]> Git Repo - linux.git/blob - drivers/memory/emif.c
drm/v3d: Use v3d_perfmon_find()
[linux.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <[email protected]>
8  * Santosh Shilimkar <[email protected]>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:                  Whether the DDR devices attached to this EMIF
34  *                              instance are exactly same as that on EMIF1. In
35  *                              this case we can save some memory and processing
36  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
37  *                              to this EMIF - read from MR4 register. If there
38  *                              are two devices attached to this EMIF, this
39  *                              value is the maximum of the two temperature
40  *                              levels.
41  * @node:                       node in the device list
42  * @base:                       base address of memory-mapped IO registers.
43  * @dev:                        device pointer.
44  * @regs_cache:                 An array of 'struct emif_regs' that stores
45  *                              calculated register values for different
46  *                              frequencies, to avoid re-calculating them on
47  *                              each DVFS transition.
48  * @curr_regs:                  The set of register values used in the last
49  *                              frequency change (i.e. corresponding to the
50  *                              frequency in effect at the moment)
51  * @plat_data:                  Pointer to saved platform data.
52  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
53  * @np_ddr:                     Pointer to ddr device tree node
54  */
55 struct emif_data {
56         u8                              duplicate;
57         u8                              temperature_level;
58         u8                              lpmode;
59         struct list_head                node;
60         unsigned long                   irq_state;
61         void __iomem                    *base;
62         struct device                   *dev;
63         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
64         struct emif_regs                *curr_regs;
65         struct emif_platform_data       *plat_data;
66         struct dentry                   *debugfs_root;
67         struct device_node              *np_ddr;
68 };
69
70 static struct emif_data *emif1;
71 static DEFINE_SPINLOCK(emif_lock);
72 static unsigned long    irq_state;
73 static LIST_HEAD(device_list);
74
75 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
76         struct emif_regs *regs)
77 {
78         u32 type = emif->plat_data->device_info->type;
79         u32 ip_rev = emif->plat_data->ip_rev;
80
81         seq_printf(s, "EMIF register cache dump for %dMHz\n",
82                 regs->freq/1000000);
83
84         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
85         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
86         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
87         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
88
89         if (ip_rev == EMIF_4D) {
90                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
91                         regs->read_idle_ctrl_shdw_normal);
92                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
93                         regs->read_idle_ctrl_shdw_volt_ramp);
94         } else if (ip_rev == EMIF_4D5) {
95                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
96                         regs->dll_calib_ctrl_shdw_normal);
97                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
98                         regs->dll_calib_ctrl_shdw_volt_ramp);
99         }
100
101         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
102                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
103                         regs->ref_ctrl_shdw_derated);
104                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
105                         regs->sdram_tim1_shdw_derated);
106                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
107                         regs->sdram_tim3_shdw_derated);
108         }
109 }
110
111 static int emif_regdump_show(struct seq_file *s, void *unused)
112 {
113         struct emif_data        *emif   = s->private;
114         struct emif_regs        **regs_cache;
115         int                     i;
116
117         if (emif->duplicate)
118                 regs_cache = emif1->regs_cache;
119         else
120                 regs_cache = emif->regs_cache;
121
122         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
123                 do_emif_regdump_show(s, emif, regs_cache[i]);
124                 seq_putc(s, '\n');
125         }
126
127         return 0;
128 }
129
130 DEFINE_SHOW_ATTRIBUTE(emif_regdump);
131
132 static int emif_mr4_show(struct seq_file *s, void *unused)
133 {
134         struct emif_data *emif = s->private;
135
136         seq_printf(s, "MR4=%d\n", emif->temperature_level);
137         return 0;
138 }
139
140 DEFINE_SHOW_ATTRIBUTE(emif_mr4);
141
142 static void emif_debugfs_init(struct emif_data *emif)
143 {
144         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
145                 emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
146                 debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
147                                     &emif_regdump_fops);
148                 debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
149                                     &emif_mr4_fops);
150         }
151 }
152
153 static void emif_debugfs_exit(struct emif_data *emif)
154 {
155         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
156                 debugfs_remove_recursive(emif->debugfs_root);
157                 emif->debugfs_root = NULL;
158         }
