
3585 to->si_pid = from->si_pid;
3586 to->si_uid = from->si_uid;
3587 to->si_int = from->si_int;
3590 to->si_call_addr = compat_ptr(from->si_call_addr);
3591 to->si_syscall = from->si_syscall;
3592 to->si_arch = from->si_arch;
3598 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3599 const struct compat_siginfo __user *ufrom)
3601 struct compat_siginfo from;
3603 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3606 from.si_signo = signo;
3607 return post_copy_siginfo_from_user32(to, &from);
3610 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3611 const struct compat_siginfo __user *ufrom)
3613 struct compat_siginfo from;
3615 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3618 return post_copy_siginfo_from_user32(to, &from);
3620 #endif /* CONFIG_COMPAT */
3623 * do_sigtimedwait - wait for queued signals specified in @which
3624 * @which: queued signals to wait for
3625 * @info: if non-null, the signal's siginfo is returned here
3626 * @ts: upper bound on process time suspension
3628 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3629 const struct timespec64 *ts)
3631 ktime_t *to = NULL, timeout = KTIME_MAX;
3632 struct task_struct *tsk = current;
3633 sigset_t mask = *which;
3638 if (!timespec64_valid(ts))
3640 timeout = timespec64_to_ktime(*ts);
3645 * Invert the set of allowed signals to get those we want to block.
3647 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3650 spin_lock_irq(&tsk->sighand->siglock);
3651 sig = dequeue_signal(tsk, &mask, info, &type);
3652 if (!sig && timeout) {
3654 * None ready, temporarily unblock those we're interested
3655 * while we are sleeping in so that we'll be awakened when
3656 * they arrive. Unblocking is always fine, we can avoid
3657 * set_current_blocked().
3659 tsk->real_blocked = tsk->blocked;
3660 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3661 recalc_sigpending();
3662 spin_unlock_irq(&tsk->sighand->siglock);
3664 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3665 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3667 spin_lock_irq(&tsk->sighand->siglock);
3668 __set_task_blocked(tsk, &tsk->real_blocked);
3669 sigemptyset(&tsk->real_blocked);
3670 sig = dequeue_signal(tsk, &mask, info, &type);
3672 spin_unlock_irq(&tsk->sighand->siglock);
3676 return ret ? -EINTR : -EAGAIN;
3680 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3682 * @uthese: queued signals to wait for
3683 * @uinfo: if non-null, the signal's siginfo is returned here
3684 * @uts: upper bound on process time suspension
3685 * @sigsetsize: size of sigset_t type
3687 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3688 siginfo_t __user *, uinfo,
3689 const struct __kernel_timespec __user *, uts,
3693 struct timespec64 ts;
3694 kernel_siginfo_t info;
3697 /* XXX: Don't preclude handling different sized sigset_t's. */
3698 if (sigsetsize != sizeof(sigset_t))
3701 if (copy_from_user(&these, uthese, sizeof(these)))
3705 if (get_timespec64(&ts, uts))
3709 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3711 if (ret > 0 && uinfo) {
3712 if (copy_siginfo_to_user(uinfo, &info))
3719 #ifdef CONFIG_COMPAT_32BIT_TIME
3720 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3721 siginfo_t __user *, uinfo,
3722 const struct old_timespec32 __user *, uts,
3726 struct timespec64 ts;
3727 kernel_siginfo_t info;
3730 if (sigsetsize != sizeof(sigset_t))
3733 if (copy_from_user(&these, uthese, sizeof(these)))
3737 if (get_old_timespec32(&ts, uts))
3741 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3743 if (ret > 0 && uinfo) {
3744 if (copy_siginfo_to_user(uinfo, &info))
3752 #ifdef CONFIG_COMPAT
3753 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3754 struct compat_siginfo __user *, uinfo,
3755 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3758 struct timespec64 t;
3759 kernel_siginfo_t info;
3762 if (sigsetsize != sizeof(sigset_t))
3765 if (get_compat_sigset(&s, uthese))
3769 if (get_timespec64(&t, uts))
3773 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3775 if (ret > 0 && uinfo) {
3776 if (copy_siginfo_to_user32(uinfo, &info))
