]> Git Repo - linux.git/blob - drivers/md/raid10.c
drm/v3d: Use v3d_perfmon_find()
[linux.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74                                 int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78
79 #include "raid1-10.c"
80
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83         do { \
84                 write_sequnlock_irq(&(conf)->resync_lock); \
85                 cmd; \
86         } while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91                        cmd_after(conf))
92
93 #define wait_event_barrier(conf, cond) \
94         wait_event_barrier_cmd(conf, cond, NULL_CMD)
95
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102         return get_resync_pages(bio)->raid_bio;
103 }
104
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107         struct r10conf *conf = data;
108         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109
110         /* allocate a r10bio with room for raid_disks entries in the
111          * bios array */
112         return kzalloc(size, gfp_flags);
113 }
114
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct r10conf *conf = data;
133         struct r10bio *r10_bio;
134         struct bio *bio;
135         int j;
136         int nalloc, nalloc_rp;
137         struct resync_pages *rps;
138
139         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140         if (!r10_bio)
141                 return NULL;
142
143         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145                 nalloc = conf->copies; /* resync */
146         else
147                 nalloc = 2; /* recovery */
148
149         /* allocate once for all bios */
150         if (!conf->have_replacement)
151                 nalloc_rp = nalloc;
152         else
153                 nalloc_rp = nalloc * 2;
154         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155         if (!rps)
156                 goto out_free_r10bio;
157
158         /*
159          * Allocate bios.
160          */
161         for (j = nalloc ; j-- ; ) {
162                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163                 if (!bio)
164                         goto out_free_bio;
165                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166                 r10_bio->devs[j].bio = bio;
167                 if (!conf->have_replacement)
168                         continue;
169                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170                 if (!bio)
171                         goto out_free_bio;
172                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173                 r10_bio->devs[j].repl_bio = bio;
174         }
175         /*
176          * Allocate RESYNC_PAGES data pages and attach them
177          * where needed.
178          */
179         for (j = 0; j < nalloc; j++) {
180                 struct bio *rbio = r10_bio->devs[j].repl_bio;
181                 struct resync_pages *rp, *rp_repl;
182
183                 rp = &rps[j];
184                 if (rbio)
185                         rp_repl = &rps[nalloc + j];
186
187                 bio = r10_bio->devs[j].bio;
188
189                 if (!j || test_bit(MD_RECOVERY_SYNC,
190                                    &conf->mddev->recovery)) {
191                         if (resync_alloc_pages(rp, gfp_flags))
192                                 goto out_free_pages;
193                 } else {
194                         memcpy(rp, &rps[0], sizeof(*rp));
195                         resync_get_all_pages(rp);
196                 }
197
198                 rp->raid_bio = r10_bio;
199                 bio->bi_private = rp;
200                 if (rbio) {
201                         memcpy(rp_repl, rp, sizeof(*rp));
202                         rbio->bi_private = rp_repl;
203                 }
204         }
205
206         return r10_bio;
207
208 out_free_pages:
209         while (--j >= 0)
210                 resync_free_pages(&rps[j]);
211
212         j = 0;
213 out_free_bio:
214         for ( ; j < nalloc; j++) {
215                 if (r10_bio->devs[j].bio)
216                         bio_uninit(r10_bio->devs[j].bio);
217                 kfree(r10_bio->devs[j].bio);
218                 if (r10_bio->devs[j].repl_bio)
219                         bio_uninit(r10_bio->devs[j].repl_bio);
220                 kfree(r10_bio->devs[j].repl_bio);
221         }
222         kfree(rps);
223 out_free_r10bio:
224         rbio_pool_free(r10_bio, conf);
225         return NULL;
226 }
227
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230         struct r10conf *conf = data;
231         struct r10bio *r10bio = __r10_bio;
232         int j;
233         struct resync_pages *rp = NULL;
234
235         for (j = conf->copies; j--; ) {
236                 struct bio *bio = r10bio->devs[j].bio;
237
238                 if (bio) {
239                         rp = get_resync_pages(bio);
240                         resync_free_pages(rp);
241                         bio_uninit(bio);
242                         kfree(bio);
243                 }
244
245                 bio = r10bio->devs[j].repl_bio;
246                 if (bio) {
247                         bio_uninit(bio);
248                         kfree(bio);
249                 }
250         }
251
252         /* resync pages array stored in the 1st bio's .bi_private */
253         kfree(rp);
254
255         rbio_pool_free(r10bio, conf);
256 }
257
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260         int i;
261
262         for (i = 0; i < conf->geo.raid_disks; i++) {
263                 struct bio **bio = & r10_bio->devs[i].bio;
264                 if (!BIO_SPECIAL(*bio))
265                         bio_put(*bio);
266                 *bio = NULL;
267                 bio = &r10_bio->devs[i].repl_bio;
268                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269                         bio_put(*bio);
270                 *bio = NULL;
271         }
272 }
273
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276         struct r10conf *conf = r10_bio->mddev->private;
277
278         put_all_bios(conf, r10_bio);
279         mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281
282 static void put_buf(struct r10bio *r10_bio)
283 {
284         struct r10conf *conf = r10_bio->mddev->private;
285
286         mempool_free(r10_bio, &conf->r10buf_pool);
287
288         lower_barrier(conf);
289 }
290
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293         if (wq_has_sleeper(&conf->wait_barrier))
294                 wake_up(&conf->wait_barrier);
295 }
296
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299         unsigned long flags;
300         struct mddev *mddev = r10_bio->mddev;
301         struct r10conf *conf = mddev->private;
302
303         spin_lock_irqsave(&conf->device_lock, flags);
304         list_add(&r10_bio->retry_list, &conf->retry_list);
305         conf->nr_queued ++;
306         spin_unlock_irqrestore(&conf->device_lock, flags);
307
308         /* wake up frozen array... */
309         wake_up(&conf->wait_barrier);
310
311         md_wakeup_thread(mddev->thread);
312 }
313
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321         struct bio *bio = r10_bio->master_bio;
322         struct r10conf *conf = r10_bio->mddev->private;
323
324         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325                 bio->bi_status = BLK_STS_IOERR;
326
327         bio_endio(bio);
328         /*
329          * Wake up any possible resync thread that waits for the device
330          * to go idle.
331          */
332         allow_barrier(conf);
333
334         free_r10bio(r10_bio);
335 }
336
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342         struct r10conf *conf = r10_bio->mddev->private;
343
344         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345                 r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352                          struct bio *bio, int *slotp, int *replp)
353 {
354         int slot;
355         int repl = 0;
356
357         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358                 if (r10_bio->devs[slot].bio == bio)
359                         break;
360                 if (r10_bio->devs[slot].repl_bio == bio) {
361                         repl = 1;
362                         break;
363                 }
364         }
365
366         update_head_pos(slot, r10_bio);
367
368         if (slotp)
369                 *slotp = slot;
370         if (replp)
371                 *replp = repl;
372         return r10_bio->devs[slot].devnum;
373 }
374
375 static void raid10_end_read_request(struct bio *bio)
376 {
377         int uptodate = !bio->bi_status;
378         struct r10bio *r10_bio = bio->bi_private;
379         int slot;
380         struct md_rdev *rdev;
381         struct r10conf *conf = r10_bio->mddev->private;
382
383         slot = r10_bio->read_slot;
384         rdev = r10_bio->devs[slot].rdev;
385         /*
386          * this branch is our 'one mirror IO has finished' event handler:
387          */
388         update_head_pos(slot, r10_bio);
389
390         if (uptodate) {
391                 /*
392                  * Set R10BIO_Uptodate in our master bio, so that
393                  * we will return a good error code to the higher
394                  * levels even if IO on some other mirrored buffer fails.
395                  *
396                  * The 'master' represents the composite IO operation to
397                  * user-side. So if something waits for IO, then it will
398                  * wait for the 'master' bio.
399                  */
400                 set_bit(R10BIO_Uptodate, &r10_bio->state);
401         } else {
402                 /* If all other devices that store this block have
403                  * failed, we want to return the error upwards rather
404                  * than fail the last device.  Here we redefine
405                  * "uptodate" to mean "Don't want to retry"
406                  */
407                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408                              rdev->raid_disk))
409                         uptodate = 1;
410         }
411         if (uptodate) {
412                 raid_end_bio_io(r10_bio);
413                 rdev_dec_pending(rdev, conf->mddev);
414         } else {
415                 /*
416                  * oops, read error - keep the refcount on the rdev
417                  */
418                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419                                    mdname(conf->mddev),
420                                    rdev->bdev,
421                                    (unsigned long long)r10_bio->sector);
422                 set_bit(R10BIO_ReadError, &r10_bio->state);
423                 reschedule_retry(r10_bio);
424         }
425 }
426
427 static void close_write(struct r10bio *r10_bio)
428 {
429         /* clear the bitmap if all writes complete successfully */
430         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
431                            r10_bio->sectors,
432                            !test_bit(R10BIO_Degraded, &r10_bio->state),
433                            0);
434         md_write_end(r10_bio->mddev);
435 }
436
437 static void one_write_done(struct r10bio *r10_bio)
438 {
439         if (atomic_dec_and_test(&r10_bio->remaining)) {
440                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
441                         reschedule_retry(r10_bio);
442                 else {
443                         close_write(r10_bio);
444                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
445                                 reschedule_retry(r10_bio);
446                         else
447                                 raid_end_bio_io(r10_bio);
448                 }
449         }
450 }
451
452 static void raid10_end_write_request(struct bio *bio)
453 {
454         struct r10bio *r10_bio = bio->bi_private;
455         int dev;
456         int dec_rdev = 1;
457         struct r10conf *conf = r10_bio->mddev->private;
458         int slot, repl;
459         struct md_rdev *rdev = NULL;
460         struct bio *to_put = NULL;
461         bool discard_error;
462
463         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
464
465         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
466
467         if (repl)
468                 rdev = conf->mirrors[dev].replacement;
469         if (!rdev) {
470                 smp_rmb();
471                 repl = 0;
472                 rdev = conf->mirrors[dev].rdev;
473         }
474         /*
475          * this branch is our 'one mirror IO has finished' event handler:
476          */
477         if (bio->bi_status && !discard_error) {
478                 if (repl)
479                         /* Never record new bad blocks to replacement,
480                          * just fail it.