159 }
160
161 /*
162  * Get bus width used by EMIF. Note that this may be different from the
163  * bus width of the DDR devices used. For instance two 16-bit DDR devices
164  * may be connected to a given CS of EMIF. In this case bus width as far
165  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
166  */
167 static u32 get_emif_bus_width(struct emif_data *emif)
168 {
169         u32             width;
170         void __iomem    *base = emif->base;
171
172         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
173                         >> NARROW_MODE_SHIFT;
174         width = width == 0 ? 32 : 16;
175
176         return width;
177 }
178
179 static void set_lpmode(struct emif_data *emif, u8 lpmode)
180 {
181         u32 temp;
182         void __iomem *base = emif->base;
183
184         /*
185          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
186          * Efficient
187          *
188          * i743 DESCRIPTION:
189          * The EMIF supports power-down state for low power. The EMIF
190          * automatically puts the SDRAM into power-down after the memory is
191          * not accessed for a defined number of cycles and the
192          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
193          * As the EMIF supports automatic output impedance calibration, a ZQ
194          * calibration long command is issued every time it exits active
195          * power-down and precharge power-down modes. The EMIF waits and
196          * blocks any other command during this calibration.
197          * The EMIF does not allow selective disabling of ZQ calibration upon
198          * exit of power-down mode. Due to very short periods of power-down
199          * cycles, ZQ calibration overhead creates bandwidth issues and
200          * increases overall system power consumption. On the other hand,
201          * issuing ZQ calibration long commands when exiting self-refresh is
202          * still required.
203          *
204          * WORKAROUND
205          * Because there is no power consumption benefit of the power-down due
206          * to the calibration and there is a performance risk, the guideline
207          * is to not allow power-down state and, therefore, to not have set
208          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
209          */
210         if ((emif->plat_data->ip_rev == EMIF_4D) &&
211             (lpmode == EMIF_LP_MODE_PWR_DN)) {
212                 WARN_ONCE(1,
213                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
214                 /* rollback LP_MODE to Self-refresh mode */
215                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
216         }
217
218         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
219         temp &= ~LP_MODE_MASK;
220         temp |= (lpmode << LP_MODE_SHIFT);
221         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
222 }
223
224 static void do_freq_update(void)
225 {
226         struct emif_data *emif;
227
228         /*
229          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
230          *
231          * i728 DESCRIPTION:
232          * The EMIF automatically puts the SDRAM into self-refresh mode
233          * after the EMIF has not performed accesses during
234          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
235          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
236          * to 0x2. If during a small window the following three events
237          * occur:
238          * - The SR_TIMING counter expires
239          * - And frequency change is requested
240          * - And OCP access is requested
241          * Then it causes instable clock on the DDR interface.
242          *
243          * WORKAROUND
244          * To avoid the occurrence of the three events, the workaround
245          * is to disable the self-refresh when requesting a frequency
246          * change. Before requesting a frequency change the software must
247          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
248          * frequency change has been done, the software can reprogram
249          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
250          */
251         list_for_each_entry(emif, &device_list, node) {
252                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
253                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
254         }
255
256         /*
257          * TODO: Do FREQ_UPDATE here when an API
258          * is available for this as part of the new
259          * clock framework
260          */
261
262         list_for_each_entry(emif, &device_list, node) {
263                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
264                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
265         }
266 }
267
268 /* Find addressing table entry based on the device's type and density */
269 static const struct lpddr2_addressing *get_addressing_table(
270         const struct ddr_device_info *device_info)
271 {
272         u32             index, type, density;
273
274         type = device_info->type;
275         density = device_info->density;
276
277         switch (type) {
278         case DDR_TYPE_LPDDR2_S4:
279                 index = density - 1;
280                 break;
281         case DDR_TYPE_LPDDR2_S2:
282                 switch (density) {
283                 case DDR_DENSITY_1Gb:
284                 case DDR_DENSITY_2Gb:
285                         index = density + 3;
286                         break;
287                 default:
288                         index = density - 1;
289                 }
290                 break;
291         default:
292                 return NULL;
293         }
294
295         return &lpddr2_jedec_addressing_table[index];
296 }
297
298 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
299                 bool cs1_used, bool cal_resistors_per_cs)
