1 // SPDX-License-Identifier: GPL-2.0
3 * Functions for working with the Flattened Device Tree data format
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
9 #define pr_fmt(fmt) "OF: fdt: " fmt
11 #include <linux/acpi.h>
12 #include <linux/crash_dump.h>
13 #include <linux/crc32.h>
14 #include <linux/kernel.h>
15 #include <linux/initrd.h>
16 #include <linux/memblock.h>
17 #include <linux/mutex.h>
19 #include <linux/of_fdt.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
33 #include "of_private.h"
36 * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
37 * cmd_dt_S_dtb in scripts/Makefile.lib
39 extern uint8_t __dtb_empty_root_begin[];
40 extern uint8_t __dtb_empty_root_end[];
43 * of_fdt_limit_memory - limit the number of regions in the /memory node
44 * @limit: maximum entries
46 * Adjust the flattened device tree to have at most 'limit' number of
47 * memory entries in the /memory node. This function may be called
48 * any time after initial_boot_param is set.
50 void __init of_fdt_limit_memory(int limit)
55 int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells);
57 memory = fdt_path_offset(initial_boot_params, "/memory");
59 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
60 if (len > limit*cell_size) {
61 len = limit*cell_size;
62 pr_debug("Limiting number of entries to %d\n", limit);
63 fdt_setprop(initial_boot_params, memory, "reg", val,
69 bool of_fdt_device_is_available(const void *blob, unsigned long node)
71 const char *status = fdt_getprop(blob, node, "status", NULL);
76 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
82 static void *unflatten_dt_alloc(void **mem, unsigned long size,
87 *mem = PTR_ALIGN(*mem, align);
94 static void populate_properties(const void *blob,
97 struct device_node *np,
101 struct property *pp, **pprev = NULL;
103 bool has_name = false;
105 pprev = &np->properties;
106 for (cur = fdt_first_property_offset(blob, offset);
108 cur = fdt_next_property_offset(blob, cur)) {
113 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
115 pr_warn("Cannot locate property at 0x%x\n", cur);
120 pr_warn("Cannot find property name at 0x%x\n", cur);
124 if (!strcmp(pname, "name"))
127 pp = unflatten_dt_alloc(mem, sizeof(struct property),
128 __alignof__(struct property));
132 /* We accept flattened tree phandles either in
133 * ePAPR-style "phandle" properties, or the
134 * legacy "linux,phandle" properties. If both
135 * appear and have different values, things
136 * will get weird. Don't do that.
138 if (!strcmp(pname, "phandle") ||
139 !strcmp(pname, "linux,phandle")) {
141 np->phandle = be32_to_cpup(val);
144 /* And we process the "ibm,phandle" property
145 * used in pSeries dynamic device tree
148 if (!strcmp(pname, "ibm,phandle"))
149 np->phandle = be32_to_cpup(val);
151 pp->name = (char *)pname;
153 pp->value = (__be32 *)val;
158 /* With version 0x10 we may not have the name property,
159 * recreate it here from the unit name if absent
162 const char *p = nodename, *ps = p, *pa = NULL;
168 else if ((*p) == '/')
176 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
177 __alignof__(struct property));
183 memcpy(pp->value, ps, len - 1);
184 ((char *)pp->value)[len - 1] = 0;
185 pr_debug("fixed up name for %s -> %s\n",
186 nodename, (char *)pp->value);
191 static int populate_node(const void *blob,
194 struct device_node *dad,
195 struct device_node **pnp,
198 struct device_node *np;
202 pathp = fdt_get_name(blob, offset, &len);
210 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
211 __alignof__(struct device_node));
215 np->full_name = fn = ((char *)np) + sizeof(*np);
217 memcpy(fn, pathp, len);
221 np->sibling = dad->child;
226 populate_properties(blob, offset, mem, np, pathp, dryrun);
228 np->name = of_get_property(np, "name", NULL);
237 static void reverse_nodes(struct device_node *parent)
239 struct device_node *child, *next;
242 child = parent->child;
244 reverse_nodes(child);
246 child = child->sibling;
249 /* Reverse the nodes in the child list */
250 child = parent->child;
251 parent->child = NULL;
253 next = child->sibling;
255 child->sibling = parent->child;
256 parent->child = child;
262 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
263 * @blob: The parent device tree blob
264 * @mem: Memory chunk to use for allocating device nodes and properties
265 * @dad: Parent struct device_node
266 * @nodepp: The device_node tree created by the call
268 * Return: The size of unflattened device tree or error code
270 static int unflatten_dt_nodes(const void *blob,
272 struct device_node *dad,
273 struct device_node **nodepp)
275 struct device_node *root;
276 int offset = 0, depth = 0, initial_depth = 0;
277 #define FDT_MAX_DEPTH 64
278 struct device_node *nps[FDT_MAX_DEPTH];
287 * We're unflattening device sub-tree if @dad is valid. There are
288 * possibly multiple nodes in the first level of depth. We need
289 * set @depth to 1 to make fdt_next_node() happy as it bails
290 * immediately when negative @depth is found. Otherwise, the device
291 * nodes except the first one won't be unflattened successfully.