481                          */
482                         md_error(rdev->mddev, rdev);
483                 else {
484                         set_bit(WriteErrorSeen, &rdev->flags);
485                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
486                                 set_bit(MD_RECOVERY_NEEDED,
487                                         &rdev->mddev->recovery);
488
489                         dec_rdev = 0;
490                         if (test_bit(FailFast, &rdev->flags) &&
491                             (bio->bi_opf & MD_FAILFAST)) {
492                                 md_error(rdev->mddev, rdev);
493                         }
494
495                         /*
496                          * When the device is faulty, it is not necessary to
497                          * handle write error.
498                          */
499                         if (!test_bit(Faulty, &rdev->flags))
500                                 set_bit(R10BIO_WriteError, &r10_bio->state);
501                         else {
502                                 /* Fail the request */
503                                 set_bit(R10BIO_Degraded, &r10_bio->state);
504                                 r10_bio->devs[slot].bio = NULL;
505                                 to_put = bio;
506                                 dec_rdev = 1;
507                         }
508                 }
509         } else {
510                 /*
511                  * Set R10BIO_Uptodate in our master bio, so that
512                  * we will return a good error code for to the higher
513                  * levels even if IO on some other mirrored buffer fails.
514                  *
515                  * The 'master' represents the composite IO operation to
516                  * user-side. So if something waits for IO, then it will
517                  * wait for the 'master' bio.
518                  *
519                  * Do not set R10BIO_Uptodate if the current device is
520                  * rebuilding or Faulty. This is because we cannot use
521                  * such device for properly reading the data back (we could
522                  * potentially use it, if the current write would have felt
523                  * before rdev->recovery_offset, but for simplicity we don't
524                  * check this here.
525                  */
526                 if (test_bit(In_sync, &rdev->flags) &&
527                     !test_bit(Faulty, &rdev->flags))
528                         set_bit(R10BIO_Uptodate, &r10_bio->state);
529
530                 /* Maybe we can clear some bad blocks. */
531                 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
532                                       r10_bio->sectors) &&
533                     !discard_error) {
534                         bio_put(bio);
535                         if (repl)
536                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537                         else
538                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
539                         dec_rdev = 0;
540                         set_bit(R10BIO_MadeGood, &r10_bio->state);
541                 }
542         }
543
544         /*
545          *
546          * Let's see if all mirrored write operations have finished
547          * already.
548          */
549         one_write_done(r10_bio);
550         if (dec_rdev)
551                 rdev_dec_pending(rdev, conf->mddev);
552         if (to_put)
553                 bio_put(to_put);
554 }
555
556 /*
557  * RAID10 layout manager
558  * As well as the chunksize and raid_disks count, there are two
559  * parameters: near_copies and far_copies.
560  * near_copies * far_copies must be <= raid_disks.
561  * Normally one of these will be 1.
562  * If both are 1, we get raid0.
563  * If near_copies == raid_disks, we get raid1.
564  *
565  * Chunks are laid out in raid0 style with near_copies copies of the
566  * first chunk, followed by near_copies copies of the next chunk and
567  * so on.
568  * If far_copies > 1, then after 1/far_copies of the array has been assigned
569  * as described above, we start again with a device offset of near_copies.
570  * So we effectively have another copy of the whole array further down all
571  * the drives, but with blocks on different drives.
572  * With this layout, and block is never stored twice on the one device.
573  *
574  * raid10_find_phys finds the sector offset of a given virtual sector
575  * on each device that it is on.
576  *
577  * raid10_find_virt does the reverse mapping, from a device and a
578  * sector offset to a virtual address
579  */
580
581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582 {
583         int n,f;
584         sector_t sector;
585         sector_t chunk;
586         sector_t stripe;
587         int dev;
588         int slot = 0;
589         int last_far_set_start, last_far_set_size;
590
591         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592         last_far_set_start *= geo->far_set_size;
593
594         last_far_set_size = geo->far_set_size;
595         last_far_set_size += (geo->raid_disks % geo->far_set_size);
596
597         /* now calculate first sector/dev */
598         chunk = r10bio->sector >> geo->chunk_shift;
599         sector = r10bio->sector & geo->chunk_mask;
600
601         chunk *= geo->near_copies;
602         stripe = chunk;
603         dev = sector_div(stripe, geo->raid_disks);
604         if (geo->far_offset)
605                 stripe *= geo->far_copies;
606
607         sector += stripe << geo->chunk_shift;
608
609         /* and calculate all the others */
610         for (n = 0; n < geo->near_copies; n++) {
611                 int d = dev;
612                 int set;
613                 sector_t s = sector;
614                 r10bio->devs[slot].devnum = d;
615                 r10bio->devs[slot].addr = s;
616                 slot++;
617
618                 for (f = 1; f < geo->far_copies; f++) {
619                         set = d / geo->far_set_size;
620                         d += geo->near_copies;
621
622                         if ((geo->raid_disks % geo->far_set_size) &&
623                             (d > last_far_set_start)) {
624                                 d -= last_far_set_start;
625                                 d %= last_far_set_size;
626                                 d += last_far_set_start;
627                         } else {
628                                 d %= geo->far_set_size;
629                                 d += geo->far_set_size * set;
630                         }
631                         s += geo->stride;
632                         r10bio->devs[slot].devnum = d;
633                         r10bio->devs[slot].addr = s;
634                         slot++;
635                 }
636                 dev++;
637                 if (dev >= geo->raid_disks) {
638                         dev = 0;
639                         sector += (geo->chunk_mask + 1);
640                 }
641         }
642 }
643
644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645 {
646         struct geom *geo = &conf->geo;
647
648         if (conf->reshape_progress != MaxSector &&
649             ((r10bio->sector >= conf->reshape_progress) !=
650              conf->mddev->reshape_backwards)) {
651                 set_bit(R10BIO_Previous, &r10bio->state);
652                 geo = &conf->prev;
653         } else
654                 clear_bit(R10BIO_Previous, &r10bio->state);
655
656         __raid10_find_phys(geo, r10bio);
657 }
658
659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660 {
661         sector_t offset, chunk, vchunk;
662         /* Never use conf->prev as this is only called during resync
663          * or recovery, so reshape isn't happening
664          */
665         struct geom *geo = &conf->geo;
666         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667         int far_set_size = geo->far_set_size;
668         int last_far_set_start;
669
670         if (geo->raid_disks % geo->far_set_size) {
671                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672                 last_far_set_start *= geo->far_set_size;
673
674                 if (dev >= last_far_set_start) {
675                         far_set_size = geo->far_set_size;
676                         far_set_size += (geo->raid_disks % geo->far_set_size);
677                         far_set_start = last_far_set_start;
678                 }
679         }
680
681         offset = sector & geo->chunk_mask;
682         if (geo->far_offset) {
683                 int fc;
684                 chunk = sector >> geo->chunk_shift;
685                 fc = sector_div(chunk, geo->far_copies);
686                 dev -= fc * geo->near_copies;
687                 if (dev < far_set_start)
688                         dev += far_set_size;
689         } else {
690                 while (sector >= geo->stride) {
691                         sector -= geo->stride;
692                         if (dev < (geo->near_copies + far_set_start))
693                                 dev += far_set_size - geo->near_copies;
694                         else
695                                 dev -= geo->near_copies;
696                 }
697                 chunk = sector >> geo->chunk_shift;
698         }
699         vchunk = chunk * geo->raid_disks + dev;
700         sector_div(vchunk, geo->near_copies);
701         return (vchunk << geo->chunk_shift) + offset;
702 }
703
704 /*
705  * This routine returns the disk from which the requested read should
706  * be done. There is a per-array 'next expected sequential IO' sector
707  * number - if this matches on the next IO then we use the last disk.
708  * There is also a per-disk 'last know head position' sector that is
709  * maintained from IRQ contexts, both the normal and the resync IO
710  * completion handlers update this position correctly. If there is no
711  * perfect sequential match then we pick the disk whose head is closest.
712  *
713  * If there are 2 mirrors in the same 2 devices, performance degrades
714  * because position is mirror, not device based.
715  *
716  * The rdev for the device selected will have nr_pending incremented.
717  */
718
719 /*
720  * FIXME: possibly should rethink readbalancing and do it differently
721  * depending on near_copies / far_copies geometry.
722  */
723 static struct md_rdev *read_balance(struct r10conf *conf,
724                                     struct r10bio *r10_bio,
725                                     int *max_sectors)
726 {
727         const sector_t this_sector = r10_bio->sector;
728         int disk, slot;
729         int sectors = r10_bio->sectors;
730         int best_good_sectors;
731         sector_t new_distance, best_dist;
732         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733         int do_balance;
734         int best_dist_slot, best_pending_slot;
735         bool has_nonrot_disk = false;
736         unsigned int min_pending;
737         struct geom *geo = &conf->geo;
738
739         raid10_find_phys(conf, r10_bio);
740         best_dist_slot = -1;
741         min_pending = UINT_MAX;
742         best_dist_rdev = NULL;
743         best_pending_rdev = NULL;
744         best_dist = MaxSector;
745         best_good_sectors = 0;
746         do_balance = 1;
747         clear_bit(R10BIO_FailFast, &r10_bio->state);
748
749         if (raid1_should_read_first(conf->mddev, this_sector, sectors))
750                 do_balance = 0;
751
752         for (slot = 0; slot < conf->copies ; slot++) {
753                 sector_t first_bad;
754                 int bad_sectors;
755                 sector_t dev_sector;
756                 unsigned int pending;
757                 bool nonrot;
758
759                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
760                         continue;
761                 disk = r10_bio->devs[slot].devnum;
762                 rdev = conf->mirrors[disk].replacement;
763                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764                     r10_bio->devs[slot].addr + sectors >
765                     rdev->recovery_offset)
766                         rdev = conf->mirrors[disk].rdev;
767                 if (rdev == NULL ||
768                     test_bit(Faulty, &rdev->flags))
769                         continue;
770                 if (!test_bit(In_sync, &rdev->flags) &&
771                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
772                         continue;
773
774                 dev_sector = r10_bio->devs[slot].addr;
775                 if (is_badblock(rdev, dev_sector, sectors,
776                                 &first_bad, &bad_sectors)) {
777                         if (best_dist < MaxSector)
778                                 /* Already have a better slot */
779                                 continue;
780                         if (first_bad <= dev_sector) {
781                                 /* Cannot read here.  If this is the
782                                  * 'primary' device, then we must not read
783                                  * beyond 'bad_sectors' from another device.