3783 #ifdef CONFIG_COMPAT_32BIT_TIME
3784 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3785 struct compat_siginfo __user *, uinfo,
3786 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3789 struct timespec64 t;
3790 kernel_siginfo_t info;
3793 if (sigsetsize != sizeof(sigset_t))
3796 if (get_compat_sigset(&s, uthese))
3800 if (get_old_timespec32(&t, uts))
3804 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3806 if (ret > 0 && uinfo) {
3807 if (copy_siginfo_to_user32(uinfo, &info))
3816 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3819 clear_siginfo(info);
3820 info->si_signo = sig;
3822 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3823 info->si_pid = task_tgid_vnr(current);
3824 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3828 * sys_kill - send a signal to a process
3829 * @pid: the PID of the process
3830 * @sig: signal to be sent
3832 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3834 struct kernel_siginfo info;
3836 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3838 return kill_something_info(sig, &info, pid);
3842 * Verify that the signaler and signalee either are in the same pid namespace
3843 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3846 static bool access_pidfd_pidns(struct pid *pid)
3848 struct pid_namespace *active = task_active_pid_ns(current);
3849 struct pid_namespace *p = ns_of_pid(pid);
3862 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3863 siginfo_t __user *info)
3865 #ifdef CONFIG_COMPAT
3867 * Avoid hooking up compat syscalls and instead handle necessary
3868 * conversions here. Note, this is a stop-gap measure and should not be
3869 * considered a generic solution.
3871 if (in_compat_syscall())
3872 return copy_siginfo_from_user32(
3873 kinfo, (struct compat_siginfo __user *)info);
3875 return copy_siginfo_from_user(kinfo, info);
3878 static struct pid *pidfd_to_pid(const struct file *file)
3882 pid = pidfd_pid(file);
3886 return tgid_pidfd_to_pid(file);
3889 #define PIDFD_SEND_SIGNAL_FLAGS \
3890 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3891 PIDFD_SIGNAL_PROCESS_GROUP)
3894 * sys_pidfd_send_signal - Signal a process through a pidfd
3895 * @pidfd: file descriptor of the process
3896 * @sig: signal to send
3897 * @info: signal info
3898 * @flags: future flags
3900 * Send the signal to the thread group or to the individual thread depending
3902 * In the future extension to @flags may be used to override the default scope
3905 * Return: 0 on success, negative errno on failure
3907 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3908 siginfo_t __user *, info, unsigned int, flags)
3913 kernel_siginfo_t kinfo;
3916 /* Enforce flags be set to 0 until we add an extension. */
3917 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3920 /* Ensure that only a single signal scope determining flag is set. */
3921 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3928 /* Is this a pidfd? */
3929 pid = pidfd_to_pid(f.file);
3936 if (!access_pidfd_pidns(pid))
3941 /* Infer scope from the type of pidfd. */
3942 if (f.file->f_flags & PIDFD_THREAD)
3945 type = PIDTYPE_TGID;
3947 case PIDFD_SIGNAL_THREAD:
3950 case PIDFD_SIGNAL_THREAD_GROUP:
3951 type = PIDTYPE_TGID;
3953 case PIDFD_SIGNAL_PROCESS_GROUP:
3954 type = PIDTYPE_PGID;
3959 ret = copy_siginfo_from_user_any(&kinfo, info);
3964 if (unlikely(sig != kinfo.si_signo))
3967 /* Only allow sending arbitrary signals to yourself. */
3969 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3970 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3973 prepare_kill_siginfo(sig, &kinfo, type);
3976 if (type == PIDTYPE_PGID)
3977 ret = kill_pgrp_info(sig, &kinfo, pid);
3979 ret = kill_pid_info_type(sig, &kinfo, pid, type);
3986 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3988 struct task_struct *p;
3992 p = find_task_by_vpid(pid);
3993 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3994 error = check_kill_permission(sig, info, p);
3996 * The null signal is a permissions and process existence
3997 * probe. No signal is actually delivered.