300 {
301         u32 zq = 0, val = 0;
302
303         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
304         zq |= val << ZQ_REFINTERVAL_SHIFT;
305
306         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
307         zq |= val << ZQ_ZQCL_MULT_SHIFT;
308
309         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
310         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
311
312         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
313
314         if (cal_resistors_per_cs)
315                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
316         else
317                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
318
319         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
320
321         val = cs1_used ? 1 : 0;
322         zq |= val << ZQ_CS1EN_SHIFT;
323
324         return zq;
325 }
326
327 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
328                 const struct emif_custom_configs *custom_configs, bool cs1_used,
329                 u32 sdram_io_width, u32 emif_bus_width)
330 {
331         u32 alert = 0, interval, devcnt;
332
333         if (custom_configs && (custom_configs->mask &
334                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
335                 interval = custom_configs->temp_alert_poll_interval_ms;
336         else
337                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
338
339         interval *= 1000000;                    /* Convert to ns */
340         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
341         alert |= (interval << TA_REFINTERVAL_SHIFT);
342
343         /*
344          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
345          * also to this form and subtract to get TA_DEVCNT, which is
346          * in log2(x) form.
347          */
348         emif_bus_width = __fls(emif_bus_width) - 1;
349         devcnt = emif_bus_width - sdram_io_width;
350         alert |= devcnt << TA_DEVCNT_SHIFT;
351
352         /* DEVWDT is in 'log2(x) - 3' form */
353         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
354
355         alert |= 1 << TA_SFEXITEN_SHIFT;
356         alert |= 1 << TA_CS0EN_SHIFT;
357         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
358
359         return alert;
360 }
361
362 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
363 {
364         u32 pwr_mgmt_ctrl       = 0, timeout;
365         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
366         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
367         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
368         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
369         u32 mask;
370         u8 shift;
371
372         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
373
374         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
375                 lpmode          = cust_cfgs->lpmode;
376                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
377                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
378                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
379         }
380
381         /* Timeout based on DDR frequency */
382         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
383
384         /*
385          * The value to be set in register is "log2(timeout) - 3"
386          * if timeout < 16 load 0 in register
387          * if timeout is not a power of 2, round to next highest power of 2
388          */
389         if (timeout < 16) {
390                 timeout = 0;
391         } else {
392                 if (timeout & (timeout - 1))
393                         timeout <<= 1;
394                 timeout = __fls(timeout) - 3;
395         }
396
397         switch (lpmode) {
398         case EMIF_LP_MODE_CLOCK_STOP:
399                 shift = CS_TIM_SHIFT;
400                 mask = CS_TIM_MASK;
401                 break;
402         case EMIF_LP_MODE_SELF_REFRESH:
403                 /* Workaround for errata i735 */
404                 if (timeout < 6)
405                         timeout = 6;
406
407                 shift = SR_TIM_SHIFT;
408                 mask = SR_TIM_MASK;
409                 break;
410         case EMIF_LP_MODE_PWR_DN:
411                 shift = PD_TIM_SHIFT;
412                 mask = PD_TIM_MASK;
413                 break;
414         case EMIF_LP_MODE_DISABLE:
415         default:
416                 mask = 0;
417                 shift = 0;
418                 break;
419         }
420         /* Round to maximum in case of overflow, BUT warn! */
421         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
422                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
423                        lpmode,
424                        timeout_perf,
425                        timeout_pwr,
426                        freq_threshold);
427                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
428                      timeout, mask >> shift);
429                 timeout = mask >> shift;
430         }
431
432         /* Setup required timing */
433         pwr_mgmt_ctrl = (timeout << shift) & mask;
434         /* setup a default mask for rest of the modes */
435         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
436                           ~mask;
437
438         /* No CS_TIM in EMIF_4D5 */
439         if (ip_rev == EMIF_4D5)
440                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
441
442         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
443
444         return pwr_mgmt_ctrl;
445 }
446
447 /*
448  * Get the temperature level of the EMIF instance:
449  * Reads the MR4 register of attached SDRAM parts to find out the temperature
450  * level. If there are two parts attached(one on each CS), then the temperature
451  * level for the EMIF instance is the higher of the two temperatures.