784                                  */
785                                 bad_sectors -= (dev_sector - first_bad);
786                                 if (!do_balance && sectors > bad_sectors)
787                                         sectors = bad_sectors;
788                                 if (best_good_sectors > sectors)
789                                         best_good_sectors = sectors;
790                         } else {
791                                 sector_t good_sectors =
792                                         first_bad - dev_sector;
793                                 if (good_sectors > best_good_sectors) {
794                                         best_good_sectors = good_sectors;
795                                         best_dist_slot = slot;
796                                         best_dist_rdev = rdev;
797                                 }
798                                 if (!do_balance)
799                                         /* Must read from here */
800                                         break;
801                         }
802                         continue;
803                 } else
804                         best_good_sectors = sectors;
805
806                 if (!do_balance)
807                         break;
808
809                 nonrot = bdev_nonrot(rdev->bdev);
810                 has_nonrot_disk |= nonrot;
811                 pending = atomic_read(&rdev->nr_pending);
812                 if (min_pending > pending && nonrot) {
813                         min_pending = pending;
814                         best_pending_slot = slot;
815                         best_pending_rdev = rdev;
816                 }
817
818                 if (best_dist_slot >= 0)
819                         /* At least 2 disks to choose from so failfast is OK */
820                         set_bit(R10BIO_FailFast, &r10_bio->state);
821                 /* This optimisation is debatable, and completely destroys
822                  * sequential read speed for 'far copies' arrays.  So only
823                  * keep it for 'near' arrays, and review those later.
824                  */
825                 if (geo->near_copies > 1 && !pending)
826                         new_distance = 0;
827
828                 /* for far > 1 always use the lowest address */
829                 else if (geo->far_copies > 1)
830                         new_distance = r10_bio->devs[slot].addr;
831                 else
832                         new_distance = abs(r10_bio->devs[slot].addr -
833                                            conf->mirrors[disk].head_position);
834
835                 if (new_distance < best_dist) {
836                         best_dist = new_distance;
837                         best_dist_slot = slot;
838                         best_dist_rdev = rdev;
839                 }
840         }
841         if (slot >= conf->copies) {
842                 if (has_nonrot_disk) {
843                         slot = best_pending_slot;
844                         rdev = best_pending_rdev;
845                 } else {
846                         slot = best_dist_slot;
847                         rdev = best_dist_rdev;
848                 }
849         }
850
851         if (slot >= 0) {
852                 atomic_inc(&rdev->nr_pending);
853                 r10_bio->read_slot = slot;
854         } else
855                 rdev = NULL;
856         *max_sectors = best_good_sectors;
857
858         return rdev;
859 }
860
861 static void flush_pending_writes(struct r10conf *conf)
862 {
863         /* Any writes that have been queued but are awaiting
864          * bitmap updates get flushed here.
865          */
866         spin_lock_irq(&conf->device_lock);
867
868         if (conf->pending_bio_list.head) {
869                 struct blk_plug plug;
870                 struct bio *bio;
871
872                 bio = bio_list_get(&conf->pending_bio_list);
873                 spin_unlock_irq(&conf->device_lock);
874
875                 /*
876                  * As this is called in a wait_event() loop (see freeze_array),
877                  * current->state might be TASK_UNINTERRUPTIBLE which will
878                  * cause a warning when we prepare to wait again.  As it is
879                  * rare that this path is taken, it is perfectly safe to force
880                  * us to go around the wait_event() loop again, so the warning
881                  * is a false-positive. Silence the warning by resetting
882                  * thread state
883                  */
884                 __set_current_state(TASK_RUNNING);
885
886                 blk_start_plug(&plug);
887                 raid1_prepare_flush_writes(conf->mddev->bitmap);
888                 wake_up(&conf->wait_barrier);
889
890                 while (bio) { /* submit pending writes */
891                         struct bio *next = bio->bi_next;
892
893                         raid1_submit_write(bio);
894                         bio = next;
895                         cond_resched();
896                 }
897                 blk_finish_plug(&plug);
898         } else
899                 spin_unlock_irq(&conf->device_lock);
900 }
901
902 /* Barriers....
903  * Sometimes we need to suspend IO while we do something else,
904  * either some resync/recovery, or reconfigure the array.
905  * To do this we raise a 'barrier'.
906  * The 'barrier' is a counter that can be raised multiple times
907  * to count how many activities are happening which preclude
908  * normal IO.
909  * We can only raise the barrier if there is no pending IO.
910  * i.e. if nr_pending == 0.
911  * We choose only to raise the barrier if no-one is waiting for the
912  * barrier to go down.  This means that as soon as an IO request
913  * is ready, no other operations which require a barrier will start
914  * until the IO request has had a chance.
915  *
916  * So: regular IO calls 'wait_barrier'.  When that returns there
917  *    is no backgroup IO happening,  It must arrange to call
918  *    allow_barrier when it has finished its IO.
919  * backgroup IO calls must call raise_barrier.  Once that returns
920  *    there is no normal IO happeing.  It must arrange to call
921  *    lower_barrier when the particular background IO completes.
922  */
923
924 static void raise_barrier(struct r10conf *conf, int force)
925 {
926         write_seqlock_irq(&conf->resync_lock);
927
928         if (WARN_ON_ONCE(force && !conf->barrier))
929                 force = false;
930
931         /* Wait until no block IO is waiting (unless 'force') */
932         wait_event_barrier(conf, force || !conf->nr_waiting);
933
934         /* block any new IO from starting */
935         WRITE_ONCE(conf->barrier, conf->barrier + 1);
936
937         /* Now wait for all pending IO to complete */
938         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939                                  conf->barrier < RESYNC_DEPTH);
940
941         write_sequnlock_irq(&conf->resync_lock);
942 }
943
944 static void lower_barrier(struct r10conf *conf)
945 {
946         unsigned long flags;
947
948         write_seqlock_irqsave(&conf->resync_lock, flags);
949         WRITE_ONCE(conf->barrier, conf->barrier - 1);
950         write_sequnlock_irqrestore(&conf->resync_lock, flags);
951         wake_up(&conf->wait_barrier);
952 }
953
954 static bool stop_waiting_barrier(struct r10conf *conf)
955 {
956         struct bio_list *bio_list = current->bio_list;
957         struct md_thread *thread;
958
959         /* barrier is dropped */
960         if (!conf->barrier)
961                 return true;
962
963         /*
964          * If there are already pending requests (preventing the barrier from
965          * rising completely), and the pre-process bio queue isn't empty, then
966          * don't wait, as we need to empty that queue to get the nr_pending
967          * count down.
968          */
969         if (atomic_read(&conf->nr_pending) && bio_list &&
970             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
971                 return true;
972
973         /* daemon thread must exist while handling io */
974         thread = rcu_dereference_protected(conf->mddev->thread, true);
975         /*
976          * move on if io is issued from raid10d(), nr_pending is not released
977          * from original io(see handle_read_error()). All raise barrier is
978          * blocked until this io is done.
979          */
980         if (thread->tsk == current) {
981                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
982                 return true;
983         }
984
985         return false;
986 }
987
988 static bool wait_barrier_nolock(struct r10conf *conf)
989 {
990         unsigned int seq = read_seqbegin(&conf->resync_lock);
991
992         if (READ_ONCE(conf->barrier))
993                 return false;
994
995         atomic_inc(&conf->nr_pending);
996         if (!read_seqretry(&conf->resync_lock, seq))
997                 return true;
998
999         if (atomic_dec_and_test(&conf->nr_pending))
1000                 wake_up_barrier(conf);
1001
1002         return false;
1003 }
1004
1005 static bool wait_barrier(struct r10conf *conf, bool nowait)
1006 {
1007         bool ret = true;
1008
1009         if (wait_barrier_nolock(conf))
1010                 return true;
1011
1012         write_seqlock_irq(&conf->resync_lock);
1013         if (conf->barrier) {
1014                 /* Return false when nowait flag is set */
1015                 if (nowait) {
1016                         ret = false;
1017                 } else {
1018                         conf->nr_waiting++;
1019                         mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1021                         conf->nr_waiting--;
1022                 }
1023                 if (!conf->nr_waiting)
1024                         wake_up(&conf->wait_barrier);
1025         }
1026         /* Only increment nr_pending when we wait */
1027         if (ret)
1028                 atomic_inc(&conf->nr_pending);
1029         write_sequnlock_irq(&conf->resync_lock);
1030         return ret;
1031 }
1032
1033 static void allow_barrier(struct r10conf *conf)
1034 {
1035         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036                         (conf->array_freeze_pending))
1037                 wake_up_barrier(conf);
1038 }
1039
1040 static void freeze_array(struct r10conf *conf, int extra)
1041 {
1042         /* stop syncio and normal IO and wait for everything to
1043          * go quiet.
1044          * We increment barrier and nr_waiting, and then
1045          * wait until nr_pending match nr_queued+extra
1046          * This is called in the context of one normal IO request
1047          * that has failed. Thus any sync request that might be pending
1048          * will be blocked by nr_pending, and we need to wait for
1049          * pending IO requests to complete or be queued for re-try.