3999 if (!error && sig) {
4000 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4002 * If lock_task_sighand() failed we pretend the task
4003 * dies after receiving the signal. The window is tiny,
4004 * and the signal is private anyway.
4006 if (unlikely(error == -ESRCH))
4015 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4017 struct kernel_siginfo info;
4019 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4021 return do_send_specific(tgid, pid, sig, &info);
4025 * sys_tgkill - send signal to one specific thread
4026 * @tgid: the thread group ID of the thread
4027 * @pid: the PID of the thread
4028 * @sig: signal to be sent
4030 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4031 * exists but it's not belonging to the target process anymore. This
4032 * method solves the problem of threads exiting and PIDs getting reused.
4034 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4036 /* This is only valid for single tasks */
4037 if (pid <= 0 || tgid <= 0)
4040 return do_tkill(tgid, pid, sig);
4044 * sys_tkill - send signal to one specific task
4045 * @pid: the PID of the task
4046 * @sig: signal to be sent
4048 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4050 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4052 /* This is only valid for single tasks */
4056 return do_tkill(0, pid, sig);
4059 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4061 /* Not even root can pretend to send signals from the kernel.
4062 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4064 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4065 (task_pid_vnr(current) != pid))
4068 /* POSIX.1b doesn't mention process groups. */
4069 return kill_proc_info(sig, info, pid);
4073 * sys_rt_sigqueueinfo - send signal information to a signal
4074 * @pid: the PID of the thread
4075 * @sig: signal to be sent
4076 * @uinfo: signal info to be sent
4078 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4079 siginfo_t __user *, uinfo)
4081 kernel_siginfo_t info;
4082 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4085 return do_rt_sigqueueinfo(pid, sig, &info);
4088 #ifdef CONFIG_COMPAT
4089 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4092 struct compat_siginfo __user *, uinfo)
4094 kernel_siginfo_t info;
4095 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4098 return do_rt_sigqueueinfo(pid, sig, &info);
4102 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4104 /* This is only valid for single tasks */
4105 if (pid <= 0 || tgid <= 0)
4108 /* Not even root can pretend to send signals from the kernel.
4109 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4111 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4112 (task_pid_vnr(current) != pid))
4115 return do_send_specific(tgid, pid, sig, info);
4118 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4119 siginfo_t __user *, uinfo)
4121 kernel_siginfo_t info;
4122 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4125 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4128 #ifdef CONFIG_COMPAT
4129 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4133 struct compat_siginfo __user *, uinfo)
4135 kernel_siginfo_t info;
4136 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4139 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4144 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4146 void kernel_sigaction(int sig, __sighandler_t action)
4148 spin_lock_irq(¤t->sighand->siglock);
4149 current->sighand->action[sig - 1].sa.sa_handler = action;
4150 if (action == SIG_IGN) {
4154 sigaddset(&mask, sig);
4156 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4157 flush_sigqueue_mask(&mask, ¤t->pending);
4158 recalc_sigpending();
4160 spin_unlock_irq(¤t->sighand->siglock);
4162 EXPORT_SYMBOL(kernel_sigaction);
4164 void __weak sigaction_compat_abi(struct k_sigaction *act,
4165 struct k_sigaction *oact)
4169 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4171 struct task_struct *p = current, *t;
4172 struct k_sigaction *k;
4175 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4178 k = &p->sighand->action[sig-1];
4180 spin_lock_irq(&p->sighand->siglock);
4181 if (k->sa.sa_flags & SA_IMMUTABLE) {
4182 spin_unlock_irq(&p->sighand->siglock);
4189 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4190 * e.g. by having an architecture use the bit in their uapi.
