]> Git Repo - linux.git/blob - fs/f2fs/data.c
drm/v3d: Use v3d_perfmon_find()
[linux.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS);
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 bool f2fs_is_cp_guaranteed(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct inode *inode;
55         struct f2fs_sb_info *sbi;
56
57         if (!mapping)
58                 return false;
59
60         inode = mapping->host;
61         sbi = F2FS_I_SB(inode);
62
63         if (inode->i_ino == F2FS_META_INO(sbi) ||
64                         inode->i_ino == F2FS_NODE_INO(sbi) ||
65                         S_ISDIR(inode->i_mode))
66                 return true;
67
68         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69                         page_private_gcing(page))
70                 return true;
71         return false;
72 }
73
74 static enum count_type __read_io_type(struct page *page)
75 {
76         struct address_space *mapping = page_file_mapping(page);
77
78         if (mapping) {
79                 struct inode *inode = mapping->host;
80                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81
82                 if (inode->i_ino == F2FS_META_INO(sbi))
83                         return F2FS_RD_META;
84
85                 if (inode->i_ino == F2FS_NODE_INO(sbi))
86                         return F2FS_RD_NODE;
87         }
88         return F2FS_RD_DATA;
89 }
90
91 /* postprocessing steps for read bios */
92 enum bio_post_read_step {
93 #ifdef CONFIG_FS_ENCRYPTION
94         STEP_DECRYPT    = BIT(0),
95 #else
96         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
97 #endif
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99         STEP_DECOMPRESS = BIT(1),
100 #else
101         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
102 #endif
103 #ifdef CONFIG_FS_VERITY
104         STEP_VERITY     = BIT(2),
105 #else
106         STEP_VERITY     = 0,    /* compile out the verity-related code */
107 #endif
108 };
109
110 struct bio_post_read_ctx {
111         struct bio *bio;
112         struct f2fs_sb_info *sbi;
113         struct work_struct work;
114         unsigned int enabled_steps;
115         /*
116          * decompression_attempted keeps track of whether
117          * f2fs_end_read_compressed_page() has been called on the pages in the
118          * bio that belong to a compressed cluster yet.
119          */
120         bool decompression_attempted;
121         block_t fs_blkaddr;
122 };
123
124 /*
125  * Update and unlock a bio's pages, and free the bio.
126  *
127  * This marks pages up-to-date only if there was no error in the bio (I/O error,
128  * decryption error, or verity error), as indicated by bio->bi_status.
129  *
130  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131  * aren't marked up-to-date here, as decompression is done on a per-compression-
132  * cluster basis rather than a per-bio basis.  Instead, we only must do two
133  * things for each compressed page here: call f2fs_end_read_compressed_page()
134  * with failed=true if an error occurred before it would have normally gotten
135  * called (i.e., I/O error or decryption error, but *not* verity error), and
136  * release the bio's reference to the decompress_io_ctx of the page's cluster.
137  */
138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140         struct bio_vec *bv;
141         struct bvec_iter_all iter_all;
142         struct bio_post_read_ctx *ctx = bio->bi_private;
143
144         bio_for_each_segment_all(bv, bio, iter_all) {
145                 struct page *page = bv->bv_page;
146
147                 if (f2fs_is_compressed_page(page)) {
148                         if (ctx && !ctx->decompression_attempted)
149                                 f2fs_end_read_compressed_page(page, true, 0,
150                                                         in_task);
151                         f2fs_put_page_dic(page, in_task);
152                         continue;
153                 }
154
155                 if (bio->bi_status)
156                         ClearPageUptodate(page);
157                 else
158                         SetPageUptodate(page);
159                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160                 unlock_page(page);
161         }
162
163         if (ctx)
164                 mempool_free(ctx, bio_post_read_ctx_pool);
165         bio_put(bio);
166 }
167
168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170         struct bio_post_read_ctx *ctx =
171                 container_of(work, struct bio_post_read_ctx, work);
172         struct bio *bio = ctx->bio;
173         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174
175         /*
176          * fsverity_verify_bio() may call readahead() again, and while verity
177          * will be disabled for this, decryption and/or decompression may still
178          * be needed, resulting in another bio_post_read_ctx being allocated.
179          * So to prevent deadlocks we need to release the current ctx to the
180          * mempool first.  This assumes that verity is the last post-read step.
181          */
182         mempool_free(ctx, bio_post_read_ctx_pool);
183         bio->bi_private = NULL;
184
185         /*
186          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187          * as those were handled separately by f2fs_end_read_compressed_page().
188          */
189         if (may_have_compressed_pages) {
190                 struct bio_vec *bv;
191                 struct bvec_iter_all iter_all;
192
193                 bio_for_each_segment_all(bv, bio, iter_all) {
194                         struct page *page = bv->bv_page;
195
196                         if (!f2fs_is_compressed_page(page) &&
197                             !fsverity_verify_page(page)) {
198                                 bio->bi_status = BLK_STS_IOERR;
199                                 break;
200                         }
201                 }
202         } else {
203                 fsverity_verify_bio(bio);
204         }
205
206         f2fs_finish_read_bio(bio, true);
207 }
208
209 /*
210  * If the bio's data needs to be verified with fs-verity, then enqueue the
211  * verity work for the bio.  Otherwise finish the bio now.
212  *
213  * Note that to avoid deadlocks, the verity work can't be done on the
214  * decryption/decompression workqueue.  This is because verifying the data pages
215  * can involve reading verity metadata pages from the file, and these verity
216  * metadata pages may be encrypted and/or compressed.
217  */
218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220         struct bio_post_read_ctx *ctx = bio->bi_private;
221
222         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223                 INIT_WORK(&ctx->work, f2fs_verify_bio);
224                 fsverity_enqueue_verify_work(&ctx->work);
225         } else {
226                 f2fs_finish_read_bio(bio, in_task);
227         }
228 }
229
230 /*
231  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232  * remaining page was read by @ctx->bio.
233  *
234  * Note that a bio may span clusters (even a mix of compressed and uncompressed
235  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236  * that the bio includes at least one compressed page.  The actual decompression
237  * is done on a per-cluster basis, not a per-bio basis.
238  */
239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240                 bool in_task)
241 {
242         struct bio_vec *bv;
243         struct bvec_iter_all iter_all;
244         bool all_compressed = true;
245         block_t blkaddr = ctx->fs_blkaddr;
246
247         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248                 struct page *page = bv->bv_page;
249
250                 if (f2fs_is_compressed_page(page))
251                         f2fs_end_read_compressed_page(page, false, blkaddr,
252                                                       in_task);
253                 else
254                         all_compressed = false;
255
256                 blkaddr++;
257         }
258
259         ctx->decompression_attempted = true;
260
261         /*
262          * Optimization: if all the bio's pages are compressed, then scheduling
263          * the per-bio verity work is unnecessary, as verity will be fully
264          * handled at the compression cluster level.
265          */
266         if (all_compressed)
267                 ctx->enabled_steps &= ~STEP_VERITY;
268 }
269
270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272         struct bio_post_read_ctx *ctx =
273                 container_of(work, struct bio_post_read_ctx, work);
274         struct bio *bio = ctx->bio;
275
276         if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277                 f2fs_finish_read_bio(bio, true);
278                 return;
279         }
280
281         if (ctx->enabled_steps & STEP_DECOMPRESS)
282                 f2fs_handle_step_decompress(ctx, true);
283
284         f2fs_verify_and_finish_bio(bio, true);
285 }
286
287 static void f2fs_read_end_io(struct bio *bio)
288 {
289         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290         struct bio_post_read_ctx *ctx;
291         bool intask = in_task();
292
293         iostat_update_and_unbind_ctx(bio);
294         ctx = bio->bi_private;
295
296         if (time_to_inject(sbi, FAULT_READ_IO))
297                 bio->bi_status = BLK_STS_IOERR;
298
299         if (bio->bi_status) {
300                 f2fs_finish_read_bio(bio, intask);
301                 return;
302         }
303
304         if (ctx) {
305                 unsigned int enabled_steps = ctx->enabled_steps &
306                                         (STEP_DECRYPT | STEP_DECOMPRESS);
307
308                 /*
309                  * If we have only decompression step between decompression and
310                  * decrypt, we don't need post processing for this.
311                  */
312                 if (enabled_steps == STEP_DECOMPRESS &&
313                                 !f2fs_low_mem_mode(sbi)) {
314                         f2fs_handle_step_decompress(ctx, intask);
315                 } else if (enabled_steps) {
316                         INIT_WORK(&ctx->work, f2fs_post_read_work);
317                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
318                         return;
319                 }
320         }
321
322         f2fs_verify_and_finish_bio(bio, intask);
323 }
324
325 static void f2fs_write_end_io(struct bio *bio)
326 {
327         struct f2fs_sb_info *sbi;
328         struct bio_vec *bvec;
329         struct bvec_iter_all iter_all;
330
331         iostat_update_and_unbind_ctx(bio);
332         sbi = bio->bi_private;
333
334         if (time_to_inject(sbi, FAULT_WRITE_IO))
335                 bio->bi_status = BLK_STS_IOERR;
336
337         bio_for_each_segment_all(bvec, bio, iter_all) {
338                 struct page *page = bvec->bv_page;
339                 enum count_type type = WB_DATA_TYPE(page, false);
340
341                 fscrypt_finalize_bounce_page(&page);
342
343 #ifdef CONFIG_F2FS_FS_COMPRESSION
344                 if (f2fs_is_compressed_page(page)) {
345                         f2fs_compress_write_end_io(bio, page);
346                         continue;
347                 }
348 #endif
349
350                 if (unlikely(bio->bi_status)) {
351                         mapping_set_error(page->mapping, -EIO);
352                         if (type == F2FS_WB_CP_DATA)
353                                 f2fs_stop_checkpoint(sbi, true,
354                                                 STOP_CP_REASON_WRITE_FAIL);
355                 }
356
357                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358                                         page->index != nid_of_node(page));
359
360                 dec_page_count(sbi, type);
361                 if (f2fs_in_warm_node_list(sbi, page))
362                         f2fs_del_fsync_node_entry(sbi, page);
363                 clear_page_private_gcing(page);
364                 end_page_writeback(page);
365         }
366         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367                                 wq_has_sleeper(&sbi->cp_wait))
368                 wake_up(&sbi->cp_wait);
369
370         bio_put(bio);
371 }
372
373 #ifdef CONFIG_BLK_DEV_ZONED
374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376         struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378         bio->bi_private = io->bi_private;
379         complete(&io->zone_wait);
380         f2fs_write_end_io(bio);
381 }
382 #endif
383
384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385                 block_t blk_addr, sector_t *sector)
386 {
387         struct block_device *bdev = sbi->sb->s_bdev;
388         int i;
389
390         if (f2fs_is_multi_device(sbi)) {
391                 for (i = 0; i < sbi->s_ndevs; i++) {
392                         if (FDEV(i).start_blk <= blk_addr &&
393                             FDEV(i).end_blk >= blk_addr) {
394                                 blk_addr -= FDEV(i).start_blk;
395                                 bdev = FDEV(i).bdev;
396                                 break;
397                         }
398                 }
399         }
400
401         if (sector)
402                 *sector = SECTOR_FROM_BLOCK(blk_addr);
403         return bdev;
404 }
405
406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408         int i;
409
410         if (!f2fs_is_multi_device(sbi))
411                 return 0;
412
413         for (i = 0; i < sbi->s_ndevs; i++)
414                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415                         return i;
416         return 0;
417 }
418
419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421         unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422         unsigned int fua_flag, meta_flag, io_flag;
423         blk_opf_t op_flags = 0;
424
425         if (fio->op != REQ_OP_WRITE)
426                 return 0;
427         if (fio->type == DATA)
428                 io_flag = fio->sbi->data_io_flag;
429         else if (fio->type == NODE)
430                 io_flag = fio->sbi->node_io_flag;
431         else
432                 return 0;
433
434         fua_flag = io_flag & temp_mask;
435         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436
437         /*
438          * data/node io flag bits per temp:
439          *      REQ_META     |      REQ_FUA      |
440          *    5 |    4 |   3 |    2 |    1 |   0 |
441          * Cold | Warm | Hot | Cold | Warm | Hot |
442          */
443         if (BIT(fio->temp) & meta_flag)
444                 op_flags |= REQ_META;
445         if (BIT(fio->temp) & fua_flag)
446                 op_flags |= REQ_FUA;
447         return op_flags;
448 }
449
450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451 {
452         struct f2fs_sb_info *sbi = fio->sbi;
453         struct block_device *bdev;
454         sector_t sector;
455         struct bio *bio;
456
457         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458         bio = bio_alloc_bioset(bdev, npages,
459                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
460                                 GFP_NOIO, &f2fs_bioset);
461         bio->bi_iter.bi_sector = sector;
462         if (is_read_io(fio->op)) {
463                 bio->bi_end_io = f2fs_read_end_io;
464                 bio->bi_private = NULL;
465         } else {
466                 bio->bi_end_io = f2fs_write_end_io;
467                 bio->bi_private = sbi;
468                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
469                                                 fio->type, fio->temp);
470         }
471         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
472
473         if (fio->io_wbc)
474                 wbc_init_bio(fio->io_wbc, bio);
475
476         return bio;
477 }
478
479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
480                                   pgoff_t first_idx,
481                                   const struct f2fs_io_info *fio,
482                                   gfp_t gfp_mask)
483 {
484         /*
485          * The f2fs garbage collector sets ->encrypted_page when it wants to
486          * read/write raw data without encryption.
487          */
488         if (!fio || !fio->encrypted_page)
489                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
490 }
491
492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
493                                      pgoff_t next_idx,
494                                      const struct f2fs_io_info *fio)
495 {
496         /*
497          * The f2fs garbage collector sets ->encrypted_page when it wants to
498          * read/write raw data without encryption.