1050          * Thus the number queued (nr_queued) plus this request (extra)
1051          * must match the number of pending IOs (nr_pending) before
1052          * we continue.
1053          */
1054         write_seqlock_irq(&conf->resync_lock);
1055         conf->array_freeze_pending++;
1056         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1057         conf->nr_waiting++;
1058         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059                         conf->nr_queued + extra, flush_pending_writes(conf));
1060         conf->array_freeze_pending--;
1061         write_sequnlock_irq(&conf->resync_lock);
1062 }
1063
1064 static void unfreeze_array(struct r10conf *conf)
1065 {
1066         /* reverse the effect of the freeze */
1067         write_seqlock_irq(&conf->resync_lock);
1068         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1069         conf->nr_waiting--;
1070         wake_up(&conf->wait_barrier);
1071         write_sequnlock_irq(&conf->resync_lock);
1072 }
1073
1074 static sector_t choose_data_offset(struct r10bio *r10_bio,
1075                                    struct md_rdev *rdev)
1076 {
1077         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078             test_bit(R10BIO_Previous, &r10_bio->state))
1079                 return rdev->data_offset;
1080         else
1081                 return rdev->new_data_offset;
1082 }
1083
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087         struct mddev *mddev = plug->cb.data;
1088         struct r10conf *conf = mddev->private;
1089         struct bio *bio;
1090
1091         if (from_schedule) {
1092                 spin_lock_irq(&conf->device_lock);
1093                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094                 spin_unlock_irq(&conf->device_lock);
1095                 wake_up_barrier(conf);
1096                 md_wakeup_thread(mddev->thread);
1097                 kfree(plug);
1098                 return;
1099         }
1100
1101         /* we aren't scheduling, so we can do the write-out directly. */
1102         bio = bio_list_get(&plug->pending);
1103         raid1_prepare_flush_writes(mddev->bitmap);
1104         wake_up_barrier(conf);
1105
1106         while (bio) { /* submit pending writes */
1107                 struct bio *next = bio->bi_next;
1108
1109                 raid1_submit_write(bio);
1110                 bio = next;
1111                 cond_resched();
1112         }
1113         kfree(plug);
1114 }
1115
1116 /*
1117  * 1. Register the new request and wait if the reconstruction thread has put
1118  * up a bar for new requests. Continue immediately if no resync is active
1119  * currently.
1120  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1121  */
1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123                                  struct bio *bio, sector_t sectors)
1124 {
1125         /* Bail out if REQ_NOWAIT is set for the bio */
1126         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127                 bio_wouldblock_error(bio);
1128                 return false;
1129         }
1130         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131             bio->bi_iter.bi_sector < conf->reshape_progress &&
1132             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133                 allow_barrier(conf);
1134                 if (bio->bi_opf & REQ_NOWAIT) {
1135                         bio_wouldblock_error(bio);
1136                         return false;
1137                 }
1138                 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139                 wait_event(conf->wait_barrier,
1140                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1142                            sectors);
1143                 wait_barrier(conf, false);
1144         }
1145         return true;
1146 }
1147
1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149                                 struct r10bio *r10_bio, bool io_accounting)
1150 {
1151         struct r10conf *conf = mddev->private;
1152         struct bio *read_bio;
1153         const enum req_op op = bio_op(bio);
1154         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1155         int max_sectors;
1156         struct md_rdev *rdev;
1157         char b[BDEVNAME_SIZE];
1158         int slot = r10_bio->read_slot;
1159         struct md_rdev *err_rdev = NULL;
1160         gfp_t gfp = GFP_NOIO;
1161
1162         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1163                 /*
1164                  * This is an error retry, but we cannot
1165                  * safely dereference the rdev in the r10_bio,
1166                  * we must use the one in conf.
1167                  * If it has already been disconnected (unlikely)
1168                  * we lose the device name in error messages.
1169                  */
1170                 int disk;
1171                 /*
1172                  * As we are blocking raid10, it is a little safer to
1173                  * use __GFP_HIGH.
1174                  */
1175                 gfp = GFP_NOIO | __GFP_HIGH;
1176
1177                 disk = r10_bio->devs[slot].devnum;
1178                 err_rdev = conf->mirrors[disk].rdev;
1179                 if (err_rdev)
1180                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1181                 else {
1182                         strcpy(b, "???");
1183                         /* This never gets dereferenced */
1184                         err_rdev = r10_bio->devs[slot].rdev;
1185                 }
1186         }
1187
1188         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1189                 return;
1190         rdev = read_balance(conf, r10_bio, &max_sectors);
1191         if (!rdev) {
1192                 if (err_rdev) {
1193                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194                                             mdname(mddev), b,
1195                                             (unsigned long long)r10_bio->sector);
1196                 }
1197                 raid_end_bio_io(r10_bio);
1198                 return;
1199         }
1200         if (err_rdev)
1201                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1202                                    mdname(mddev),
1203                                    rdev->bdev,
1204                                    (unsigned long long)r10_bio->sector);
1205         if (max_sectors < bio_sectors(bio)) {
1206                 struct bio *split = bio_split(bio, max_sectors,
1207                                               gfp, &conf->bio_split);
1208                 bio_chain(split, bio);
1209                 allow_barrier(conf);
1210                 submit_bio_noacct(bio);
1211                 wait_barrier(conf, false);
1212                 bio = split;
1213                 r10_bio->master_bio = bio;
1214                 r10_bio->sectors = max_sectors;
1215         }
1216         slot = r10_bio->read_slot;
1217
1218         if (io_accounting) {
1219                 md_account_bio(mddev, &bio);
1220                 r10_bio->master_bio = bio;
1221         }
1222         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223
1224         r10_bio->devs[slot].bio = read_bio;
1225         r10_bio->devs[slot].rdev = rdev;
1226
1227         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228                 choose_data_offset(r10_bio, rdev);
1229         read_bio->bi_end_io = raid10_end_read_request;
1230         read_bio->bi_opf = op | do_sync;
1231         if (test_bit(FailFast, &rdev->flags) &&
1232             test_bit(R10BIO_FailFast, &r10_bio->state))
1233                 read_bio->bi_opf |= MD_FAILFAST;
1234         read_bio->bi_private = r10_bio;
1235         mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1236         submit_bio_noacct(read_bio);
1237         return;
1238 }
1239
1240 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1241                                   struct bio *bio, bool replacement,
1242                                   int n_copy)
1243 {
1244         const enum req_op op = bio_op(bio);
1245         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1246         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1247         unsigned long flags;
1248         struct r10conf *conf = mddev->private;
1249         struct md_rdev *rdev;
1250         int devnum = r10_bio->devs[n_copy].devnum;
1251         struct bio *mbio;
1252
1253         rdev = replacement ? conf->mirrors[devnum].replacement :
1254                              conf->mirrors[devnum].rdev;
1255
1256         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1257         if (replacement)
1258                 r10_bio->devs[n_copy].repl_bio = mbio;
1259         else
1260                 r10_bio->devs[n_copy].bio = mbio;
1261
1262         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1263                                    choose_data_offset(r10_bio, rdev));
1264         mbio->bi_end_io = raid10_end_write_request;
1265         mbio->bi_opf = op | do_sync | do_fua;
1266         if (!replacement && test_bit(FailFast,
1267                                      &conf->mirrors[devnum].rdev->flags)
1268                          && enough(conf, devnum))
1269                 mbio->bi_opf |= MD_FAILFAST;
1270         mbio->bi_private = r10_bio;
1271         mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272         /* flush_pending_writes() needs access to the rdev so...*/
1273         mbio->bi_bdev = (void *)rdev;
1274
1275         atomic_inc(&r10_bio->remaining);
1276
1277         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278                 spin_lock_irqsave(&conf->device_lock, flags);
1279                 bio_list_add(&conf->pending_bio_list, mbio);
1280                 spin_unlock_irqrestore(&conf->device_lock, flags);
1281                 md_wakeup_thread(mddev->thread);
1282         }
1283 }
1284
1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286 {
1287         int i;
1288         struct r10conf *conf = mddev->private;
1289         struct md_rdev *blocked_rdev;
1290
1291 retry_wait:
1292         blocked_rdev = NULL;
1293         for (i = 0; i < conf->copies; i++) {
1294                 struct md_rdev *rdev, *rrdev;
1295
1296                 rdev = conf->mirrors[i].rdev;
1297                 rrdev = conf->mirrors[i].replacement;
1298                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1299                         atomic_inc(&rdev->nr_pending);
1300                         blocked_rdev = rdev;
1301                         break;
1302                 }
1303                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1304                         atomic_inc(&rrdev->nr_pending);
1305                         blocked_rdev = rrdev;
1306                         break;
1307                 }
1308
1309                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1310                         sector_t dev_sector = r10_bio->devs[i].addr;
1311
1312                         /*
1313                          * Discard request doesn't care the write result
1314                          * so it doesn't need to wait blocked disk here.