4192 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4195 * Clear unknown flag bits in order to allow userspace to detect missing
4196 * support for flag bits and to allow the kernel to use non-uapi bits
4200 act->sa.sa_flags &= UAPI_SA_FLAGS;
4202 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4204 sigaction_compat_abi(act, oact);
4207 sigdelsetmask(&act->sa.sa_mask,
4208 sigmask(SIGKILL) | sigmask(SIGSTOP));
4212 * "Setting a signal action to SIG_IGN for a signal that is
4213 * pending shall cause the pending signal to be discarded,
4214 * whether or not it is blocked."
4216 * "Setting a signal action to SIG_DFL for a signal that is
4217 * pending and whose default action is to ignore the signal
4218 * (for example, SIGCHLD), shall cause the pending signal to
4219 * be discarded, whether or not it is blocked"
4221 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4223 sigaddset(&mask, sig);
4224 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4225 for_each_thread(p, t)
4226 flush_sigqueue_mask(&mask, &t->pending);
4230 spin_unlock_irq(&p->sighand->siglock);
4234 #ifdef CONFIG_DYNAMIC_SIGFRAME
4235 static inline void sigaltstack_lock(void)
4236 __acquires(¤t->sighand->siglock)
4238 spin_lock_irq(¤t->sighand->siglock);
4241 static inline void sigaltstack_unlock(void)
4242 __releases(¤t->sighand->siglock)
4244 spin_unlock_irq(¤t->sighand->siglock);
4247 static inline void sigaltstack_lock(void) { }
4248 static inline void sigaltstack_unlock(void) { }
4252 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4255 struct task_struct *t = current;
4259 memset(oss, 0, sizeof(stack_t));
4260 oss->ss_sp = (void __user *) t->sas_ss_sp;
4261 oss->ss_size = t->sas_ss_size;
4262 oss->ss_flags = sas_ss_flags(sp) |
4263 (current->sas_ss_flags & SS_FLAG_BITS);
4267 void __user *ss_sp = ss->ss_sp;
4268 size_t ss_size = ss->ss_size;
4269 unsigned ss_flags = ss->ss_flags;
4272 if (unlikely(on_sig_stack(sp)))
4275 ss_mode = ss_flags & ~SS_FLAG_BITS;
4276 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4281 * Return before taking any locks if no actual
4282 * sigaltstack changes were requested.
4284 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4285 t->sas_ss_size == ss_size &&
4286 t->sas_ss_flags == ss_flags)
4290 if (ss_mode == SS_DISABLE) {
4294 if (unlikely(ss_size < min_ss_size))
4296 if (!sigaltstack_size_valid(ss_size))
4300 t->sas_ss_sp = (unsigned long) ss_sp;
4301 t->sas_ss_size = ss_size;
4302 t->sas_ss_flags = ss_flags;
4304 sigaltstack_unlock();
4309 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4313 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4315 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4316 current_user_stack_pointer(),
4318 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4323 int restore_altstack(const stack_t __user *uss)
4326 if (copy_from_user(&new, uss, sizeof(stack_t)))
4328 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4330 /* squash all but EFAULT for now */
4334 int __save_altstack(stack_t __user *uss, unsigned long sp)
4336 struct task_struct *t = current;
4337 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4338 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4339 __put_user(t->sas_ss_size, &uss->ss_size);
4343 #ifdef CONFIG_COMPAT
4344 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4345 compat_stack_t __user *uoss_ptr)
4351 compat_stack_t uss32;
4352 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4354 uss.ss_sp = compat_ptr(uss32.ss_sp);
4355 uss.ss_flags = uss32.ss_flags;
4356 uss.ss_size = uss32.ss_size;
4358 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4359 compat_user_stack_pointer(),
4360 COMPAT_MINSIGSTKSZ);
4361 if (ret >= 0 && uoss_ptr) {
4363 memset(&old, 0, sizeof(old));
4364 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4365 old.ss_flags = uoss.ss_flags;
4366 old.ss_size = uoss.ss_size;
4367 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4373 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4374 const compat_stack_t __user *, uss_ptr,
4375 compat_stack_t __user *, uoss_ptr)
4377 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4380 int compat_restore_altstack(const compat_stack_t __user *uss)
4382 int err = do_compat_sigaltstack(uss, NULL);
4383 /* squash all but -EFAULT for now */
4384 return err == -EFAULT ? err : 0;
4387 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4390 struct task_struct *t = current;
4391 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4393 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4394 __put_user(t->sas_ss_size, &uss->ss_size);
4399 #ifdef __ARCH_WANT_SYS_SIGPENDING
4402 * sys_sigpending - examine pending signals
4403 * @uset: where mask of pending signal is returned
4405 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4409 if (sizeof(old_sigset_t) > sizeof(*uset))
4412 do_sigpending(&set);
4414 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4420 #ifdef CONFIG_COMPAT
4421 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4425 do_sigpending(&set);
4427 return put_user(set.sig[0], set32);
4433 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4435 * sys_sigprocmask - examine and change blocked signals
4436 * @how: whether to add, remove, or set signals
4437 * @nset: signals to add or remove (if non-null)
4438 * @oset: previous value of signal mask if non-null
4440 * Some platforms have their own version with special arguments;
4441 * others support only sys_rt_sigprocmask.