452  */
453 static void get_temperature_level(struct emif_data *emif)
454 {
455         u32             temp, temperature_level;
456         void __iomem    *base;
457
458         base = emif->base;
459
460         /* Read mode register 4 */
461         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
462         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
463         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
464                                 MR4_SDRAM_REF_RATE_SHIFT;
465
466         if (emif->plat_data->device_info->cs1_used) {
467                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
468                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
469                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
470                                 >> MR4_SDRAM_REF_RATE_SHIFT;
471                 temperature_level = max(temp, temperature_level);
472         }
473
474         /* treat everything less than nominal(3) in MR4 as nominal */
475         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
476                 temperature_level = SDRAM_TEMP_NOMINAL;
477
478         /* if we get reserved value in MR4 persist with the existing value */
479         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
480                 emif->temperature_level = temperature_level;
481 }
482
483 /*
484  * setup_temperature_sensitive_regs() - set the timings for temperature
485  * sensitive registers. This happens once at initialisation time based
486  * on the temperature at boot time and subsequently based on the temperature
487  * alert interrupt. Temperature alert can happen when the temperature
488  * increases or drops. So this function can have the effect of either
489  * derating the timings or going back to nominal values.
490  */
491 static void setup_temperature_sensitive_regs(struct emif_data *emif,
492                 struct emif_regs *regs)
493 {
494         u32             tim1, tim3, ref_ctrl, type;
495         void __iomem    *base = emif->base;
496         u32             temperature;
497
498         type = emif->plat_data->device_info->type;
499
500         tim1 = regs->sdram_tim1_shdw;
501         tim3 = regs->sdram_tim3_shdw;
502         ref_ctrl = regs->ref_ctrl_shdw;
503
504         /* No de-rating for non-lpddr2 devices */
505         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
506                 goto out;
507
508         temperature = emif->temperature_level;
509         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
510                 ref_ctrl = regs->ref_ctrl_shdw_derated;
511         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
512                 tim1 = regs->sdram_tim1_shdw_derated;
513                 tim3 = regs->sdram_tim3_shdw_derated;
514                 ref_ctrl = regs->ref_ctrl_shdw_derated;
515         }
516
517 out:
518         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
519         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
520         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
521 }
522
523 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
524 {
525         u32             old_temp_level;
526         irqreturn_t     ret = IRQ_HANDLED;
527         struct emif_custom_configs *custom_configs;
528
529         spin_lock_irqsave(&emif_lock, irq_state);
530         old_temp_level = emif->temperature_level;
531         get_temperature_level(emif);
532
533         if (unlikely(emif->temperature_level == old_temp_level)) {
534                 goto out;
535         } else if (!emif->curr_regs) {
536                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
537                 goto out;
538         }
539
540         custom_configs = emif->plat_data->custom_configs;
541
542         /*
543          * IF we detect higher than "nominal rating" from DDR sensor
544          * on an unsupported DDR part, shutdown system
545          */
546         if (custom_configs && !(custom_configs->mask &
547                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
548                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
549                         dev_err(emif->dev,
550                                 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
551                                 __func__, emif->temperature_level);
552                         /*
553                          * Temperature far too high - do kernel_power_off()
554                          * from thread context
555                          */
556                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
557                         ret = IRQ_WAKE_THREAD;
558                         goto out;
559                 }
560         }
561
562         if (emif->temperature_level < old_temp_level ||
563                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
564                 /*
565                  * Temperature coming down - defer handling to thread OR
566                  * Temperature far too high - do kernel_power_off() from
567                  * thread context
568                  */
569                 ret = IRQ_WAKE_THREAD;
570         } else {
571                 /* Temperature is going up - handle immediately */
572                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
573                 do_freq_update();
574         }
575
576 out:
577         spin_unlock_irqrestore(&emif_lock, irq_state);
578         return ret;
579 }
580
581 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
582 {
583         u32                     interrupts;
584         struct emif_data        *emif = dev_id;
585         void __iomem            *base = emif->base;
586         struct device           *dev = emif->dev;
587         irqreturn_t             ret = IRQ_HANDLED;
588
589         /* Save the status and clear it */
590         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
591         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
592
593         /*
