1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
41 #include "dev-replace.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "block-group.h"
50 #include "accessors.h"
51 #include "extent-tree.h"
52 #include "root-tree.h"
55 #include "uuid-tree.h"
62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
67 struct btrfs_ioctl_timespec_32 {
70 } __attribute__ ((__packed__));
72 struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 reserved[16]; /* in */
80 } __attribute__ ((__packed__));
82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87 struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95 } __attribute__ ((__packed__));
97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
100 struct btrfs_ioctl_encoded_io_args_32 {
102 compat_ulong_t iovcnt;
107 __u64 unencoded_offset;
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
119 /* Mask out flags that are inappropriate for the given type of inode. */
120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
123 if (S_ISDIR(inode->i_mode))
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
167 * Update inode->i_flags based on the btrfs internal flags.
169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
174 if (binode->flags & BTRFS_INODE_SYNC)
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
180 if (binode->flags & BTRFS_INODE_NOATIME)
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
259 struct inode *inode = d_inode(dentry);
260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 struct btrfs_inode *binode = BTRFS_I(inode);
262 struct btrfs_root *root = binode->root;
263 struct btrfs_trans_handle *trans;
264 unsigned int fsflags, old_fsflags;
266 const char *comp = NULL;
269 if (btrfs_root_readonly(root))
272 if (fileattr_has_fsx(fa))
275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 ret = check_fsflags(old_fsflags, fsflags);
281 ret = check_fsflags_compatible(fs_info, fsflags);
285 binode_flags = binode->flags;
286 if (fsflags & FS_SYNC_FL)
287 binode_flags |= BTRFS_INODE_SYNC;
289 binode_flags &= ~BTRFS_INODE_SYNC;
290 if (fsflags & FS_IMMUTABLE_FL)
291 binode_flags |= BTRFS_INODE_IMMUTABLE;
293 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 if (fsflags & FS_APPEND_FL)
295 binode_flags |= BTRFS_INODE_APPEND;
297 binode_flags &= ~BTRFS_INODE_APPEND;
298 if (fsflags & FS_NODUMP_FL)
299 binode_flags |= BTRFS_INODE_NODUMP;
301 binode_flags &= ~BTRFS_INODE_NODUMP;
302 if (fsflags & FS_NOATIME_FL)
303 binode_flags |= BTRFS_INODE_NOATIME;
305 binode_flags &= ~BTRFS_INODE_NOATIME;
307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 if (!fa->flags_valid) {
309 /* 1 item for the inode */
310 trans = btrfs_start_transaction(root, 1);
312 return PTR_ERR(trans);
316 if (fsflags & FS_DIRSYNC_FL)
317 binode_flags |= BTRFS_INODE_DIRSYNC;
319 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 if (fsflags & FS_NOCOW_FL) {
321 if (S_ISREG(inode->i_mode)) {
323 * It's safe to turn csums off here, no extents exist.
324 * Otherwise we want the flag to reflect the real COW
325 * status of the file and will not set it.
327 if (inode->i_size == 0)
328 binode_flags |= BTRFS_INODE_NODATACOW |
329 BTRFS_INODE_NODATASUM;
331 binode_flags |= BTRFS_INODE_NODATACOW;
335 * Revert back under same assumptions as above
337 if (S_ISREG(inode->i_mode)) {
338 if (inode->i_size == 0)
339 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 BTRFS_INODE_NODATASUM);
342 binode_flags &= ~BTRFS_INODE_NODATACOW;
347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 * flag may be changed automatically if compression code won't make
351 if (fsflags & FS_NOCOMP_FL) {
352 binode_flags &= ~BTRFS_INODE_COMPRESS;
353 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 } else if (fsflags & FS_COMPR_FL) {
356 if (IS_SWAPFILE(inode))
359 binode_flags |= BTRFS_INODE_COMPRESS;
360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362 comp = btrfs_compress_type2str(fs_info->compress_type);
363 if (!comp || comp[0] == 0)
364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
373 trans = btrfs_start_transaction(root, 3);
375 return PTR_ERR(trans);
378 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
379 comp, strlen(comp), 0);
381 btrfs_abort_transaction(trans, ret);
385 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 if (ret && ret != -ENODATA) {
388 btrfs_abort_transaction(trans, ret);
394 binode->flags = binode_flags;
395 btrfs_sync_inode_flags_to_i_flags(inode);
396 inode_inc_iversion(inode);
397 inode_set_ctime_current(inode);
398 ret = btrfs_update_inode(trans, BTRFS_I(inode));
401 btrfs_end_transaction(trans);
406 * Start exclusive operation @type, return true on success
408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 enum btrfs_exclusive_operation type)
413 spin_lock(&fs_info->super_lock);
414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 fs_info->exclusive_operation = type;
418 spin_unlock(&fs_info->super_lock);
424 * Conditionally allow to enter the exclusive operation in case it's compatible
425 * with the running one. This must be paired with btrfs_exclop_start_unlock and
426 * btrfs_exclop_finish.
429 * - the same type is already running
430 * - when trying to add a device and balance has been paused
431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432 * must check the condition first that would allow none -> @type
434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 enum btrfs_exclusive_operation type)
437 spin_lock(&fs_info->super_lock);
438 if (fs_info->exclusive_operation == type ||
439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 type == BTRFS_EXCLOP_DEV_ADD))
443 spin_unlock(&fs_info->super_lock);
447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
449 spin_unlock(&fs_info->super_lock);
452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
454 spin_lock(&fs_info->super_lock);
455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 spin_unlock(&fs_info->super_lock);
457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 enum btrfs_exclusive_operation op)
464 case BTRFS_EXCLOP_BALANCE_PAUSED:
465 spin_lock(&fs_info->super_lock);
466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 spin_unlock(&fs_info->super_lock);
473 case BTRFS_EXCLOP_BALANCE:
474 spin_lock(&fs_info->super_lock);
475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 spin_unlock(&fs_info->super_lock);
481 "invalid exclop balance operation %d requested", op);
485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
487 return put_user(inode->i_generation, arg);
490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
493 struct btrfs_device *device;
494 struct fstrim_range range;
495 u64 minlen = ULLONG_MAX;
499 if (!capable(CAP_SYS_ADMIN))
503 * btrfs_trim_block_group() depends on space cache, which is not
504 * available in zoned filesystem. So, disallow fitrim on a zoned
505 * filesystem for now.
507 if (btrfs_is_zoned(fs_info))
511 * If the fs is mounted with nologreplay, which requires it to be
512 * mounted in RO mode as well, we can not allow discard on free space
513 * inside block groups, because log trees refer to extents that are not
514 * pinned in a block group's free space cache (pinning the extents is
515 * precisely the first phase of replaying a log tree).
517 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
526 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
533 if (copy_from_user(&range, arg, sizeof(range)))
537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
538 * block group is in the logical address space, which can be any
539 * sectorsize aligned bytenr in the range [0, U64_MAX].
541 if (range.len < fs_info->sectorsize)
544 range.minlen = max(range.minlen, minlen);
545 ret = btrfs_trim_fs(fs_info, &range);
549 if (copy_to_user(arg, &range, sizeof(range)))
555 int __pure btrfs_is_empty_uuid(const u8 *uuid)
559 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
567 * Calculate the number of transaction items to reserve for creating a subvolume
568 * or snapshot, not including the inode, directory entries, or parent directory.
570 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
573 * 1 to add root block
576 * 1 to add root backref
578 * 1 to add qgroup info
579 * 1 to add qgroup limit
581 * Ideally the last two would only be accounted if qgroups are enabled,
582 * but that can change between now and the time we would insert them.
584 unsigned int num_items = 7;
587 /* 2 to add qgroup relations for each inherited qgroup */
588 num_items += 2 * inherit->num_qgroups;
593 static noinline int create_subvol(struct mnt_idmap *idmap,
594 struct inode *dir, struct dentry *dentry,
595 struct btrfs_qgroup_inherit *inherit)
597 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key key;
600 struct btrfs_root_item *root_item;
601 struct btrfs_inode_item *inode_item;
602 struct extent_buffer *leaf;
603 struct btrfs_root *root = BTRFS_I(dir)->root;
604 struct btrfs_root *new_root;
605 struct btrfs_block_rsv block_rsv;
606 struct timespec64 cur_time = current_time(dir);
607 struct btrfs_new_inode_args new_inode_args = {
612 unsigned int trans_num_items;
616 u64 qgroup_reserved = 0;
618 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
622 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
627 * Don't create subvolume whose level is not zero. Or qgroup will be
628 * screwed up since it assumes subvolume qgroup's level to be 0.