499          */
500         if (fio && fio->encrypted_page)
501                 return !bio_has_crypt_ctx(bio);
502
503         return fscrypt_mergeable_bio(bio, inode, next_idx);
504 }
505
506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
507                                  enum page_type type)
508 {
509         WARN_ON_ONCE(!is_read_io(bio_op(bio)));
510         trace_f2fs_submit_read_bio(sbi->sb, type, bio);
511
512         iostat_update_submit_ctx(bio, type);
513         submit_bio(bio);
514 }
515
516 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
517                                   enum page_type type)
518 {
519         WARN_ON_ONCE(is_read_io(bio_op(bio)));
520
521         if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
522                 blk_finish_plug(current->plug);
523
524         trace_f2fs_submit_write_bio(sbi->sb, type, bio);
525         iostat_update_submit_ctx(bio, type);
526         submit_bio(bio);
527 }
528
529 static void __submit_merged_bio(struct f2fs_bio_info *io)
530 {
531         struct f2fs_io_info *fio = &io->fio;
532
533         if (!io->bio)
534                 return;
535
536         if (is_read_io(fio->op)) {
537                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
538                 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
539         } else {
540                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
541                 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
542         }
543         io->bio = NULL;
544 }
545
546 static bool __has_merged_page(struct bio *bio, struct inode *inode,
547                                                 struct page *page, nid_t ino)
548 {
549         struct bio_vec *bvec;
550         struct bvec_iter_all iter_all;
551
552         if (!bio)
553                 return false;
554
555         if (!inode && !page && !ino)
556                 return true;
557
558         bio_for_each_segment_all(bvec, bio, iter_all) {
559                 struct page *target = bvec->bv_page;
560
561                 if (fscrypt_is_bounce_page(target)) {
562                         target = fscrypt_pagecache_page(target);
563                         if (IS_ERR(target))
564                                 continue;
565                 }
566                 if (f2fs_is_compressed_page(target)) {
567                         target = f2fs_compress_control_page(target);
568                         if (IS_ERR(target))
569                                 continue;
570                 }
571
572                 if (inode && inode == target->mapping->host)
573                         return true;
574                 if (page && page == target)
575                         return true;
576                 if (ino && ino == ino_of_node(target))
577                         return true;
578         }
579
580         return false;
581 }
582
583 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
584 {
585         int i;
586
587         for (i = 0; i < NR_PAGE_TYPE; i++) {
588                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
589                 int j;
590
591                 sbi->write_io[i] = f2fs_kmalloc(sbi,
592                                 array_size(n, sizeof(struct f2fs_bio_info)),
593                                 GFP_KERNEL);
594                 if (!sbi->write_io[i])
595                         return -ENOMEM;
596
597                 for (j = HOT; j < n; j++) {
598                         struct f2fs_bio_info *io = &sbi->write_io[i][j];
599
600                         init_f2fs_rwsem(&io->io_rwsem);
601                         io->sbi = sbi;
602                         io->bio = NULL;
603                         io->last_block_in_bio = 0;
604                         spin_lock_init(&io->io_lock);
605                         INIT_LIST_HEAD(&io->io_list);
606                         INIT_LIST_HEAD(&io->bio_list);
607                         init_f2fs_rwsem(&io->bio_list_lock);
608 #ifdef CONFIG_BLK_DEV_ZONED
609                         init_completion(&io->zone_wait);
610                         io->zone_pending_bio = NULL;
611                         io->bi_private = NULL;
612 #endif
613                 }
614         }
615
616         return 0;
617 }
618
619 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
620                                 enum page_type type, enum temp_type temp)
621 {
622         enum page_type btype = PAGE_TYPE_OF_BIO(type);
623         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
624
625         f2fs_down_write(&io->io_rwsem);
626
627         if (!io->bio)
628                 goto unlock_out;
629
630         /* change META to META_FLUSH in the checkpoint procedure */
631         if (type >= META_FLUSH) {
632                 io->fio.type = META_FLUSH;
633                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
634                 if (!test_opt(sbi, NOBARRIER))
635                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
636         }
637         __submit_merged_bio(io);
638 unlock_out:
639         f2fs_up_write(&io->io_rwsem);
640 }
641
642 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
643                                 struct inode *inode, struct page *page,
644                                 nid_t ino, enum page_type type, bool force)
645 {
646         enum temp_type temp;
647         bool ret = true;
648
649         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
650                 if (!force)     {
651                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
652                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
653
654                         f2fs_down_read(&io->io_rwsem);
655                         ret = __has_merged_page(io->bio, inode, page, ino);
656                         f2fs_up_read(&io->io_rwsem);
657                 }
658                 if (ret)
659                         __f2fs_submit_merged_write(sbi, type, temp);
660
661                 /* TODO: use HOT temp only for meta pages now. */
662                 if (type >= META)
663                         break;
664         }
665 }
666
667 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
668 {
669         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
670 }
671
672 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
673                                 struct inode *inode, struct page *page,
674                                 nid_t ino, enum page_type type)
675 {
676         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
677 }
678
679 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
680 {
681         f2fs_submit_merged_write(sbi, DATA);
682         f2fs_submit_merged_write(sbi, NODE);
683         f2fs_submit_merged_write(sbi, META);
684 }
685
686 /*
687  * Fill the locked page with data located in the block address.
688  * A caller needs to unlock the page on failure.
689  */
690 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
691 {
692         struct bio *bio;
693         struct page *page = fio->encrypted_page ?
694                         fio->encrypted_page : fio->page;
695
696         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
697                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
698                         META_GENERIC : DATA_GENERIC_ENHANCE)))
699                 return -EFSCORRUPTED;
700
701         trace_f2fs_submit_page_bio(page, fio);
702
703         /* Allocate a new bio */
704         bio = __bio_alloc(fio, 1);
705
706         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
707                                fio->page->index, fio, GFP_NOIO);
708
709         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
710                 bio_put(bio);
711                 return -EFAULT;
712         }
713
714         if (fio->io_wbc && !is_read_io(fio->op))
715                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
716
717         inc_page_count(fio->sbi, is_read_io(fio->op) ?
718                         __read_io_type(page) : WB_DATA_TYPE(fio->page, false));
719
720         if (is_read_io(bio_op(bio)))
721                 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
722         else
723                 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
724         return 0;
725 }
726
727 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
728                                 block_t last_blkaddr, block_t cur_blkaddr)
729 {
730         if (unlikely(sbi->max_io_bytes &&
731                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
732                 return false;
733         if (last_blkaddr + 1 != cur_blkaddr)
734                 return false;
735         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
736 }
737
738 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
739                                                 struct f2fs_io_info *fio)
740 {
741         if (io->fio.op != fio->op)
742                 return false;
743         return io->fio.op_flags == fio->op_flags;
744 }
745
746 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
747                                         struct f2fs_bio_info *io,
748                                         struct f2fs_io_info *fio,
749                                         block_t last_blkaddr,
750                                         block_t cur_blkaddr)
751 {
752         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
753                 return false;
754         return io_type_is_mergeable(io, fio);
755 }
756
757 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
758                                 struct page *page, enum temp_type temp)
759 {
760         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
761         struct bio_entry *be;
762
763         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
764         be->bio = bio;
765         bio_get(bio);
766
767         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
768                 f2fs_bug_on(sbi, 1);
769
770         f2fs_down_write(&io->bio_list_lock);
771         list_add_tail(&be->list, &io->bio_list);
772         f2fs_up_write(&io->bio_list_lock);
773 }
774
775 static void del_bio_entry(struct bio_entry *be)
776 {
777         list_del(&be->list);
778         kmem_cache_free(bio_entry_slab, be);
779 }
780
781 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
782                                                         struct page *page)
783 {
784         struct f2fs_sb_info *sbi = fio->sbi;
785         enum temp_type temp;
786         bool found = false;
787         int ret = -EAGAIN;
788
789         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
790                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
791                 struct list_head *head = &io->bio_list;
792                 struct bio_entry *be;
793
794                 f2fs_down_write(&io->bio_list_lock);
795                 list_for_each_entry(be, head, list) {
796                         if (be->bio != *bio)
797                                 continue;
798
799                         found = true;
800
801                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
802                                                             *fio->last_block,
803                                                             fio->new_blkaddr));
804                         if (f2fs_crypt_mergeable_bio(*bio,
805                                         fio->page->mapping->host,
806                                         fio->page->index, fio) &&
807                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
808                                         PAGE_SIZE) {
809                                 ret = 0;
810                                 break;
811                         }
812
813                         /* page can't be merged into bio; submit the bio */
814                         del_bio_entry(be);
815                         f2fs_submit_write_bio(sbi, *bio, DATA);
816                         break;
817                 }
818                 f2fs_up_write(&io->bio_list_lock);
819         }
820
821         if (ret) {
822                 bio_put(*bio);
823                 *bio = NULL;
824         }
825
826         return ret;
827 }
828
829 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
830                                         struct bio **bio, struct page *page)
831 {
832         enum temp_type temp;
833         bool found = false;
834         struct bio *target = bio ? *bio : NULL;
835
836         f2fs_bug_on(sbi, !target && !page);
837
838         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
839                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
840                 struct list_head *head = &io->bio_list;
841                 struct bio_entry *be;
842
843                 if (list_empty(head))
844                         continue;
845
846                 f2fs_down_read(&io->bio_list_lock);
847                 list_for_each_entry(be, head, list) {
848                         if (target)
849                                 found = (target == be->bio);
850                         else
851                                 found = __has_merged_page(be->bio, NULL,
852                                                                 page, 0);
853                         if (found)
854                                 break;
855                 }
856                 f2fs_up_read(&io->bio_list_lock);
857
858                 if (!found)
859                         continue;
860
861                 found = false;
862
863                 f2fs_down_write(&io->bio_list_lock);
864                 list_for_each_entry(be, head, list) {
865                         if (target)
866                                 found = (target == be->bio);
867                         else
868                                 found = __has_merged_page(be->bio, NULL,
869                                                                 page, 0);
870                         if (found) {
871                                 target = be->bio;
872                                 del_bio_entry(be);
873                                 break;
874                         }
875                 }
876                 f2fs_up_write(&io->bio_list_lock);
877         }
878
879         if (found)
880                 f2fs_submit_write_bio(sbi, target, DATA);
881         if (bio && *bio) {
882                 bio_put(*bio);
883                 *bio = NULL;
884         }
885 }
886
887 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
888 {
889         struct bio *bio = *fio->bio;
890         struct page *page = fio->encrypted_page ?
891                         fio->encrypted_page : fio->page;
892
893         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895                 return -EFSCORRUPTED;
896
897         trace_f2fs_submit_page_bio(page, fio);
898
899         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900                                                 fio->new_blkaddr))
901                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902 alloc_new:
903         if (!bio) {
904                 bio = __bio_alloc(fio, BIO_MAX_VECS);
905                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
906                                        fio->page->index, fio, GFP_NOIO);
907
908                 add_bio_entry(fio->sbi, bio, page, fio->temp);
909         } else {
910                 if (add_ipu_page(fio, &bio, page))
911                         goto alloc_new;
912         }
913
914         if (fio->io_wbc)
915                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
916
917         inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
918
919         *fio->last_block = fio->new_blkaddr;
920         *fio->bio = bio;
921
922         return 0;
923 }
924
925 #ifdef CONFIG_BLK_DEV_ZONED
926 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
927 {
928         struct block_device *bdev = sbi->sb->s_bdev;
929         int devi = 0;
930
931         if (f2fs_is_multi_device(sbi)) {
932                 devi = f2fs_target_device_index(sbi, blkaddr);
933                 if (blkaddr < FDEV(devi).start_blk ||
934                     blkaddr > FDEV(devi).end_blk) {
935                         f2fs_err(sbi, "Invalid block %x", blkaddr);
936                         return false;
937                 }
938                 blkaddr -= FDEV(devi).start_blk;
939                 bdev = FDEV(devi).bdev;
940         }
941         return bdev_is_zoned(bdev) &&
942                 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
943                 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
944 }
945 #endif
946
947 void f2fs_submit_page_write(struct f2fs_io_info *fio)
948 {
949         struct f2fs_sb_info *sbi = fio->sbi;
950         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
951         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
952         struct page *bio_page;
953         enum count_type type;
954
955         f2fs_bug_on(sbi, is_read_io(fio->op));
956
957         f2fs_down_write(&io->io_rwsem);
958 next:
959 #ifdef CONFIG_BLK_DEV_ZONED
960         if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
961                 wait_for_completion_io(&io->zone_wait);
962                 bio_put(io->zone_pending_bio);
963                 io->zone_pending_bio = NULL;
964                 io->bi_private = NULL;
965         }
966 #endif
967
968         if (fio->in_list) {
969                 spin_lock(&io->io_lock);
970                 if (list_empty(&io->io_list)) {
971                         spin_unlock(&io->io_lock);
972                         goto out;
973                 }
974                 fio = list_first_entry(&io->io_list,
975                                                 struct f2fs_io_info, list);
976                 list_del(&fio->list);
977                 spin_unlock(&io->io_lock);
978         }
979
980         verify_fio_blkaddr(fio);
981
982         if (fio->encrypted_page)
983                 bio_page = fio->encrypted_page;
984         else if (fio->compressed_page)
985                 bio_page = fio->compressed_page;
986         else
987                 bio_page = fio->page;
988
989         /* set submitted = true as a return value */
990         fio->submitted = 1;
991
992         type = WB_DATA_TYPE(bio_page, fio->compressed_page);
993         inc_page_count(sbi, type);
994
995         if (io->bio &&
996             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
997                               fio->new_blkaddr) ||
998              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
999                                        bio_page->index, fio)))
1000                 __submit_merged_bio(io);
1001 alloc_new:
1002         if (io->bio == NULL) {
1003                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1004                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1005                                        bio_page->index, fio, GFP_NOIO);
1006                 io->fio = *fio;
1007         }
1008
1009         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1010                 __submit_merged_bio(io);
1011                 goto alloc_new;
1012         }
1013
1014         if (fio->io_wbc)
1015                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1016
1017         io->last_block_in_bio = fio->new_blkaddr;
1018
1019         trace_f2fs_submit_page_write(fio->page, fio);
1020 #ifdef CONFIG_BLK_DEV_ZONED
1021         if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1022                         is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1023                 bio_get(io->bio);
1024                 reinit_completion(&io->zone_wait);
1025                 io->bi_private = io->bio->bi_private;
1026                 io->bio->bi_private = io;
1027                 io->bio->bi_end_io = f2fs_zone_write_end_io;
1028                 io->zone_pending_bio = io->bio;
1029                 __submit_merged_bio(io);
1030         }
1031 #endif
1032         if (fio->in_list)
1033                 goto next;
1034 out:
1035         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1036                                 !f2fs_is_checkpoint_ready(sbi))
1037                 __submit_merged_bio(io);
1038         f2fs_up_write(&io->io_rwsem);
1039 }
1040
1041 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1042                                       unsigned nr_pages, blk_opf_t op_flag,
1043                                       pgoff_t first_idx, bool for_write)
1044 {
1045         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046         struct bio *bio;
1047         struct bio_post_read_ctx *ctx = NULL;
1048         unsigned int post_read_steps = 0;
1049         sector_t sector;
1050         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1051
1052         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1053                                REQ_OP_READ | op_flag,
1054                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1055         if (!bio)
1056                 return ERR_PTR(-ENOMEM);
1057         bio->bi_iter.bi_sector = sector;
1058         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1059         bio->bi_end_io = f2fs_read_end_io;
1060
1061         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1062                 post_read_steps |= STEP_DECRYPT;
1063
1064         if (f2fs_need_verity(inode, first_idx))
1065                 post_read_steps |= STEP_VERITY;
1066
1067         /*
1068          * STEP_DECOMPRESS is handled specially, since a compressed file might
1069          * contain both compressed and uncompressed clusters.  We'll allocate a
1070          * bio_post_read_ctx if the file is compressed, but the caller is
1071          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1072          */
1073
1074         if (post_read_steps || f2fs_compressed_file(inode)) {
1075                 /* Due to the mempool, this never fails. */
1076                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1077                 ctx->bio = bio;
1078                 ctx->sbi = sbi;
1079                 ctx->enabled_steps = post_read_steps;
1080                 ctx->fs_blkaddr = blkaddr;
1081                 ctx->decompression_attempted = false;
1082                 bio->bi_private = ctx;
1083         }
1084         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1085
1086         return bio;
1087 }
1088
1089 /* This can handle encryption stuffs */
1090 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1091                                  block_t blkaddr, blk_opf_t op_flags,
1092                                  bool for_write)
1093 {
1094         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1095         struct bio *bio;
1096
1097         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1098                                         page->index, for_write);
1099         if (IS_ERR(bio))
1100                 return PTR_ERR(bio);
1101
1102         /* wait for GCed page writeback via META_MAPPING */
1103         f2fs_wait_on_block_writeback(inode, blkaddr);
1104
1105         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1106                 iostat_update_and_unbind_ctx(bio);
1107                 if (bio->bi_private)
1108                         mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1109                 bio_put(bio);
1110                 return -EFAULT;
1111         }
1112         inc_page_count(sbi, F2FS_RD_DATA);
1113         f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1114         f2fs_submit_read_bio(sbi, bio, DATA);
1115         return 0;
1116 }
1117
1118 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1119 {
1120         __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1121
1122         dn->data_blkaddr = blkaddr;
1123         addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1124 }
1125
1126 /*
1127  * Lock ordering for the change of data block address:
1128  * ->data_page
1129  *  ->node_page
1130  *    update block addresses in the node page
1131  */
1132 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1133 {
1134         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1135         __set_data_blkaddr(dn, blkaddr);
1136         if (set_page_dirty(dn->node_page))
1137                 dn->node_changed = true;
1138 }
1139
1140 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1141 {
1142         f2fs_set_data_blkaddr(dn, blkaddr);
1143         f2fs_update_read_extent_cache(dn);
1144 }
1145
1146 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1147 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1148 {
1149         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1150         int err;
1151
1152         if (!count)
1153                 return 0;
1154
1155         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1156                 return -EPERM;
1157         err = inc_valid_block_count(sbi, dn->inode, &count, true);
1158         if (unlikely(err))
1159                 return err;
1160
1161         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1162                                                 dn->ofs_in_node, count);
1163
1164         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1165
1166         for (; count > 0; dn->ofs_in_node++) {
1167                 block_t blkaddr = f2fs_data_blkaddr(dn);
1168
1169                 if (blkaddr == NULL_ADDR) {
1170                         __set_data_blkaddr(dn, NEW_ADDR);
1171                         count--;
1172                 }
1173         }
1174
1175         if (set_page_dirty(dn->node_page))
1176                 dn->node_changed = true;
1177         return 0;
1178 }
1179
1180 /* Should keep dn->ofs_in_node unchanged */
1181 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1182 {
1183         unsigned int ofs_in_node = dn->ofs_in_node;
1184         int ret;
1185
1186         ret = f2fs_reserve_new_blocks(dn, 1);
1187         dn->ofs_in_node = ofs_in_node;
1188         return ret;
1189 }
1190
1191 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1192 {
1193         bool need_put = dn->inode_page ? false : true;
1194         int err;
1195
1196         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1197         if (err)
1198                 return err;
1199
1200         if (dn->data_blkaddr == NULL_ADDR)
1201                 err = f2fs_reserve_new_block(dn);
1202         if (err || need_put)
1203                 f2fs_put_dnode(dn);
1204         return err;
1205 }
1206
1207 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1208                                      blk_opf_t op_flags, bool for_write,
1209                                      pgoff_t *next_pgofs)
1210 {
1211         struct address_space *mapping = inode->i_mapping;
1212         struct dnode_of_data dn;
1213         struct page *page;
1214         int err;
1215
1216         page = f2fs_grab_cache_page(mapping, index, for_write);
1217         if (!page)
1218                 return ERR_PTR(-ENOMEM);
1219
1220         if (f2fs_lookup_read_extent_cache_block(inode, index,
1221                                                 &dn.data_blkaddr)) {
1222                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1223                                                 DATA_GENERIC_ENHANCE_READ)) {
1224                         err = -EFSCORRUPTED;
1225                         goto put_err;
1226                 }
1227                 goto got_it;
1228         }
1229
1230         set_new_dnode(&dn, inode, NULL, NULL, 0);
1231         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1232         if (err) {
1233                 if (err == -ENOENT && next_pgofs)
1234                         *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1235                 goto put_err;
1236         }
1237         f2fs_put_dnode(&dn);
1238
1239         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1240                 err = -ENOENT;
1241                 if (next_pgofs)
1242                         *next_pgofs = index + 1;
1243                 goto put_err;
1244         }
1245         if (dn.data_blkaddr != NEW_ADDR &&
1246                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1247                                                 dn.data_blkaddr,
1248                                                 DATA_GENERIC_ENHANCE)) {
1249                 err = -EFSCORRUPTED;
1250                 goto put_err;
1251         }
1252 got_it:
1253         if (PageUptodate(page)) {
1254                 unlock_page(page);
1255                 return page;
1256         }
1257
1258         /*
1259          * A new dentry page is allocated but not able to be written, since its
1260          * new inode page couldn't be allocated due to -ENOSPC.