594          * Handle temperature alert
595          * Temperature alert should be same for all ports
596          * So, it's enough to process it only for one of the ports
597          */
598         if (interrupts & TA_SYS_MASK)
599                 ret = handle_temp_alert(base, emif);
600
601         if (interrupts & ERR_SYS_MASK)
602                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
603
604         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
605                 /* Save the status and clear it */
606                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
607                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
608
609                 if (interrupts & ERR_LL_MASK)
610                         dev_err(dev, "Access error from LL port - %x\n",
611                                 interrupts);
612         }
613
614         return ret;
615 }
616
617 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
618 {
619         struct emif_data        *emif = dev_id;
620
621         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
622                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
623
624                 /* If we have Power OFF ability, use it, else try restarting */
625                 if (kernel_can_power_off()) {
626                         kernel_power_off();
627                 } else {
628                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
629                         kernel_restart("SDRAM Over-temp Emergency restart");
630                 }
631                 return IRQ_HANDLED;
632         }
633
634         spin_lock_irqsave(&emif_lock, irq_state);
635
636         if (emif->curr_regs) {
637                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
638                 do_freq_update();
639         } else {
640                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
641         }
642
643         spin_unlock_irqrestore(&emif_lock, irq_state);
644
645         return IRQ_HANDLED;
646 }
647
648 static void clear_all_interrupts(struct emif_data *emif)
649 {
650         void __iomem    *base = emif->base;
651
652         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
653                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
654         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
655                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
656                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
657 }
658
659 static void disable_and_clear_all_interrupts(struct emif_data *emif)
660 {
661         void __iomem            *base = emif->base;
662
663         /* Disable all interrupts */
664         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
665                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
666         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
667                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
668                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
669
670         /* Clear all interrupts */
671         clear_all_interrupts(emif);
672 }
673
674 static int setup_interrupts(struct emif_data *emif, u32 irq)
675 {
676         u32             interrupts, type;
677         void __iomem    *base = emif->base;
678
679         type = emif->plat_data->device_info->type;
680
681         clear_all_interrupts(emif);
682
683         /* Enable interrupts for SYS interface */
684         interrupts = EN_ERR_SYS_MASK;
685         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
686                 interrupts |= EN_TA_SYS_MASK;
687         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
688
689         /* Enable interrupts for LL interface */
690         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
691                 /* TA need not be enabled for LL */
692                 interrupts = EN_ERR_LL_MASK;
693                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
694         }
695
696         /* setup IRQ handlers */
697         return devm_request_threaded_irq(emif->dev, irq,
698                                     emif_interrupt_handler,
699                                     emif_threaded_isr,
700                                     0, dev_name(emif->dev),
701                                     emif);
702
703 }
704
705 static void emif_onetime_settings(struct emif_data *emif)
706 {
707         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
708         void __iomem                    *base = emif->base;
709         const struct lpddr2_addressing  *addressing;
710         const struct ddr_device_info    *device_info;
711
712         device_info = emif->plat_data->device_info;
713         addressing = get_addressing_table(device_info);
714
715         /*
716          * Init power management settings
717          * We don't know the frequency yet. Use a high frequency
718          * value for a conservative timeout setting
719          */
720         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
721                         emif->plat_data->ip_rev);
722         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
723         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
724
725         /* Init ZQ calibration settings */
726         zq = get_zq_config_reg(addressing, device_info->cs1_used,
727                 device_info->cal_resistors_per_cs);
728         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
729
730         /* Check temperature level temperature level*/
731         get_temperature_level(emif);
732         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
733                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
734
735         /* Init temperature polling */
736         temp_alert_cfg = get_temp_alert_config(addressing,
737                 emif->plat_data->custom_configs, device_info->cs1_used,
738                 device_info->io_width, get_emif_bus_width(emif));
739         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
740