630 if (btrfs_qgroup_level(objectid)) {
635 ret = get_anon_bdev(&anon_dev);
639 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
640 if (!new_inode_args.inode) {
644 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
647 trans_num_items += create_subvol_num_items(inherit);
649 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
650 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
651 trans_num_items, false);
653 goto out_new_inode_args;
654 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
656 trans = btrfs_start_transaction(root, 0);
658 ret = PTR_ERR(trans);
659 goto out_release_rsv;
661 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
663 trans->block_rsv = &block_rsv;
664 trans->bytes_reserved = block_rsv.size;
666 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
670 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
671 0, BTRFS_NESTING_NORMAL);
677 btrfs_mark_buffer_dirty(trans, leaf);
679 inode_item = &root_item->inode;
680 btrfs_set_stack_inode_generation(inode_item, 1);
681 btrfs_set_stack_inode_size(inode_item, 3);
682 btrfs_set_stack_inode_nlink(inode_item, 1);
683 btrfs_set_stack_inode_nbytes(inode_item,
685 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
687 btrfs_set_root_flags(root_item, 0);
688 btrfs_set_root_limit(root_item, 0);
689 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
691 btrfs_set_root_bytenr(root_item, leaf->start);
692 btrfs_set_root_generation(root_item, trans->transid);
693 btrfs_set_root_level(root_item, 0);
694 btrfs_set_root_refs(root_item, 1);
695 btrfs_set_root_used(root_item, leaf->len);
696 btrfs_set_root_last_snapshot(root_item, 0);
698 btrfs_set_root_generation_v2(root_item,
699 btrfs_root_generation(root_item));
700 generate_random_guid(root_item->uuid);
701 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
702 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
703 root_item->ctime = root_item->otime;
704 btrfs_set_root_ctransid(root_item, trans->transid);
705 btrfs_set_root_otransid(root_item, trans->transid);
707 btrfs_tree_unlock(leaf);
709 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
711 key.objectid = objectid;
713 key.type = BTRFS_ROOT_ITEM_KEY;
714 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
720 * Since we don't abort the transaction in this case, free the
721 * tree block so that we don't leak space and leave the
722 * filesystem in an inconsistent state (an extent item in the
723 * extent tree with a backreference for a root that does not
726 btrfs_tree_lock(leaf);
727 btrfs_clear_buffer_dirty(trans, leaf);
728 btrfs_tree_unlock(leaf);
729 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
731 btrfs_abort_transaction(trans, ret2);
732 free_extent_buffer(leaf);
736 free_extent_buffer(leaf);
739 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
740 if (IS_ERR(new_root)) {
741 ret = PTR_ERR(new_root);
742 btrfs_abort_transaction(trans, ret);
745 /* anon_dev is owned by new_root now. */
747 BTRFS_I(new_inode_args.inode)->root = new_root;
748 /* ... and new_root is owned by new_inode_args.inode now. */
750 ret = btrfs_record_root_in_trans(trans, new_root);
752 btrfs_abort_transaction(trans, ret);
756 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
757 BTRFS_UUID_KEY_SUBVOL, objectid);
759 btrfs_abort_transaction(trans, ret);
763 ret = btrfs_create_new_inode(trans, &new_inode_args);
765 btrfs_abort_transaction(trans, ret);
769 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
771 d_instantiate_new(dentry, new_inode_args.inode);
772 new_inode_args.inode = NULL;
775 trans->block_rsv = NULL;
776 trans->bytes_reserved = 0;
777 btrfs_end_transaction(trans);
779 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
781 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
783 btrfs_new_inode_args_destroy(&new_inode_args);
785 iput(new_inode_args.inode);
788 free_anon_bdev(anon_dev);
794 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
795 struct dentry *dentry, bool readonly,
796 struct btrfs_qgroup_inherit *inherit)
798 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
800 struct btrfs_pending_snapshot *pending_snapshot;
801 unsigned int trans_num_items;
802 struct btrfs_trans_handle *trans;
803 struct btrfs_block_rsv *block_rsv;
804 u64 qgroup_reserved = 0;
807 /* We do not support snapshotting right now. */
808 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
810 "extent tree v2 doesn't support snapshotting yet");
814 if (btrfs_root_refs(&root->root_item) == 0)
817 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
820 if (atomic_read(&root->nr_swapfiles)) {
822 "cannot snapshot subvolume with active swapfile");
826 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
827 if (!pending_snapshot)
830 ret = get_anon_bdev(&pending_snapshot->anon_dev);
833 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
835 pending_snapshot->path = btrfs_alloc_path();
836 if (!pending_snapshot->root_item || !pending_snapshot->path) {
841 block_rsv = &pending_snapshot->block_rsv;
842 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
846 * 1 to update parent inode item
848 trans_num_items = create_subvol_num_items(inherit) + 3;
849 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
850 trans_num_items, false);
853 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
855 pending_snapshot->dentry = dentry;
856 pending_snapshot->root = root;
857 pending_snapshot->readonly = readonly;
858 pending_snapshot->dir = BTRFS_I(dir);
859 pending_snapshot->inherit = inherit;
861 trans = btrfs_start_transaction(root, 0);
863 ret = PTR_ERR(trans);
866 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
868 btrfs_end_transaction(trans);
871 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
874 trans->pending_snapshot = pending_snapshot;
876 ret = btrfs_commit_transaction(trans);
880 ret = pending_snapshot->error;
884 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
888 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
890 ret = PTR_ERR(inode);
894 d_instantiate(dentry, inode);
896 pending_snapshot->anon_dev = 0;
898 /* Prevent double freeing of anon_dev */
899 if (ret && pending_snapshot->snap)
900 pending_snapshot->snap->anon_dev = 0;
901 btrfs_put_root(pending_snapshot->snap);
902 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
904 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
906 if (pending_snapshot->anon_dev)
907 free_anon_bdev(pending_snapshot->anon_dev);
908 kfree(pending_snapshot->root_item);
909 btrfs_free_path(pending_snapshot->path);
910 kfree(pending_snapshot);
915 /* copy of may_delete in fs/namei.c()
916 * Check whether we can remove a link victim from directory dir, check
917 * whether the type of victim is right.
918 * 1. We can't do it if dir is read-only (done in permission())
919 * 2. We should have write and exec permissions on dir
920 * 3. We can't remove anything from append-only dir
921 * 4. We can't do anything with immutable dir (done in permission())
922 * 5. If the sticky bit on dir is set we should either
923 * a. be owner of dir, or
924 * b. be owner of victim, or
925 * c. have CAP_FOWNER capability
926 * 6. If the victim is append-only or immutable we can't do anything with
927 * links pointing to it.
928 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
929 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
930 * 9. We can't remove a root or mountpoint.
931 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
932 * nfs_async_unlink().
935 static int btrfs_may_delete(struct mnt_idmap *idmap,
936 struct inode *dir, struct dentry *victim, int isdir)
940 if (d_really_is_negative(victim))
943 /* The @victim is not inside @dir. */
944 if (d_inode(victim->d_parent) != dir)
946 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
948 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
953 if (check_sticky(idmap, dir, d_inode(victim)) ||
954 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
955 IS_SWAPFILE(d_inode(victim)))
958 if (!d_is_dir(victim))
962 } else if (d_is_dir(victim))
966 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
971 /* copy of may_create in fs/namei.c() */
972 static inline int btrfs_may_create(struct mnt_idmap *idmap,
973 struct inode *dir, struct dentry *child)
975 if (d_really_is_positive(child))
979 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
981 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
985 * Create a new subvolume below @parent. This is largely modeled after
986 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
987 * inside this filesystem so it's quite a bit simpler.
989 static noinline int btrfs_mksubvol(const struct path *parent,
990 struct mnt_idmap *idmap,
991 const char *name, int namelen,
992 struct btrfs_root *snap_src,
994 struct btrfs_qgroup_inherit *inherit)
996 struct inode *dir = d_inode(parent->dentry);
997 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
998 struct dentry *dentry;
999 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
1002 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1003 if (error == -EINTR)
1006 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1007 error = PTR_ERR(dentry);
1011 error = btrfs_may_create(idmap, dir, dentry);
1016 * even if this name doesn't exist, we may get hash collisions.
1017 * check for them now when we can safely fail
1019 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1020 dir->i_ino, &name_str);
1024 down_read(&fs_info->subvol_sem);
1026 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1030 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1032 error = create_subvol(idmap, dir, dentry, inherit);
1035 fsnotify_mkdir(dir, dentry);
1037 up_read(&fs_info->subvol_sem);
1041 btrfs_inode_unlock(BTRFS_I(dir), 0);
1045 static noinline int btrfs_mksnapshot(const struct path *parent,
1046 struct mnt_idmap *idmap,
1047 const char *name, int namelen,
1048 struct btrfs_root *root,
1050 struct btrfs_qgroup_inherit *inherit)
1053 bool snapshot_force_cow = false;
1056 * Force new buffered writes to reserve space even when NOCOW is
1057 * possible. This is to avoid later writeback (running dealloc) to
1058 * fallback to COW mode and unexpectedly fail with ENOSPC.
1060 btrfs_drew_read_lock(&root->snapshot_lock);
1062 ret = btrfs_start_delalloc_snapshot(root, false);
1067 * All previous writes have started writeback in NOCOW mode, so now
1068 * we force future writes to fallback to COW mode during snapshot
1071 atomic_inc(&root->snapshot_force_cow);
1072 snapshot_force_cow = true;
1074 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1076 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1077 root, readonly, inherit);
1079 if (snapshot_force_cow)
1080 atomic_dec(&root->snapshot_force_cow);
1081 btrfs_drew_read_unlock(&root->snapshot_lock);
1086 * Try to start exclusive operation @type or cancel it if it's running.
1089 * 0 - normal mode, newly claimed op started
1090 * >0 - normal mode, something else is running,
1091 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1092 * ECANCELED - cancel mode, successful cancel
1093 * ENOTCONN - cancel mode, operation not running anymore
1095 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1096 enum btrfs_exclusive_operation type, bool cancel)
1099 /* Start normal op */
1100 if (!btrfs_exclop_start(fs_info, type))
1101 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1102 /* Exclusive operation is now claimed */
1106 /* Cancel running op */
1107 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1109 * This blocks any exclop finish from setting it to NONE, so we
1110 * request cancellation. Either it runs and we will wait for it,
1111 * or it has finished and no waiting will happen.
1113 atomic_inc(&fs_info->reloc_cancel_req);
1114 btrfs_exclop_start_unlock(fs_info);
1116 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1117 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1118 TASK_INTERRUPTIBLE);
1123 /* Something else is running or none */
1127 static noinline int btrfs_ioctl_resize(struct file *file,
1130 BTRFS_DEV_LOOKUP_ARGS(args);
1131 struct inode *inode = file_inode(file);
1132 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1136 struct btrfs_root *root = BTRFS_I(inode)->root;
1137 struct btrfs_ioctl_vol_args *vol_args;
1138 struct btrfs_trans_handle *trans;
1139 struct btrfs_device *device = NULL;
1142 char *devstr = NULL;
1147 if (!capable(CAP_SYS_ADMIN))
1150 ret = mnt_want_write_file(file);
1155 * Read the arguments before checking exclusivity to be able to
1156 * distinguish regular resize and cancel
1158 vol_args = memdup_user(arg, sizeof(*vol_args));
1159 if (IS_ERR(vol_args)) {
1160 ret = PTR_ERR(vol_args);
1163 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1167 sizestr = vol_args->name;
1168 cancel = (strcmp("cancel", sizestr) == 0);
1169 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1172 /* Exclusive operation is now claimed */
1174 devstr = strchr(sizestr, ':');
1176 sizestr = devstr + 1;
1178 devstr = vol_args->name;
1179 ret = kstrtoull(devstr, 10, &devid);
1186 btrfs_info(fs_info, "resizing devid %llu", devid);
1190 device = btrfs_find_device(fs_info->fs_devices, &args);
1192 btrfs_info(fs_info, "resizer unable to find device %llu",
1198 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1200 "resizer unable to apply on readonly device %llu",
1206 if (!strcmp(sizestr, "max"))
1207 new_size = bdev_nr_bytes(device->bdev);
1209 if (sizestr[0] == '-') {