1315                          */
1316                         if (!r10_bio->sectors)
1317                                 continue;
1318
1319                         if (rdev_has_badblock(rdev, dev_sector,
1320                                               r10_bio->sectors) < 0) {
1321                                 /*
1322                                  * Mustn't write here until the bad block
1323                                  * is acknowledged
1324                                  */
1325                                 atomic_inc(&rdev->nr_pending);
1326                                 set_bit(BlockedBadBlocks, &rdev->flags);
1327                                 blocked_rdev = rdev;
1328                                 break;
1329                         }
1330                 }
1331         }
1332
1333         if (unlikely(blocked_rdev)) {
1334                 /* Have to wait for this device to get unblocked, then retry */
1335                 allow_barrier(conf);
1336                 mddev_add_trace_msg(conf->mddev,
1337                         "raid10 %s wait rdev %d blocked",
1338                         __func__, blocked_rdev->raid_disk);
1339                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1340                 wait_barrier(conf, false);
1341                 goto retry_wait;
1342         }
1343 }
1344
1345 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1346                                  struct r10bio *r10_bio)
1347 {
1348         struct r10conf *conf = mddev->private;
1349         int i;
1350         sector_t sectors;
1351         int max_sectors;
1352
1353         if ((mddev_is_clustered(mddev) &&
1354              md_cluster_ops->area_resyncing(mddev, WRITE,
1355                                             bio->bi_iter.bi_sector,
1356                                             bio_end_sector(bio)))) {
1357                 DEFINE_WAIT(w);
1358                 /* Bail out if REQ_NOWAIT is set for the bio */
1359                 if (bio->bi_opf & REQ_NOWAIT) {
1360                         bio_wouldblock_error(bio);
1361                         return;
1362                 }
1363                 for (;;) {
1364                         prepare_to_wait(&conf->wait_barrier,
1365                                         &w, TASK_IDLE);
1366                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1367                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1368                                 break;
1369                         schedule();
1370                 }
1371                 finish_wait(&conf->wait_barrier, &w);
1372         }
1373
1374         sectors = r10_bio->sectors;
1375         if (!regular_request_wait(mddev, conf, bio, sectors))
1376                 return;
1377         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1378             (mddev->reshape_backwards
1379              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1380                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1381              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1382                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1383                 /* Need to update reshape_position in metadata */
1384                 mddev->reshape_position = conf->reshape_progress;
1385                 set_mask_bits(&mddev->sb_flags, 0,
1386                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1387                 md_wakeup_thread(mddev->thread);
1388                 if (bio->bi_opf & REQ_NOWAIT) {
1389                         allow_barrier(conf);
1390                         bio_wouldblock_error(bio);
1391                         return;
1392                 }
1393                 mddev_add_trace_msg(conf->mddev,
1394                         "raid10 wait reshape metadata");
1395                 wait_event(mddev->sb_wait,
1396                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1397
1398                 conf->reshape_safe = mddev->reshape_position;
1399         }
1400
1401         /* first select target devices under rcu_lock and
1402          * inc refcount on their rdev.  Record them by setting
1403          * bios[x] to bio
1404          * If there are known/acknowledged bad blocks on any device
1405          * on which we have seen a write error, we want to avoid
1406          * writing to those blocks.  This potentially requires several
1407          * writes to write around the bad blocks.  Each set of writes
1408          * gets its own r10_bio with a set of bios attached.
1409          */
1410
1411         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1412         raid10_find_phys(conf, r10_bio);
1413
1414         wait_blocked_dev(mddev, r10_bio);
1415
1416         max_sectors = r10_bio->sectors;
1417
1418         for (i = 0;  i < conf->copies; i++) {
1419                 int d = r10_bio->devs[i].devnum;
1420                 struct md_rdev *rdev, *rrdev;
1421
1422                 rdev = conf->mirrors[d].rdev;
1423                 rrdev = conf->mirrors[d].replacement;
1424                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1425                         rdev = NULL;
1426                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1427                         rrdev = NULL;
1428
1429                 r10_bio->devs[i].bio = NULL;
1430                 r10_bio->devs[i].repl_bio = NULL;
1431
1432                 if (!rdev && !rrdev) {
1433                         set_bit(R10BIO_Degraded, &r10_bio->state);
1434                         continue;
1435                 }
1436                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1437                         sector_t first_bad;
1438                         sector_t dev_sector = r10_bio->devs[i].addr;
1439                         int bad_sectors;
1440                         int is_bad;
1441
1442                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443                                              &first_bad, &bad_sectors);
1444                         if (is_bad && first_bad <= dev_sector) {
1445                                 /* Cannot write here at all */
1446                                 bad_sectors -= (dev_sector - first_bad);
1447                                 if (bad_sectors < max_sectors)
1448                                         /* Mustn't write more than bad_sectors
1449                                          * to other devices yet
1450                                          */
1451                                         max_sectors = bad_sectors;
1452                                 /* We don't set R10BIO_Degraded as that
1453                                  * only applies if the disk is missing,
1454                                  * so it might be re-added, and we want to
1455                                  * know to recover this chunk.
1456                                  * In this case the device is here, and the
1457                                  * fact that this chunk is not in-sync is
1458                                  * recorded in the bad block log.
1459                                  */
1460                                 continue;
1461                         }
1462                         if (is_bad) {
1463                                 int good_sectors = first_bad - dev_sector;
1464                                 if (good_sectors < max_sectors)
1465                                         max_sectors = good_sectors;
1466                         }
1467                 }
1468                 if (rdev) {
1469                         r10_bio->devs[i].bio = bio;
1470                         atomic_inc(&rdev->nr_pending);
1471                 }
1472                 if (rrdev) {
1473                         r10_bio->devs[i].repl_bio = bio;
1474                         atomic_inc(&rrdev->nr_pending);
1475                 }
1476         }
1477
1478         if (max_sectors < r10_bio->sectors)
1479                 r10_bio->sectors = max_sectors;
1480
1481         if (r10_bio->sectors < bio_sectors(bio)) {
1482                 struct bio *split = bio_split(bio, r10_bio->sectors,
1483                                               GFP_NOIO, &conf->bio_split);
1484                 bio_chain(split, bio);
1485                 allow_barrier(conf);
1486                 submit_bio_noacct(bio);
1487                 wait_barrier(conf, false);
1488                 bio = split;
1489                 r10_bio->master_bio = bio;
1490         }
1491
1492         md_account_bio(mddev, &bio);
1493         r10_bio->master_bio = bio;
1494         atomic_set(&r10_bio->remaining, 1);
1495         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1496
1497         for (i = 0; i < conf->copies; i++) {
1498                 if (r10_bio->devs[i].bio)
1499                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1500                 if (r10_bio->devs[i].repl_bio)
1501                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1502         }
1503         one_write_done(r10_bio);
1504 }
1505
1506 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1507 {
1508         struct r10conf *conf = mddev->private;
1509         struct r10bio *r10_bio;
1510
1511         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1512
1513         r10_bio->master_bio = bio;
1514         r10_bio->sectors = sectors;
1515
1516         r10_bio->mddev = mddev;
1517         r10_bio->sector = bio->bi_iter.bi_sector;
1518         r10_bio->state = 0;
1519         r10_bio->read_slot = -1;
1520         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1521                         conf->geo.raid_disks);
1522
1523         if (bio_data_dir(bio) == READ)
1524                 raid10_read_request(mddev, bio, r10_bio, true);
1525         else
1526                 raid10_write_request(mddev, bio, r10_bio);
1527 }
1528
1529 static void raid_end_discard_bio(struct r10bio *r10bio)
1530 {
1531         struct r10conf *conf = r10bio->mddev->private;
1532         struct r10bio *first_r10bio;
1533
1534         while (atomic_dec_and_test(&r10bio->remaining)) {
1535
1536                 allow_barrier(conf);
1537
1538                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1539                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1540                         free_r10bio(r10bio);
1541                         r10bio = first_r10bio;
1542                 } else {
1543                         md_write_end(r10bio->mddev);
1544                         bio_endio(r10bio->master_bio);
1545                         free_r10bio(r10bio);
1546                         break;
1547                 }
1548         }
1549 }
1550
1551 static void raid10_end_discard_request(struct bio *bio)
1552 {
1553         struct r10bio *r10_bio = bio->bi_private;
1554         struct r10conf *conf = r10_bio->mddev->private;
1555         struct md_rdev *rdev = NULL;
1556         int dev;
1557         int slot, repl;
1558
1559         /*
1560          * We don't care the return value of discard bio
1561          */
1562         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1563                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1564
1565         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1566         rdev = repl ? conf->mirrors[dev].replacement :
1567                       conf->mirrors[dev].rdev;
1568
1569         raid_end_discard_bio(r10_bio);
1570         rdev_dec_pending(rdev, conf->mddev);
1571 }
1572
1573 /*
1574  * There are some limitations to handle discard bio
1575  * 1st, the discard size is bigger than stripe_size*2.
1576  * 2st, if the discard bio spans reshape progress, we use the old way to
1577  * handle discard bio
1578  */
1579 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1580 {
1581         struct r10conf *conf = mddev->private;
1582         struct geom *geo = &conf->geo;
1583         int far_copies = geo->far_copies;
1584         bool first_copy = true;
1585         struct r10bio *r10_bio, *first_r10bio;
1586         struct bio *split;
1587         int disk;
1588         sector_t chunk;
1589         unsigned int stripe_size;
1590         unsigned int stripe_data_disks;
1591         sector_t split_size;
1592         sector_t bio_start, bio_end;
1593         sector_t first_stripe_index, last_stripe_index;
1594         sector_t start_disk_offset;
1595         unsigned int start_disk_index;
1596         sector_t end_disk_offset;
1597         unsigned int end_disk_index;
1598         unsigned int remainder;
1599
1600         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1601                 return -EAGAIN;
1602
1603         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1604                 bio_wouldblock_error(bio);
1605                 return 0;
1606         }
1607         wait_barrier(conf, false);
1608
1609         /*
1610          * Check reshape again to avoid reshape happens after checking
1611          * MD_RECOVERY_RESHAPE and before wait_barrier
1612          */
1613         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1614                 goto out;
1615
1616         if (geo->near_copies)
1617                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1618                                         geo->raid_disks % geo->near_copies;
1619         else
1620                 stripe_data_disks = geo->raid_disks;
1621
1622         stripe_size = stripe_data_disks << geo->chunk_shift;
1623
1624         bio_start = bio->bi_iter.bi_sector;
1625         bio_end = bio_end_sector(bio);
1626
1627         /*
1628          * Maybe one discard bio is smaller than strip size or across one
1629          * stripe and discard region is larger than one stripe size. For far
1630          * offset layout, if the discard region is not aligned with stripe
1631          * size, there is hole when we submit discard bio to member disk.