4444 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4445 old_sigset_t __user *, oset)
4447 old_sigset_t old_set, new_set;
4448 sigset_t new_blocked;
4450 old_set = current->blocked.sig[0];
4453 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4456 new_blocked = current->blocked;
4460 sigaddsetmask(&new_blocked, new_set);
4463 sigdelsetmask(&new_blocked, new_set);
4466 new_blocked.sig[0] = new_set;
4472 set_current_blocked(&new_blocked);
4476 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4482 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4484 #ifndef CONFIG_ODD_RT_SIGACTION
4486 * sys_rt_sigaction - alter an action taken by a process
4487 * @sig: signal to be sent
4488 * @act: new sigaction
4489 * @oact: used to save the previous sigaction
4490 * @sigsetsize: size of sigset_t type
4492 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4493 const struct sigaction __user *, act,
4494 struct sigaction __user *, oact,
4497 struct k_sigaction new_sa, old_sa;
4500 /* XXX: Don't preclude handling different sized sigset_t's. */
4501 if (sigsetsize != sizeof(sigset_t))
4504 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4507 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4511 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4516 #ifdef CONFIG_COMPAT
4517 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4518 const struct compat_sigaction __user *, act,
4519 struct compat_sigaction __user *, oact,
4520 compat_size_t, sigsetsize)
4522 struct k_sigaction new_ka, old_ka;
4523 #ifdef __ARCH_HAS_SA_RESTORER
4524 compat_uptr_t restorer;
4528 /* XXX: Don't preclude handling different sized sigset_t's. */
4529 if (sigsetsize != sizeof(compat_sigset_t))
4533 compat_uptr_t handler;
4534 ret = get_user(handler, &act->sa_handler);
4535 new_ka.sa.sa_handler = compat_ptr(handler);
4536 #ifdef __ARCH_HAS_SA_RESTORER
4537 ret |= get_user(restorer, &act->sa_restorer);
4538 new_ka.sa.sa_restorer = compat_ptr(restorer);
4540 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4541 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4546 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4548 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4550 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4551 sizeof(oact->sa_mask));
4552 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4553 #ifdef __ARCH_HAS_SA_RESTORER
4554 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4555 &oact->sa_restorer);
4561 #endif /* !CONFIG_ODD_RT_SIGACTION */
4563 #ifdef CONFIG_OLD_SIGACTION
4564 SYSCALL_DEFINE3(sigaction, int, sig,
4565 const struct old_sigaction __user *, act,
4566 struct old_sigaction __user *, oact)
4568 struct k_sigaction new_ka, old_ka;
4573 if (!access_ok(act, sizeof(*act)) ||
4574 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4575 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4576 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4577 __get_user(mask, &act->sa_mask))
4579 #ifdef __ARCH_HAS_KA_RESTORER
4580 new_ka.ka_restorer = NULL;
4582 siginitset(&new_ka.sa.sa_mask, mask);
4585 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4588 if (!access_ok(oact, sizeof(*oact)) ||
4589 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4590 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4591 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4592 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4599 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4600 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4601 const struct compat_old_sigaction __user *, act,