294 depth = initial_depth = 1;
300 offset >= 0 && depth >= initial_depth;
301 offset = fdt_next_node(blob, offset, &depth)) {
302 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
305 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
306 !of_fdt_device_is_available(blob, offset))
309 ret = populate_node(blob, offset, &mem, nps[depth],
310 &nps[depth+1], dryrun);
314 if (!dryrun && nodepp && !*nodepp)
315 *nodepp = nps[depth+1];
316 if (!dryrun && !root)
320 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
321 pr_err("Error %d processing FDT\n", offset);
326 * Reverse the child list. Some drivers assumes node order matches .dts
336 * __unflatten_device_tree - create tree of device_nodes from flat blob
337 * @blob: The blob to expand
338 * @dad: Parent device node
339 * @mynodes: The device_node tree created by the call
340 * @dt_alloc: An allocator that provides a virtual address to memory
341 * for the resulting tree
342 * @detached: if true set OF_DETACHED on @mynodes
344 * unflattens a device-tree, creating the tree of struct device_node. It also
345 * fills the "name" and "type" pointers of the nodes so the normal device-tree
346 * walking functions can be used.
348 * Return: NULL on failure or the memory chunk containing the unflattened
349 * device tree on success.
351 void *__unflatten_device_tree(const void *blob,
352 struct device_node *dad,
353 struct device_node **mynodes,
354 void *(*dt_alloc)(u64 size, u64 align),
364 pr_debug(" -> unflatten_device_tree()\n");
367 pr_debug("No device tree pointer\n");
371 pr_debug("Unflattening device tree:\n");
372 pr_debug("magic: %08x\n", fdt_magic(blob));
373 pr_debug("size: %08x\n", fdt_totalsize(blob));
374 pr_debug("version: %08x\n", fdt_version(blob));
376 if (fdt_check_header(blob)) {
377 pr_err("Invalid device tree blob header\n");
381 /* First pass, scan for size */
382 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
386 size = ALIGN(size, 4);
387 pr_debug(" size is %d, allocating...\n", size);
389 /* Allocate memory for the expanded device tree */
390 mem = dt_alloc(size + 4, __alignof__(struct device_node));
394 memset(mem, 0, size);
396 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
398 pr_debug(" unflattening %p...\n", mem);
400 /* Second pass, do actual unflattening */
401 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
403 if (be32_to_cpup(mem + size) != 0xdeadbeef)
404 pr_warn("End of tree marker overwritten: %08x\n",
405 be32_to_cpup(mem + size));
410 if (detached && mynodes && *mynodes) {
411 of_node_set_flag(*mynodes, OF_DETACHED);
412 pr_debug("unflattened tree is detached\n");
415 pr_debug(" <- unflatten_device_tree()\n");
419 static void *kernel_tree_alloc(u64 size, u64 align)
421 return kzalloc(size, GFP_KERNEL);
424 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
427 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
428 * @blob: Flat device tree blob
429 * @dad: Parent device node
430 * @mynodes: The device tree created by the call
432 * unflattens the device-tree passed by the firmware, creating the
433 * tree of struct device_node. It also fills the "name" and "type"
434 * pointers of the nodes so the normal device-tree walking functions
437 * Return: NULL on failure or the memory chunk containing the unflattened
438 * device tree on success.