1632          * For simplicity, we only handle discard bio which discard region
1633          * is bigger than stripe_size * 2
1634          */
1635         if (bio_sectors(bio) < stripe_size*2)
1636                 goto out;
1637
1638         /*
1639          * Keep bio aligned with strip size.
1640          */
1641         div_u64_rem(bio_start, stripe_size, &remainder);
1642         if (remainder) {
1643                 split_size = stripe_size - remainder;
1644                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1645                 bio_chain(split, bio);
1646                 allow_barrier(conf);
1647                 /* Resend the fist split part */
1648                 submit_bio_noacct(split);
1649                 wait_barrier(conf, false);
1650         }
1651         div_u64_rem(bio_end, stripe_size, &remainder);
1652         if (remainder) {
1653                 split_size = bio_sectors(bio) - remainder;
1654                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1655                 bio_chain(split, bio);
1656                 allow_barrier(conf);
1657                 /* Resend the second split part */
1658                 submit_bio_noacct(bio);
1659                 bio = split;
1660                 wait_barrier(conf, false);
1661         }
1662
1663         bio_start = bio->bi_iter.bi_sector;
1664         bio_end = bio_end_sector(bio);
1665
1666         /*
1667          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1668          * One stripe contains the chunks from all member disk (one chunk from
1669          * one disk at the same HBA address). For layout detail, see 'man md 4'
1670          */
1671         chunk = bio_start >> geo->chunk_shift;
1672         chunk *= geo->near_copies;
1673         first_stripe_index = chunk;
1674         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1675         if (geo->far_offset)
1676                 first_stripe_index *= geo->far_copies;
1677         start_disk_offset = (bio_start & geo->chunk_mask) +
1678                                 (first_stripe_index << geo->chunk_shift);
1679
1680         chunk = bio_end >> geo->chunk_shift;
1681         chunk *= geo->near_copies;
1682         last_stripe_index = chunk;
1683         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1684         if (geo->far_offset)
1685                 last_stripe_index *= geo->far_copies;
1686         end_disk_offset = (bio_end & geo->chunk_mask) +
1687                                 (last_stripe_index << geo->chunk_shift);
1688
1689 retry_discard:
1690         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1691         r10_bio->mddev = mddev;
1692         r10_bio->state = 0;
1693         r10_bio->sectors = 0;
1694         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1695         wait_blocked_dev(mddev, r10_bio);
1696
1697         /*
1698          * For far layout it needs more than one r10bio to cover all regions.
1699          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1700          * to record the discard bio. Other r10bio->master_bio record the first
1701          * r10bio. The first r10bio only release after all other r10bios finish.
1702          * The discard bio returns only first r10bio finishes
1703          */
1704         if (first_copy) {
1705                 r10_bio->master_bio = bio;
1706                 set_bit(R10BIO_Discard, &r10_bio->state);
1707                 first_copy = false;
1708                 first_r10bio = r10_bio;
1709         } else
1710                 r10_bio->master_bio = (struct bio *)first_r10bio;
1711
1712         /*
1713          * first select target devices under rcu_lock and
1714          * inc refcount on their rdev.  Record them by setting
1715          * bios[x] to bio
1716          */
1717         for (disk = 0; disk < geo->raid_disks; disk++) {
1718                 struct md_rdev *rdev, *rrdev;
1719
1720                 rdev = conf->mirrors[disk].rdev;
1721                 rrdev = conf->mirrors[disk].replacement;
1722                 r10_bio->devs[disk].bio = NULL;
1723                 r10_bio->devs[disk].repl_bio = NULL;
1724
1725                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1726                         rdev = NULL;
1727                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1728                         rrdev = NULL;
1729                 if (!rdev && !rrdev)
1730                         continue;
1731
1732                 if (rdev) {
1733                         r10_bio->devs[disk].bio = bio;
1734                         atomic_inc(&rdev->nr_pending);
1735                 }
1736                 if (rrdev) {
1737                         r10_bio->devs[disk].repl_bio = bio;
1738                         atomic_inc(&rrdev->nr_pending);
1739                 }
1740         }
1741
1742         atomic_set(&r10_bio->remaining, 1);
1743         for (disk = 0; disk < geo->raid_disks; disk++) {
1744                 sector_t dev_start, dev_end;
1745                 struct bio *mbio, *rbio = NULL;
1746
1747                 /*
1748                  * Now start to calculate the start and end address for each disk.
1749                  * The space between dev_start and dev_end is the discard region.
1750                  *
1751                  * For dev_start, it needs to consider three conditions:
1752                  * 1st, the disk is before start_disk, you can imagine the disk in
1753                  * the next stripe. So the dev_start is the start address of next
1754                  * stripe.
1755                  * 2st, the disk is after start_disk, it means the disk is at the
1756                  * same stripe of first disk
1757                  * 3st, the first disk itself, we can use start_disk_offset directly
1758                  */
1759                 if (disk < start_disk_index)
1760                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1761                 else if (disk > start_disk_index)
1762                         dev_start = first_stripe_index * mddev->chunk_sectors;
1763                 else
1764                         dev_start = start_disk_offset;
1765
1766                 if (disk < end_disk_index)
1767                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1768                 else if (disk > end_disk_index)
1769                         dev_end = last_stripe_index * mddev->chunk_sectors;
1770                 else
1771                         dev_end = end_disk_offset;
1772
1773                 /*
1774                  * It only handles discard bio which size is >= stripe size, so
1775                  * dev_end > dev_start all the time.
1776                  * It doesn't need to use rcu lock to get rdev here. We already
1777                  * add rdev->nr_pending in the first loop.
1778                  */
1779                 if (r10_bio->devs[disk].bio) {
1780                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1781                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1782                                                &mddev->bio_set);
1783                         mbio->bi_end_io = raid10_end_discard_request;
1784                         mbio->bi_private = r10_bio;
1785                         r10_bio->devs[disk].bio = mbio;
1786                         r10_bio->devs[disk].devnum = disk;
1787                         atomic_inc(&r10_bio->remaining);
1788                         md_submit_discard_bio(mddev, rdev, mbio,
1789                                         dev_start + choose_data_offset(r10_bio, rdev),
1790                                         dev_end - dev_start);
1791                         bio_endio(mbio);
1792                 }
1793                 if (r10_bio->devs[disk].repl_bio) {
1794                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1795                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1796                                                &mddev->bio_set);
1797                         rbio->bi_end_io = raid10_end_discard_request;
1798                         rbio->bi_private = r10_bio;
1799                         r10_bio->devs[disk].repl_bio = rbio;
1800                         r10_bio->devs[disk].devnum = disk;
1801                         atomic_inc(&r10_bio->remaining);
1802                         md_submit_discard_bio(mddev, rrdev, rbio,
1803                                         dev_start + choose_data_offset(r10_bio, rrdev),
1804                                         dev_end - dev_start);
1805                         bio_endio(rbio);
1806                 }
1807         }
1808
1809         if (!geo->far_offset && --far_copies) {
1810                 first_stripe_index += geo->stride >> geo->chunk_shift;
1811                 start_disk_offset += geo->stride;
1812                 last_stripe_index += geo->stride >> geo->chunk_shift;
1813                 end_disk_offset += geo->stride;
1814                 atomic_inc(&first_r10bio->remaining);
1815                 raid_end_discard_bio(r10_bio);
1816                 wait_barrier(conf, false);
1817                 goto retry_discard;
1818         }
1819
1820         raid_end_discard_bio(r10_bio);
1821
1822         return 0;
1823 out:
1824         allow_barrier(conf);
1825         return -EAGAIN;
1826 }
1827
1828 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1829 {
1830         struct r10conf *conf = mddev->private;
1831         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1832         int chunk_sects = chunk_mask + 1;
1833         int sectors = bio_sectors(bio);
1834
1835         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1836             && md_flush_request(mddev, bio))
1837                 return true;
1838
1839         md_write_start(mddev, bio);
1840
1841         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1842                 if (!raid10_handle_discard(mddev, bio))
1843                         return true;
1844
1845         /*
1846          * If this request crosses a chunk boundary, we need to split
1847          * it.
1848          */
1849         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1850                      sectors > chunk_sects
1851                      && (conf->geo.near_copies < conf->geo.raid_disks
1852                          || conf->prev.near_copies <
1853                          conf->prev.raid_disks)))
1854                 sectors = chunk_sects -
1855                         (bio->bi_iter.bi_sector &
1856                          (chunk_sects - 1));
1857         __make_request(mddev, bio, sectors);
1858
1859         /* In case raid10d snuck in to freeze_array */
1860         wake_up_barrier(conf);
1861         return true;
1862 }
1863
1864 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1865 {
1866         struct r10conf *conf = mddev->private;
1867         int i;
1868
1869         lockdep_assert_held(&mddev->lock);
1870
1871         if (conf->geo.near_copies < conf->geo.raid_disks)
1872                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1873         if (conf->geo.near_copies > 1)
1874                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1875         if (conf->geo.far_copies > 1) {
1876                 if (conf->geo.far_offset)
1877                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1878                 else
1879                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1880                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1881                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1882         }
1883         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1884                                         conf->geo.raid_disks - mddev->degraded);
1885         for (i = 0; i < conf->geo.raid_disks; i++) {
1886                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1887
1888                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1889         }
1890         seq_printf(seq, "]");
1891 }
1892
1893 /* check if there are enough drives for
1894  * every block to appear on atleast one.
1895  * Don't consider the device numbered 'ignore'
1896  * as we might be about to remove it.