741         /*
742          * Program external PHY control registers that are not frequency
743          * dependent
744          */
745         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
746                 return;
747         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
748         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
749         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
750         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
751         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
752         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
753         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
754         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
755         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
756         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
757         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
758         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
759         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
760         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
761         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
762         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
763         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
764         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
765         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
766         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
767         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
768 }
769
770 static void get_default_timings(struct emif_data *emif)
771 {
772         struct emif_platform_data *pd = emif->plat_data;
773
774         pd->timings             = lpddr2_jedec_timings;
775         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
776
777         dev_warn(emif->dev, "%s: using default timings\n", __func__);
778 }
779
780 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
781                 u32 ip_rev, struct device *dev)
782 {
783         int valid;
784
785         valid = (type == DDR_TYPE_LPDDR2_S4 ||
786                         type == DDR_TYPE_LPDDR2_S2)
787                 && (density >= DDR_DENSITY_64Mb
788                         && density <= DDR_DENSITY_8Gb)
789                 && (io_width >= DDR_IO_WIDTH_8
790                         && io_width <= DDR_IO_WIDTH_32);
791
792         /* Combinations of EMIF and PHY revisions that we support today */
793         switch (ip_rev) {
794         case EMIF_4D:
795                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
796                 break;
797         case EMIF_4D5:
798                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
799                 break;
800         default:
801                 valid = 0;
802         }
803
804         if (!valid)
805                 dev_err(dev, "%s: invalid DDR details\n", __func__);
806         return valid;
807 }
808
809 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
810                 struct device *dev)
811 {
812         int valid = 1;
813
814         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
815                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
816                 valid = cust_cfgs->lpmode_freq_threshold &&
817                         cust_cfgs->lpmode_timeout_performance &&
818                         cust_cfgs->lpmode_timeout_power;
819
820         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
821                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
822
823         if (!valid)
824                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
825
826         return valid;
827 }
828
829 static void of_get_custom_configs(struct device_node *np_emif,
830                 struct emif_data *emif)
831 {
832         struct emif_custom_configs      *cust_cfgs = NULL;
833         int                             len;
834         const __be32                    *lpmode, *poll_intvl;
835
836         lpmode = of_get_property(np_emif, "low-power-mode", &len);
837         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
838
839         if (lpmode || poll_intvl)
840                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
841                         GFP_KERNEL);
842
843         if (!cust_cfgs)
844                 return;
845
846         if (lpmode) {
847                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
848                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
849                 of_property_read_u32(np_emif,
850                                 "low-power-mode-timeout-performance",
851                                 &cust_cfgs->lpmode_timeout_performance);
852                 of_property_read_u32(np_emif,
853                                 "low-power-mode-timeout-power",
854                                 &cust_cfgs->lpmode_timeout_power);
855                 of_property_read_u32(np_emif,
856                                 "low-power-mode-freq-threshold",
857                                 &cust_cfgs->lpmode_freq_threshold);
858         }
859
860         if (poll_intvl) {
861                 cust_cfgs->mask |=
862                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
863                 cust_cfgs->temp_alert_poll_interval_ms =
864                                                 be32_to_cpup(poll_intvl);
865         }
866
867         if (of_find_property(np_emif, "extended-temp-part", &len))
868                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
869
870         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
871                 devm_kfree(emif->dev, cust_cfgs);
872                 return;
873         }
874
875         emif->plat_data->custom_configs = cust_cfgs;
876 }
877
878 static void of_get_ddr_info(struct device_node *np_emif,
879                 struct device_node *np_ddr,
880                 struct ddr_device_info *dev_info)
881 {