1212 } else if (sizestr[0] == '+') {
1216 new_size = memparse(sizestr, &retptr);
1217 if (*retptr != '\0' || new_size == 0) {
1223 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1228 old_size = btrfs_device_get_total_bytes(device);
1231 if (new_size > old_size) {
1235 new_size = old_size - new_size;
1236 } else if (mod > 0) {
1237 if (new_size > ULLONG_MAX - old_size) {
1241 new_size = old_size + new_size;
1244 if (new_size < SZ_256M) {
1248 if (new_size > bdev_nr_bytes(device->bdev)) {
1253 new_size = round_down(new_size, fs_info->sectorsize);
1255 if (new_size > old_size) {
1256 trans = btrfs_start_transaction(root, 0);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1261 ret = btrfs_grow_device(trans, device, new_size);
1262 btrfs_commit_transaction(trans);
1263 } else if (new_size < old_size) {
1264 ret = btrfs_shrink_device(device, new_size);
1265 } /* equal, nothing need to do */
1267 if (ret == 0 && new_size != old_size)
1268 btrfs_info_in_rcu(fs_info,
1269 "resize device %s (devid %llu) from %llu to %llu",
1270 btrfs_dev_name(device), device->devid,
1271 old_size, new_size);
1273 btrfs_exclop_finish(fs_info);
1277 mnt_drop_write_file(file);
1281 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1282 struct mnt_idmap *idmap,
1283 const char *name, unsigned long fd, int subvol,
1285 struct btrfs_qgroup_inherit *inherit)
1290 if (!S_ISDIR(file_inode(file)->i_mode))
1293 ret = mnt_want_write_file(file);
1297 namelen = strlen(name);
1298 if (strchr(name, '/')) {
1300 goto out_drop_write;
1303 if (name[0] == '.' &&
1304 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1306 goto out_drop_write;
1310 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1311 namelen, NULL, readonly, inherit);
1313 struct fd src = fdget(fd);
1314 struct inode *src_inode;
1317 goto out_drop_write;
1320 src_inode = file_inode(src.file);
1321 if (src_inode->i_sb != file_inode(file)->i_sb) {
1322 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1323 "Snapshot src from another FS");
1325 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1327 * Subvolume creation is not restricted, but snapshots
1328 * are limited to own subvolumes only
1331 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1333 * Snapshots must be made with the src_inode referring
1334 * to the subvolume inode, otherwise the permission
1335 * checking above is useless because we may have
1336 * permission on a lower directory but not the subvol
1341 ret = btrfs_mksnapshot(&file->f_path, idmap,
1343 BTRFS_I(src_inode)->root,
1349 mnt_drop_write_file(file);
1354 static noinline int btrfs_ioctl_snap_create(struct file *file,
1355 void __user *arg, int subvol)
1357 struct btrfs_ioctl_vol_args *vol_args;
1360 if (!S_ISDIR(file_inode(file)->i_mode))
1363 vol_args = memdup_user(arg, sizeof(*vol_args));
1364 if (IS_ERR(vol_args))
1365 return PTR_ERR(vol_args);
1366 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1370 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1371 vol_args->name, vol_args->fd, subvol,
1379 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1380 void __user *arg, int subvol)
1382 struct btrfs_ioctl_vol_args_v2 *vol_args;
1384 bool readonly = false;
1385 struct btrfs_qgroup_inherit *inherit = NULL;
1387 if (!S_ISDIR(file_inode(file)->i_mode))
1390 vol_args = memdup_user(arg, sizeof(*vol_args));
1391 if (IS_ERR(vol_args))
1392 return PTR_ERR(vol_args);
1393 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1397 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1402 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1404 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1405 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1407 if (vol_args->size < sizeof(*inherit) ||
1408 vol_args->size > PAGE_SIZE) {
1412 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1413 if (IS_ERR(inherit)) {
1414 ret = PTR_ERR(inherit);
1418 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1423 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1424 vol_args->name, vol_args->fd, subvol,
1435 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1438 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1439 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1446 down_read(&fs_info->subvol_sem);
1447 if (btrfs_root_readonly(root))
1448 flags |= BTRFS_SUBVOL_RDONLY;
1449 up_read(&fs_info->subvol_sem);
1451 if (copy_to_user(arg, &flags, sizeof(flags)))
1457 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1460 struct inode *inode = file_inode(file);
1461 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
1463 struct btrfs_trans_handle *trans;
1468 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1471 ret = mnt_want_write_file(file);
1475 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1477 goto out_drop_write;
1480 if (copy_from_user(&flags, arg, sizeof(flags))) {
1482 goto out_drop_write;
1485 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1487 goto out_drop_write;
1490 down_write(&fs_info->subvol_sem);
1493 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1496 root_flags = btrfs_root_flags(&root->root_item);
1497 if (flags & BTRFS_SUBVOL_RDONLY) {
1498 btrfs_set_root_flags(&root->root_item,
1499 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1502 * Block RO -> RW transition if this subvolume is involved in
1505 spin_lock(&root->root_item_lock);
1506 if (root->send_in_progress == 0) {
1507 btrfs_set_root_flags(&root->root_item,
1508 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1509 spin_unlock(&root->root_item_lock);
1511 spin_unlock(&root->root_item_lock);
1513 "Attempt to set subvolume %llu read-write during send",
1514 btrfs_root_id(root));
1520 trans = btrfs_start_transaction(root, 1);
1521 if (IS_ERR(trans)) {
1522 ret = PTR_ERR(trans);
1526 ret = btrfs_update_root(trans, fs_info->tree_root,
1527 &root->root_key, &root->root_item);
1529 btrfs_end_transaction(trans);
1533 ret = btrfs_commit_transaction(trans);
1537 btrfs_set_root_flags(&root->root_item, root_flags);
1539 up_write(&fs_info->subvol_sem);
1541 mnt_drop_write_file(file);
1546 static noinline int key_in_sk(struct btrfs_key *key,
1547 struct btrfs_ioctl_search_key *sk)
1549 struct btrfs_key test;
1552 test.objectid = sk->min_objectid;
1553 test.type = sk->min_type;
1554 test.offset = sk->min_offset;
1556 ret = btrfs_comp_cpu_keys(key, &test);
1560 test.objectid = sk->max_objectid;
1561 test.type = sk->max_type;
1562 test.offset = sk->max_offset;
1564 ret = btrfs_comp_cpu_keys(key, &test);
1570 static noinline int copy_to_sk(struct btrfs_path *path,
1571 struct btrfs_key *key,
1572 struct btrfs_ioctl_search_key *sk,
1575 unsigned long *sk_offset,
1579 struct extent_buffer *leaf;
1580 struct btrfs_ioctl_search_header sh;
1581 struct btrfs_key test;
1582 unsigned long item_off;
1583 unsigned long item_len;
1589 leaf = path->nodes[0];
1590 slot = path->slots[0];
1591 nritems = btrfs_header_nritems(leaf);
1593 if (btrfs_header_generation(leaf) > sk->max_transid) {
1597 found_transid = btrfs_header_generation(leaf);
1599 for (i = slot; i < nritems; i++) {
1600 item_off = btrfs_item_ptr_offset(leaf, i);
1601 item_len = btrfs_item_size(leaf, i);
1603 btrfs_item_key_to_cpu(leaf, key, i);
1604 if (!key_in_sk(key, sk))
1607 if (sizeof(sh) + item_len > *buf_size) {
1614 * return one empty item back for v1, which does not
1618 *buf_size = sizeof(sh) + item_len;
1623 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1628 sh.objectid = key->objectid;
1629 sh.offset = key->offset;
1630 sh.type = key->type;
1632 sh.transid = found_transid;
1635 * Copy search result header. If we fault then loop again so we
1636 * can fault in the pages and -EFAULT there if there's a
1637 * problem. Otherwise we'll fault and then copy the buffer in
1638 * properly this next time through
1640 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1645 *sk_offset += sizeof(sh);
1648 char __user *up = ubuf + *sk_offset;
1650 * Copy the item, same behavior as above, but reset the
1651 * * sk_offset so we copy the full thing again.
1653 if (read_extent_buffer_to_user_nofault(leaf, up,
1654 item_off, item_len)) {
1656 *sk_offset -= sizeof(sh);
1660 *sk_offset += item_len;
1664 if (ret) /* -EOVERFLOW from above */
1667 if (*num_found >= sk->nr_items) {
1674 test.objectid = sk->max_objectid;
1675 test.type = sk->max_type;
1676 test.offset = sk->max_offset;
1677 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1679 else if (key->offset < (u64)-1)
1681 else if (key->type < (u8)-1) {
1684 } else if (key->objectid < (u64)-1) {
1692 * 0: all items from this leaf copied, continue with next
1693 * 1: * more items can be copied, but unused buffer is too small
1694 * * all items were found
1695 * Either way, it will stops the loop which iterates to the next
1697 * -EOVERFLOW: item was to large for buffer
1698 * -EFAULT: could not copy extent buffer back to userspace
1703 static noinline int search_ioctl(struct inode *inode,
1704 struct btrfs_ioctl_search_key *sk,
1708 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1709 struct btrfs_root *root;
1710 struct btrfs_key key;
1711 struct btrfs_path *path;
1714 unsigned long sk_offset = 0;
1716 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1717 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1721 path = btrfs_alloc_path();
1725 if (sk->tree_id == 0) {
1726 /* search the root of the inode that was passed */
1727 root = btrfs_grab_root(BTRFS_I(inode)->root);
1729 root = btrfs_get_fs_root(info, sk->tree_id, true);
1731 btrfs_free_path(path);
1732 return PTR_ERR(root);
1736 key.objectid = sk->min_objectid;
1737 key.type = sk->min_type;
1738 key.offset = sk->min_offset;
1743 * Ensure that the whole user buffer is faulted in at sub-page
1744 * granularity, otherwise the loop may live-lock.
1746 if (fault_in_subpage_writeable(ubuf + sk_offset,
1747 *buf_size - sk_offset))
1750 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1756 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1757 &sk_offset, &num_found);
1758 btrfs_release_path(path);
1766 sk->nr_items = num_found;
1767 btrfs_put_root(root);
1768 btrfs_free_path(path);
1772 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1775 struct btrfs_ioctl_search_args __user *uargs = argp;
1776 struct btrfs_ioctl_search_key sk;
1780 if (!capable(CAP_SYS_ADMIN))
1783 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1786 buf_size = sizeof(uargs->buf);
1788 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1791 * In the origin implementation an overflow is handled by returning a
1792 * search header with a len of zero, so reset ret.
1794 if (ret == -EOVERFLOW)
1797 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1802 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1805 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1806 struct btrfs_ioctl_search_args_v2 args;
1809 const u64 buf_limit = SZ_16M;
1811 if (!capable(CAP_SYS_ADMIN))
1814 /* copy search header and buffer size */
1815 if (copy_from_user(&args, uarg, sizeof(args)))
1818 buf_size = args.buf_size;
1820 /* limit result size to 16MB */
1821 if (buf_size > buf_limit)
1822 buf_size = buf_limit;
1824 ret = search_ioctl(inode, &args.key, &buf_size,
1825 (char __user *)(&uarg->buf[0]));
1826 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1828 else if (ret == -EOVERFLOW &&
1829 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1836 * Search INODE_REFs to identify path name of 'dirid' directory
1837 * in a 'tree_id' tree. and sets path name to 'name'.
1839 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1840 u64 tree_id, u64 dirid, char *name)
1842 struct btrfs_root *root;
1843 struct btrfs_key key;
1849 struct btrfs_inode_ref *iref;
1850 struct extent_buffer *l;
1851 struct btrfs_path *path;
1853 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1858 path = btrfs_alloc_path();
1862 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1864 root = btrfs_get_fs_root(info, tree_id, true);
1866 ret = PTR_ERR(root);
1871 key.objectid = dirid;
1872 key.type = BTRFS_INODE_REF_KEY;
1873 key.offset = (u64)-1;
1876 ret = btrfs_search_backwards(root, &key, path);
1885 slot = path->slots[0];
1887 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1888 len = btrfs_inode_ref_name_len(l, iref);
1890 total_len += len + 1;
1892 ret = -ENAMETOOLONG;
1897 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1899 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1902 btrfs_release_path(path);
1903 key.objectid = key.offset;
1904 key.offset = (u64)-1;
1905 dirid = key.objectid;
1907 memmove(name, ptr, total_len);
1908 name[total_len] = '\0';
1911 btrfs_put_root(root);
1912 btrfs_free_path(path);
1916 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1917 struct inode *inode,
1918 struct btrfs_ioctl_ino_lookup_user_args *args)
1920 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1921 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1922 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1923 u64 dirid = args->dirid;
1924 unsigned long item_off;
1925 unsigned long item_len;
1926 struct btrfs_inode_ref *iref;
1927 struct btrfs_root_ref *rref;
1928 struct btrfs_root *root = NULL;
1929 struct btrfs_path *path;
1930 struct btrfs_key key, key2;
1931 struct extent_buffer *leaf;
1932 struct inode *temp_inode;
1939 path = btrfs_alloc_path();
1944 * If the bottom subvolume does not exist directly under upper_limit,
1945 * construct the path in from the bottom up.