1261          * In such the case, its blkaddr can be remained as NEW_ADDR.
1262          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1263          * f2fs_init_inode_metadata.
1264          */
1265         if (dn.data_blkaddr == NEW_ADDR) {
1266                 zero_user_segment(page, 0, PAGE_SIZE);
1267                 if (!PageUptodate(page))
1268                         SetPageUptodate(page);
1269                 unlock_page(page);
1270                 return page;
1271         }
1272
1273         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1274                                                 op_flags, for_write);
1275         if (err)
1276                 goto put_err;
1277         return page;
1278
1279 put_err:
1280         f2fs_put_page(page, 1);
1281         return ERR_PTR(err);
1282 }
1283
1284 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1285                                         pgoff_t *next_pgofs)
1286 {
1287         struct address_space *mapping = inode->i_mapping;
1288         struct page *page;
1289
1290         page = find_get_page(mapping, index);
1291         if (page && PageUptodate(page))
1292                 return page;
1293         f2fs_put_page(page, 0);
1294
1295         page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1296         if (IS_ERR(page))
1297                 return page;
1298
1299         if (PageUptodate(page))
1300                 return page;
1301
1302         wait_on_page_locked(page);
1303         if (unlikely(!PageUptodate(page))) {
1304                 f2fs_put_page(page, 0);
1305                 return ERR_PTR(-EIO);
1306         }
1307         return page;
1308 }
1309
1310 /*
1311  * If it tries to access a hole, return an error.
1312  * Because, the callers, functions in dir.c and GC, should be able to know
1313  * whether this page exists or not.
1314  */
1315 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1316                                                         bool for_write)
1317 {
1318         struct address_space *mapping = inode->i_mapping;
1319         struct page *page;
1320
1321         page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1322         if (IS_ERR(page))
1323                 return page;
1324
1325         /* wait for read completion */
1326         lock_page(page);
1327         if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1328                 f2fs_put_page(page, 1);
1329                 return ERR_PTR(-EIO);
1330         }
1331         return page;
1332 }
1333
1334 /*
1335  * Caller ensures that this data page is never allocated.
1336  * A new zero-filled data page is allocated in the page cache.
1337  *
1338  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1339  * f2fs_unlock_op().
1340  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1341  * ipage should be released by this function.
1342  */
1343 struct page *f2fs_get_new_data_page(struct inode *inode,
1344                 struct page *ipage, pgoff_t index, bool new_i_size)
1345 {
1346         struct address_space *mapping = inode->i_mapping;
1347         struct page *page;
1348         struct dnode_of_data dn;
1349         int err;
1350
1351         page = f2fs_grab_cache_page(mapping, index, true);
1352         if (!page) {
1353                 /*
1354                  * before exiting, we should make sure ipage will be released
1355                  * if any error occur.
1356                  */
1357                 f2fs_put_page(ipage, 1);
1358                 return ERR_PTR(-ENOMEM);
1359         }
1360
1361         set_new_dnode(&dn, inode, ipage, NULL, 0);
1362         err = f2fs_reserve_block(&dn, index);
1363         if (err) {
1364                 f2fs_put_page(page, 1);
1365                 return ERR_PTR(err);
1366         }
1367         if (!ipage)
1368                 f2fs_put_dnode(&dn);
1369
1370         if (PageUptodate(page))
1371                 goto got_it;
1372
1373         if (dn.data_blkaddr == NEW_ADDR) {
1374                 zero_user_segment(page, 0, PAGE_SIZE);
1375                 if (!PageUptodate(page))
1376                         SetPageUptodate(page);
1377         } else {
1378                 f2fs_put_page(page, 1);
1379
1380                 /* if ipage exists, blkaddr should be NEW_ADDR */
1381                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1382                 page = f2fs_get_lock_data_page(inode, index, true);
1383                 if (IS_ERR(page))
1384                         return page;
1385         }
1386 got_it:
1387         if (new_i_size && i_size_read(inode) <
1388                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1389                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1390         return page;
1391 }
1392
1393 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1394 {
1395         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1396         struct f2fs_summary sum;
1397         struct node_info ni;
1398         block_t old_blkaddr;
1399         blkcnt_t count = 1;
1400         int err;
1401
1402         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1403                 return -EPERM;
1404
1405         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1406         if (err)
1407                 return err;
1408
1409         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1410         if (dn->data_blkaddr == NULL_ADDR) {
1411                 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1412                 if (unlikely(err))
1413                         return err;
1414         }
1415
1416         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1417         old_blkaddr = dn->data_blkaddr;
1418         err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1419                                 &dn->data_blkaddr, &sum, seg_type, NULL);
1420         if (err)
1421                 return err;
1422
1423         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1424                 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1425
1426         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1427         return 0;
1428 }
1429
1430 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1431 {
1432         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1433                 f2fs_down_read(&sbi->node_change);
1434         else
1435                 f2fs_lock_op(sbi);
1436 }
1437
1438 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1439 {
1440         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1441                 f2fs_up_read(&sbi->node_change);
1442         else
1443                 f2fs_unlock_op(sbi);
1444 }
1445
1446 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1447 {
1448         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1449         int err = 0;
1450
1451         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1452         if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1453                                                 &dn->data_blkaddr))
1454                 err = f2fs_reserve_block(dn, index);
1455         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1456
1457         return err;
1458 }
1459
1460 static int f2fs_map_no_dnode(struct inode *inode,
1461                 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1462                 pgoff_t pgoff)
1463 {
1464         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1465
1466         /*
1467          * There is one exceptional case that read_node_page() may return
1468          * -ENOENT due to filesystem has been shutdown or cp_error, return
1469          * -EIO in that case.
1470          */
1471         if (map->m_may_create &&
1472             (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1473                 return -EIO;
1474
1475         if (map->m_next_pgofs)
1476                 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1477         if (map->m_next_extent)
1478                 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1479         return 0;
1480 }
1481
1482 static bool f2fs_map_blocks_cached(struct inode *inode,
1483                 struct f2fs_map_blocks *map, int flag)
1484 {
1485         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1486         unsigned int maxblocks = map->m_len;
1487         pgoff_t pgoff = (pgoff_t)map->m_lblk;
1488         struct extent_info ei = {};
1489
1490         if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1491                 return false;
1492
1493         map->m_pblk = ei.blk + pgoff - ei.fofs;
1494         map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1495         map->m_flags = F2FS_MAP_MAPPED;
1496         if (map->m_next_extent)
1497                 *map->m_next_extent = pgoff + map->m_len;
1498
1499         /* for hardware encryption, but to avoid potential issue in future */
1500         if (flag == F2FS_GET_BLOCK_DIO)
1501                 f2fs_wait_on_block_writeback_range(inode,
1502                                         map->m_pblk, map->m_len);
1503
1504         if (f2fs_allow_multi_device_dio(sbi, flag)) {
1505                 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1506                 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1507
1508                 map->m_bdev = dev->bdev;
1509                 map->m_pblk -= dev->start_blk;
1510                 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1511         } else {
1512                 map->m_bdev = inode->i_sb->s_bdev;
1513         }
1514         return true;
1515 }
1516
1517 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1518                                 struct f2fs_map_blocks *map,
1519                                 block_t blkaddr, int flag, int bidx,
1520                                 int ofs)
1521 {
1522         if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1523                 return false;
1524         if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1525                 return true;
1526         if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1527                 return true;
1528         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1529                 return true;
1530         if (flag == F2FS_GET_BLOCK_DIO &&
1531                 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1532                 return true;
1533         return false;
1534 }
1535
1536 /*
1537  * f2fs_map_blocks() tries to find or build mapping relationship which
1538  * maps continuous logical blocks to physical blocks, and return such
1539  * info via f2fs_map_blocks structure.
1540  */
1541 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1542 {
1543         unsigned int maxblocks = map->m_len;
1544         struct dnode_of_data dn;
1545         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1546         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1547         pgoff_t pgofs, end_offset, end;
1548         int err = 0, ofs = 1;
1549         unsigned int ofs_in_node, last_ofs_in_node;
1550         blkcnt_t prealloc;
1551         block_t blkaddr;
1552         unsigned int start_pgofs;
1553         int bidx = 0;
1554         bool is_hole;
1555
1556         if (!maxblocks)
1557                 return 0;
1558
1559         if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1560                 goto out;
1561
1562         map->m_bdev = inode->i_sb->s_bdev;
1563         map->m_multidev_dio =
1564                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1565
1566         map->m_len = 0;
1567         map->m_flags = 0;
1568
1569         /* it only supports block size == page size */
1570         pgofs = (pgoff_t)map->m_lblk;
1571         end = pgofs + maxblocks;
1572
1573 next_dnode:
1574         if (map->m_may_create)
1575                 f2fs_map_lock(sbi, flag);
1576
1577         /* When reading holes, we need its node page */
1578         set_new_dnode(&dn, inode, NULL, NULL, 0);
1579         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1580         if (err) {
1581                 if (flag == F2FS_GET_BLOCK_BMAP)
1582                         map->m_pblk = 0;
1583                 if (err == -ENOENT)
1584                         err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1585                 goto unlock_out;
1586         }
1587
1588         start_pgofs = pgofs;
1589         prealloc = 0;
1590         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1591         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1592
1593 next_block:
1594         blkaddr = f2fs_data_blkaddr(&dn);
1595         is_hole = !__is_valid_data_blkaddr(blkaddr);
1596         if (!is_hole &&
1597             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1598                 err = -EFSCORRUPTED;
1599                 goto sync_out;
1600         }
1601
1602         /* use out-place-update for direct IO under LFS mode */
1603         if (map->m_may_create && (is_hole ||
1604                 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1605                 !f2fs_is_pinned_file(inode)))) {
1606                 if (unlikely(f2fs_cp_error(sbi))) {
1607                         err = -EIO;
1608                         goto sync_out;
1609                 }
1610
1611                 switch (flag) {
1612                 case F2FS_GET_BLOCK_PRE_AIO:
1613                         if (blkaddr == NULL_ADDR) {
1614                                 prealloc++;
1615                                 last_ofs_in_node = dn.ofs_in_node;
1616                         }
1617                         break;
1618                 case F2FS_GET_BLOCK_PRE_DIO:
1619                 case F2FS_GET_BLOCK_DIO:
1620                         err = __allocate_data_block(&dn, map->m_seg_type);
1621                         if (err)
1622                                 goto sync_out;
1623                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1624                                 file_need_truncate(inode);
1625                         set_inode_flag(inode, FI_APPEND_WRITE);
1626                         break;
1627                 default:
1628                         WARN_ON_ONCE(1);
1629                         err = -EIO;
1630                         goto sync_out;
1631                 }
1632
1633                 blkaddr = dn.data_blkaddr;
1634                 if (is_hole)
1635                         map->m_flags |= F2FS_MAP_NEW;
1636         } else if (is_hole) {
1637                 if (f2fs_compressed_file(inode) &&
1638                     f2fs_sanity_check_cluster(&dn)) {
1639                         err = -EFSCORRUPTED;
1640                         f2fs_handle_error(sbi,
1641                                         ERROR_CORRUPTED_CLUSTER);
1642                         goto sync_out;
1643                 }
1644
1645                 switch (flag) {
1646                 case F2FS_GET_BLOCK_PRECACHE:
1647                         goto sync_out;
1648                 case F2FS_GET_BLOCK_BMAP:
1649                         map->m_pblk = 0;
1650                         goto sync_out;
1651                 case F2FS_GET_BLOCK_FIEMAP:
1652                         if (blkaddr == NULL_ADDR) {
1653                                 if (map->m_next_pgofs)
1654                                         *map->m_next_pgofs = pgofs + 1;
1655                                 goto sync_out;
1656                         }
1657                         break;
1658                 case F2FS_GET_BLOCK_DIO:
1659                         if (map->m_next_pgofs)
1660                                 *map->m_next_pgofs = pgofs + 1;
1661                         break;
1662                 default:
1663                         /* for defragment case */
1664                         if (map->m_next_pgofs)
1665                                 *map->m_next_pgofs = pgofs + 1;
1666                         goto sync_out;
1667                 }
1668         }
1669
1670         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1671                 goto skip;
1672
1673         if (map->m_multidev_dio)
1674                 bidx = f2fs_target_device_index(sbi, blkaddr);
1675
1676         if (map->m_len == 0) {
1677                 /* reserved delalloc block should be mapped for fiemap. */
1678                 if (blkaddr == NEW_ADDR)
1679                         map->m_flags |= F2FS_MAP_DELALLOC;
1680                 if (flag != F2FS_GET_BLOCK_DIO || !is_hole)
1681                         map->m_flags |= F2FS_MAP_MAPPED;
1682
1683                 map->m_pblk = blkaddr;
1684                 map->m_len = 1;
1685
1686                 if (map->m_multidev_dio)
1687                         map->m_bdev = FDEV(bidx).bdev;
1688         } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1689                 ofs++;
1690                 map->m_len++;
1691         } else {
1692                 goto sync_out;
1693         }
1694
1695 skip:
1696         dn.ofs_in_node++;
1697         pgofs++;
1698
1699         /* preallocate blocks in batch for one dnode page */
1700         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1701                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1702
1703                 dn.ofs_in_node = ofs_in_node;
1704                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1705                 if (err)
1706                         goto sync_out;
1707