440 void *of_fdt_unflatten_tree(const unsigned long *blob,
441 struct device_node *dad,
442 struct device_node **mynodes)
446 mutex_lock(&of_fdt_unflatten_mutex);
447 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
449 mutex_unlock(&of_fdt_unflatten_mutex);
453 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
455 /* Everything below here references initial_boot_params directly. */
456 int __initdata dt_root_addr_cells;
457 int __initdata dt_root_size_cells;
459 void *initial_boot_params __ro_after_init;
461 #ifdef CONFIG_OF_EARLY_FLATTREE
463 static u32 of_fdt_crc32;
466 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
468 * This function reserves the memory occupied by an elf core header
469 * described in the device tree. This region contains all the
470 * information about primary kernel's core image and is used by a dump
471 * capture kernel to access the system memory on primary kernel.
473 static void __init fdt_reserve_elfcorehdr(void)
475 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
478 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
479 pr_warn("elfcorehdr is overlapped\n");
483 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
485 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
486 elfcorehdr_size >> 10, elfcorehdr_addr);
490 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
492 * This function grabs memory from early allocator for device exclusive use
493 * defined in device tree structures. It should be called by arch specific code
494 * once the early allocator (i.e. memblock) has been fully activated.
496 void __init early_init_fdt_scan_reserved_mem(void)
501 if (!initial_boot_params)
504 fdt_scan_reserved_mem();
505 fdt_reserve_elfcorehdr();
507 /* Process header /memreserve/ fields */
509 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
512 memblock_reserve(base, size);
515 fdt_init_reserved_mem();
519 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
521 void __init early_init_fdt_reserve_self(void)
523 if (!initial_boot_params)
526 /* Reserve the dtb region */
527 memblock_reserve(__pa(initial_boot_params),
528 fdt_totalsize(initial_boot_params));
532 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
533 * @it: callback function
534 * @data: context data pointer
536 * This function is used to scan the flattened device-tree, it is
537 * used to extract the memory information at boot before we can
540 int __init of_scan_flat_dt(int (*it)(unsigned long node,
541 const char *uname, int depth,
545 const void *blob = initial_boot_params;
547 int offset, rc = 0, depth = -1;
552 for (offset = fdt_next_node(blob, -1, &depth);
553 offset >= 0 && depth >= 0 && !rc;
554 offset = fdt_next_node(blob, offset, &depth)) {
556 pathp = fdt_get_name(blob, offset, NULL);
557 rc = it(offset, pathp, depth, data);
563 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
564 * @parent: parent node
565 * @it: callback function
566 * @data: context data pointer
568 * This function is used to scan sub-nodes of a node.
570 int __init of_scan_flat_dt_subnodes(unsigned long parent,
571 int (*it)(unsigned long node,
576 const void *blob = initial_boot_params;
579 fdt_for_each_subnode(node, blob, parent) {
583 pathp = fdt_get_name(blob, node, NULL);
584 rc = it(node, pathp, data);
592 * of_get_flat_dt_subnode_by_name - get the subnode by given name
594 * @node: the parent node
595 * @uname: the name of subnode
596 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
599 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
601 return fdt_subnode_offset(initial_boot_params, node, uname);
605 * of_get_flat_dt_root - find the root node in the flat blob
607 unsigned long __init of_get_flat_dt_root(void)
613 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
615 * This function can be used within scan_flattened_dt callback to get
616 * access to properties
618 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
621 return fdt_getprop(initial_boot_params, node, name, size);
625 * of_fdt_is_compatible - Return true if given node from the given blob has
626 * compat in its compatible list
627 * @blob: A device tree blob
628 * @node: node to test
629 * @compat: compatible string to compare with compatible list.
631 * Return: a non-zero value on match with smaller values returned for more
632 * specific compatible values.
634 static int of_fdt_is_compatible(const void *blob,
635 unsigned long node, const char *compat)
639 unsigned long l, score = 0;
641 cp = fdt_getprop(blob, node, "compatible", &cplen);
646 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
657 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
658 * @node: node to test
659 * @compat: compatible string to compare with compatible list.