1947 if (dirid != upper_limit) {
1948 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1950 root = btrfs_get_fs_root(fs_info, treeid, true);
1952 ret = PTR_ERR(root);
1956 key.objectid = dirid;
1957 key.type = BTRFS_INODE_REF_KEY;
1958 key.offset = (u64)-1;
1960 ret = btrfs_search_backwards(root, &key, path);
1968 leaf = path->nodes[0];
1969 slot = path->slots[0];
1971 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1972 len = btrfs_inode_ref_name_len(leaf, iref);
1974 total_len += len + 1;
1975 if (ptr < args->path) {
1976 ret = -ENAMETOOLONG;
1981 read_extent_buffer(leaf, ptr,
1982 (unsigned long)(iref + 1), len);
1984 /* Check the read+exec permission of this directory */
1985 ret = btrfs_previous_item(root, path, dirid,
1986 BTRFS_INODE_ITEM_KEY);
1989 } else if (ret > 0) {
1994 leaf = path->nodes[0];
1995 slot = path->slots[0];
1996 btrfs_item_key_to_cpu(leaf, &key2, slot);
1997 if (key2.objectid != dirid) {
2003 * We don't need the path anymore, so release it and
2004 * avoid deadlocks and lockdep warnings in case
2005 * btrfs_iget() needs to lookup the inode from its root
2006 * btree and lock the same leaf.
2008 btrfs_release_path(path);
2009 temp_inode = btrfs_iget(key2.objectid, root);
2010 if (IS_ERR(temp_inode)) {
2011 ret = PTR_ERR(temp_inode);
2014 ret = inode_permission(idmap, temp_inode,
2015 MAY_READ | MAY_EXEC);
2022 if (key.offset == upper_limit)
2024 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2029 key.objectid = key.offset;
2030 key.offset = (u64)-1;
2031 dirid = key.objectid;
2034 memmove(args->path, ptr, total_len);
2035 args->path[total_len] = '\0';
2036 btrfs_put_root(root);
2038 btrfs_release_path(path);
2041 /* Get the bottom subvolume's name from ROOT_REF */
2042 key.objectid = treeid;
2043 key.type = BTRFS_ROOT_REF_KEY;
2044 key.offset = args->treeid;
2045 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2048 } else if (ret > 0) {
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055 btrfs_item_key_to_cpu(leaf, &key, slot);
2057 item_off = btrfs_item_ptr_offset(leaf, slot);
2058 item_len = btrfs_item_size(leaf, slot);
2059 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2060 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2061 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2066 /* Copy subvolume's name */
2067 item_off += sizeof(struct btrfs_root_ref);
2068 item_len -= sizeof(struct btrfs_root_ref);
2069 read_extent_buffer(leaf, args->name, item_off, item_len);
2070 args->name[item_len] = 0;
2073 btrfs_put_root(root);
2075 btrfs_free_path(path);
2079 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2082 struct btrfs_ioctl_ino_lookup_args *args;
2085 args = memdup_user(argp, sizeof(*args));
2087 return PTR_ERR(args);
2090 * Unprivileged query to obtain the containing subvolume root id. The
2091 * path is reset so it's consistent with btrfs_search_path_in_tree.
2093 if (args->treeid == 0)
2094 args->treeid = btrfs_root_id(root);
2096 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2101 if (!capable(CAP_SYS_ADMIN)) {
2106 ret = btrfs_search_path_in_tree(root->fs_info,
2107 args->treeid, args->objectid,
2111 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2119 * Version of ino_lookup ioctl (unprivileged)
2121 * The main differences from ino_lookup ioctl are:
2123 * 1. Read + Exec permission will be checked using inode_permission() during
2124 * path construction. -EACCES will be returned in case of failure.
2125 * 2. Path construction will be stopped at the inode number which corresponds
2126 * to the fd with which this ioctl is called. If constructed path does not
2127 * exist under fd's inode, -EACCES will be returned.
2128 * 3. The name of bottom subvolume is also searched and filled.
2130 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2132 struct btrfs_ioctl_ino_lookup_user_args *args;
2133 struct inode *inode;
2136 args = memdup_user(argp, sizeof(*args));
2138 return PTR_ERR(args);
2140 inode = file_inode(file);
2142 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2143 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2145 * The subvolume does not exist under fd with which this is
2152 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2154 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2161 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2162 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2164 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2165 struct btrfs_fs_info *fs_info;
2166 struct btrfs_root *root;
2167 struct btrfs_path *path;
2168 struct btrfs_key key;
2169 struct btrfs_root_item *root_item;
2170 struct btrfs_root_ref *rref;
2171 struct extent_buffer *leaf;
2172 unsigned long item_off;
2173 unsigned long item_len;
2177 path = btrfs_alloc_path();
2181 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2183 btrfs_free_path(path);
2187 fs_info = BTRFS_I(inode)->root->fs_info;
2189 /* Get root_item of inode's subvolume */
2190 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2191 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2193 ret = PTR_ERR(root);
2196 root_item = &root->root_item;
2198 subvol_info->treeid = key.objectid;
2200 subvol_info->generation = btrfs_root_generation(root_item);
2201 subvol_info->flags = btrfs_root_flags(root_item);
2203 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2204 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2206 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2209 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2210 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2211 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2213 subvol_info->otransid = btrfs_root_otransid(root_item);
2214 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2215 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2217 subvol_info->stransid = btrfs_root_stransid(root_item);
2218 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2219 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2221 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2222 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2223 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2225 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2226 /* Search root tree for ROOT_BACKREF of this subvolume */
2227 key.type = BTRFS_ROOT_BACKREF_KEY;
2229 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2232 } else if (path->slots[0] >=
2233 btrfs_header_nritems(path->nodes[0])) {
2234 ret = btrfs_next_leaf(fs_info->tree_root, path);
2237 } else if (ret > 0) {
2243 leaf = path->nodes[0];
2244 slot = path->slots[0];
2245 btrfs_item_key_to_cpu(leaf, &key, slot);
2246 if (key.objectid == subvol_info->treeid &&
2247 key.type == BTRFS_ROOT_BACKREF_KEY) {
2248 subvol_info->parent_id = key.offset;
2250 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2251 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2253 item_off = btrfs_item_ptr_offset(leaf, slot)
2254 + sizeof(struct btrfs_root_ref);
2255 item_len = btrfs_item_size(leaf, slot)
2256 - sizeof(struct btrfs_root_ref);
2257 read_extent_buffer(leaf, subvol_info->name,
2258 item_off, item_len);
2265 btrfs_free_path(path);
2267 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2271 btrfs_put_root(root);
2273 btrfs_free_path(path);
2279 * Return ROOT_REF information of the subvolume containing this inode
2280 * except the subvolume name.
2282 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2285 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2286 struct btrfs_root_ref *rref;
2287 struct btrfs_path *path;
2288 struct btrfs_key key;
2289 struct extent_buffer *leaf;
2295 path = btrfs_alloc_path();
2299 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2300 if (IS_ERR(rootrefs)) {
2301 btrfs_free_path(path);
2302 return PTR_ERR(rootrefs);
2305 objectid = btrfs_root_id(root);
2306 key.objectid = objectid;
2307 key.type = BTRFS_ROOT_REF_KEY;
2308 key.offset = rootrefs->min_treeid;
2311 root = root->fs_info->tree_root;
2312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2315 } else if (path->slots[0] >=
2316 btrfs_header_nritems(path->nodes[0])) {
2317 ret = btrfs_next_leaf(root, path);
2320 } else if (ret > 0) {
2326 leaf = path->nodes[0];
2327 slot = path->slots[0];
2329 btrfs_item_key_to_cpu(leaf, &key, slot);
2330 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2335 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2340 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2341 rootrefs->rootref[found].treeid = key.offset;
2342 rootrefs->rootref[found].dirid =
2343 btrfs_root_ref_dirid(leaf, rref);
2346 ret = btrfs_next_item(root, path);
2349 } else if (ret > 0) {
2356 btrfs_free_path(path);
2358 if (!ret || ret == -EOVERFLOW) {
2359 rootrefs->num_items = found;
2360 /* update min_treeid for next search */
2362 rootrefs->min_treeid =
2363 rootrefs->rootref[found - 1].treeid + 1;
2364 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2373 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2377 struct dentry *parent = file->f_path.dentry;
2378 struct dentry *dentry;
2379 struct inode *dir = d_inode(parent);
2380 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2381 struct inode *inode;
2382 struct btrfs_root *root = BTRFS_I(dir)->root;
2383 struct btrfs_root *dest = NULL;
2384 struct btrfs_ioctl_vol_args *vol_args = NULL;
2385 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2386 struct mnt_idmap *idmap = file_mnt_idmap(file);
2387 char *subvol_name, *subvol_name_ptr = NULL;
2390 bool destroy_parent = false;
2392 /* We don't support snapshots with extent tree v2 yet. */
2393 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2395 "extent tree v2 doesn't support snapshot deletion yet");
2400 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2401 if (IS_ERR(vol_args2))
2402 return PTR_ERR(vol_args2);
2404 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2410 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2411 * name, same as v1 currently does.
2413 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2414 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2417 subvol_name = vol_args2->name;
2419 ret = mnt_want_write_file(file);
2423 struct inode *old_dir;
2425 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2430 ret = mnt_want_write_file(file);
2434 dentry = btrfs_get_dentry(fs_info->sb,
2435 BTRFS_FIRST_FREE_OBJECTID,
2436 vol_args2->subvolid, 0);
2437 if (IS_ERR(dentry)) {
2438 ret = PTR_ERR(dentry);
2439 goto out_drop_write;
2443 * Change the default parent since the subvolume being
2444 * deleted can be outside of the current mount point.
2446 parent = btrfs_get_parent(dentry);
2449 * At this point dentry->d_name can point to '/' if the
2450 * subvolume we want to destroy is outsite of the
2451 * current mount point, so we need to release the
2452 * current dentry and execute the lookup to return a new
2453 * one with ->d_name pointing to the
2454 * <mount point>/subvol_name.
2457 if (IS_ERR(parent)) {
2458 ret = PTR_ERR(parent);
2459 goto out_drop_write;
2462 dir = d_inode(parent);
2465 * If v2 was used with SPEC_BY_ID, a new parent was
2466 * allocated since the subvolume can be outside of the
2467 * current mount point. Later on we need to release this
2468 * new parent dentry.
2470 destroy_parent = true;
2473 * On idmapped mounts, deletion via subvolid is
2474 * restricted to subvolumes that are immediate
2475 * ancestors of the inode referenced by the file
2476 * descriptor in the ioctl. Otherwise the idmapping
2477 * could potentially be abused to delete subvolumes
2478 * anywhere in the filesystem the user wouldn't be able
2479 * to delete without an idmapped mount.
2481 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2486 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2487 fs_info, vol_args2->subvolid);
2488 if (IS_ERR(subvol_name_ptr)) {
2489 ret = PTR_ERR(subvol_name_ptr);
2492 /* subvol_name_ptr is already nul terminated */
2493 subvol_name = (char *)kbasename(subvol_name_ptr);
2496 vol_args = memdup_user(arg, sizeof(*vol_args));
2497 if (IS_ERR(vol_args))
2498 return PTR_ERR(vol_args);
2500 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2504 subvol_name = vol_args->name;
2506 ret = mnt_want_write_file(file);
2511 subvol_namelen = strlen(subvol_name);
2513 if (strchr(subvol_name, '/') ||
2514 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2516 goto free_subvol_name;
2519 if (!S_ISDIR(dir->i_mode)) {
2521 goto free_subvol_name;
2524 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2526 goto free_subvol_name;
2527 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2528 if (IS_ERR(dentry)) {
2529 ret = PTR_ERR(dentry);
2530 goto out_unlock_dir;
2533 if (d_really_is_negative(dentry)) {
2538 inode = d_inode(dentry);
2539 dest = BTRFS_I(inode)->root;
2540 if (!capable(CAP_SYS_ADMIN)) {
2542 * Regular user. Only allow this with a special mount
2543 * option, when the user has write+exec access to the
2544 * subvol root, and when rmdir(2) would have been
2547 * Note that this is _not_ check that the subvol is
2548 * empty or doesn't contain data that we wouldn't
2549 * otherwise be able to delete.