1708                 map->m_len += dn.ofs_in_node - ofs_in_node;
1709                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1710                         err = -ENOSPC;
1711                         goto sync_out;
1712                 }
1713                 dn.ofs_in_node = end_offset;
1714         }
1715
1716         if (pgofs >= end)
1717                 goto sync_out;
1718         else if (dn.ofs_in_node < end_offset)
1719                 goto next_block;
1720
1721         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1722                 if (map->m_flags & F2FS_MAP_MAPPED) {
1723                         unsigned int ofs = start_pgofs - map->m_lblk;
1724
1725                         f2fs_update_read_extent_cache_range(&dn,
1726                                 start_pgofs, map->m_pblk + ofs,
1727                                 map->m_len - ofs);
1728                 }
1729         }
1730
1731         f2fs_put_dnode(&dn);
1732
1733         if (map->m_may_create) {
1734                 f2fs_map_unlock(sbi, flag);
1735                 f2fs_balance_fs(sbi, dn.node_changed);
1736         }
1737         goto next_dnode;
1738
1739 sync_out:
1740
1741         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1742                 /*
1743                  * for hardware encryption, but to avoid potential issue
1744                  * in future
1745                  */
1746                 f2fs_wait_on_block_writeback_range(inode,
1747                                                 map->m_pblk, map->m_len);
1748
1749                 if (map->m_multidev_dio) {
1750                         block_t blk_addr = map->m_pblk;
1751
1752                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1753
1754                         map->m_bdev = FDEV(bidx).bdev;
1755                         map->m_pblk -= FDEV(bidx).start_blk;
1756
1757                         if (map->m_may_create)
1758                                 f2fs_update_device_state(sbi, inode->i_ino,
1759                                                         blk_addr, map->m_len);
1760
1761                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1762                                                 FDEV(bidx).end_blk + 1);
1763                 }
1764         }
1765
1766         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1767                 if (map->m_flags & F2FS_MAP_MAPPED) {
1768                         unsigned int ofs = start_pgofs - map->m_lblk;
1769
1770                         f2fs_update_read_extent_cache_range(&dn,
1771                                 start_pgofs, map->m_pblk + ofs,
1772                                 map->m_len - ofs);
1773                 }
1774                 if (map->m_next_extent)
1775                         *map->m_next_extent = pgofs + 1;
1776         }
1777         f2fs_put_dnode(&dn);
1778 unlock_out:
1779         if (map->m_may_create) {
1780                 f2fs_map_unlock(sbi, flag);
1781                 f2fs_balance_fs(sbi, dn.node_changed);
1782         }
1783 out:
1784         trace_f2fs_map_blocks(inode, map, flag, err);
1785         return err;
1786 }
1787
1788 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1789 {
1790         struct f2fs_map_blocks map;
1791         block_t last_lblk;
1792         int err;
1793
1794         if (pos + len > i_size_read(inode))
1795                 return false;
1796
1797         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1798         map.m_next_pgofs = NULL;
1799         map.m_next_extent = NULL;
1800         map.m_seg_type = NO_CHECK_TYPE;
1801         map.m_may_create = false;
1802         last_lblk = F2FS_BLK_ALIGN(pos + len);
1803
1804         while (map.m_lblk < last_lblk) {
1805                 map.m_len = last_lblk - map.m_lblk;
1806                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1807                 if (err || map.m_len == 0)
1808                         return false;
1809                 map.m_lblk += map.m_len;
1810         }
1811         return true;
1812 }
1813
1814 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1815 {
1816         return (bytes >> inode->i_blkbits);
1817 }
1818
1819 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1820 {
1821         return (blks << inode->i_blkbits);
1822 }
1823
1824 static int f2fs_xattr_fiemap(struct inode *inode,
1825                                 struct fiemap_extent_info *fieinfo)
1826 {
1827         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1828         struct page *page;
1829         struct node_info ni;
1830         __u64 phys = 0, len;
1831         __u32 flags;
1832         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833         int err = 0;
1834
1835         if (f2fs_has_inline_xattr(inode)) {
1836                 int offset;
1837
1838                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1839                                                 inode->i_ino, false);
1840                 if (!page)
1841                         return -ENOMEM;
1842
1843                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1844                 if (err) {
1845                         f2fs_put_page(page, 1);
1846                         return err;
1847                 }
1848
1849                 phys = blks_to_bytes(inode, ni.blk_addr);
1850                 offset = offsetof(struct f2fs_inode, i_addr) +
1851                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1852                                         get_inline_xattr_addrs(inode));
1853
1854                 phys += offset;
1855                 len = inline_xattr_size(inode);
1856
1857                 f2fs_put_page(page, 1);
1858
1859                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860
1861                 if (!xnid)
1862                         flags |= FIEMAP_EXTENT_LAST;
1863
1864                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1865                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1866                 if (err)
1867                         return err;
1868         }
1869
1870         if (xnid) {
1871                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1872                 if (!page)
1873                         return -ENOMEM;
1874
1875                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1876                 if (err) {
1877                         f2fs_put_page(page, 1);
1878                         return err;
1879                 }
1880
1881                 phys = blks_to_bytes(inode, ni.blk_addr);
1882                 len = inode->i_sb->s_blocksize;
1883
1884                 f2fs_put_page(page, 1);
1885
1886                 flags = FIEMAP_EXTENT_LAST;
1887         }
1888
1889         if (phys) {
1890                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1891                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1892         }
1893
1894         return (err < 0 ? err : 0);
1895 }
1896
1897 static loff_t max_inode_blocks(struct inode *inode)
1898 {
1899         loff_t result = ADDRS_PER_INODE(inode);
1900         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1901
1902         /* two direct node blocks */
1903         result += (leaf_count * 2);
1904
1905         /* two indirect node blocks */
1906         leaf_count *= NIDS_PER_BLOCK;
1907         result += (leaf_count * 2);
1908
1909         /* one double indirect node block */
1910         leaf_count *= NIDS_PER_BLOCK;
1911         result += leaf_count;
1912
1913         return result;
1914 }
1915
1916 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1917                 u64 start, u64 len)
1918 {
1919         struct f2fs_map_blocks map;
1920         sector_t start_blk, last_blk;
1921         pgoff_t next_pgofs;
1922         u64 logical = 0, phys = 0, size = 0;
1923         u32 flags = 0;
1924         int ret = 0;
1925         bool compr_cluster = false, compr_appended;
1926         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1927         unsigned int count_in_cluster = 0;
1928         loff_t maxbytes;
1929
1930         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1931                 ret = f2fs_precache_extents(inode);
1932                 if (ret)
1933                         return ret;
1934         }
1935
1936         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1937         if (ret)
1938                 return ret;
1939
1940         inode_lock_shared(inode);
1941
1942         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1943         if (start > maxbytes) {
1944                 ret = -EFBIG;
1945                 goto out;
1946         }
1947
1948         if (len > maxbytes || (maxbytes - len) < start)
1949                 len = maxbytes - start;
1950
1951         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1952                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1953                 goto out;
1954         }
1955
1956         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1957                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1958                 if (ret != -EAGAIN)
1959                         goto out;
1960         }
1961
1962         if (bytes_to_blks(inode, len) == 0)
1963                 len = blks_to_bytes(inode, 1);
1964
1965         start_blk = bytes_to_blks(inode, start);
1966         last_blk = bytes_to_blks(inode, start + len - 1);
1967
1968 next:
1969         memset(&map, 0, sizeof(map));
1970         map.m_lblk = start_blk;
1971         map.m_len = bytes_to_blks(inode, len);
1972         map.m_next_pgofs = &next_pgofs;
1973         map.m_seg_type = NO_CHECK_TYPE;
1974
1975         if (compr_cluster) {
1976                 map.m_lblk += 1;
1977                 map.m_len = cluster_size - count_in_cluster;
1978         }
1979
1980         ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1981         if (ret)
1982                 goto out;
1983
1984         /* HOLE */
1985         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1986                 start_blk = next_pgofs;
1987
1988                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1989                                                 max_inode_blocks(inode)))
1990                         goto prep_next;
1991
1992                 flags |= FIEMAP_EXTENT_LAST;
1993         }
1994
1995         compr_appended = false;
1996         /* In a case of compressed cluster, append this to the last extent */
1997         if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1998                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1999                 compr_appended = true;
2000                 goto skip_fill;
2001         }
2002
2003         if (size) {
2004                 flags |= FIEMAP_EXTENT_MERGED;
2005                 if (IS_ENCRYPTED(inode))
2006                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2007
2008                 ret = fiemap_fill_next_extent(fieinfo, logical,
2009                                 phys, size, flags);
2010                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2011                 if (ret)
2012                         goto out;
2013                 size = 0;
2014         }
2015
2016         if (start_blk > last_blk)
2017                 goto out;
2018
2019 skip_fill:
2020         if (map.m_pblk == COMPRESS_ADDR) {
2021                 compr_cluster = true;
2022                 count_in_cluster = 1;
2023         } else if (compr_appended) {
2024                 unsigned int appended_blks = cluster_size -
2025                                                 count_in_cluster + 1;
2026                 size += blks_to_bytes(inode, appended_blks);
2027                 start_blk += appended_blks;
2028                 compr_cluster = false;
2029         } else {
2030                 logical = blks_to_bytes(inode, start_blk);
2031                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2032                         blks_to_bytes(inode, map.m_pblk) : 0;
2033                 size = blks_to_bytes(inode, map.m_len);
2034                 flags = 0;
2035
2036                 if (compr_cluster) {
2037                         flags = FIEMAP_EXTENT_ENCODED;
2038                         count_in_cluster += map.m_len;
2039                         if (count_in_cluster == cluster_size) {
2040                                 compr_cluster = false;
2041                                 size += blks_to_bytes(inode, 1);
2042                         }
2043                 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2044                         flags = FIEMAP_EXTENT_UNWRITTEN;
2045                 }
2046
2047                 start_blk += bytes_to_blks(inode, size);
2048         }
2049
2050 prep_next:
2051         cond_resched();
2052         if (fatal_signal_pending(current))
2053                 ret = -EINTR;
2054         else
2055                 goto next;
2056 out:
2057         if (ret == 1)
2058                 ret = 0;
2059
2060         inode_unlock_shared(inode);
2061         return ret;
2062 }
2063
2064 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2065 {
2066         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2067                 return inode->i_sb->s_maxbytes;
2068
2069         return i_size_read(inode);
2070 }
2071
2072 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2073 {
2074         return rac ? REQ_RAHEAD : 0;
2075 }
2076
2077 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2078                                         unsigned nr_pages,
2079                                         struct f2fs_map_blocks *map,
2080                                         struct bio **bio_ret,
2081                                         sector_t *last_block_in_bio,
2082                                         struct readahead_control *rac)
2083 {
2084         struct bio *bio = *bio_ret;
2085         const unsigned blocksize = blks_to_bytes(inode, 1);
2086         sector_t block_in_file;
2087         sector_t last_block;
2088         sector_t last_block_in_file;
2089         sector_t block_nr;
2090         pgoff_t index = folio_index(folio);
2091         int ret = 0;
2092
2093         block_in_file = (sector_t)index;
2094         last_block = block_in_file + nr_pages;
2095         last_block_in_file = bytes_to_blks(inode,
2096                         f2fs_readpage_limit(inode) + blocksize - 1);
2097         if (last_block > last_block_in_file)
2098                 last_block = last_block_in_file;
2099
2100         /* just zeroing out page which is beyond EOF */
2101         if (block_in_file >= last_block)
2102                 goto zero_out;
2103         /*
2104          * Map blocks using the previous result first.
2105          */
2106         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2107                         block_in_file > map->m_lblk &&
2108                         block_in_file < (map->m_lblk + map->m_len))
2109                 goto got_it;
2110
2111         /*
2112          * Then do more f2fs_map_blocks() calls until we are
2113          * done with this page.
2114          */
2115         map->m_lblk = block_in_file;
2116         map->m_len = last_block - block_in_file;
2117
2118         ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2119         if (ret)
2120                 goto out;
2121 got_it:
2122         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2123                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2124                 folio_set_mappedtodisk(folio);
2125
2126                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2127                                                 DATA_GENERIC_ENHANCE_READ)) {
2128                         ret = -EFSCORRUPTED;
2129                         goto out;
2130                 }
2131         } else {
2132 zero_out:
2133                 folio_zero_segment(folio, 0, folio_size(folio));
2134                 if (f2fs_need_verity(inode, index) &&
2135                     !fsverity_verify_folio(folio)) {
2136                         ret = -EIO;
2137                         goto out;
2138                 }
2139                 if (!folio_test_uptodate(folio))
2140                         folio_mark_uptodate(folio);
2141                 folio_unlock(folio);
2142                 goto out;
2143         }
2144
2145         /*
2146          * This page will go to BIO.  Do we need to send this
2147          * BIO off first?
2148          */
2149         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2150                                        *last_block_in_bio, block_nr) ||
2151                     !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2152 submit_and_realloc:
2153                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2154                 bio = NULL;
2155         }
2156         if (bio == NULL) {
2157                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2158                                 f2fs_ra_op_flags(rac), index,
2159                                 false);
2160                 if (IS_ERR(bio)) {
2161                         ret = PTR_ERR(bio);
2162                         bio = NULL;
2163                         goto out;
2164                 }
2165         }
2166
2167         /*
2168          * If the page is under writeback, we need to wait for
2169          * its completion to see the correct decrypted data.