882         u32 density = 0, io_width = 0;
883         int len;
884
885         if (of_find_property(np_emif, "cs1-used", &len))
886                 dev_info->cs1_used = true;
887
888         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
889                 dev_info->cal_resistors_per_cs = true;
890
891         if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
892                 dev_info->type = DDR_TYPE_LPDDR2_S4;
893         else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
894                 dev_info->type = DDR_TYPE_LPDDR2_S2;
895
896         of_property_read_u32(np_ddr, "density", &density);
897         of_property_read_u32(np_ddr, "io-width", &io_width);
898
899         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
900         if (density & (density - 1))
901                 dev_info->density = 0;
902         else
903                 dev_info->density = __fls(density) - 5;
904
905         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
906         if (io_width & (io_width - 1))
907                 dev_info->io_width = 0;
908         else
909                 dev_info->io_width = __fls(io_width) - 1;
910 }
911
912 static struct emif_data *of_get_memory_device_details(
913                 struct device_node *np_emif, struct device *dev)
914 {
915         struct emif_data                *emif = NULL;
916         struct ddr_device_info          *dev_info = NULL;
917         struct emif_platform_data       *pd = NULL;
918         struct device_node              *np_ddr;
919         int                             len;
920
921         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
922         if (!np_ddr)
923                 goto error;
924         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
925         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
926         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
927
928         if (!emif || !pd || !dev_info) {
929                 dev_err(dev, "%s: Out of memory!!\n",
930                         __func__);
931                 goto error;
932         }
933
934         emif->plat_data         = pd;
935         pd->device_info         = dev_info;
936         emif->dev               = dev;
937         emif->np_ddr            = np_ddr;
938         emif->temperature_level = SDRAM_TEMP_NOMINAL;
939
940         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
941                 emif->plat_data->ip_rev = EMIF_4D;
942         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
943                 emif->plat_data->ip_rev = EMIF_4D5;
944
945         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
946
947         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
948                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
949
950         of_get_ddr_info(np_emif, np_ddr, dev_info);
951         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
952                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
953                         emif->dev)) {
954                 dev_err(dev, "%s: invalid device data!!\n", __func__);
955                 goto error;
956         }
957         /*
958          * For EMIF instances other than EMIF1 see if the devices connected
959          * are exactly same as on EMIF1(which is typically the case). If so,
960          * mark it as a duplicate of EMIF1. This will save some memory and
961          * computation.
962          */
963         if (emif1 && emif1->np_ddr == np_ddr) {
964                 emif->duplicate = true;
965                 goto out;
966         } else if (emif1) {
967                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
968                         __func__);
969         }
970
971         of_get_custom_configs(np_emif, emif);
972         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
973                                         emif->plat_data->device_info->type,
974                                         &emif->plat_data->timings_arr_size);
975
976         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
977         goto out;
978
979 error:
980         return NULL;
981 out:
982         return emif;
983 }
984
985 static struct emif_data *get_device_details(
986                 struct platform_device *pdev)
987 {
988         u32                             size;
989         struct emif_data                *emif = NULL;
990         struct ddr_device_info          *dev_info;
991         struct emif_custom_configs      *cust_cfgs;
992         struct emif_platform_data       *pd;
993         struct device                   *dev;
994         void                            *temp;
995
996         pd = pdev->dev.platform_data;
997         dev = &pdev->dev;
998
999         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1000                         pd->device_info->density, pd->device_info->io_width,
1001                         pd->phy_type, pd->ip_rev, dev))) {
1002                 dev_err(dev, "%s: invalid device data\n", __func__);
1003                 goto error;
1004         }
1005
1006         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1007         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1008         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1009
1010         if (!emif || !temp || !dev_info)
1011                 goto error;
1012
1013         memcpy(temp, pd, sizeof(*pd));
1014         pd = temp;
1015         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1016
1017         pd->device_info         = dev_info;
1018         emif->plat_data         = pd;
1019         emif->dev               = dev;
1020         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1021
1022         /*
1023          * For EMIF instances other than EMIF1 see if the devices connected
1024          * are exactly same as on EMIF1(which is typically the case). If so,
1025          * mark it as a duplicate of EMIF1 and skip copying timings data.
1026          * This will save some memory and some computation later.