4602 struct compat_old_sigaction __user *, oact)
4604 struct k_sigaction new_ka, old_ka;
4606 compat_old_sigset_t mask;
4607 compat_uptr_t handler, restorer;
4610 if (!access_ok(act, sizeof(*act)) ||
4611 __get_user(handler, &act->sa_handler) ||
4612 __get_user(restorer, &act->sa_restorer) ||
4613 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4614 __get_user(mask, &act->sa_mask))
4617 #ifdef __ARCH_HAS_KA_RESTORER
4618 new_ka.ka_restorer = NULL;
4620 new_ka.sa.sa_handler = compat_ptr(handler);
4621 new_ka.sa.sa_restorer = compat_ptr(restorer);
4622 siginitset(&new_ka.sa.sa_mask, mask);
4625 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4628 if (!access_ok(oact, sizeof(*oact)) ||
4629 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4630 &oact->sa_handler) ||
4631 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4632 &oact->sa_restorer) ||
4633 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4634 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4641 #ifdef CONFIG_SGETMASK_SYSCALL
4644 * For backwards compatibility. Functionality superseded by sigprocmask.
4646 SYSCALL_DEFINE0(sgetmask)
4649 return current->blocked.sig[0];
4652 SYSCALL_DEFINE1(ssetmask, int, newmask)
4654 int old = current->blocked.sig[0];
4657 siginitset(&newset, newmask);
4658 set_current_blocked(&newset);
4662 #endif /* CONFIG_SGETMASK_SYSCALL */
4664 #ifdef __ARCH_WANT_SYS_SIGNAL
4666 * For backwards compatibility. Functionality superseded by sigaction.
4668 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4670 struct k_sigaction new_sa, old_sa;
4673 new_sa.sa.sa_handler = handler;
4674 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4675 sigemptyset(&new_sa.sa.sa_mask);
4677 ret = do_sigaction(sig, &new_sa, &old_sa);
4679 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4681 #endif /* __ARCH_WANT_SYS_SIGNAL */
4683 #ifdef __ARCH_WANT_SYS_PAUSE
4685 SYSCALL_DEFINE0(pause)
4687 while (!signal_pending(current)) {
4688 __set_current_state(TASK_INTERRUPTIBLE);
4691 return -ERESTARTNOHAND;
4696 static int sigsuspend(sigset_t *set)
4698 current->saved_sigmask = current->blocked;
4699 set_current_blocked(set);
4701 while (!signal_pending(current)) {
4702 __set_current_state(TASK_INTERRUPTIBLE);
4705 set_restore_sigmask();
4706 return -ERESTARTNOHAND;
4710 * sys_rt_sigsuspend - replace the signal mask for a value with the
4711 * @unewset value until a signal is received
4712 * @unewset: new signal mask value
4713 * @sigsetsize: size of sigset_t type
4715 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4719 /* XXX: Don't preclude handling different sized sigset_t's. */
4720 if (sigsetsize != sizeof(sigset_t))
4723 if (copy_from_user(&newset, unewset, sizeof(newset)))
4725 return sigsuspend(&newset);
4728 #ifdef CONFIG_COMPAT
4729 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4733 /* XXX: Don't preclude handling different sized sigset_t's. */
4734 if (sigsetsize != sizeof(sigset_t))
4737 if (get_compat_sigset(&newset, unewset))
4739 return sigsuspend(&newset);
4743 #ifdef CONFIG_OLD_SIGSUSPEND
4744 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4747 siginitset(&blocked, mask);
4748 return sigsuspend(&blocked);
4751 #ifdef CONFIG_OLD_SIGSUSPEND3
4752 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4755 siginitset(&blocked, mask);
4756 return sigsuspend(&blocked);
4760 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4765 static inline void siginfo_buildtime_checks(void)