2551 * Users who want to delete empty subvols should try
2555 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2559 * Do not allow deletion if the parent dir is the same
2560 * as the dir to be deleted. That means the ioctl
2561 * must be called on the dentry referencing the root
2562 * of the subvol, not a random directory contained
2569 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2574 /* check if subvolume may be deleted by a user */
2575 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2579 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2584 btrfs_inode_lock(BTRFS_I(inode), 0);
2585 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2586 btrfs_inode_unlock(BTRFS_I(inode), 0);
2588 d_delete_notify(dir, dentry);
2593 btrfs_inode_unlock(BTRFS_I(dir), 0);
2595 kfree(subvol_name_ptr);
2600 mnt_drop_write_file(file);
2607 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2609 struct inode *inode = file_inode(file);
2610 struct btrfs_root *root = BTRFS_I(inode)->root;
2611 struct btrfs_ioctl_defrag_range_args range = {0};
2614 ret = mnt_want_write_file(file);
2618 if (btrfs_root_readonly(root)) {
2623 switch (inode->i_mode & S_IFMT) {
2625 if (!capable(CAP_SYS_ADMIN)) {
2629 ret = btrfs_defrag_root(root);
2633 * Note that this does not check the file descriptor for write
2634 * access. This prevents defragmenting executables that are
2635 * running and allows defrag on files open in read-only mode.
2637 if (!capable(CAP_SYS_ADMIN) &&
2638 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2644 if (copy_from_user(&range, argp, sizeof(range))) {
2648 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2652 /* compression requires us to start the IO */
2653 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2654 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2655 range.extent_thresh = (u32)-1;
2658 /* the rest are all set to zero by kzalloc */
2659 range.len = (u64)-1;
2661 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2662 &range, BTRFS_OLDEST_GENERATION, 0);
2670 mnt_drop_write_file(file);
2674 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2676 struct btrfs_ioctl_vol_args *vol_args;
2677 bool restore_op = false;
2680 if (!capable(CAP_SYS_ADMIN))
2683 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2684 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2688 if (fs_info->fs_devices->temp_fsid) {
2690 "device add not supported on cloned temp-fsid mount");
2694 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2695 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2696 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2699 * We can do the device add because we have a paused balanced,
2700 * change the exclusive op type and remember we should bring
2701 * back the paused balance
2703 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2704 btrfs_exclop_start_unlock(fs_info);
2708 vol_args = memdup_user(arg, sizeof(*vol_args));
2709 if (IS_ERR(vol_args)) {
2710 ret = PTR_ERR(vol_args);
2714 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2718 ret = btrfs_init_new_device(fs_info, vol_args->name);
2721 btrfs_info(fs_info, "disk added %s", vol_args->name);
2727 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2729 btrfs_exclop_finish(fs_info);
2733 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2735 BTRFS_DEV_LOOKUP_ARGS(args);
2736 struct inode *inode = file_inode(file);
2737 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2738 struct btrfs_ioctl_vol_args_v2 *vol_args;
2739 struct file *bdev_file = NULL;
2741 bool cancel = false;
2743 if (!capable(CAP_SYS_ADMIN))
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(vol_args))
2748 return PTR_ERR(vol_args);
2750 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2755 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2759 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2760 args.devid = vol_args->devid;
2761 } else if (!strcmp("cancel", vol_args->name)) {
2764 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2769 ret = mnt_want_write_file(file);
2773 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2778 /* Exclusive operation is now claimed */
2779 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2781 btrfs_exclop_finish(fs_info);
2784 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2785 btrfs_info(fs_info, "device deleted: id %llu",
2788 btrfs_info(fs_info, "device deleted: %s",
2792 mnt_drop_write_file(file);
2796 btrfs_put_dev_args_from_path(&args);
2801 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2803 BTRFS_DEV_LOOKUP_ARGS(args);
2804 struct inode *inode = file_inode(file);
2805 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2806 struct btrfs_ioctl_vol_args *vol_args;
2807 struct file *bdev_file = NULL;
2809 bool cancel = false;
2811 if (!capable(CAP_SYS_ADMIN))
2814 vol_args = memdup_user(arg, sizeof(*vol_args));
2815 if (IS_ERR(vol_args))
2816 return PTR_ERR(vol_args);
2818 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2822 if (!strcmp("cancel", vol_args->name)) {
2825 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2830 ret = mnt_want_write_file(file);
2834 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2837 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2839 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2840 btrfs_exclop_finish(fs_info);
2843 mnt_drop_write_file(file);
2847 btrfs_put_dev_args_from_path(&args);
2853 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2856 struct btrfs_ioctl_fs_info_args *fi_args;
2857 struct btrfs_device *device;
2858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2862 fi_args = memdup_user(arg, sizeof(*fi_args));
2863 if (IS_ERR(fi_args))
2864 return PTR_ERR(fi_args);
2866 flags_in = fi_args->flags;
2867 memset(fi_args, 0, sizeof(*fi_args));
2870 fi_args->num_devices = fs_devices->num_devices;
2872 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2873 if (device->devid > fi_args->max_id)
2874 fi_args->max_id = device->devid;
2878 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2879 fi_args->nodesize = fs_info->nodesize;
2880 fi_args->sectorsize = fs_info->sectorsize;
2881 fi_args->clone_alignment = fs_info->sectorsize;
2883 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2884 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2885 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2889 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2890 fi_args->generation = btrfs_get_fs_generation(fs_info);
2891 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2894 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2895 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2896 sizeof(fi_args->metadata_uuid));
2897 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2900 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2907 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2910 BTRFS_DEV_LOOKUP_ARGS(args);
2911 struct btrfs_ioctl_dev_info_args *di_args;
2912 struct btrfs_device *dev;
2915 di_args = memdup_user(arg, sizeof(*di_args));
2916 if (IS_ERR(di_args))
2917 return PTR_ERR(di_args);
2919 args.devid = di_args->devid;
2920 if (!btrfs_is_empty_uuid(di_args->uuid))
2921 args.uuid = di_args->uuid;
2924 dev = btrfs_find_device(fs_info->fs_devices, &args);
2930 di_args->devid = dev->devid;
2931 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2932 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2933 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2934 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2936 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2938 di_args->path[0] = '\0';
2942 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2949 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2951 struct inode *inode = file_inode(file);
2952 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2953 struct btrfs_root *root = BTRFS_I(inode)->root;
2954 struct btrfs_root *new_root;
2955 struct btrfs_dir_item *di;
2956 struct btrfs_trans_handle *trans;
2957 struct btrfs_path *path = NULL;
2958 struct btrfs_disk_key disk_key;
2959 struct fscrypt_str name = FSTR_INIT("default", 7);
2964 if (!capable(CAP_SYS_ADMIN))
2967 ret = mnt_want_write_file(file);
2971 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2977 objectid = BTRFS_FS_TREE_OBJECTID;
2979 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2980 if (IS_ERR(new_root)) {
2981 ret = PTR_ERR(new_root);
2984 if (!is_fstree(btrfs_root_id(new_root))) {
2989 path = btrfs_alloc_path();
2995 trans = btrfs_start_transaction(root, 1);
2996 if (IS_ERR(trans)) {
2997 ret = PTR_ERR(trans);
3001 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3002 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3004 if (IS_ERR_OR_NULL(di)) {
3005 btrfs_release_path(path);
3006 btrfs_end_transaction(trans);
3008 "Umm, you don't have the default diritem, this isn't going to work");
3013 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3014 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3015 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3016 btrfs_release_path(path);
3018 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3019 btrfs_end_transaction(trans);
3021 btrfs_put_root(new_root);
3022 btrfs_free_path(path);
3024 mnt_drop_write_file(file);
3028 static void get_block_group_info(struct list_head *groups_list,
3029 struct btrfs_ioctl_space_info *space)
3031 struct btrfs_block_group *block_group;
3033 space->total_bytes = 0;
3034 space->used_bytes = 0;
3036 list_for_each_entry(block_group, groups_list, list) {
3037 space->flags = block_group->flags;
3038 space->total_bytes += block_group->length;
3039 space->used_bytes += block_group->used;
3043 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3046 struct btrfs_ioctl_space_args space_args = { 0 };
3047 struct btrfs_ioctl_space_info space;
3048 struct btrfs_ioctl_space_info *dest;
3049 struct btrfs_ioctl_space_info *dest_orig;
3050 struct btrfs_ioctl_space_info __user *user_dest;
3051 struct btrfs_space_info *info;
3052 static const u64 types[] = {
3053 BTRFS_BLOCK_GROUP_DATA,
3054 BTRFS_BLOCK_GROUP_SYSTEM,
3055 BTRFS_BLOCK_GROUP_METADATA,
3056 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3064 if (copy_from_user(&space_args,
3065 (struct btrfs_ioctl_space_args __user *)arg,
3066 sizeof(space_args)))
3069 for (i = 0; i < num_types; i++) {
3070 struct btrfs_space_info *tmp;
3073 list_for_each_entry(tmp, &fs_info->space_info, list) {
3074 if (tmp->flags == types[i]) {
3083 down_read(&info->groups_sem);
3084 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3085 if (!list_empty(&info->block_groups[c]))
3088 up_read(&info->groups_sem);
3092 * Global block reserve, exported as a space_info
3096 /* space_slots == 0 means they are asking for a count */
3097 if (space_args.space_slots == 0) {
3098 space_args.total_spaces = slot_count;
3102 slot_count = min_t(u64, space_args.space_slots, slot_count);
3104 alloc_size = sizeof(*dest) * slot_count;
3106 /* we generally have at most 6 or so space infos, one for each raid
3107 * level. So, a whole page should be more than enough for everyone
3109 if (alloc_size > PAGE_SIZE)
3112 space_args.total_spaces = 0;
3113 dest = kmalloc(alloc_size, GFP_KERNEL);
3118 /* now we have a buffer to copy into */
3119 for (i = 0; i < num_types; i++) {
3120 struct btrfs_space_info *tmp;
3126 list_for_each_entry(tmp, &fs_info->space_info, list) {
3127 if (tmp->flags == types[i]) {
3135 down_read(&info->groups_sem);
3136 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3137 if (!list_empty(&info->block_groups[c])) {
3138 get_block_group_info(&info->block_groups[c],
3140 memcpy(dest, &space, sizeof(space));
3142 space_args.total_spaces++;
3148 up_read(&info->groups_sem);
3152 * Add global block reserve
3155 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3157 spin_lock(&block_rsv->lock);
3158 space.total_bytes = block_rsv->size;
3159 space.used_bytes = block_rsv->size - block_rsv->reserved;
3160 spin_unlock(&block_rsv->lock);
3161 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3162 memcpy(dest, &space, sizeof(space));
3163 space_args.total_spaces++;
3166 user_dest = (struct btrfs_ioctl_space_info __user *)
3167 (arg + sizeof(struct btrfs_ioctl_space_args));
3169 if (copy_to_user(user_dest, dest_orig, alloc_size))
3174 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3180 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3183 struct btrfs_trans_handle *trans;
3187 * Start orphan cleanup here for the given root in case it hasn't been
3188 * started already by other means. Errors are handled in the other
3189 * functions during transaction commit.