2170          */
2171         f2fs_wait_on_block_writeback(inode, block_nr);
2172
2173         if (!bio_add_folio(bio, folio, blocksize, 0))
2174                 goto submit_and_realloc;
2175
2176         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2177         f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2178                                                         F2FS_BLKSIZE);
2179         *last_block_in_bio = block_nr;
2180 out:
2181         *bio_ret = bio;
2182         return ret;
2183 }
2184
2185 #ifdef CONFIG_F2FS_FS_COMPRESSION
2186 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2187                                 unsigned nr_pages, sector_t *last_block_in_bio,
2188                                 struct readahead_control *rac, bool for_write)
2189 {
2190         struct dnode_of_data dn;
2191         struct inode *inode = cc->inode;
2192         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2193         struct bio *bio = *bio_ret;
2194         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2195         sector_t last_block_in_file;
2196         const unsigned blocksize = blks_to_bytes(inode, 1);
2197         struct decompress_io_ctx *dic = NULL;
2198         struct extent_info ei = {};
2199         bool from_dnode = true;
2200         int i;
2201         int ret = 0;
2202
2203         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2204
2205         last_block_in_file = bytes_to_blks(inode,
2206                         f2fs_readpage_limit(inode) + blocksize - 1);
2207
2208         /* get rid of pages beyond EOF */
2209         for (i = 0; i < cc->cluster_size; i++) {
2210                 struct page *page = cc->rpages[i];
2211
2212                 if (!page)
2213                         continue;
2214                 if ((sector_t)page->index >= last_block_in_file) {
2215                         zero_user_segment(page, 0, PAGE_SIZE);
2216                         if (!PageUptodate(page))
2217                                 SetPageUptodate(page);
2218                 } else if (!PageUptodate(page)) {
2219                         continue;
2220                 }
2221                 unlock_page(page);
2222                 if (for_write)
2223                         put_page(page);
2224                 cc->rpages[i] = NULL;
2225                 cc->nr_rpages--;
2226         }
2227
2228         /* we are done since all pages are beyond EOF */
2229         if (f2fs_cluster_is_empty(cc))
2230                 goto out;
2231
2232         if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2233                 from_dnode = false;
2234
2235         if (!from_dnode)
2236                 goto skip_reading_dnode;
2237
2238         set_new_dnode(&dn, inode, NULL, NULL, 0);
2239         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2240         if (ret)
2241                 goto out;
2242
2243         if (unlikely(f2fs_cp_error(sbi))) {
2244                 ret = -EIO;
2245                 goto out_put_dnode;
2246         }
2247         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2248
2249 skip_reading_dnode:
2250         for (i = 1; i < cc->cluster_size; i++) {
2251                 block_t blkaddr;
2252
2253                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2254                                         dn.ofs_in_node + i) :
2255                                         ei.blk + i - 1;
2256
2257                 if (!__is_valid_data_blkaddr(blkaddr))
2258                         break;
2259
2260                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2261                         ret = -EFAULT;
2262                         goto out_put_dnode;
2263                 }
2264                 cc->nr_cpages++;
2265
2266                 if (!from_dnode && i >= ei.c_len)
2267                         break;
2268         }
2269
2270         /* nothing to decompress */
2271         if (cc->nr_cpages == 0) {
2272                 ret = 0;
2273                 goto out_put_dnode;
2274         }
2275
2276         dic = f2fs_alloc_dic(cc);
2277         if (IS_ERR(dic)) {
2278                 ret = PTR_ERR(dic);
2279                 goto out_put_dnode;
2280         }
2281
2282         for (i = 0; i < cc->nr_cpages; i++) {
2283                 struct page *page = dic->cpages[i];
2284                 block_t blkaddr;
2285                 struct bio_post_read_ctx *ctx;
2286
2287                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2288                                         dn.ofs_in_node + i + 1) :
2289                                         ei.blk + i;
2290
2291                 f2fs_wait_on_block_writeback(inode, blkaddr);
2292
2293                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2294                         if (atomic_dec_and_test(&dic->remaining_pages)) {
2295                                 f2fs_decompress_cluster(dic, true);
2296                                 break;
2297                         }
2298                         continue;
2299                 }
2300
2301                 if (bio && (!page_is_mergeable(sbi, bio,
2302                                         *last_block_in_bio, blkaddr) ||
2303                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2304 submit_and_realloc:
2305                         f2fs_submit_read_bio(sbi, bio, DATA);
2306                         bio = NULL;
2307                 }
2308
2309                 if (!bio) {
2310                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2311                                         f2fs_ra_op_flags(rac),
2312                                         page->index, for_write);
2313                         if (IS_ERR(bio)) {
2314                                 ret = PTR_ERR(bio);
2315                                 f2fs_decompress_end_io(dic, ret, true);
2316                                 f2fs_put_dnode(&dn);
2317                                 *bio_ret = NULL;
2318                                 return ret;
2319                         }
2320                 }
2321
2322                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2323                         goto submit_and_realloc;
2324
2325                 ctx = get_post_read_ctx(bio);
2326                 ctx->enabled_steps |= STEP_DECOMPRESS;
2327                 refcount_inc(&dic->refcnt);
2328
2329                 inc_page_count(sbi, F2FS_RD_DATA);
2330                 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2331                 *last_block_in_bio = blkaddr;
2332         }
2333
2334         if (from_dnode)
2335                 f2fs_put_dnode(&dn);
2336
2337         *bio_ret = bio;
2338         return 0;
2339
2340 out_put_dnode:
2341         if (from_dnode)
2342                 f2fs_put_dnode(&dn);
2343 out:
2344         for (i = 0; i < cc->cluster_size; i++) {
2345                 if (cc->rpages[i]) {
2346                         ClearPageUptodate(cc->rpages[i]);
2347                         unlock_page(cc->rpages[i]);
2348                 }
2349         }
2350         *bio_ret = bio;
2351         return ret;
2352 }
2353 #endif
2354
2355 /*
2356  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2357  * Major change was from block_size == page_size in f2fs by default.
2358  */
2359 static int f2fs_mpage_readpages(struct inode *inode,
2360                 struct readahead_control *rac, struct folio *folio)
2361 {
2362         struct bio *bio = NULL;
2363         sector_t last_block_in_bio = 0;
2364         struct f2fs_map_blocks map;
2365 #ifdef CONFIG_F2FS_FS_COMPRESSION
2366         struct compress_ctx cc = {
2367                 .inode = inode,
2368                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2369                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2370                 .cluster_idx = NULL_CLUSTER,
2371                 .rpages = NULL,
2372                 .cpages = NULL,
2373                 .nr_rpages = 0,
2374                 .nr_cpages = 0,
2375         };
2376         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2377 #endif
2378         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2379         unsigned max_nr_pages = nr_pages;
2380         pgoff_t index;
2381         int ret = 0;
2382
2383         map.m_pblk = 0;
2384         map.m_lblk = 0;
2385         map.m_len = 0;
2386         map.m_flags = 0;
2387         map.m_next_pgofs = NULL;
2388         map.m_next_extent = NULL;
2389         map.m_seg_type = NO_CHECK_TYPE;
2390         map.m_may_create = false;
2391
2392         for (; nr_pages; nr_pages--) {
2393                 if (rac) {
2394                         folio = readahead_folio(rac);
2395                         prefetchw(&folio->flags);
2396                 }
2397
2398                 index = folio_index(folio);
2399
2400 #ifdef CONFIG_F2FS_FS_COMPRESSION
2401                 if (!f2fs_compressed_file(inode))
2402                         goto read_single_page;
2403
2404                 /* there are remained compressed pages, submit them */
2405                 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2406                         ret = f2fs_read_multi_pages(&cc, &bio,
2407                                                 max_nr_pages,
2408                                                 &last_block_in_bio,
2409                                                 rac, false);
2410                         f2fs_destroy_compress_ctx(&cc, false);
2411                         if (ret)
2412                                 goto set_error_page;
2413                 }
2414                 if (cc.cluster_idx == NULL_CLUSTER) {
2415                         if (nc_cluster_idx == index >> cc.log_cluster_size)
2416                                 goto read_single_page;
2417
2418                         ret = f2fs_is_compressed_cluster(inode, index);
2419                         if (ret < 0)
2420                                 goto set_error_page;
2421                         else if (!ret) {
2422                                 nc_cluster_idx =
2423                                         index >> cc.log_cluster_size;
2424                                 goto read_single_page;
2425                         }
2426
2427                         nc_cluster_idx = NULL_CLUSTER;
2428                 }
2429                 ret = f2fs_init_compress_ctx(&cc);
2430                 if (ret)
2431                         goto set_error_page;
2432
2433                 f2fs_compress_ctx_add_page(&cc, &folio->page);
2434
2435                 goto next_page;
2436 read_single_page:
2437 #endif
2438
2439                 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2440                                         &bio, &last_block_in_bio, rac);
2441                 if (ret) {
2442 #ifdef CONFIG_F2FS_FS_COMPRESSION
2443 set_error_page:
2444 #endif
2445                         folio_zero_segment(folio, 0, folio_size(folio));
2446                         folio_unlock(folio);
2447                 }
2448 #ifdef CONFIG_F2FS_FS_COMPRESSION
2449 next_page:
2450 #endif
2451
2452 #ifdef CONFIG_F2FS_FS_COMPRESSION
2453                 if (f2fs_compressed_file(inode)) {
2454                         /* last page */
2455                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2456                                 ret = f2fs_read_multi_pages(&cc, &bio,
2457                                                         max_nr_pages,
2458                                                         &last_block_in_bio,
2459                                                         rac, false);
2460                                 f2fs_destroy_compress_ctx(&cc, false);
2461                         }
2462                 }
2463 #endif
2464         }
2465         if (bio)
2466                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2467         return ret;
2468 }
2469
2470 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2471 {
2472         struct inode *inode = folio_file_mapping(folio)->host;
2473         int ret = -EAGAIN;
2474
2475         trace_f2fs_readpage(folio, DATA);
2476
2477         if (!f2fs_is_compress_backend_ready(inode)) {
2478                 folio_unlock(folio);
2479                 return -EOPNOTSUPP;
2480         }
2481
2482         /* If the file has inline data, try to read it directly */
2483         if (f2fs_has_inline_data(inode))
2484                 ret = f2fs_read_inline_data(inode, folio);
2485         if (ret == -EAGAIN)
2486                 ret = f2fs_mpage_readpages(inode, NULL, folio);
2487         return ret;
2488 }
2489
2490 static void f2fs_readahead(struct readahead_control *rac)
2491 {
2492         struct inode *inode = rac->mapping->host;
2493
2494         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2495
2496         if (!f2fs_is_compress_backend_ready(inode))
2497                 return;
2498
2499         /* If the file has inline data, skip readahead */
2500         if (f2fs_has_inline_data(inode))
2501                 return;
2502
2503         f2fs_mpage_readpages(inode, rac, NULL);
2504 }
2505
2506 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2507 {
2508         struct inode *inode = fio->page->mapping->host;
2509         struct page *mpage, *page;
2510         gfp_t gfp_flags = GFP_NOFS;
2511
2512         if (!f2fs_encrypted_file(inode))
2513                 return 0;
2514
2515         page = fio->compressed_page ? fio->compressed_page : fio->page;
2516
2517         if (fscrypt_inode_uses_inline_crypto(inode))
2518                 return 0;
2519
2520 retry_encrypt:
2521         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2522                                         PAGE_SIZE, 0, gfp_flags);
2523         if (IS_ERR(fio->encrypted_page)) {
2524                 /* flush pending IOs and wait for a while in the ENOMEM case */
2525                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2526                         f2fs_flush_merged_writes(fio->sbi);
2527                         memalloc_retry_wait(GFP_NOFS);
2528                         gfp_flags |= __GFP_NOFAIL;
2529                         goto retry_encrypt;
2530                 }
2531                 return PTR_ERR(fio->encrypted_page);
2532         }
2533
2534         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2535         if (mpage) {
2536                 if (PageUptodate(mpage))
2537                         memcpy(page_address(mpage),
2538                                 page_address(fio->encrypted_page), PAGE_SIZE);
2539                 f2fs_put_page(mpage, 1);
2540         }
2541         return 0;
2542 }
2543
2544 static inline bool check_inplace_update_policy(struct inode *inode,
2545                                 struct f2fs_io_info *fio)
2546 {
2547         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2548
2549         if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2550             is_inode_flag_set(inode, FI_OPU_WRITE))
2551                 return false;
2552         if (IS_F2FS_IPU_FORCE(sbi))
2553                 return true;
2554         if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2555                 return true;
2556         if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2557                 return true;
2558         if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2559             utilization(sbi) > SM_I(sbi)->min_ipu_util)
2560                 return true;
2561
2562         /*
2563          * IPU for rewrite async pages
2564          */
2565         if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2566             !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2567                 return true;
2568
2569         /* this is only set during fdatasync */
2570         if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2571                 return true;
2572
2573         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2574                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2575                 return true;
2576
2577         return false;
2578 }
2579
2580 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2581 {
2582         /* swap file is migrating in aligned write mode */
2583         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2584                 return false;
2585
2586         if (f2fs_is_pinned_file(inode))
2587                 return true;
2588
2589         /* if this is cold file, we should overwrite to avoid fragmentation */
2590         if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2591                 return true;
2592
2593         return check_inplace_update_policy(inode, fio);
2594 }
2595
2596 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2597 {
2598         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2599
2600         /* The below cases were checked when setting it. */
2601         if (f2fs_is_pinned_file(inode))
2602                 return false;
2603         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2604                 return true;
2605         if (f2fs_lfs_mode(sbi))
2606                 return true;
2607         if (S_ISDIR(inode->i_mode))
2608                 return true;
2609         if (IS_NOQUOTA(inode))
2610                 return true;
2611         if (f2fs_used_in_atomic_write(inode))
2612                 return true;
2613         /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2614         if (f2fs_compressed_file(inode) &&
2615                 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2616                 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2617                 return true;
2618
2619         /* swap file is migrating in aligned write mode */
2620         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2621                 return true;
2622
2623         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2624                 return true;
2625
2626         if (fio) {
2627                 if (page_private_gcing(fio->page))
2628                         return true;
2629                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2630                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2631                         return true;
2632         }
2633         return false;
2634 }
2635
2636 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2637 {
2638         struct inode *inode = fio->page->mapping->host;
2639
2640         if (f2fs_should_update_outplace(inode, fio))
2641                 return false;
2642
2643         return f2fs_should_update_inplace(inode, fio);
2644 }
2645
2646 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2647 {
2648         struct page *page = fio->page;
2649         struct inode *inode = page->mapping->host;
2650         struct dnode_of_data dn;
2651         struct node_info ni;
2652         bool ipu_force = false;
2653         int err = 0;
2654
2655         /* Use COW inode to make dnode_of_data for atomic write */
2656         if (f2fs_is_atomic_file(inode))
2657                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2658         else
2659                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2660
2661         if (need_inplace_update(fio) &&
2662             f2fs_lookup_read_extent_cache_block(inode, page->index,
2663                                                 &fio->old_blkaddr)) {
2664                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2665                                                 DATA_GENERIC_ENHANCE))
2666                         return -EFSCORRUPTED;
2667
2668                 ipu_force = true;
2669                 fio->need_lock = LOCK_DONE;
2670                 goto got_it;
2671         }
2672
2673         /* Deadlock due to between page->lock and f2fs_lock_op */
2674         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2675                 return -EAGAIN;
2676
2677         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2678         if (err)
2679                 goto out;
2680
2681         fio->old_blkaddr = dn.data_blkaddr;
2682
2683         /* This page is already truncated */
2684         if (fio->old_blkaddr == NULL_ADDR) {
2685                 ClearPageUptodate(page);
2686                 clear_page_private_gcing(page);
2687                 goto out_writepage;
2688         }
2689 got_it:
2690         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2691                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2692                                                 DATA_GENERIC_ENHANCE)) {
2693                 err = -EFSCORRUPTED;
2694                 goto out_writepage;
2695         }
2696
2697         /* wait for GCed page writeback via META_MAPPING */
2698         if (fio->meta_gc)
2699                 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2700
2701         /*
2702          * If current allocation needs SSR,
2703          * it had better in-place writes for updated data.