1897  */
1898 static int _enough(struct r10conf *conf, int previous, int ignore)
1899 {
1900         int first = 0;
1901         int has_enough = 0;
1902         int disks, ncopies;
1903         if (previous) {
1904                 disks = conf->prev.raid_disks;
1905                 ncopies = conf->prev.near_copies;
1906         } else {
1907                 disks = conf->geo.raid_disks;
1908                 ncopies = conf->geo.near_copies;
1909         }
1910
1911         do {
1912                 int n = conf->copies;
1913                 int cnt = 0;
1914                 int this = first;
1915                 while (n--) {
1916                         struct md_rdev *rdev;
1917                         if (this != ignore &&
1918                             (rdev = conf->mirrors[this].rdev) &&
1919                             test_bit(In_sync, &rdev->flags))
1920                                 cnt++;
1921                         this = (this+1) % disks;
1922                 }
1923                 if (cnt == 0)
1924                         goto out;
1925                 first = (first + ncopies) % disks;
1926         } while (first != 0);
1927         has_enough = 1;
1928 out:
1929         return has_enough;
1930 }
1931
1932 static int enough(struct r10conf *conf, int ignore)
1933 {
1934         /* when calling 'enough', both 'prev' and 'geo' must
1935          * be stable.
1936          * This is ensured if ->reconfig_mutex or ->device_lock
1937          * is held.
1938          */
1939         return _enough(conf, 0, ignore) &&
1940                 _enough(conf, 1, ignore);
1941 }
1942
1943 /**
1944  * raid10_error() - RAID10 error handler.
1945  * @mddev: affected md device.
1946  * @rdev: member device to fail.
1947  *
1948  * The routine acknowledges &rdev failure and determines new @mddev state.
1949  * If it failed, then:
1950  *      - &MD_BROKEN flag is set in &mddev->flags.
1951  * Otherwise, it must be degraded:
1952  *      - recovery is interrupted.
1953  *      - &mddev->degraded is bumped.
1954  *
1955  * @rdev is marked as &Faulty excluding case when array is failed and
1956  * &mddev->fail_last_dev is off.
1957  */
1958 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1959 {
1960         struct r10conf *conf = mddev->private;
1961         unsigned long flags;
1962
1963         spin_lock_irqsave(&conf->device_lock, flags);
1964
1965         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1966                 set_bit(MD_BROKEN, &mddev->flags);
1967
1968                 if (!mddev->fail_last_dev) {
1969                         spin_unlock_irqrestore(&conf->device_lock, flags);
1970                         return;
1971                 }
1972         }
1973         if (test_and_clear_bit(In_sync, &rdev->flags))
1974                 mddev->degraded++;
1975
1976         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1977         set_bit(Blocked, &rdev->flags);
1978         set_bit(Faulty, &rdev->flags);
1979         set_mask_bits(&mddev->sb_flags, 0,
1980                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1981         spin_unlock_irqrestore(&conf->device_lock, flags);
1982         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1983                 "md/raid10:%s: Operation continuing on %d devices.\n",
1984                 mdname(mddev), rdev->bdev,
1985                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1986 }
1987
1988 static void print_conf(struct r10conf *conf)
1989 {
1990         int i;
1991         struct md_rdev *rdev;
1992
1993         pr_debug("RAID10 conf printout:\n");
1994         if (!conf) {
1995                 pr_debug("(!conf)\n");
1996                 return;
1997         }
1998         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1999                  conf->geo.raid_disks);
2000
2001         lockdep_assert_held(&conf->mddev->reconfig_mutex);
2002         for (i = 0; i < conf->geo.raid_disks; i++) {
2003                 rdev = conf->mirrors[i].rdev;
2004                 if (rdev)
2005                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2006                                  i, !test_bit(In_sync, &rdev->flags),
2007                                  !test_bit(Faulty, &rdev->flags),
2008                                  rdev->bdev);
2009         }
2010 }
2011
2012 static void close_sync(struct r10conf *conf)
2013 {
2014         wait_barrier(conf, false);
2015         allow_barrier(conf);
2016
2017         mempool_exit(&conf->r10buf_pool);
2018 }
2019
2020 static int raid10_spare_active(struct mddev *mddev)
2021 {
2022         int i;
2023         struct r10conf *conf = mddev->private;
2024         struct raid10_info *tmp;
2025         int count = 0;
2026         unsigned long flags;
2027
2028         /*
2029          * Find all non-in_sync disks within the RAID10 configuration
2030          * and mark them in_sync
2031          */
2032         for (i = 0; i < conf->geo.raid_disks; i++) {
2033                 tmp = conf->mirrors + i;
2034                 if (tmp->replacement
2035                     && tmp->replacement->recovery_offset == MaxSector
2036                     && !test_bit(Faulty, &tmp->replacement->flags)
2037                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038                         /* Replacement has just become active */
2039                         if (!tmp->rdev
2040                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041                                 count++;
2042                         if (tmp->rdev) {
2043                                 /* Replaced device not technically faulty,
2044                                  * but we need to be sure it gets removed
2045                                  * and never re-added.
2046                                  */
2047                                 set_bit(Faulty, &tmp->rdev->flags);
2048                                 sysfs_notify_dirent_safe(
2049                                         tmp->rdev->sysfs_state);
2050                         }
2051                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052                 } else if (tmp->rdev
2053                            && tmp->rdev->recovery_offset == MaxSector
2054                            && !test_bit(Faulty, &tmp->rdev->flags)
2055                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056                         count++;
2057                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058                 }
2059         }
2060         spin_lock_irqsave(&conf->device_lock, flags);
2061         mddev->degraded -= count;
2062         spin_unlock_irqrestore(&conf->device_lock, flags);
2063
2064         print_conf(conf);
2065         return count;
2066 }
2067
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069 {
2070         struct r10conf *conf = mddev->private;
2071         int err = -EEXIST;
2072         int mirror, repl_slot = -1;
2073         int first = 0;
2074         int last = conf->geo.raid_disks - 1;
2075         struct raid10_info *p;
2076
2077         if (mddev->recovery_cp < MaxSector)
2078                 /* only hot-add to in-sync arrays, as recovery is
2079                  * very different from resync
2080                  */
2081                 return -EBUSY;
2082         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2083                 return -EINVAL;
2084
2085         if (rdev->raid_disk >= 0)
2086                 first = last = rdev->raid_disk;
2087
2088         if (rdev->saved_raid_disk >= first &&
2089             rdev->saved_raid_disk < conf->geo.raid_disks &&
2090             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2091                 mirror = rdev->saved_raid_disk;
2092         else
2093                 mirror = first;
2094         for ( ; mirror <= last ; mirror++) {
2095                 p = &conf->mirrors[mirror];
2096                 if (p->recovery_disabled == mddev->recovery_disabled)
2097                         continue;
2098                 if (p->rdev) {
2099                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2100                             p->replacement == NULL && repl_slot < 0)
2101                                 repl_slot = mirror;
2102                         continue;
2103                 }
2104
2105                 err = mddev_stack_new_rdev(mddev, rdev);
2106                 if (err)
2107                         return err;
2108                 p->head_position = 0;
2109                 p->recovery_disabled = mddev->recovery_disabled - 1;
2110                 rdev->raid_disk = mirror;
2111                 err = 0;
2112                 if (rdev->saved_raid_disk != mirror)
2113                         conf->fullsync = 1;
2114                 WRITE_ONCE(p->rdev, rdev);
2115                 break;
2116         }
2117
2118         if (err && repl_slot >= 0) {
2119                 p = &conf->mirrors[repl_slot];
2120                 clear_bit(In_sync, &rdev->flags);
2121                 set_bit(Replacement, &rdev->flags);
2122                 rdev->raid_disk = repl_slot;
2123                 err = mddev_stack_new_rdev(mddev, rdev);
2124                 if (err)
2125                         return err;
2126                 conf->fullsync = 1;
2127                 WRITE_ONCE(p->replacement, rdev);
2128         }
2129
2130         print_conf(conf);
2131         return err;
2132 }
2133
2134 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2135 {
2136         struct r10conf *conf = mddev->private;
2137         int err = 0;
2138         int number = rdev->raid_disk;
2139         struct md_rdev **rdevp;
2140         struct raid10_info *p;
2141
2142         print_conf(conf);
2143         if (unlikely(number >= mddev->raid_disks))
2144                 return 0;
2145         p = conf->mirrors + number;
2146         if (rdev == p->rdev)
2147                 rdevp = &p->rdev;
2148         else if (rdev == p->replacement)
2149                 rdevp = &p->replacement;
2150         else
2151                 return 0;
2152
2153         if (test_bit(In_sync, &rdev->flags) ||
2154             atomic_read(&rdev->nr_pending)) {
2155                 err = -EBUSY;
2156                 goto abort;
2157         }
2158         /* Only remove non-faulty devices if recovery
2159          * is not possible.
2160          */
2161         if (!test_bit(Faulty, &rdev->flags) &&
2162             mddev->recovery_disabled != p->recovery_disabled &&
2163             (!p->replacement || p->replacement == rdev) &&
2164             number < conf->geo.raid_disks &&
2165             enough(conf, -1)) {
2166                 err = -EBUSY;
2167                 goto abort;
2168         }
2169         WRITE_ONCE(*rdevp, NULL);
2170         if (p->replacement) {
2171                 /* We must have just cleared 'rdev' */
2172                 WRITE_ONCE(p->rdev, p->replacement);
2173                 clear_bit(Replacement, &p->replacement->flags);
2174                 WRITE_ONCE(p->replacement, NULL);
2175         }
2176
2177         clear_bit(WantReplacement, &rdev->flags);
2178         err = md_integrity_register(mddev);
2179
2180 abort:
2181
2182         print_conf(conf);
2183         return err;
2184 }
2185
2186 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2187 {
2188         struct r10conf *conf = r10_bio->mddev->private;
2189
2190         if (!bio->bi_status)
2191                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2192         else
2193                 /* The write handler will notice the lack of
2194                  * R10BIO_Uptodate and record any errors etc
2195                  */
2196                 atomic_add(r10_bio->sectors,
2197                            &conf->mirrors[d].rdev->corrected_errors);
2198
2199         /* for reconstruct, we always reschedule after a read.