661 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
663 return of_fdt_is_compatible(initial_boot_params, node, compat);
667 * of_flat_dt_match - Return true if node matches a list of compatible values
669 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
671 unsigned int tmp, score = 0;
677 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
678 if (tmp && (score == 0 || (tmp < score)))
687 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
689 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
691 return fdt_get_phandle(initial_boot_params, node);
694 const char * __init of_flat_dt_get_machine_name(void)
697 unsigned long dt_root = of_get_flat_dt_root();
699 name = of_get_flat_dt_prop(dt_root, "model", NULL);
701 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
706 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
708 * @default_match: A machine specific ptr to return in case of no match.
709 * @get_next_compat: callback function to return next compatible match table.
711 * Iterate through machine match tables to find the best match for the machine
712 * compatible string in the FDT.
714 const void * __init of_flat_dt_match_machine(const void *default_match,
715 const void * (*get_next_compat)(const char * const**))
717 const void *data = NULL;
718 const void *best_data = default_match;
719 const char *const *compat;
720 unsigned long dt_root;
721 unsigned int best_score = ~1, score = 0;
723 dt_root = of_get_flat_dt_root();
724 while ((data = get_next_compat(&compat))) {
725 score = of_flat_dt_match(dt_root, compat);
726 if (score > 0 && score < best_score) {
735 pr_err("\n unrecognized device tree list:\n[ ");
737 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
740 printk("'%s' ", prop);
741 size -= strlen(prop) + 1;
742 prop += strlen(prop) + 1;
749 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
754 static void __early_init_dt_declare_initrd(unsigned long start,
758 * __va() is not yet available this early on some platforms. In that
759 * case, the platform uses phys_initrd_start/phys_initrd_size instead
760 * and does the VA conversion itself.
762 if (!IS_ENABLED(CONFIG_ARM64) &&
763 !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
764 initrd_start = (unsigned long)__va(start);
765 initrd_end = (unsigned long)__va(end);
766 initrd_below_start_ok = 1;
771 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
772 * @node: reference to node containing initrd location ('chosen')
774 static void __init early_init_dt_check_for_initrd(unsigned long node)
780 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
783 pr_debug("Looking for initrd properties... ");
785 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
788 start = of_read_number(prop, len/4);
790 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
793 end = of_read_number(prop, len/4);
797 __early_init_dt_declare_initrd(start, end);
798 phys_initrd_start = start;
799 phys_initrd_size = end - start;
801 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
805 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
807 * @node: reference to node containing elfcorehdr location ('chosen')
809 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
814 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
817 pr_debug("Looking for elfcorehdr property... ");
819 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
820 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
823 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
824 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
826 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
827 elfcorehdr_addr, elfcorehdr_size);
830 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
833 * The main usage of linux,usable-memory-range is for crash dump kernel.
834 * Originally, the number of usable-memory regions is one. Now there may
835 * be two regions, low region and high region.
836 * To make compatibility with existing user-space and older kdump, the low
837 * region is always the last range of linux,usable-memory-range if exist.