2704          */
2705         if (ipu_force ||
2706                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2707                                         need_inplace_update(fio))) {
2708                 err = f2fs_encrypt_one_page(fio);
2709                 if (err)
2710                         goto out_writepage;
2711
2712                 set_page_writeback(page);
2713                 f2fs_put_dnode(&dn);
2714                 if (fio->need_lock == LOCK_REQ)
2715                         f2fs_unlock_op(fio->sbi);
2716                 err = f2fs_inplace_write_data(fio);
2717                 if (err) {
2718                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2719                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2720                         end_page_writeback(page);
2721                 } else {
2722                         set_inode_flag(inode, FI_UPDATE_WRITE);
2723                 }
2724                 trace_f2fs_do_write_data_page(page_folio(page), IPU);
2725                 return err;
2726         }
2727
2728         if (fio->need_lock == LOCK_RETRY) {
2729                 if (!f2fs_trylock_op(fio->sbi)) {
2730                         err = -EAGAIN;
2731                         goto out_writepage;
2732                 }
2733                 fio->need_lock = LOCK_REQ;
2734         }
2735
2736         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2737         if (err)
2738                 goto out_writepage;
2739
2740         fio->version = ni.version;
2741
2742         err = f2fs_encrypt_one_page(fio);
2743         if (err)
2744                 goto out_writepage;
2745
2746         set_page_writeback(page);
2747
2748         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2749                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2750
2751         /* LFS mode write path */
2752         f2fs_outplace_write_data(&dn, fio);
2753         trace_f2fs_do_write_data_page(page_folio(page), OPU);
2754         set_inode_flag(inode, FI_APPEND_WRITE);
2755 out_writepage:
2756         f2fs_put_dnode(&dn);
2757 out:
2758         if (fio->need_lock == LOCK_REQ)
2759                 f2fs_unlock_op(fio->sbi);
2760         return err;
2761 }
2762
2763 int f2fs_write_single_data_page(struct page *page, int *submitted,
2764                                 struct bio **bio,
2765                                 sector_t *last_block,
2766                                 struct writeback_control *wbc,
2767                                 enum iostat_type io_type,
2768                                 int compr_blocks,
2769                                 bool allow_balance)
2770 {
2771         struct inode *inode = page->mapping->host;
2772         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2773         loff_t i_size = i_size_read(inode);
2774         const pgoff_t end_index = ((unsigned long long)i_size)
2775                                                         >> PAGE_SHIFT;
2776         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2777         unsigned offset = 0;
2778         bool need_balance_fs = false;
2779         bool quota_inode = IS_NOQUOTA(inode);
2780         int err = 0;
2781         struct f2fs_io_info fio = {
2782                 .sbi = sbi,
2783                 .ino = inode->i_ino,
2784                 .type = DATA,
2785                 .op = REQ_OP_WRITE,
2786                 .op_flags = wbc_to_write_flags(wbc),
2787                 .old_blkaddr = NULL_ADDR,
2788                 .page = page,
2789                 .encrypted_page = NULL,
2790                 .submitted = 0,
2791                 .compr_blocks = compr_blocks,
2792                 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2793                 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2794                 .io_type = io_type,
2795                 .io_wbc = wbc,
2796                 .bio = bio,
2797                 .last_block = last_block,
2798         };
2799
2800         trace_f2fs_writepage(page_folio(page), DATA);
2801
2802         /* we should bypass data pages to proceed the kworker jobs */
2803         if (unlikely(f2fs_cp_error(sbi))) {
2804                 mapping_set_error(page->mapping, -EIO);
2805                 /*
2806                  * don't drop any dirty dentry pages for keeping lastest
2807                  * directory structure.
2808                  */
2809                 if (S_ISDIR(inode->i_mode) &&
2810                                 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2811                         goto redirty_out;
2812
2813                 /* keep data pages in remount-ro mode */
2814                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2815                         goto redirty_out;
2816                 goto out;
2817         }
2818
2819         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2820                 goto redirty_out;
2821
2822         if (page->index < end_index ||
2823                         f2fs_verity_in_progress(inode) ||
2824                         compr_blocks)
2825                 goto write;
2826
2827         /*
2828          * If the offset is out-of-range of file size,
2829          * this page does not have to be written to disk.
2830          */
2831         offset = i_size & (PAGE_SIZE - 1);
2832         if ((page->index >= end_index + 1) || !offset)
2833                 goto out;
2834
2835         zero_user_segment(page, offset, PAGE_SIZE);
2836 write:
2837         /* Dentry/quota blocks are controlled by checkpoint */
2838         if (S_ISDIR(inode->i_mode) || quota_inode) {
2839                 /*
2840                  * We need to wait for node_write to avoid block allocation during
2841                  * checkpoint. This can only happen to quota writes which can cause
2842                  * the below discard race condition.
2843                  */
2844                 if (quota_inode)
2845                         f2fs_down_read(&sbi->node_write);
2846
2847                 fio.need_lock = LOCK_DONE;
2848                 err = f2fs_do_write_data_page(&fio);
2849
2850                 if (quota_inode)
2851                         f2fs_up_read(&sbi->node_write);
2852
2853                 goto done;
2854         }
2855
2856         if (!wbc->for_reclaim)
2857                 need_balance_fs = true;
2858         else if (has_not_enough_free_secs(sbi, 0, 0))
2859                 goto redirty_out;
2860         else
2861                 set_inode_flag(inode, FI_HOT_DATA);
2862
2863         err = -EAGAIN;
2864         if (f2fs_has_inline_data(inode)) {
2865                 err = f2fs_write_inline_data(inode, page);
2866                 if (!err)
2867                         goto out;
2868         }
2869
2870         if (err == -EAGAIN) {
2871                 err = f2fs_do_write_data_page(&fio);
2872                 if (err == -EAGAIN) {
2873                         f2fs_bug_on(sbi, compr_blocks);
2874                         fio.need_lock = LOCK_REQ;
2875                         err = f2fs_do_write_data_page(&fio);
2876                 }
2877         }
2878
2879         if (err) {
2880                 file_set_keep_isize(inode);
2881         } else {
2882                 spin_lock(&F2FS_I(inode)->i_size_lock);
2883                 if (F2FS_I(inode)->last_disk_size < psize)
2884                         F2FS_I(inode)->last_disk_size = psize;
2885                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2886         }
2887
2888 done:
2889         if (err && err != -ENOENT)
2890                 goto redirty_out;
2891
2892 out:
2893         inode_dec_dirty_pages(inode);
2894         if (err) {
2895                 ClearPageUptodate(page);
2896                 clear_page_private_gcing(page);
2897         }
2898
2899         if (wbc->for_reclaim) {
2900                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2901                 clear_inode_flag(inode, FI_HOT_DATA);
2902                 f2fs_remove_dirty_inode(inode);
2903                 submitted = NULL;
2904         }
2905         unlock_page(page);
2906         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2907                         !F2FS_I(inode)->wb_task && allow_balance)
2908                 f2fs_balance_fs(sbi, need_balance_fs);
2909
2910         if (unlikely(f2fs_cp_error(sbi))) {
2911                 f2fs_submit_merged_write(sbi, DATA);
2912                 if (bio && *bio)
2913                         f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2914                 submitted = NULL;
2915         }
2916
2917         if (submitted)
2918                 *submitted = fio.submitted;
2919
2920         return 0;
2921
2922 redirty_out:
2923         redirty_page_for_writepage(wbc, page);
2924         /*
2925          * pageout() in MM translates EAGAIN, so calls handle_write_error()
2926          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2927          * file_write_and_wait_range() will see EIO error, which is critical
2928          * to return value of fsync() followed by atomic_write failure to user.
2929          */
2930         if (!err || wbc->for_reclaim)
2931                 return AOP_WRITEPAGE_ACTIVATE;
2932         unlock_page(page);
2933         return err;
2934 }
2935
2936 static int f2fs_write_data_page(struct page *page,
2937                                         struct writeback_control *wbc)
2938 {
2939 #ifdef CONFIG_F2FS_FS_COMPRESSION
2940         struct inode *inode = page->mapping->host;
2941
2942         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2943                 goto out;
2944
2945         if (f2fs_compressed_file(inode)) {
2946                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2947                         redirty_page_for_writepage(wbc, page);
2948                         return AOP_WRITEPAGE_ACTIVATE;
2949                 }
2950         }
2951 out:
2952 #endif
2953
2954         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2955                                                 wbc, FS_DATA_IO, 0, true);
2956 }
2957
2958 /*
2959  * This function was copied from write_cache_pages from mm/page-writeback.c.
2960  * The major change is making write step of cold data page separately from
2961  * warm/hot data page.
2962  */
2963 static int f2fs_write_cache_pages(struct address_space *mapping,
2964                                         struct writeback_control *wbc,
2965                                         enum iostat_type io_type)
2966 {
2967         int ret = 0;
2968         int done = 0, retry = 0;
2969         struct page *pages_local[F2FS_ONSTACK_PAGES];
2970         struct page **pages = pages_local;
2971         struct folio_batch fbatch;
2972         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2973         struct bio *bio = NULL;
2974         sector_t last_block;
2975 #ifdef CONFIG_F2FS_FS_COMPRESSION
2976         struct inode *inode = mapping->host;
2977         struct compress_ctx cc = {
2978                 .inode = inode,
2979                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2980                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2981                 .cluster_idx = NULL_CLUSTER,
2982                 .rpages = NULL,
2983                 .nr_rpages = 0,
2984                 .cpages = NULL,
2985                 .valid_nr_cpages = 0,
2986                 .rbuf = NULL,
2987                 .cbuf = NULL,
2988                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2989                 .private = NULL,
2990         };
2991 #endif
2992         int nr_folios, p, idx;
2993         int nr_pages;
2994         unsigned int max_pages = F2FS_ONSTACK_PAGES;
2995         pgoff_t index;
2996         pgoff_t end;            /* Inclusive */
2997         pgoff_t done_index;
2998         int range_whole = 0;
2999         xa_mark_t tag;
3000         int nwritten = 0;
3001         int submitted = 0;
3002         int i;
3003
3004 #ifdef CONFIG_F2FS_FS_COMPRESSION
3005         if (f2fs_compressed_file(inode) &&
3006                 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3007                 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3008                                 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3009                 max_pages = 1 << cc.log_cluster_size;
3010         }
3011 #endif
3012
3013         folio_batch_init(&fbatch);
3014
3015         if (get_dirty_pages(mapping->host) <=
3016                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3017                 set_inode_flag(mapping->host, FI_HOT_DATA);
3018         else
3019                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3020
3021         if (wbc->range_cyclic) {
3022                 index = mapping->writeback_index; /* prev offset */
3023                 end = -1;
3024         } else {
3025                 index = wbc->range_start >> PAGE_SHIFT;
3026                 end = wbc->range_end >> PAGE_SHIFT;
3027                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3028                         range_whole = 1;
3029         }
3030         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3031                 tag = PAGECACHE_TAG_TOWRITE;
3032         else
3033                 tag = PAGECACHE_TAG_DIRTY;
3034 retry:
3035         retry = 0;
3036         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3037                 tag_pages_for_writeback(mapping, index, end);
3038         done_index = index;
3039         while (!done && !retry && (index <= end)) {
3040                 nr_pages = 0;
3041 again:
3042                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3043                                 tag, &fbatch);
3044                 if (nr_folios == 0) {
3045                         if (nr_pages)
3046                                 goto write;
3047                         break;
3048                 }
3049
3050                 for (i = 0; i < nr_folios; i++) {
3051                         struct folio *folio = fbatch.folios[i];
3052
3053                         idx = 0;
3054                         p = folio_nr_pages(folio);
3055 add_more:
3056                         pages[nr_pages] = folio_page(folio, idx);
3057                         folio_get(folio);
3058                         if (++nr_pages == max_pages) {
3059                                 index = folio->index + idx + 1;
3060                                 folio_batch_release(&fbatch);
3061                                 goto write;
3062                         }
3063                         if (++idx < p)
3064                                 goto add_more;
3065                 }
3066                 folio_batch_release(&fbatch);
3067                 goto again;
3068 write:
3069                 for (i = 0; i < nr_pages; i++) {
3070                         struct page *page = pages[i];
3071                         struct folio *folio = page_folio(page);
3072                         bool need_readd;
3073 readd:
3074                         need_readd = false;
3075 #ifdef CONFIG_F2FS_FS_COMPRESSION
3076                         if (f2fs_compressed_file(inode)) {
3077                                 void *fsdata = NULL;
3078                                 struct page *pagep;
3079                                 int ret2;
3080
3081                                 ret = f2fs_init_compress_ctx(&cc);
3082                                 if (ret) {
3083                                         done = 1;
3084                                         break;
3085                                 }
3086
3087                                 if (!f2fs_cluster_can_merge_page(&cc,
3088                                                                 folio->index)) {
3089                                         ret = f2fs_write_multi_pages(&cc,
3090                                                 &submitted, wbc, io_type);
3091                                         if (!ret)
3092                                                 need_readd = true;
3093                                         goto result;
3094                                 }
3095
3096                                 if (unlikely(f2fs_cp_error(sbi)))
3097                                         goto lock_folio;
3098
3099                                 if (!f2fs_cluster_is_empty(&cc))
3100                                         goto lock_folio;
3101
3102                                 if (f2fs_all_cluster_page_ready(&cc,
3103                                         pages, i, nr_pages, true))
3104                                         goto lock_folio;
3105
3106                                 ret2 = f2fs_prepare_compress_overwrite(
3107                                                         inode, &pagep,
3108                                                         folio->index, &fsdata);
3109                                 if (ret2 < 0) {
3110                                         ret = ret2;
3111                                         done = 1;
3112                                         break;
3113                                 } else if (ret2 &&
3114                                         (!f2fs_compress_write_end(inode,
3115                                                 fsdata, folio->index, 1) ||
3116                                          !f2fs_all_cluster_page_ready(&cc,
3117                                                 pages, i, nr_pages,
3118                                                 false))) {
3119                                         retry = 1;
3120                                         break;
3121                                 }
3122                         }
3123 #endif
3124                         /* give a priority to WB_SYNC threads */
3125                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3126                                         wbc->sync_mode == WB_SYNC_NONE) {
3127                                 done = 1;
3128                                 break;
3129                         }
3130 #ifdef CONFIG_F2FS_FS_COMPRESSION
3131 lock_folio:
3132 #endif
3133                         done_index = folio->index;
3134 retry_write:
3135                         folio_lock(folio);
3136
3137                         if (unlikely(folio->mapping != mapping)) {
3138 continue_unlock:
3139                                 folio_unlock(folio);
3140                                 continue;
3141                         }
3142
3143                         if (!folio_test_dirty(folio)) {
3144                                 /* someone wrote it for us */
3145                                 goto continue_unlock;
3146                         }
3147
3148                         if (folio_test_writeback(folio)) {
3149                                 if (wbc->sync_mode == WB_SYNC_NONE)
3150                                         goto continue_unlock;
3151                                 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3152                         }
3153
3154                         if (!folio_clear_dirty_for_io(folio))
3155                                 goto continue_unlock;
3156
3157 #ifdef CONFIG_F2FS_FS_COMPRESSION
3158                         if (f2fs_compressed_file(inode)) {
3159                                 folio_get(folio);
3160                                 f2fs_compress_ctx_add_page(&cc, &folio->page);
3161                                 continue;
3162                         }
3163 #endif
3164                         ret = f2fs_write_single_data_page(&folio->page,
3165                                         &submitted, &bio, &last_block,
3166                                         wbc, io_type, 0, true);
3167                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3168                                 folio_unlock(folio);
3169 #ifdef CONFIG_F2FS_FS_COMPRESSION
3170 result:
3171 #endif
3172                         nwritten += submitted;
3173                         wbc->nr_to_write -= submitted;
3174
3175                         if (unlikely(ret)) {
3176                                 /*
3177                                  * keep nr_to_write, since vfs uses this to
3178                                  * get # of written pages.