3191 btrfs_orphan_cleanup(root);
3193 trans = btrfs_attach_transaction_barrier(root);
3194 if (IS_ERR(trans)) {
3195 if (PTR_ERR(trans) != -ENOENT)
3196 return PTR_ERR(trans);
3198 /* No running transaction, don't bother */
3199 transid = btrfs_get_last_trans_committed(root->fs_info);
3202 transid = trans->transid;
3203 btrfs_commit_transaction_async(trans);
3206 if (copy_to_user(argp, &transid, sizeof(transid)))
3211 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3214 /* By default wait for the current transaction. */
3218 if (copy_from_user(&transid, argp, sizeof(transid)))
3221 return btrfs_wait_for_commit(fs_info, transid);
3224 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3226 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3227 struct btrfs_ioctl_scrub_args *sa;
3230 if (!capable(CAP_SYS_ADMIN))
3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3238 sa = memdup_user(arg, sizeof(*sa));
3242 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3247 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3248 ret = mnt_want_write_file(file);
3253 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3254 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3258 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3259 * error. This is important as it allows user space to know how much
3260 * progress scrub has done. For example, if scrub is canceled we get
3261 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3262 * space. Later user space can inspect the progress from the structure
3263 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3264 * previously (btrfs-progs does this).
3265 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3266 * then return -EFAULT to signal the structure was not copied or it may
3267 * be corrupt and unreliable due to a partial copy.
3269 if (copy_to_user(arg, sa, sizeof(*sa)))
3272 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3273 mnt_drop_write_file(file);
3279 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3281 if (!capable(CAP_SYS_ADMIN))
3284 return btrfs_scrub_cancel(fs_info);
3287 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3290 struct btrfs_ioctl_scrub_args *sa;
3293 if (!capable(CAP_SYS_ADMIN))
3296 sa = memdup_user(arg, sizeof(*sa));
3300 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3302 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3309 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3312 struct btrfs_ioctl_get_dev_stats *sa;
3315 sa = memdup_user(arg, sizeof(*sa));
3319 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3324 ret = btrfs_get_dev_stats(fs_info, sa);
3326 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3333 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3336 struct btrfs_ioctl_dev_replace_args *p;
3339 if (!capable(CAP_SYS_ADMIN))
3342 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3343 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3347 p = memdup_user(arg, sizeof(*p));
3352 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3353 if (sb_rdonly(fs_info->sb)) {
3357 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3358 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3360 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3361 btrfs_exclop_finish(fs_info);
3364 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3365 btrfs_dev_replace_status(fs_info, p);
3368 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3369 p->result = btrfs_dev_replace_cancel(fs_info);
3377 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3384 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3390 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3391 struct inode_fs_paths *ipath = NULL;
3392 struct btrfs_path *path;
3394 if (!capable(CAP_DAC_READ_SEARCH))
3397 path = btrfs_alloc_path();
3403 ipa = memdup_user(arg, sizeof(*ipa));
3410 size = min_t(u32, ipa->size, 4096);
3411 ipath = init_ipath(size, root, path);
3412 if (IS_ERR(ipath)) {
3413 ret = PTR_ERR(ipath);
3418 ret = paths_from_inode(ipa->inum, ipath);
3422 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3423 rel_ptr = ipath->fspath->val[i] -
3424 (u64)(unsigned long)ipath->fspath->val;
3425 ipath->fspath->val[i] = rel_ptr;
3428 btrfs_free_path(path);
3430 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3431 ipath->fspath, size);
3438 btrfs_free_path(path);
3445 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3446 void __user *arg, int version)
3450 struct btrfs_ioctl_logical_ino_args *loi;
3451 struct btrfs_data_container *inodes = NULL;
3452 struct btrfs_path *path = NULL;
3455 if (!capable(CAP_SYS_ADMIN))
3458 loi = memdup_user(arg, sizeof(*loi));
3460 return PTR_ERR(loi);
3463 ignore_offset = false;
3464 size = min_t(u32, loi->size, SZ_64K);
3466 /* All reserved bits must be 0 for now */
3467 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3471 /* Only accept flags we have defined so far */
3472 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3476 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3477 size = min_t(u32, loi->size, SZ_16M);
3480 inodes = init_data_container(size);
3481 if (IS_ERR(inodes)) {
3482 ret = PTR_ERR(inodes);
3486 path = btrfs_alloc_path();
3491 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3492 inodes, ignore_offset);
3493 btrfs_free_path(path);
3499 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3512 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3513 struct btrfs_ioctl_balance_args *bargs)
3515 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3517 bargs->flags = bctl->flags;
3519 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3520 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3521 if (atomic_read(&fs_info->balance_pause_req))
3522 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3523 if (atomic_read(&fs_info->balance_cancel_req))
3524 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3526 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3527 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3528 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3530 spin_lock(&fs_info->balance_lock);
3531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3532 spin_unlock(&fs_info->balance_lock);
3536 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3539 * @fs_info: the filesystem
3540 * @excl_acquired: ptr to boolean value which is set to false in case balance
3543 * Return 0 on success in which case both fs_info::balance is acquired as well
3544 * as exclusive ops are blocked. In case of failure return an error code.
3546 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3551 * Exclusive operation is locked. Three possibilities:
3552 * (1) some other op is running
3553 * (2) balance is running
3554 * (3) balance is paused -- special case (think resume)
3557 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3558 *excl_acquired = true;
3559 mutex_lock(&fs_info->balance_mutex);
3563 mutex_lock(&fs_info->balance_mutex);
3564 if (fs_info->balance_ctl) {
3565 /* This is either (2) or (3) */
3566 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3572 mutex_unlock(&fs_info->balance_mutex);
3574 * Lock released to allow other waiters to
3575 * continue, we'll reexamine the status again.
3577 mutex_lock(&fs_info->balance_mutex);
3579 if (fs_info->balance_ctl &&
3580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3582 *excl_acquired = false;
3588 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3592 mutex_unlock(&fs_info->balance_mutex);
3596 mutex_unlock(&fs_info->balance_mutex);
3597 *excl_acquired = false;
3601 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3603 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3604 struct btrfs_fs_info *fs_info = root->fs_info;
3605 struct btrfs_ioctl_balance_args *bargs;
3606 struct btrfs_balance_control *bctl;
3607 bool need_unlock = true;
3610 if (!capable(CAP_SYS_ADMIN))
3613 ret = mnt_want_write_file(file);
3617 bargs = memdup_user(arg, sizeof(*bargs));
3618 if (IS_ERR(bargs)) {
3619 ret = PTR_ERR(bargs);
3624 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3628 lockdep_assert_held(&fs_info->balance_mutex);
3630 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3631 if (!fs_info->balance_ctl) {
3636 bctl = fs_info->balance_ctl;
3637 spin_lock(&fs_info->balance_lock);
3638 bctl->flags |= BTRFS_BALANCE_RESUME;
3639 spin_unlock(&fs_info->balance_lock);
3640 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3645 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3650 if (fs_info->balance_ctl) {
3655 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3661 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3662 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3663 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3665 bctl->flags = bargs->flags;
3668 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3669 * bctl is freed in reset_balance_state, or, if restriper was paused
3670 * all the way until unmount, in free_fs_info. The flag should be
3671 * cleared after reset_balance_state.
3673 need_unlock = false;
3675 ret = btrfs_balance(fs_info, bctl, bargs);
3678 if (ret == 0 || ret == -ECANCELED) {
3679 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3685 mutex_unlock(&fs_info->balance_mutex);
3687 btrfs_exclop_finish(fs_info);
3689 mnt_drop_write_file(file);
3694 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3696 if (!capable(CAP_SYS_ADMIN))
3700 case BTRFS_BALANCE_CTL_PAUSE:
3701 return btrfs_pause_balance(fs_info);
3702 case BTRFS_BALANCE_CTL_CANCEL:
3703 return btrfs_cancel_balance(fs_info);
3709 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3712 struct btrfs_ioctl_balance_args *bargs;
3715 if (!capable(CAP_SYS_ADMIN))
3718 mutex_lock(&fs_info->balance_mutex);
3719 if (!fs_info->balance_ctl) {
3724 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3730 btrfs_update_ioctl_balance_args(fs_info, bargs);
3732 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3737 mutex_unlock(&fs_info->balance_mutex);
3741 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3743 struct inode *inode = file_inode(file);
3744 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3745 struct btrfs_ioctl_quota_ctl_args *sa;
3748 if (!capable(CAP_SYS_ADMIN))
3751 ret = mnt_want_write_file(file);
3755 sa = memdup_user(arg, sizeof(*sa));
3762 case BTRFS_QUOTA_CTL_ENABLE:
3763 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3764 down_write(&fs_info->subvol_sem);
3765 ret = btrfs_quota_enable(fs_info, sa);
3766 up_write(&fs_info->subvol_sem);
3768 case BTRFS_QUOTA_CTL_DISABLE:
3770 * Lock the cleaner mutex to prevent races with concurrent
3771 * relocation, because relocation may be building backrefs for
3772 * blocks of the quota root while we are deleting the root. This
3773 * is like dropping fs roots of deleted snapshots/subvolumes, we
3774 * need the same protection.
3776 * This also prevents races between concurrent tasks trying to
3777 * disable quotas, because we will unlock and relock
3778 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3780 * We take this here because we have the dependency of
3782 * inode_lock -> subvol_sem
3784 * because of rename. With relocation we can prealloc extents,
3785 * so that makes the dependency chain
3787 * cleaner_mutex -> inode_lock -> subvol_sem
3789 * so we must take the cleaner_mutex here before we take the
3790 * subvol_sem. The deadlock can't actually happen, but this
3793 mutex_lock(&fs_info->cleaner_mutex);
3794 down_write(&fs_info->subvol_sem);
3795 ret = btrfs_quota_disable(fs_info);
3796 up_write(&fs_info->subvol_sem);
3797 mutex_unlock(&fs_info->cleaner_mutex);
3806 mnt_drop_write_file(file);
3811 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3812 * done before any operations.
3814 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3818 mutex_lock(&fs_info->qgroup_ioctl_lock);
3819 if (!fs_info->quota_root)
3821 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3826 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3828 struct inode *inode = file_inode(file);
3829 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3830 struct btrfs_root *root = BTRFS_I(inode)->root;
3831 struct btrfs_ioctl_qgroup_assign_args *sa;
3832 struct btrfs_qgroup_list *prealloc = NULL;
3833 struct btrfs_trans_handle *trans;
3837 if (!capable(CAP_SYS_ADMIN))
3840 if (!qgroup_enabled(root->fs_info))
3843 ret = mnt_want_write_file(file);
3847 sa = memdup_user(arg, sizeof(*sa));
3854 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3861 trans = btrfs_join_transaction(root);
3862 if (IS_ERR(trans)) {
3863 ret = PTR_ERR(trans);
3868 * Prealloc ownership is moved to the relation handler, there it's used
3869 * or freed on error.