839 #define MAX_USABLE_RANGES 2
842 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
843 * location from flat tree
845 void __init early_init_dt_check_for_usable_mem_range(void)
847 struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
848 const __be32 *prop, *endp;
850 unsigned long node = chosen_node_offset;
855 pr_debug("Looking for usable-memory-range property... ");
857 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
858 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
861 endp = prop + (len / sizeof(__be32));
862 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
863 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
864 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
866 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
867 i, &rgn[i].base, &rgn[i].size);
870 memblock_cap_memory_range(rgn[0].base, rgn[0].size);
871 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
872 memblock_add(rgn[i].base, rgn[i].size);
875 #ifdef CONFIG_SERIAL_EARLYCON
877 int __init early_init_dt_scan_chosen_stdout(void)
880 const char *p, *q, *options = NULL;
882 const struct earlycon_id *match;
883 const void *fdt = initial_boot_params;
886 offset = fdt_path_offset(fdt, "/chosen");
888 offset = fdt_path_offset(fdt, "/chosen@0");
892 p = fdt_getprop(fdt, offset, "stdout-path", &l);
894 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
898 q = strchrnul(p, ':');
903 /* Get the node specified by stdout-path */
904 offset = fdt_path_offset_namelen(fdt, p, l);
906 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
910 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
911 if (!match->compatible[0])
914 if (fdt_node_check_compatible(fdt, offset, match->compatible))
917 ret = of_setup_earlycon(match, offset, options);
918 if (!ret || ret == -EALREADY)
926 * early_init_dt_scan_root - fetch the top level address and size cells
928 int __init early_init_dt_scan_root(void)
931 const void *fdt = initial_boot_params;
932 int node = fdt_path_offset(fdt, "/");
937 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
938 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
940 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
942 dt_root_size_cells = be32_to_cpup(prop);
943 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
945 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
947 dt_root_addr_cells = be32_to_cpup(prop);
948 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
953 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
955 const __be32 *p = *cellp;
958 return of_read_number(p, s);
962 * early_init_dt_scan_memory - Look for and parse memory nodes
964 int __init early_init_dt_scan_memory(void)
966 int node, found_memory = 0;
967 const void *fdt = initial_boot_params;
969 fdt_for_each_subnode(node, fdt, 0) {
970 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
971 const __be32 *reg, *endp;
975 /* We are scanning "memory" nodes only */
976 if (type == NULL || strcmp(type, "memory") != 0)
979 if (!of_fdt_device_is_available(fdt, node))
982 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
984 reg = of_get_flat_dt_prop(node, "reg", &l);
988 endp = reg + (l / sizeof(__be32));
989 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
991 pr_debug("memory scan node %s, reg size %d,\n",
992 fdt_get_name(fdt, node, NULL), l);
994 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
997 base = dt_mem_next_cell(dt_root_addr_cells, ®);
998 size = dt_mem_next_cell(dt_root_size_cells, ®);
1002 pr_debug(" - %llx, %llx\n", base, size);
1004 early_init_dt_add_memory_arch(base, size);
1011 if (memblock_mark_hotplug(base, size))
1012 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1016 return found_memory;
1019 int __init early_init_dt_scan_chosen(char *cmdline)
1023 const void *rng_seed;
1024 const void *fdt = initial_boot_params;
1026 node = fdt_path_offset(fdt, "/chosen");
1028 node = fdt_path_offset(fdt, "/chosen@0");
1030 /* Handle the cmdline config options even if no /chosen node */
1031 goto handle_cmdline;
1033 chosen_node_offset = node;
1035 early_init_dt_check_for_initrd(node);
1036 early_init_dt_check_for_elfcorehdr(node);
1038 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1039 if (rng_seed && l > 0) {
1040 add_bootloader_randomness(rng_seed, l);
1042 /* try to clear seed so it won't be found. */
1043 fdt_nop_property(initial_boot_params, node, "rng-seed");
1045 /* update CRC check value */
1046 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1047 fdt_totalsize(initial_boot_params));
1050 /* Retrieve command line */
1051 p = of_get_flat_dt_prop(node, "bootargs", &l);
1052 if (p != NULL && l > 0)
1053 strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1057 * CONFIG_CMDLINE is meant to be a default in case nothing else
1058 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1059 * is set in which case we override whatever was found earlier.