3179                                  */
3180                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3181                                         ret = 0;
3182                                         goto next;
3183                                 } else if (ret == -EAGAIN) {
3184                                         ret = 0;
3185                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3186                                                 f2fs_io_schedule_timeout(
3187                                                         DEFAULT_IO_TIMEOUT);
3188                                                 goto retry_write;
3189                                         }
3190                                         goto next;
3191                                 }
3192                                 done_index = folio_next_index(folio);
3193                                 done = 1;
3194                                 break;
3195                         }
3196
3197                         if (wbc->nr_to_write <= 0 &&
3198                                         wbc->sync_mode == WB_SYNC_NONE) {
3199                                 done = 1;
3200                                 break;
3201                         }
3202 next:
3203                         if (need_readd)
3204                                 goto readd;
3205                 }
3206                 release_pages(pages, nr_pages);
3207                 cond_resched();
3208         }
3209 #ifdef CONFIG_F2FS_FS_COMPRESSION
3210         /* flush remained pages in compress cluster */
3211         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3212                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3213                 nwritten += submitted;
3214                 wbc->nr_to_write -= submitted;
3215                 if (ret) {
3216                         done = 1;
3217                         retry = 0;
3218                 }
3219         }
3220         if (f2fs_compressed_file(inode))
3221                 f2fs_destroy_compress_ctx(&cc, false);
3222 #endif
3223         if (retry) {
3224                 index = 0;
3225                 end = -1;
3226                 goto retry;
3227         }
3228         if (wbc->range_cyclic && !done)
3229                 done_index = 0;
3230         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3231                 mapping->writeback_index = done_index;
3232
3233         if (nwritten)
3234                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3235                                                                 NULL, 0, DATA);
3236         /* submit cached bio of IPU write */
3237         if (bio)
3238                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3239
3240 #ifdef CONFIG_F2FS_FS_COMPRESSION
3241         if (pages != pages_local)
3242                 kfree(pages);
3243 #endif
3244
3245         return ret;
3246 }
3247
3248 static inline bool __should_serialize_io(struct inode *inode,
3249                                         struct writeback_control *wbc)
3250 {
3251         /* to avoid deadlock in path of data flush */
3252         if (F2FS_I(inode)->wb_task)
3253                 return false;
3254
3255         if (!S_ISREG(inode->i_mode))
3256                 return false;
3257         if (IS_NOQUOTA(inode))
3258                 return false;
3259
3260         if (f2fs_need_compress_data(inode))
3261                 return true;
3262         if (wbc->sync_mode != WB_SYNC_ALL)
3263                 return true;
3264         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3265                 return true;
3266         return false;
3267 }
3268
3269 static int __f2fs_write_data_pages(struct address_space *mapping,
3270                                                 struct writeback_control *wbc,
3271                                                 enum iostat_type io_type)
3272 {
3273         struct inode *inode = mapping->host;
3274         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3275         struct blk_plug plug;
3276         int ret;
3277         bool locked = false;
3278
3279         /* deal with chardevs and other special file */
3280         if (!mapping->a_ops->writepage)
3281                 return 0;
3282
3283         /* skip writing if there is no dirty page in this inode */
3284         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3285                 return 0;
3286
3287         /* during POR, we don't need to trigger writepage at all. */
3288         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3289                 goto skip_write;
3290
3291         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3292                         wbc->sync_mode == WB_SYNC_NONE &&
3293                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3294                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3295                 goto skip_write;
3296
3297         /* skip writing in file defragment preparing stage */
3298         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3299                 goto skip_write;
3300
3301         trace_f2fs_writepages(mapping->host, wbc, DATA);
3302
3303         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3304         if (wbc->sync_mode == WB_SYNC_ALL)
3305                 atomic_inc(&sbi->wb_sync_req[DATA]);
3306         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3307                 /* to avoid potential deadlock */
3308                 if (current->plug)
3309                         blk_finish_plug(current->plug);
3310                 goto skip_write;
3311         }
3312
3313         if (__should_serialize_io(inode, wbc)) {
3314                 mutex_lock(&sbi->writepages);
3315                 locked = true;
3316         }
3317
3318         blk_start_plug(&plug);
3319         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3320         blk_finish_plug(&plug);
3321
3322         if (locked)
3323                 mutex_unlock(&sbi->writepages);
3324
3325         if (wbc->sync_mode == WB_SYNC_ALL)
3326                 atomic_dec(&sbi->wb_sync_req[DATA]);
3327         /*
3328          * if some pages were truncated, we cannot guarantee its mapping->host
3329          * to detect pending bios.
3330          */
3331
3332         f2fs_remove_dirty_inode(inode);
3333         return ret;
3334
3335 skip_write:
3336         wbc->pages_skipped += get_dirty_pages(inode);
3337         trace_f2fs_writepages(mapping->host, wbc, DATA);
3338         return 0;
3339 }
3340
3341 static int f2fs_write_data_pages(struct address_space *mapping,
3342                             struct writeback_control *wbc)
3343 {
3344         struct inode *inode = mapping->host;
3345
3346         return __f2fs_write_data_pages(mapping, wbc,
3347                         F2FS_I(inode)->cp_task == current ?
3348                         FS_CP_DATA_IO : FS_DATA_IO);
3349 }
3350
3351 void f2fs_write_failed(struct inode *inode, loff_t to)
3352 {
3353         loff_t i_size = i_size_read(inode);
3354
3355         if (IS_NOQUOTA(inode))
3356                 return;
3357
3358         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3359         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3360                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3361                 filemap_invalidate_lock(inode->i_mapping);
3362
3363                 truncate_pagecache(inode, i_size);
3364                 f2fs_truncate_blocks(inode, i_size, true);
3365
3366                 filemap_invalidate_unlock(inode->i_mapping);
3367                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3368         }
3369 }
3370
3371 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3372                         struct page *page, loff_t pos, unsigned len,
3373                         block_t *blk_addr, bool *node_changed)
3374 {
3375         struct inode *inode = page->mapping->host;
3376         pgoff_t index = page->index;
3377         struct dnode_of_data dn;
3378         struct page *ipage;
3379         bool locked = false;
3380         int flag = F2FS_GET_BLOCK_PRE_AIO;
3381         int err = 0;
3382
3383         /*
3384          * If a whole page is being written and we already preallocated all the
3385          * blocks, then there is no need to get a block address now.
3386          */
3387         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3388                 return 0;
3389
3390         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3391         if (f2fs_has_inline_data(inode)) {
3392                 if (pos + len > MAX_INLINE_DATA(inode))
3393                         flag = F2FS_GET_BLOCK_DEFAULT;
3394                 f2fs_map_lock(sbi, flag);
3395                 locked = true;
3396         } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3397                 f2fs_map_lock(sbi, flag);
3398                 locked = true;
3399         }
3400
3401 restart:
3402         /* check inline_data */
3403         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3404         if (IS_ERR(ipage)) {
3405                 err = PTR_ERR(ipage);
3406                 goto unlock_out;
3407         }
3408
3409         set_new_dnode(&dn, inode, ipage, ipage, 0);
3410
3411         if (f2fs_has_inline_data(inode)) {
3412                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3413                         f2fs_do_read_inline_data(page_folio(page), ipage);
3414                         set_inode_flag(inode, FI_DATA_EXIST);
3415                         if (inode->i_nlink)
3416                                 set_page_private_inline(ipage);
3417                         goto out;
3418                 }
3419                 err = f2fs_convert_inline_page(&dn, page);
3420                 if (err || dn.data_blkaddr != NULL_ADDR)
3421                         goto out;
3422         }
3423
3424         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3425                                                  &dn.data_blkaddr)) {
3426                 if (locked) {
3427                         err = f2fs_reserve_block(&dn, index);
3428                         goto out;
3429                 }
3430
3431                 /* hole case */
3432                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3433                 if (!err && dn.data_blkaddr != NULL_ADDR)
3434                         goto out;
3435                 f2fs_put_dnode(&dn);
3436                 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3437                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3438                 locked = true;
3439                 goto restart;
3440         }
3441 out:
3442         if (!err) {
3443                 /* convert_inline_page can make node_changed */
3444                 *blk_addr = dn.data_blkaddr;
3445                 *node_changed = dn.node_changed;
3446         }
3447         f2fs_put_dnode(&dn);
3448 unlock_out:
3449         if (locked)
3450                 f2fs_map_unlock(sbi, flag);
3451         return err;
3452 }
3453
3454 static int __find_data_block(struct inode *inode, pgoff_t index,
3455                                 block_t *blk_addr)
3456 {
3457         struct dnode_of_data dn;
3458         struct page *ipage;
3459         int err = 0;
3460
3461         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3462         if (IS_ERR(ipage))
3463                 return PTR_ERR(ipage);
3464
3465         set_new_dnode(&dn, inode, ipage, ipage, 0);
3466
3467         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3468                                                  &dn.data_blkaddr)) {
3469                 /* hole case */
3470                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3471                 if (err) {
3472                         dn.data_blkaddr = NULL_ADDR;
3473                         err = 0;
3474                 }
3475         }
3476         *blk_addr = dn.data_blkaddr;
3477         f2fs_put_dnode(&dn);
3478         return err;
3479 }
3480
3481 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3482                                 block_t *blk_addr, bool *node_changed)
3483 {
3484         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3485         struct dnode_of_data dn;
3486         struct page *ipage;
3487         int err = 0;
3488
3489         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3490
3491         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3492         if (IS_ERR(ipage)) {
3493                 err = PTR_ERR(ipage);
3494                 goto unlock_out;
3495         }
3496         set_new_dnode(&dn, inode, ipage, ipage, 0);
3497
3498         if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3499                                                 &dn.data_blkaddr))
3500                 err = f2fs_reserve_block(&dn, index);
3501
3502         *blk_addr = dn.data_blkaddr;
3503         *node_changed = dn.node_changed;
3504         f2fs_put_dnode(&dn);
3505
3506 unlock_out:
3507         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3508         return err;
3509 }
3510
3511 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3512                         struct page *page, loff_t pos, unsigned int len,
3513                         block_t *blk_addr, bool *node_changed, bool *use_cow)
3514 {
3515         struct inode *inode = page->mapping->host;
3516         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3517         pgoff_t index = page->index;
3518         int err = 0;
3519         block_t ori_blk_addr = NULL_ADDR;
3520
3521         /* If pos is beyond the end of file, reserve a new block in COW inode */
3522         if ((pos & PAGE_MASK) >= i_size_read(inode))
3523                 goto reserve_block;
3524
3525         /* Look for the block in COW inode first */
3526         err = __find_data_block(cow_inode, index, blk_addr);
3527         if (err) {
3528                 return err;
3529         } else if (*blk_addr != NULL_ADDR) {
3530                 *use_cow = true;
3531                 return 0;
3532         }
3533
3534         if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3535                 goto reserve_block;
3536
3537         /* Look for the block in the original inode */
3538         err = __find_data_block(inode, index, &ori_blk_addr);
3539         if (err)
3540                 return err;
3541
3542 reserve_block:
3543         /* Finally, we should reserve a new block in COW inode for the update */
3544         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3545         if (err)
3546                 return err;
3547         inc_atomic_write_cnt(inode);
3548
3549         if (ori_blk_addr != NULL_ADDR)
3550                 *blk_addr = ori_blk_addr;
3551         return 0;
3552 }
3553
3554 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3555                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3556 {
3557         struct inode *inode = mapping->host;
3558         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559         struct page *page = NULL;
3560         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3561         bool need_balance = false;
3562         bool use_cow = false;
3563         block_t blkaddr = NULL_ADDR;
3564         int err = 0;
3565
3566         trace_f2fs_write_begin(inode, pos, len);
3567
3568         if (!f2fs_is_checkpoint_ready(sbi)) {
3569                 err = -ENOSPC;
3570                 goto fail;
3571         }
3572
3573         /*
3574          * We should check this at this moment to avoid deadlock on inode page
3575          * and #0 page. The locking rule for inline_data conversion should be:
3576          * lock_page(page #0) -> lock_page(inode_page)
3577          */
3578         if (index != 0) {
3579                 err = f2fs_convert_inline_inode(inode);
3580                 if (err)
3581                         goto fail;
3582         }
3583
3584 #ifdef CONFIG_F2FS_FS_COMPRESSION
3585         if (f2fs_compressed_file(inode)) {
3586                 int ret;
3587
3588                 *fsdata = NULL;
3589
3590                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3591                         goto repeat;
3592
3593                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3594                                                         index, fsdata);
3595                 if (ret < 0) {
3596                         err = ret;
3597                         goto fail;
3598                 } else if (ret) {
3599                         return 0;
3600                 }
3601         }
3602 #endif
3603
3604 repeat:
3605         /*
3606          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3607          * wait_for_stable_page. Will wait that below with our IO control.
3608          */
3609         page = f2fs_pagecache_get_page(mapping, index,
3610                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3611         if (!page) {
3612                 err = -ENOMEM;
3613                 goto fail;
3614         }
3615
3616         /* TODO: cluster can be compressed due to race with .writepage */
3617
3618         *pagep = page;
3619
3620         if (f2fs_is_atomic_file(inode))
3621                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3622                                         &blkaddr, &need_balance, &use_cow);
3623         else
3624                 err = prepare_write_begin(sbi, page, pos, len,
3625                                         &blkaddr, &need_balance);
3626         if (err)
3627                 goto fail;
3628
3629         if (need_balance && !IS_NOQUOTA(inode) &&
3630                         has_not_enough_free_secs(sbi, 0, 0)) {
3631                 unlock_page(page);
3632                 f2fs_balance_fs(sbi, true);
3633                 lock_page(page);
3634                 if (page->mapping != mapping) {
3635                         /* The page got truncated from under us */
3636                         f2fs_put_page(page, 1);
3637                         goto repeat;
3638                 }
3639         }
3640
3641         f2fs_wait_on_page_writeback(page, DATA, false, true);
3642
3643         if (len == PAGE_SIZE || PageUptodate(page))
3644                 return 0;
3645
3646         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3647             !f2fs_verity_in_progress(inode)) {
3648                 zero_user_segment(page, len, PAGE_SIZE);
3649                 return 0;
3650         }
3651
3652         if (blkaddr == NEW_ADDR) {
3653                 zero_user_segment(page, 0, PAGE_SIZE);
3654                 SetPageUptodate(page);
3655         } else {
3656                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3657                                 DATA_GENERIC_ENHANCE_READ)) {
3658                         err = -EFSCORRUPTED;
3659                         goto fail;
3660                 }
3661                 err = f2fs_submit_page_read(use_cow ?
3662                                 F2FS_I(inode)->cow_inode : inode, page,
3663                                 blkaddr, 0, true);
3664                 if (err)
3665                         goto fail;
3666
3667                 lock_page(page);
3668                 if (unlikely(page->mapping != mapping)) {
3669                         f2fs_put_page(page, 1);
3670                         goto repeat;
3671                 }
3672                 if (unlikely(!PageUptodate(page))) {
3673                         err = -EIO;
3674                         goto fail;
3675                 }
3676         }
3677         return 0;
3678
3679 fail:
3680         f2fs_put_page(page, 1);
3681         f2fs_write_failed(inode, pos + len);
3682         return err;
3683 }
3684
3685 static int f2fs_write_end(struct file *file,
3686                         struct address_space *mapping,
3687                         loff_t pos, unsigned len, unsigned copied,
3688                         struct page *page, void *fsdata)
3689 {
3690         struct inode *inode = page->mapping->host;
3691
3692         trace_f2fs_write_end(inode, pos, len, copied);
3693
3694         /*
3695          * This should be come from len == PAGE_SIZE, and we expect copied
3696          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3697          * let generic_perform_write() try to copy data again through copied=0.