1027          */
1028         emif->duplicate = emif1 && (memcmp(dev_info,
1029                 emif1->plat_data->device_info,
1030                 sizeof(struct ddr_device_info)) == 0);
1031
1032         if (emif->duplicate) {
1033                 pd->timings = NULL;
1034                 pd->min_tck = NULL;
1035                 goto out;
1036         } else if (emif1) {
1037                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1038                         __func__);
1039         }
1040
1041         /*
1042          * Copy custom configs - ignore allocation error, if any, as
1043          * custom_configs is not very critical
1044          */
1045         cust_cfgs = pd->custom_configs;
1046         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1047                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1048                 if (temp)
1049                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1050                 pd->custom_configs = temp;
1051         }
1052
1053         /*
1054          * Copy timings and min-tck values from platform data. If it is not
1055          * available or if memory allocation fails, use JEDEC defaults
1056          */
1057         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1058         if (pd->timings) {
1059                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1060                 if (temp) {
1061                         memcpy(temp, pd->timings, size);
1062                         pd->timings = temp;
1063                 } else {
1064                         get_default_timings(emif);
1065                 }
1066         } else {
1067                 get_default_timings(emif);
1068         }
1069
1070         if (pd->min_tck) {
1071                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1072                 if (temp) {
1073                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1074                         pd->min_tck = temp;
1075                 } else {
1076                         pd->min_tck = &lpddr2_jedec_min_tck;
1077                 }
1078         } else {
1079                 pd->min_tck = &lpddr2_jedec_min_tck;
1080         }
1081
1082 out:
1083         return emif;
1084
1085 error:
1086         return NULL;
1087 }
1088
1089 static int emif_probe(struct platform_device *pdev)
1090 {
1091         struct emif_data        *emif;
1092         int                     irq, ret;
1093
1094         if (pdev->dev.of_node)
1095                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1096         else
1097                 emif = get_device_details(pdev);
1098
1099         if (!emif) {
1100                 pr_err("%s: error getting device data\n", __func__);
1101                 goto error;
1102         }
1103
1104         list_add(&emif->node, &device_list);
1105
1106         /* Save pointers to each other in emif and device structures */
1107         emif->dev = &pdev->dev;
1108         platform_set_drvdata(pdev, emif);
1109
1110         emif->base = devm_platform_ioremap_resource(pdev, 0);
1111         if (IS_ERR(emif->base))
1112                 goto error;
1113
1114         irq = platform_get_irq(pdev, 0);
1115         if (irq < 0)
1116                 goto error;
1117
1118         emif_onetime_settings(emif);
1119         emif_debugfs_init(emif);
1120         disable_and_clear_all_interrupts(emif);
1121         ret = setup_interrupts(emif, irq);
1122         if (ret)
1123                 goto error;
1124
1125         /* One-time actions taken on probing the first device */
1126         if (!emif1) {
1127                 emif1 = emif;
1128
1129                 /*
1130                  * TODO: register notifiers for frequency and voltage
1131                  * change here once the respective frameworks are
1132                  * available
1133                  */
1134         }
1135
1136         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1137                 __func__, emif->base, irq);
1138
1139         return 0;
1140 error:
1141         return -ENODEV;
1142 }
1143
1144 static void emif_remove(struct platform_device *pdev)
1145 {
1146         struct emif_data *emif = platform_get_drvdata(pdev);
1147
1148         emif_debugfs_exit(emif);
1149 }
1150
1151 static void emif_shutdown(struct platform_device *pdev)
1152 {
1153         struct emif_data        *emif = platform_get_drvdata(pdev);
1154
1155         disable_and_clear_all_interrupts(emif);
1156 }
1157
1158 #if defined(CONFIG_OF)
1159 static const struct of_device_id emif_of_match[] = {
1160                 { .compatible = "ti,emif-4d" },
1161                 { .compatible = "ti,emif-4d5" },
1162                 {},
1163 };
1164 MODULE_DEVICE_TABLE(of, emif_of_match);
1165 #endif
1166
1167 static struct platform_driver emif_driver = {
1168         .probe          = emif_probe,
1169         .remove_new     = emif_remove,
1170         .shutdown       = emif_shutdown,
1171         .driver = {
1172                 .name = "emif",
1173                 .of_match_table = of_match_ptr(emif_of_match),
1174         },
1175 };
1176
1177 module_platform_driver(emif_driver);
1178
1179 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1180 MODULE_LICENSE("GPL");
1181 MODULE_ALIAS("platform:emif");
1182 MODULE_AUTHOR("Texas Instruments Inc");
This page took 0.095773 seconds and 4 git commands to generate.