1061 #ifdef CONFIG_CMDLINE
1062 #if defined(CONFIG_CMDLINE_EXTEND)
1063 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1064 strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1065 #elif defined(CONFIG_CMDLINE_FORCE)
1066 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1068 /* No arguments from boot loader, use kernel's cmdl*/
1069 if (!((char *)cmdline)[0])
1070 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1072 #endif /* CONFIG_CMDLINE */
1074 pr_debug("Command line is: %s\n", (char *)cmdline);
1079 #ifndef MIN_MEMBLOCK_ADDR
1080 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1082 #ifndef MAX_MEMBLOCK_ADDR
1083 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1086 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1088 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1090 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1091 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1096 if (!PAGE_ALIGNED(base)) {
1097 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1098 base = PAGE_ALIGN(base);
1102 if (base > MAX_MEMBLOCK_ADDR) {
1103 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1108 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1109 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1110 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1111 size = MAX_MEMBLOCK_ADDR - base + 1;
1114 if (base + size < phys_offset) {
1115 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1119 if (base < phys_offset) {
1120 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1122 size -= phys_offset - base;
1125 memblock_add(base, size);
1128 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1130 void *ptr = memblock_alloc(size, align);
1133 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1134 __func__, size, align);
1139 bool __init early_init_dt_verify(void *params)
1144 /* check device tree validity */
1145 if (fdt_check_header(params))
1148 /* Setup flat device-tree pointer */
1149 initial_boot_params = params;
1150 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1151 fdt_totalsize(initial_boot_params));
1153 /* Initialize {size,address}-cells info */
1154 early_init_dt_scan_root();
1160 void __init early_init_dt_scan_nodes(void)
1164 /* Retrieve various information from the /chosen node */
1165 rc = early_init_dt_scan_chosen(boot_command_line);
1167 pr_warn("No chosen node found, continuing without\n");
1169 /* Setup memory, calling early_init_dt_add_memory_arch */
1170 early_init_dt_scan_memory();
1172 /* Handle linux,usable-memory-range property */
1173 early_init_dt_check_for_usable_mem_range();
1176 bool __init early_init_dt_scan(void *params)
1180 status = early_init_dt_verify(params);
1184 early_init_dt_scan_nodes();
1188 static void *__init copy_device_tree(void *fdt)
1193 size = fdt_totalsize(fdt);
1194 dt = early_init_dt_alloc_memory_arch(size,
1195 roundup_pow_of_two(FDT_V17_SIZE));
1198 memcpy(dt, fdt, size);
1204 * unflatten_device_tree - create tree of device_nodes from flat blob
1206 * unflattens the device-tree passed by the firmware, creating the
1207 * tree of struct device_node. It also fills the "name" and "type"
1208 * pointers of the nodes so the normal device-tree walking functions
1211 void __init unflatten_device_tree(void)
1213 void *fdt = initial_boot_params;
1215 /* Don't use the bootloader provided DTB if ACPI is enabled */
1220 * Populate an empty root node when ACPI is enabled or bootloader
1221 * doesn't provide one.
1224 fdt = (void *) __dtb_empty_root_begin;
1225 /* fdt_totalsize() will be used for copy size */
1226 if (fdt_totalsize(fdt) >
1227 __dtb_empty_root_end - __dtb_empty_root_begin) {
1228 pr_err("invalid size in dtb_empty_root\n");
1231 of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1232 fdt = copy_device_tree(fdt);
1235 __unflatten_device_tree(fdt, NULL, &of_root,
1236 early_init_dt_alloc_memory_arch, false);
1238 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1239 of_alias_scan(early_init_dt_alloc_memory_arch);
1241 unittest_unflatten_overlay_base();
1245 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1247 * Copies and unflattens the device-tree passed by the firmware, creating the
1248 * tree of struct device_node. It also fills the "name" and "type"
1249 * pointers of the nodes so the normal device-tree walking functions
1250 * can be used. This should only be used when the FDT memory has not been
1251 * reserved such is the case when the FDT is built-in to the kernel init
1252 * section. If the FDT memory is reserved already then unflatten_device_tree
1253 * should be used instead.
1255 void __init unflatten_and_copy_device_tree(void)
1257 if (initial_boot_params)
1258 initial_boot_params = copy_device_tree(initial_boot_params);
1260 unflatten_device_tree();
1264 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1265 struct bin_attribute *bin_attr,
1266 char *buf, loff_t off, size_t count)
1268 memcpy(buf, initial_boot_params + off, count);
1272 static int __init of_fdt_raw_init(void)
1274 static struct bin_attribute of_fdt_raw_attr =
1275 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1277 if (!initial_boot_params)
1280 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1281 fdt_totalsize(initial_boot_params))) {
1282 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1285 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1286 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1288 late_initcall(of_fdt_raw_init);
1291 #endif /* CONFIG_OF_EARLY_FLATTREE */