3698          */
3699         if (!PageUptodate(page)) {
3700                 if (unlikely(copied != len))
3701                         copied = 0;
3702                 else
3703                         SetPageUptodate(page);
3704         }
3705
3706 #ifdef CONFIG_F2FS_FS_COMPRESSION
3707         /* overwrite compressed file */
3708         if (f2fs_compressed_file(inode) && fsdata) {
3709                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3710                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3711
3712                 if (pos + copied > i_size_read(inode) &&
3713                                 !f2fs_verity_in_progress(inode))
3714                         f2fs_i_size_write(inode, pos + copied);
3715                 return copied;
3716         }
3717 #endif
3718
3719         if (!copied)
3720                 goto unlock_out;
3721
3722         set_page_dirty(page);
3723
3724         if (pos + copied > i_size_read(inode) &&
3725             !f2fs_verity_in_progress(inode)) {
3726                 f2fs_i_size_write(inode, pos + copied);
3727                 if (f2fs_is_atomic_file(inode))
3728                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3729                                         pos + copied);
3730         }
3731 unlock_out:
3732         f2fs_put_page(page, 1);
3733         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3734         return copied;
3735 }
3736
3737 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3738 {
3739         struct inode *inode = folio->mapping->host;
3740         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3741
3742         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3743                                 (offset || length != folio_size(folio)))
3744                 return;
3745
3746         if (folio_test_dirty(folio)) {
3747                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3748                         dec_page_count(sbi, F2FS_DIRTY_META);
3749                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3750                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3751                 } else {
3752                         inode_dec_dirty_pages(inode);
3753                         f2fs_remove_dirty_inode(inode);
3754                 }
3755         }
3756         clear_page_private_all(&folio->page);
3757 }
3758
3759 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3760 {
3761         /* If this is dirty folio, keep private data */
3762         if (folio_test_dirty(folio))
3763                 return false;
3764
3765         clear_page_private_all(&folio->page);
3766         return true;
3767 }
3768
3769 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3770                 struct folio *folio)
3771 {
3772         struct inode *inode = mapping->host;
3773
3774         trace_f2fs_set_page_dirty(folio, DATA);
3775
3776         if (!folio_test_uptodate(folio))
3777                 folio_mark_uptodate(folio);
3778         BUG_ON(folio_test_swapcache(folio));
3779
3780         if (filemap_dirty_folio(mapping, folio)) {
3781                 f2fs_update_dirty_folio(inode, folio);
3782                 return true;
3783         }
3784         return false;
3785 }
3786
3787
3788 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3789 {
3790 #ifdef CONFIG_F2FS_FS_COMPRESSION
3791         struct dnode_of_data dn;
3792         sector_t start_idx, blknr = 0;
3793         int ret;
3794
3795         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3796
3797         set_new_dnode(&dn, inode, NULL, NULL, 0);
3798         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3799         if (ret)
3800                 return 0;
3801
3802         if (dn.data_blkaddr != COMPRESS_ADDR) {
3803                 dn.ofs_in_node += block - start_idx;
3804                 blknr = f2fs_data_blkaddr(&dn);
3805                 if (!__is_valid_data_blkaddr(blknr))
3806                         blknr = 0;
3807         }
3808
3809         f2fs_put_dnode(&dn);
3810         return blknr;
3811 #else
3812         return 0;
3813 #endif
3814 }
3815
3816
3817 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3818 {
3819         struct inode *inode = mapping->host;
3820         sector_t blknr = 0;
3821
3822         if (f2fs_has_inline_data(inode))
3823                 goto out;
3824
3825         /* make sure allocating whole blocks */
3826         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3827                 filemap_write_and_wait(mapping);
3828
3829         /* Block number less than F2FS MAX BLOCKS */
3830         if (unlikely(block >= max_file_blocks(inode)))
3831                 goto out;
3832
3833         if (f2fs_compressed_file(inode)) {
3834                 blknr = f2fs_bmap_compress(inode, block);
3835         } else {
3836                 struct f2fs_map_blocks map;
3837
3838                 memset(&map, 0, sizeof(map));
3839                 map.m_lblk = block;
3840                 map.m_len = 1;
3841                 map.m_next_pgofs = NULL;
3842                 map.m_seg_type = NO_CHECK_TYPE;
3843
3844                 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3845                         blknr = map.m_pblk;
3846         }
3847 out:
3848         trace_f2fs_bmap(inode, block, blknr);
3849         return blknr;
3850 }
3851
3852 #ifdef CONFIG_SWAP
3853 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3854                                                         unsigned int blkcnt)
3855 {
3856         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3857         unsigned int blkofs;
3858         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3859         unsigned int end_blk = start_blk + blkcnt - 1;
3860         unsigned int secidx = start_blk / blk_per_sec;
3861         unsigned int end_sec;
3862         int ret = 0;
3863
3864         if (!blkcnt)
3865                 return 0;
3866         end_sec = end_blk / blk_per_sec;
3867
3868         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3869         filemap_invalidate_lock(inode->i_mapping);
3870
3871         set_inode_flag(inode, FI_ALIGNED_WRITE);
3872         set_inode_flag(inode, FI_OPU_WRITE);
3873
3874         for (; secidx <= end_sec; secidx++) {
3875                 unsigned int blkofs_end = secidx == end_sec ?
3876                                 end_blk % blk_per_sec : blk_per_sec - 1;
3877
3878                 f2fs_down_write(&sbi->pin_sem);
3879
3880                 ret = f2fs_allocate_pinning_section(sbi);
3881                 if (ret) {
3882                         f2fs_up_write(&sbi->pin_sem);
3883                         break;
3884                 }
3885
3886                 set_inode_flag(inode, FI_SKIP_WRITES);
3887
3888                 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3889                         struct page *page;
3890                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3891
3892                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3893                         if (IS_ERR(page)) {
3894                                 f2fs_up_write(&sbi->pin_sem);
3895                                 ret = PTR_ERR(page);
3896                                 goto done;
3897                         }
3898
3899                         set_page_dirty(page);
3900                         f2fs_put_page(page, 1);
3901                 }
3902
3903                 clear_inode_flag(inode, FI_SKIP_WRITES);
3904
3905                 ret = filemap_fdatawrite(inode->i_mapping);
3906
3907                 f2fs_up_write(&sbi->pin_sem);
3908
3909                 if (ret)
3910                         break;
3911         }
3912
3913 done:
3914         clear_inode_flag(inode, FI_SKIP_WRITES);
3915         clear_inode_flag(inode, FI_OPU_WRITE);
3916         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3917
3918         filemap_invalidate_unlock(inode->i_mapping);
3919         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3920
3921         return ret;
3922 }
3923
3924 static int check_swap_activate(struct swap_info_struct *sis,
3925                                 struct file *swap_file, sector_t *span)
3926 {
3927         struct address_space *mapping = swap_file->f_mapping;
3928         struct inode *inode = mapping->host;
3929         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3930         block_t cur_lblock;
3931         block_t last_lblock;
3932         block_t pblock;
3933         block_t lowest_pblock = -1;
3934         block_t highest_pblock = 0;
3935         int nr_extents = 0;
3936         unsigned int nr_pblocks;
3937         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3938         unsigned int not_aligned = 0;
3939         int ret = 0;
3940
3941         /*
3942          * Map all the blocks into the extent list.  This code doesn't try
3943          * to be very smart.
3944          */
3945         cur_lblock = 0;
3946         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3947
3948         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3949                 struct f2fs_map_blocks map;
3950 retry:
3951                 cond_resched();
3952
3953                 memset(&map, 0, sizeof(map));
3954                 map.m_lblk = cur_lblock;
3955                 map.m_len = last_lblock - cur_lblock;
3956                 map.m_next_pgofs = NULL;
3957                 map.m_next_extent = NULL;
3958                 map.m_seg_type = NO_CHECK_TYPE;
3959                 map.m_may_create = false;
3960
3961                 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3962                 if (ret)
3963                         goto out;
3964
3965                 /* hole */
3966                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3967                         f2fs_err(sbi, "Swapfile has holes");
3968                         ret = -EINVAL;
3969                         goto out;
3970                 }
3971
3972                 pblock = map.m_pblk;
3973                 nr_pblocks = map.m_len;
3974
3975                 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3976                                 nr_pblocks % blks_per_sec ||
3977                                 !f2fs_valid_pinned_area(sbi, pblock)) {
3978                         bool last_extent = false;
3979
3980                         not_aligned++;
3981
3982                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3983                         if (cur_lblock + nr_pblocks > sis->max)
3984                                 nr_pblocks -= blks_per_sec;
3985
3986                         /* this extent is last one */
3987                         if (!nr_pblocks) {
3988                                 nr_pblocks = last_lblock - cur_lblock;
3989                                 last_extent = true;
3990                         }
3991
3992                         ret = f2fs_migrate_blocks(inode, cur_lblock,
3993                                                         nr_pblocks);
3994                         if (ret) {
3995                                 if (ret == -ENOENT)
3996                                         ret = -EINVAL;
3997                                 goto out;
3998                         }
3999
4000                         if (!last_extent)
4001                                 goto retry;
4002                 }
4003
4004                 if (cur_lblock + nr_pblocks >= sis->max)
4005                         nr_pblocks = sis->max - cur_lblock;
4006
4007                 if (cur_lblock) {       /* exclude the header page */
4008                         if (pblock < lowest_pblock)
4009                                 lowest_pblock = pblock;
4010                         if (pblock + nr_pblocks - 1 > highest_pblock)
4011                                 highest_pblock = pblock + nr_pblocks - 1;
4012                 }
4013
4014                 /*
4015                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4016                  */
4017                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4018                 if (ret < 0)
4019                         goto out;
4020                 nr_extents += ret;
4021                 cur_lblock += nr_pblocks;
4022         }
4023         ret = nr_extents;
4024         *span = 1 + highest_pblock - lowest_pblock;
4025         if (cur_lblock == 0)
4026                 cur_lblock = 1; /* force Empty message */
4027         sis->max = cur_lblock;
4028         sis->pages = cur_lblock - 1;
4029         sis->highest_bit = cur_lblock - 1;
4030 out:
4031         if (not_aligned)
4032                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4033                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4034         return ret;
4035 }
4036
4037 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4038                                 sector_t *span)
4039 {
4040         struct inode *inode = file_inode(file);
4041         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4042         int ret;
4043
4044         if (!S_ISREG(inode->i_mode))
4045                 return -EINVAL;
4046
4047         if (f2fs_readonly(sbi->sb))
4048                 return -EROFS;
4049
4050         if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4051                 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4052                 return -EINVAL;
4053         }
4054
4055         ret = f2fs_convert_inline_inode(inode);
4056         if (ret)
4057                 return ret;
4058
4059         if (!f2fs_disable_compressed_file(inode))
4060                 return -EINVAL;
4061
4062         ret = filemap_fdatawrite(inode->i_mapping);
4063         if (ret < 0)
4064                 return ret;
4065
4066         f2fs_precache_extents(inode);
4067
4068         ret = check_swap_activate(sis, file, span);
4069         if (ret < 0)
4070                 return ret;
4071
4072         stat_inc_swapfile_inode(inode);
4073         set_inode_flag(inode, FI_PIN_FILE);
4074         f2fs_update_time(sbi, REQ_TIME);
4075         return ret;
4076 }
4077
4078 static void f2fs_swap_deactivate(struct file *file)
4079 {
4080         struct inode *inode = file_inode(file);
4081
4082         stat_dec_swapfile_inode(inode);
4083         clear_inode_flag(inode, FI_PIN_FILE);
4084 }
4085 #else
4086 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4087                                 sector_t *span)
4088 {
4089         return -EOPNOTSUPP;
4090 }
4091
4092 static void f2fs_swap_deactivate(struct file *file)
4093 {
4094 }
4095 #endif
4096
4097 const struct address_space_operations f2fs_dblock_aops = {
4098         .read_folio     = f2fs_read_data_folio,
4099         .readahead      = f2fs_readahead,
4100         .writepage      = f2fs_write_data_page,
4101         .writepages     = f2fs_write_data_pages,
4102         .write_begin    = f2fs_write_begin,
4103         .write_end      = f2fs_write_end,
4104         .dirty_folio    = f2fs_dirty_data_folio,
4105         .migrate_folio  = filemap_migrate_folio,
4106         .invalidate_folio = f2fs_invalidate_folio,
4107         .release_folio  = f2fs_release_folio,
4108         .bmap           = f2fs_bmap,
4109         .swap_activate  = f2fs_swap_activate,
4110         .swap_deactivate = f2fs_swap_deactivate,
4111 };
4112
4113 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4114 {
4115         struct folio *folio = page_folio(page);
4116         struct address_space *mapping = folio->mapping;
4117         unsigned long flags;
4118
4119         xa_lock_irqsave(&mapping->i_pages, flags);
4120         __xa_clear_mark(&mapping->i_pages, folio->index,
4121                                                 PAGECACHE_TAG_DIRTY);
4122         xa_unlock_irqrestore(&mapping->i_pages, flags);
4123 }
4124
4125 int __init f2fs_init_post_read_processing(void)
4126 {
4127         bio_post_read_ctx_cache =
4128                 kmem_cache_create("f2fs_bio_post_read_ctx",
4129                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4130         if (!bio_post_read_ctx_cache)
4131                 goto fail;
4132         bio_post_read_ctx_pool =
4133                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4134                                          bio_post_read_ctx_cache);
4135         if (!bio_post_read_ctx_pool)
4136                 goto fail_free_cache;
4137         return 0;
4138
4139 fail_free_cache:
4140         kmem_cache_destroy(bio_post_read_ctx_cache);
4141 fail:
4142         return -ENOMEM;
4143 }
4144
4145 void f2fs_destroy_post_read_processing(void)
4146 {
4147         mempool_destroy(bio_post_read_ctx_pool);
4148         kmem_cache_destroy(bio_post_read_ctx_cache);
4149 }
4150
4151 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4152 {
4153         if (!f2fs_sb_has_encrypt(sbi) &&
4154                 !f2fs_sb_has_verity(sbi) &&
4155                 !f2fs_sb_has_compression(sbi))
4156                 return 0;
4157
4158         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4159                                                  WQ_UNBOUND | WQ_HIGHPRI,
4160                                                  num_online_cpus());
4161         return sbi->post_read_wq ? 0 : -ENOMEM;
4162 }
4163
4164 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4165 {
4166         if (sbi->post_read_wq)
4167                 destroy_workqueue(sbi->post_read_wq);
4168 }
4169
4170 int __init f2fs_init_bio_entry_cache(void)
4171 {
4172         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4173                         sizeof(struct bio_entry));
4174         return bio_entry_slab ? 0 : -ENOMEM;
4175 }
4176
4177 void f2fs_destroy_bio_entry_cache(void)
4178 {
4179         kmem_cache_destroy(bio_entry_slab);
4180 }
4181
4182 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4183                             unsigned int flags, struct iomap *iomap,
4184                             struct iomap *srcmap)
4185 {
4186         struct f2fs_map_blocks map = {};
4187         pgoff_t next_pgofs = 0;
4188         int err;
4189
4190         map.m_lblk = bytes_to_blks(inode, offset);
4191         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4192         map.m_next_pgofs = &next_pgofs;
4193         map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4194                                                 inode->i_write_hint);
4195         if (flags & IOMAP_WRITE)
4196                 map.m_may_create = true;
4197
4198         err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4199         if (err)
4200                 return err;
4201
4202         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4203
4204         /*
4205          * When inline encryption is enabled, sometimes I/O to an encrypted file
4206          * has to be broken up to guarantee DUN contiguity.  Handle this by
4207          * limiting the length of the mapping returned.
4208          */
4209         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4210
4211         /*
4212          * We should never see delalloc or compressed extents here based on
4213          * prior flushing and checks.
4214          */
4215         if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4216                 return -EINVAL;
4217
4218         if (map.m_flags & F2FS_MAP_MAPPED) {
4219                 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4220                         return -EINVAL;
4221
4222                 iomap->length = blks_to_bytes(inode, map.m_len);
4223                 iomap->type = IOMAP_MAPPED;
4224                 iomap->flags |= IOMAP_F_MERGED;
4225                 iomap->bdev = map.m_bdev;
4226                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4227         } else {
4228                 if (flags & IOMAP_WRITE)
4229                         return -ENOTBLK;
4230
4231                 if (map.m_pblk == NULL_ADDR) {
4232                         iomap->length = blks_to_bytes(inode, next_pgofs) -
4233                                                                 iomap->offset;
4234                         iomap->type = IOMAP_HOLE;
4235                 } else if (map.m_pblk == NEW_ADDR) {
4236                         iomap->length = blks_to_bytes(inode, map.m_len);
4237                         iomap->type = IOMAP_UNWRITTEN;
4238                 } else {
4239                         f2fs_bug_on(F2FS_I_SB(inode), 1);
4240                 }
4241                 iomap->addr = IOMAP_NULL_ADDR;
4242         }
4243
4244         if (map.m_flags & F2FS_MAP_NEW)
4245                 iomap->flags |= IOMAP_F_NEW;
4246         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4247             offset + length > i_size_read(inode))
4248                 iomap->flags |= IOMAP_F_DIRTY;
4249
4250         return 0;
4251 }
4252
4253 const struct iomap_ops f2fs_iomap_ops = {
4254         .iomap_begin    = f2fs_iomap_begin,
4255 };
This page took 0.269401 seconds and 4 git commands to generate.