3872 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3875 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3878 /* update qgroup status and info */
3879 mutex_lock(&fs_info->qgroup_ioctl_lock);
3880 err = btrfs_run_qgroups(trans);
3881 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3884 "qgroup status update failed after %s relation, marked as inconsistent",
3885 sa->assign ? "adding" : "deleting");
3886 err = btrfs_end_transaction(trans);
3894 mnt_drop_write_file(file);
3898 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3900 struct inode *inode = file_inode(file);
3901 struct btrfs_root *root = BTRFS_I(inode)->root;
3902 struct btrfs_ioctl_qgroup_create_args *sa;
3903 struct btrfs_trans_handle *trans;
3907 if (!capable(CAP_SYS_ADMIN))
3910 if (!qgroup_enabled(root->fs_info))
3913 ret = mnt_want_write_file(file);
3917 sa = memdup_user(arg, sizeof(*sa));
3923 if (!sa->qgroupid) {
3928 if (sa->create && is_fstree(sa->qgroupid)) {
3933 trans = btrfs_join_transaction(root);
3934 if (IS_ERR(trans)) {
3935 ret = PTR_ERR(trans);
3940 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3942 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3945 err = btrfs_end_transaction(trans);
3952 mnt_drop_write_file(file);
3956 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3958 struct inode *inode = file_inode(file);
3959 struct btrfs_root *root = BTRFS_I(inode)->root;
3960 struct btrfs_ioctl_qgroup_limit_args *sa;
3961 struct btrfs_trans_handle *trans;
3966 if (!capable(CAP_SYS_ADMIN))
3969 if (!qgroup_enabled(root->fs_info))
3972 ret = mnt_want_write_file(file);
3976 sa = memdup_user(arg, sizeof(*sa));
3982 trans = btrfs_join_transaction(root);
3983 if (IS_ERR(trans)) {
3984 ret = PTR_ERR(trans);
3988 qgroupid = sa->qgroupid;
3990 /* take the current subvol as qgroup */
3991 qgroupid = btrfs_root_id(root);
3994 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3996 err = btrfs_end_transaction(trans);
4003 mnt_drop_write_file(file);
4007 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4009 struct inode *inode = file_inode(file);
4010 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4011 struct btrfs_ioctl_quota_rescan_args *qsa;
4014 if (!capable(CAP_SYS_ADMIN))
4017 if (!qgroup_enabled(fs_info))
4020 ret = mnt_want_write_file(file);
4024 qsa = memdup_user(arg, sizeof(*qsa));
4035 ret = btrfs_qgroup_rescan(fs_info);
4040 mnt_drop_write_file(file);
4044 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4047 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4049 if (!capable(CAP_SYS_ADMIN))
4052 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4054 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4057 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4063 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4066 if (!capable(CAP_SYS_ADMIN))
4069 return btrfs_qgroup_wait_for_completion(fs_info, true);
4072 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4073 struct mnt_idmap *idmap,
4074 struct btrfs_ioctl_received_subvol_args *sa)
4076 struct inode *inode = file_inode(file);
4077 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4078 struct btrfs_root *root = BTRFS_I(inode)->root;
4079 struct btrfs_root_item *root_item = &root->root_item;
4080 struct btrfs_trans_handle *trans;
4081 struct timespec64 ct = current_time(inode);
4083 int received_uuid_changed;
4085 if (!inode_owner_or_capable(idmap, inode))
4088 ret = mnt_want_write_file(file);
4092 down_write(&fs_info->subvol_sem);
4094 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4099 if (btrfs_root_readonly(root)) {
4106 * 2 - uuid items (received uuid + subvol uuid)
4108 trans = btrfs_start_transaction(root, 3);
4109 if (IS_ERR(trans)) {
4110 ret = PTR_ERR(trans);
4115 sa->rtransid = trans->transid;
4116 sa->rtime.sec = ct.tv_sec;
4117 sa->rtime.nsec = ct.tv_nsec;
4119 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4121 if (received_uuid_changed &&
4122 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4123 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4124 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4125 btrfs_root_id(root));
4126 if (ret && ret != -ENOENT) {
4127 btrfs_abort_transaction(trans, ret);
4128 btrfs_end_transaction(trans);
4132 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4133 btrfs_set_root_stransid(root_item, sa->stransid);
4134 btrfs_set_root_rtransid(root_item, sa->rtransid);
4135 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4136 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4137 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4138 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4140 ret = btrfs_update_root(trans, fs_info->tree_root,
4141 &root->root_key, &root->root_item);
4143 btrfs_end_transaction(trans);
4146 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4147 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4148 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4149 btrfs_root_id(root));
4150 if (ret < 0 && ret != -EEXIST) {
4151 btrfs_abort_transaction(trans, ret);
4152 btrfs_end_transaction(trans);
4156 ret = btrfs_commit_transaction(trans);
4158 up_write(&fs_info->subvol_sem);
4159 mnt_drop_write_file(file);
4164 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4167 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4168 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4171 args32 = memdup_user(arg, sizeof(*args32));
4173 return PTR_ERR(args32);
4175 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4181 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4182 args64->stransid = args32->stransid;
4183 args64->rtransid = args32->rtransid;
4184 args64->stime.sec = args32->stime.sec;
4185 args64->stime.nsec = args32->stime.nsec;
4186 args64->rtime.sec = args32->rtime.sec;
4187 args64->rtime.nsec = args32->rtime.nsec;
4188 args64->flags = args32->flags;
4190 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4194 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4195 args32->stransid = args64->stransid;
4196 args32->rtransid = args64->rtransid;
4197 args32->stime.sec = args64->stime.sec;
4198 args32->stime.nsec = args64->stime.nsec;
4199 args32->rtime.sec = args64->rtime.sec;
4200 args32->rtime.nsec = args64->rtime.nsec;
4201 args32->flags = args64->flags;
4203 ret = copy_to_user(arg, args32, sizeof(*args32));
4214 static long btrfs_ioctl_set_received_subvol(struct file *file,
4217 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4220 sa = memdup_user(arg, sizeof(*sa));
4224 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4229 ret = copy_to_user(arg, sa, sizeof(*sa));
4238 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4243 char label[BTRFS_LABEL_SIZE];
4245 spin_lock(&fs_info->super_lock);
4246 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4247 spin_unlock(&fs_info->super_lock);
4249 len = strnlen(label, BTRFS_LABEL_SIZE);
4251 if (len == BTRFS_LABEL_SIZE) {
4253 "label is too long, return the first %zu bytes",
4257 ret = copy_to_user(arg, label, len);
4259 return ret ? -EFAULT : 0;
4262 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4264 struct inode *inode = file_inode(file);
4265 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4266 struct btrfs_root *root = BTRFS_I(inode)->root;
4267 struct btrfs_super_block *super_block = fs_info->super_copy;
4268 struct btrfs_trans_handle *trans;
4269 char label[BTRFS_LABEL_SIZE];
4272 if (!capable(CAP_SYS_ADMIN))
4275 if (copy_from_user(label, arg, sizeof(label)))
4278 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4280 "unable to set label with more than %d bytes",
4281 BTRFS_LABEL_SIZE - 1);
4285 ret = mnt_want_write_file(file);
4289 trans = btrfs_start_transaction(root, 0);
4290 if (IS_ERR(trans)) {
4291 ret = PTR_ERR(trans);
4295 spin_lock(&fs_info->super_lock);
4296 strcpy(super_block->label, label);
4297 spin_unlock(&fs_info->super_lock);
4298 ret = btrfs_commit_transaction(trans);
4301 mnt_drop_write_file(file);
4305 #define INIT_FEATURE_FLAGS(suffix) \
4306 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4307 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4308 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4310 int btrfs_ioctl_get_supported_features(void __user *arg)
4312 static const struct btrfs_ioctl_feature_flags features[3] = {
4313 INIT_FEATURE_FLAGS(SUPP),
4314 INIT_FEATURE_FLAGS(SAFE_SET),
4315 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4318 if (copy_to_user(arg, &features, sizeof(features)))
4324 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4327 struct btrfs_super_block *super_block = fs_info->super_copy;
4328 struct btrfs_ioctl_feature_flags features;
4330 features.compat_flags = btrfs_super_compat_flags(super_block);
4331 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4332 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4334 if (copy_to_user(arg, &features, sizeof(features)))
4340 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4341 enum btrfs_feature_set set,
4342 u64 change_mask, u64 flags, u64 supported_flags,
4343 u64 safe_set, u64 safe_clear)
4345 const char *type = btrfs_feature_set_name(set);
4347 u64 disallowed, unsupported;
4348 u64 set_mask = flags & change_mask;
4349 u64 clear_mask = ~flags & change_mask;
4351 unsupported = set_mask & ~supported_flags;
4353 names = btrfs_printable_features(set, unsupported);
4356 "this kernel does not support the %s feature bit%s",
4357 names, strchr(names, ',') ? "s" : "");
4361 "this kernel does not support %s bits 0x%llx",
4366 disallowed = set_mask & ~safe_set;
4368 names = btrfs_printable_features(set, disallowed);
4371 "can't set the %s feature bit%s while mounted",
4372 names, strchr(names, ',') ? "s" : "");
4376 "can't set %s bits 0x%llx while mounted",
4381 disallowed = clear_mask & ~safe_clear;
4383 names = btrfs_printable_features(set, disallowed);
4386 "can't clear the %s feature bit%s while mounted",
4387 names, strchr(names, ',') ? "s" : "");
4391 "can't clear %s bits 0x%llx while mounted",
4399 #define check_feature(fs_info, change_mask, flags, mask_base) \
4400 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4401 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4402 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4403 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4405 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4407 struct inode *inode = file_inode(file);
4408 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4409 struct btrfs_root *root = BTRFS_I(inode)->root;
4410 struct btrfs_super_block *super_block = fs_info->super_copy;
4411 struct btrfs_ioctl_feature_flags flags[2];
4412 struct btrfs_trans_handle *trans;
4416 if (!capable(CAP_SYS_ADMIN))
4419 if (copy_from_user(flags, arg, sizeof(flags)))
4423 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4424 !flags[0].incompat_flags)
4427 ret = check_feature(fs_info, flags[0].compat_flags,
4428 flags[1].compat_flags, COMPAT);
4432 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4433 flags[1].compat_ro_flags, COMPAT_RO);
4437 ret = check_feature(fs_info, flags[0].incompat_flags,
4438 flags[1].incompat_flags, INCOMPAT);