4767 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4769 /* Verify the offsets in the two siginfos match */
4770 #define CHECK_OFFSET(field) \
4771 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4774 CHECK_OFFSET(si_pid);
4775 CHECK_OFFSET(si_uid);
4778 CHECK_OFFSET(si_tid);
4779 CHECK_OFFSET(si_overrun);
4780 CHECK_OFFSET(si_value);
4783 CHECK_OFFSET(si_pid);
4784 CHECK_OFFSET(si_uid);
4785 CHECK_OFFSET(si_value);
4788 CHECK_OFFSET(si_pid);
4789 CHECK_OFFSET(si_uid);
4790 CHECK_OFFSET(si_status);
4791 CHECK_OFFSET(si_utime);
4792 CHECK_OFFSET(si_stime);
4795 CHECK_OFFSET(si_addr);
4796 CHECK_OFFSET(si_trapno);
4797 CHECK_OFFSET(si_addr_lsb);
4798 CHECK_OFFSET(si_lower);
4799 CHECK_OFFSET(si_upper);
4800 CHECK_OFFSET(si_pkey);
4801 CHECK_OFFSET(si_perf_data);
4802 CHECK_OFFSET(si_perf_type);
4803 CHECK_OFFSET(si_perf_flags);
4806 CHECK_OFFSET(si_band);
4807 CHECK_OFFSET(si_fd);
4810 CHECK_OFFSET(si_call_addr);
4811 CHECK_OFFSET(si_syscall);
4812 CHECK_OFFSET(si_arch);
4816 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4817 offsetof(struct siginfo, si_addr));
4818 if (sizeof(int) == sizeof(void __user *)) {
4819 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4820 sizeof(void __user *));
4822 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4823 sizeof_field(struct siginfo, si_uid)) !=
4824 sizeof(void __user *));
4825 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4826 offsetof(struct siginfo, si_uid));
4828 #ifdef CONFIG_COMPAT
4829 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4830 offsetof(struct compat_siginfo, si_addr));
4831 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4832 sizeof(compat_uptr_t));
4833 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4834 sizeof_field(struct siginfo, si_pid));
4838 #if defined(CONFIG_SYSCTL)
4839 static struct ctl_table signal_debug_table[] = {
4840 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4842 .procname = "exception-trace",
4843 .data = &show_unhandled_signals,
4844 .maxlen = sizeof(int),
4846 .proc_handler = proc_dointvec
4851 static int __init init_signal_sysctls(void)
4853 register_sysctl_init("debug", signal_debug_table);
4856 early_initcall(init_signal_sysctls);
4857 #endif /* CONFIG_SYSCTL */
4859 void __init signals_init(void)
4861 siginfo_buildtime_checks();
4863 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4866 #ifdef CONFIG_KGDB_KDB
4867 #include <linux/kdb.h>
4869 * kdb_send_sig - Allows kdb to send signals without exposing
4870 * signal internals. This function checks if the required locks are
4871 * available before calling the main signal code, to avoid kdb
4874 void kdb_send_sig(struct task_struct *t, int sig)
4876 static struct task_struct *kdb_prev_t;
4878 if (!spin_trylock(&t->sighand->siglock)) {
4879 kdb_printf("Can't do kill command now.\n"
4880 "The sigmask lock is held somewhere else in "
4881 "kernel, try again later\n");
4884 new_t = kdb_prev_t != t;
4886 if (!task_is_running(t) && new_t) {
4887 spin_unlock(&t->sighand->siglock);
4888 kdb_printf("Process is not RUNNING, sending a signal from "
4889 "kdb risks deadlock\n"
4890 "on the run queue locks. "
4891 "The signal has _not_ been sent.\n"
4892 "Reissue the kill command if you want to risk "
4896 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4897 spin_unlock(&t->sighand->siglock);
4899 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4902 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4904 #endif /* CONFIG_KGDB_KDB */