4442 ret = mnt_want_write_file(file);
4446 trans = btrfs_start_transaction(root, 0);
4447 if (IS_ERR(trans)) {
4448 ret = PTR_ERR(trans);
4449 goto out_drop_write;
4452 spin_lock(&fs_info->super_lock);
4453 newflags = btrfs_super_compat_flags(super_block);
4454 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4455 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4456 btrfs_set_super_compat_flags(super_block, newflags);
4458 newflags = btrfs_super_compat_ro_flags(super_block);
4459 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4460 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4461 btrfs_set_super_compat_ro_flags(super_block, newflags);
4463 newflags = btrfs_super_incompat_flags(super_block);
4464 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4465 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4466 btrfs_set_super_incompat_flags(super_block, newflags);
4467 spin_unlock(&fs_info->super_lock);
4469 ret = btrfs_commit_transaction(trans);
4471 mnt_drop_write_file(file);
4476 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4478 struct btrfs_ioctl_send_args *arg;
4482 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4483 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4485 ret = copy_from_user(&args32, argp, sizeof(args32));
4488 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4491 arg->send_fd = args32.send_fd;
4492 arg->clone_sources_count = args32.clone_sources_count;
4493 arg->clone_sources = compat_ptr(args32.clone_sources);
4494 arg->parent_root = args32.parent_root;
4495 arg->flags = args32.flags;
4496 arg->version = args32.version;
4497 memcpy(arg->reserved, args32.reserved,
4498 sizeof(args32.reserved));
4503 arg = memdup_user(argp, sizeof(*arg));
4505 return PTR_ERR(arg);
4507 ret = btrfs_ioctl_send(inode, arg);
4512 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4515 struct btrfs_ioctl_encoded_io_args args = { 0 };
4516 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4519 struct iovec iovstack[UIO_FASTIOV];
4520 struct iovec *iov = iovstack;
4521 struct iov_iter iter;
4526 if (!capable(CAP_SYS_ADMIN)) {
4532 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4533 struct btrfs_ioctl_encoded_io_args_32 args32;
4535 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4537 if (copy_from_user(&args32, argp, copy_end)) {
4541 args.iov = compat_ptr(args32.iov);
4542 args.iovcnt = args32.iovcnt;
4543 args.offset = args32.offset;
4544 args.flags = args32.flags;
4549 copy_end = copy_end_kernel;
4550 if (copy_from_user(&args, argp, copy_end)) {
4555 if (args.flags != 0) {
4560 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4565 if (iov_iter_count(&iter) == 0) {
4570 ret = rw_verify_area(READ, file, &pos, args.len);
4574 init_sync_kiocb(&kiocb, file);
4577 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4579 fsnotify_access(file);
4580 if (copy_to_user(argp + copy_end,
4581 (char *)&args + copy_end_kernel,
4582 sizeof(args) - copy_end_kernel))
4590 add_rchar(current, ret);
4595 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4597 struct btrfs_ioctl_encoded_io_args args;
4598 struct iovec iovstack[UIO_FASTIOV];
4599 struct iovec *iov = iovstack;
4600 struct iov_iter iter;
4605 if (!capable(CAP_SYS_ADMIN)) {
4610 if (!(file->f_mode & FMODE_WRITE)) {
4616 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4617 struct btrfs_ioctl_encoded_io_args_32 args32;
4619 if (copy_from_user(&args32, argp, sizeof(args32))) {
4623 args.iov = compat_ptr(args32.iov);
4624 args.iovcnt = args32.iovcnt;
4625 args.offset = args32.offset;
4626 args.flags = args32.flags;
4627 args.len = args32.len;
4628 args.unencoded_len = args32.unencoded_len;
4629 args.unencoded_offset = args32.unencoded_offset;
4630 args.compression = args32.compression;
4631 args.encryption = args32.encryption;
4632 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4637 if (copy_from_user(&args, argp, sizeof(args))) {
4644 if (args.flags != 0)
4646 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4648 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4649 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4651 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4652 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4654 if (args.unencoded_offset > args.unencoded_len)
4656 if (args.len > args.unencoded_len - args.unencoded_offset)
4659 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4664 if (iov_iter_count(&iter) == 0) {
4669 ret = rw_verify_area(WRITE, file, &pos, args.len);
4673 init_sync_kiocb(&kiocb, file);
4674 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4679 file_start_write(file);
4681 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4683 fsnotify_modify(file);
4685 file_end_write(file);
4690 add_wchar(current, ret);
4695 long btrfs_ioctl(struct file *file, unsigned int
4696 cmd, unsigned long arg)
4698 struct inode *inode = file_inode(file);
4699 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4700 struct btrfs_root *root = BTRFS_I(inode)->root;
4701 void __user *argp = (void __user *)arg;
4704 case FS_IOC_GETVERSION:
4705 return btrfs_ioctl_getversion(inode, argp);
4706 case FS_IOC_GETFSLABEL:
4707 return btrfs_ioctl_get_fslabel(fs_info, argp);
4708 case FS_IOC_SETFSLABEL:
4709 return btrfs_ioctl_set_fslabel(file, argp);
4711 return btrfs_ioctl_fitrim(fs_info, argp);
4712 case BTRFS_IOC_SNAP_CREATE:
4713 return btrfs_ioctl_snap_create(file, argp, 0);
4714 case BTRFS_IOC_SNAP_CREATE_V2:
4715 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4716 case BTRFS_IOC_SUBVOL_CREATE:
4717 return btrfs_ioctl_snap_create(file, argp, 1);
4718 case BTRFS_IOC_SUBVOL_CREATE_V2:
4719 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4720 case BTRFS_IOC_SNAP_DESTROY:
4721 return btrfs_ioctl_snap_destroy(file, argp, false);
4722 case BTRFS_IOC_SNAP_DESTROY_V2:
4723 return btrfs_ioctl_snap_destroy(file, argp, true);
4724 case BTRFS_IOC_SUBVOL_GETFLAGS:
4725 return btrfs_ioctl_subvol_getflags(inode, argp);
4726 case BTRFS_IOC_SUBVOL_SETFLAGS:
4727 return btrfs_ioctl_subvol_setflags(file, argp);
4728 case BTRFS_IOC_DEFAULT_SUBVOL:
4729 return btrfs_ioctl_default_subvol(file, argp);
4730 case BTRFS_IOC_DEFRAG:
4731 return btrfs_ioctl_defrag(file, NULL);
4732 case BTRFS_IOC_DEFRAG_RANGE:
4733 return btrfs_ioctl_defrag(file, argp);
4734 case BTRFS_IOC_RESIZE:
4735 return btrfs_ioctl_resize(file, argp);
4736 case BTRFS_IOC_ADD_DEV:
4737 return btrfs_ioctl_add_dev(fs_info, argp);
4738 case BTRFS_IOC_RM_DEV:
4739 return btrfs_ioctl_rm_dev(file, argp);
4740 case BTRFS_IOC_RM_DEV_V2:
4741 return btrfs_ioctl_rm_dev_v2(file, argp);
4742 case BTRFS_IOC_FS_INFO:
4743 return btrfs_ioctl_fs_info(fs_info, argp);
4744 case BTRFS_IOC_DEV_INFO:
4745 return btrfs_ioctl_dev_info(fs_info, argp);
4746 case BTRFS_IOC_TREE_SEARCH:
4747 return btrfs_ioctl_tree_search(inode, argp);
4748 case BTRFS_IOC_TREE_SEARCH_V2:
4749 return btrfs_ioctl_tree_search_v2(inode, argp);
4750 case BTRFS_IOC_INO_LOOKUP:
4751 return btrfs_ioctl_ino_lookup(root, argp);
4752 case BTRFS_IOC_INO_PATHS:
4753 return btrfs_ioctl_ino_to_path(root, argp);
4754 case BTRFS_IOC_LOGICAL_INO:
4755 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4756 case BTRFS_IOC_LOGICAL_INO_V2:
4757 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4758 case BTRFS_IOC_SPACE_INFO:
4759 return btrfs_ioctl_space_info(fs_info, argp);
4760 case BTRFS_IOC_SYNC: {
4763 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4766 ret = btrfs_sync_fs(inode->i_sb, 1);
4768 * The transaction thread may want to do more work,
4769 * namely it pokes the cleaner kthread that will start
4770 * processing uncleaned subvols.
4772 wake_up_process(fs_info->transaction_kthread);
4775 case BTRFS_IOC_START_SYNC:
4776 return btrfs_ioctl_start_sync(root, argp);
4777 case BTRFS_IOC_WAIT_SYNC:
4778 return btrfs_ioctl_wait_sync(fs_info, argp);
4779 case BTRFS_IOC_SCRUB:
4780 return btrfs_ioctl_scrub(file, argp);
4781 case BTRFS_IOC_SCRUB_CANCEL:
4782 return btrfs_ioctl_scrub_cancel(fs_info);
4783 case BTRFS_IOC_SCRUB_PROGRESS:
4784 return btrfs_ioctl_scrub_progress(fs_info, argp);
4785 case BTRFS_IOC_BALANCE_V2:
4786 return btrfs_ioctl_balance(file, argp);
4787 case BTRFS_IOC_BALANCE_CTL:
4788 return btrfs_ioctl_balance_ctl(fs_info, arg);
4789 case BTRFS_IOC_BALANCE_PROGRESS:
4790 return btrfs_ioctl_balance_progress(fs_info, argp);
4791 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4792 return btrfs_ioctl_set_received_subvol(file, argp);
4794 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4795 return btrfs_ioctl_set_received_subvol_32(file, argp);
4797 case BTRFS_IOC_SEND:
4798 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
4799 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4800 case BTRFS_IOC_SEND_32:
4801 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
4803 case BTRFS_IOC_GET_DEV_STATS:
4804 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4805 case BTRFS_IOC_QUOTA_CTL:
4806 return btrfs_ioctl_quota_ctl(file, argp);
4807 case BTRFS_IOC_QGROUP_ASSIGN:
4808 return btrfs_ioctl_qgroup_assign(file, argp);
4809 case BTRFS_IOC_QGROUP_CREATE:
4810 return btrfs_ioctl_qgroup_create(file, argp);
4811 case BTRFS_IOC_QGROUP_LIMIT:
4812 return btrfs_ioctl_qgroup_limit(file, argp);
4813 case BTRFS_IOC_QUOTA_RESCAN:
4814 return btrfs_ioctl_quota_rescan(file, argp);
4815 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4816 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4817 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4818 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4819 case BTRFS_IOC_DEV_REPLACE:
4820 return btrfs_ioctl_dev_replace(fs_info, argp);
4821 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4822 return btrfs_ioctl_get_supported_features(argp);
4823 case BTRFS_IOC_GET_FEATURES:
4824 return btrfs_ioctl_get_features(fs_info, argp);
4825 case BTRFS_IOC_SET_FEATURES:
4826 return btrfs_ioctl_set_features(file, argp);
4827 case BTRFS_IOC_GET_SUBVOL_INFO:
4828 return btrfs_ioctl_get_subvol_info(inode, argp);
4829 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4830 return btrfs_ioctl_get_subvol_rootref(root, argp);
4831 case BTRFS_IOC_INO_LOOKUP_USER:
4832 return btrfs_ioctl_ino_lookup_user(file, argp);
4833 case FS_IOC_ENABLE_VERITY:
4834 return fsverity_ioctl_enable(file, (const void __user *)argp);
4835 case FS_IOC_MEASURE_VERITY:
4836 return fsverity_ioctl_measure(file, argp);
4837 case BTRFS_IOC_ENCODED_READ:
4838 return btrfs_ioctl_encoded_read(file, argp, false);
4839 case BTRFS_IOC_ENCODED_WRITE:
4840 return btrfs_ioctl_encoded_write(file, argp, false);
4841 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4842 case BTRFS_IOC_ENCODED_READ_32:
4843 return btrfs_ioctl_encoded_read(file, argp, true);
4844 case BTRFS_IOC_ENCODED_WRITE_32:
4845 return btrfs_ioctl_encoded_write(file, argp, true);
4852 #ifdef CONFIG_COMPAT
4853 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4856 * These all access 32-bit values anyway so no further
4857 * handling is necessary.
4860 case FS_IOC32_GETVERSION:
4861 cmd = FS_IOC_GETVERSION;
4865 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));