2200          * for resync, only after all reads
2201          */
2202         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2203         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2204             atomic_dec_and_test(&r10_bio->remaining)) {
2205                 /* we have read all the blocks,
2206                  * do the comparison in process context in raid10d
2207                  */
2208                 reschedule_retry(r10_bio);
2209         }
2210 }
2211
2212 static void end_sync_read(struct bio *bio)
2213 {
2214         struct r10bio *r10_bio = get_resync_r10bio(bio);
2215         struct r10conf *conf = r10_bio->mddev->private;
2216         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2217
2218         __end_sync_read(r10_bio, bio, d);
2219 }
2220
2221 static void end_reshape_read(struct bio *bio)
2222 {
2223         /* reshape read bio isn't allocated from r10buf_pool */
2224         struct r10bio *r10_bio = bio->bi_private;
2225
2226         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2227 }
2228
2229 static void end_sync_request(struct r10bio *r10_bio)
2230 {
2231         struct mddev *mddev = r10_bio->mddev;
2232
2233         while (atomic_dec_and_test(&r10_bio->remaining)) {
2234                 if (r10_bio->master_bio == NULL) {
2235                         /* the primary of several recovery bios */
2236                         sector_t s = r10_bio->sectors;
2237                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2238                             test_bit(R10BIO_WriteError, &r10_bio->state))
2239                                 reschedule_retry(r10_bio);
2240                         else
2241                                 put_buf(r10_bio);
2242                         md_done_sync(mddev, s, 1);
2243                         break;
2244                 } else {
2245                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2246                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2247                             test_bit(R10BIO_WriteError, &r10_bio->state))
2248                                 reschedule_retry(r10_bio);
2249                         else
2250                                 put_buf(r10_bio);
2251                         r10_bio = r10_bio2;
2252                 }
2253         }
2254 }
2255
2256 static void end_sync_write(struct bio *bio)
2257 {
2258         struct r10bio *r10_bio = get_resync_r10bio(bio);
2259         struct mddev *mddev = r10_bio->mddev;
2260         struct r10conf *conf = mddev->private;
2261         int d;
2262         int slot;
2263         int repl;
2264         struct md_rdev *rdev = NULL;
2265
2266         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2267         if (repl)
2268                 rdev = conf->mirrors[d].replacement;
2269         else
2270                 rdev = conf->mirrors[d].rdev;
2271
2272         if (bio->bi_status) {
2273                 if (repl)
2274                         md_error(mddev, rdev);
2275                 else {
2276                         set_bit(WriteErrorSeen, &rdev->flags);
2277                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2278                                 set_bit(MD_RECOVERY_NEEDED,
2279                                         &rdev->mddev->recovery);
2280                         set_bit(R10BIO_WriteError, &r10_bio->state);
2281                 }
2282         } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2283                                      r10_bio->sectors)) {
2284                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2285         }
2286
2287         rdev_dec_pending(rdev, mddev);
2288
2289         end_sync_request(r10_bio);
2290 }
2291
2292 /*
2293  * Note: sync and recover and handled very differently for raid10
2294  * This code is for resync.
2295  * For resync, we read through virtual addresses and read all blocks.
2296  * If there is any error, we schedule a write.  The lowest numbered
2297  * drive is authoritative.
2298  * However requests come for physical address, so we need to map.
2299  * For every physical address there are raid_disks/copies virtual addresses,
2300  * which is always are least one, but is not necessarly an integer.
2301  * This means that a physical address can span multiple chunks, so we may
2302  * have to submit multiple io requests for a single sync request.
2303  */
2304 /*
2305  * We check if all blocks are in-sync and only write to blocks that
2306  * aren't in sync
2307  */
2308 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2309 {
2310         struct r10conf *conf = mddev->private;
2311         int i, first;
2312         struct bio *tbio, *fbio;
2313         int vcnt;
2314         struct page **tpages, **fpages;
2315
2316         atomic_set(&r10_bio->remaining, 1);
2317
2318         /* find the first device with a block */
2319         for (i=0; i<conf->copies; i++)
2320                 if (!r10_bio->devs[i].bio->bi_status)
2321                         break;
2322
2323         if (i == conf->copies)
2324                 goto done;
2325
2326         first = i;
2327         fbio = r10_bio->devs[i].bio;
2328         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2329         fbio->bi_iter.bi_idx = 0;
2330         fpages = get_resync_pages(fbio)->pages;
2331
2332         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2333         /* now find blocks with errors */
2334         for (i=0 ; i < conf->copies ; i++) {
2335                 int  j, d;
2336                 struct md_rdev *rdev;
2337                 struct resync_pages *rp;
2338
2339                 tbio = r10_bio->devs[i].bio;
2340
2341                 if (tbio->bi_end_io != end_sync_read)
2342                         continue;
2343                 if (i == first)
2344                         continue;
2345
2346                 tpages = get_resync_pages(tbio)->pages;
2347                 d = r10_bio->devs[i].devnum;
2348                 rdev = conf->mirrors[d].rdev;
2349                 if (!r10_bio->devs[i].bio->bi_status) {
2350                         /* We know that the bi_io_vec layout is the same for
2351                          * both 'first' and 'i', so we just compare them.
2352                          * All vec entries are PAGE_SIZE;
2353                          */
2354                         int sectors = r10_bio->sectors;
2355                         for (j = 0; j < vcnt; j++) {
2356                                 int len = PAGE_SIZE;
2357                                 if (sectors < (len / 512))
2358                                         len = sectors * 512;
2359                                 if (memcmp(page_address(fpages[j]),
2360                                            page_address(tpages[j]),
2361                                            len))
2362                                         break;
2363                                 sectors -= len/512;
2364                         }
2365                         if (j == vcnt)
2366                                 continue;
2367                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2368                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2369                                 /* Don't fix anything. */
2370                                 continue;
2371                 } else if (test_bit(FailFast, &rdev->flags)) {
2372                         /* Just give up on this device */
2373                         md_error(rdev->mddev, rdev);
2374                         continue;
2375                 }
2376                 /* Ok, we need to write this bio, either to correct an
2377                  * inconsistency or to correct an unreadable block.
2378                  * First we need to fixup bv_offset, bv_len and
2379                  * bi_vecs, as the read request might have corrupted these
2380                  */
2381                 rp = get_resync_pages(tbio);
2382                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2383
2384                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2385
2386                 rp->raid_bio = r10_bio;
2387                 tbio->bi_private = rp;
2388                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2389                 tbio->bi_end_io = end_sync_write;
2390
2391                 bio_copy_data(tbio, fbio);
2392
2393                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2394                 atomic_inc(&r10_bio->remaining);
2395                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2396
2397                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2398                         tbio->bi_opf |= MD_FAILFAST;
2399                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2400                 submit_bio_noacct(tbio);
2401         }
2402
2403         /* Now write out to any replacement devices
2404          * that are active
2405          */
2406         for (i = 0; i < conf->copies; i++) {
2407                 int d;
2408
2409                 tbio = r10_bio->devs[i].repl_bio;
2410                 if (!tbio || !tbio->bi_end_io)
2411                         continue;
2412                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2413                     && r10_bio->devs[i].bio != fbio)
2414                         bio_copy_data(tbio, fbio);
2415                 d = r10_bio->devs[i].devnum;
2416                 atomic_inc(&r10_bio->remaining);
2417                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2418                              bio_sectors(tbio));
2419                 submit_bio_noacct(tbio);
2420         }
2421
2422 done:
2423         if (atomic_dec_and_test(&r10_bio->remaining)) {
2424                 md_done_sync(mddev, r10_bio->sectors, 1);
2425                 put_buf(r10_bio);
2426         }
2427 }
2428
2429 /*
2430  * Now for the recovery code.
2431  * Recovery happens across physical sectors.
2432  * We recover all non-is_sync drives by finding the virtual address of
2433  * each, and then choose a working drive that also has that virt address.
2434  * There is a separate r10_bio for each non-in_sync drive.
2435  * Only the first two slots are in use. The first for reading,
2436  * The second for writing.
2437  *
2438  */
2439 static void fix_recovery_read_error(struct r10bio *r10_bio)
2440 {
2441         /* We got a read error during recovery.
2442          * We repeat the read in smaller page-sized sections.
2443          * If a read succeeds, write it to the new device or record
2444          * a bad block if we cannot.
2445          * If a read fails, record a bad block on both old and
2446          * new devices.
2447          */
2448         struct mddev *mddev = r10_bio->mddev;
2449         struct r10conf *conf = mddev->private;
2450         struct bio *bio = r10_bio->devs[0].bio;
2451         sector_t sect = 0;
2452         int sectors = r10_bio->sectors;
2453         int idx = 0;
2454         int dr = r10_bio->devs[0].devnum;
2455         int dw = r10_bio->devs[1].devnum;
2456         struct page **pages = get_resync_pages(bio)->pages;
2457
2458         while (sectors) {
2459                 int s = sectors;
2460                 struct md_rdev *rdev;
2461                 sector_t addr;
2462                 int ok;
2463
2464                 if (s > (PAGE_SIZE>>9))
2465                         s = PAGE_SIZE >> 9;
2466
2467                 rdev = conf->mirrors[dr].rdev;
2468                 addr = r10_bio->devs[0].addr + sect,
2469                 ok = sync_page_io(rdev,
2470                                   addr,
2471                                   s << 9,
2472                                   pages[idx],
2473                                   REQ_OP_READ, false);
2474                 if (ok) {
2475                         rdev = conf->mirrors[dw].rdev;
2476                         addr = r10_bio->devs[1].addr + sect;
2477                         ok = sync_page_io(rdev,
2478                                           addr,
2479                                           s << 9,
2480                                           pages[idx],
2481                                           REQ_OP_WRITE, false);
2482                         if (!ok) {
2483                                 set_bit(WriteErrorSeen, &rdev->flags);
2484                                 if (!test_and_set_bit(WantReplacement,
2485                                                       &rdev->flags))
2486                                         set_bit(MD_RECOVERY_NEEDED,
2487                                                 &rdev->mddev->recovery);
2488                         }
2489                 }
2490                 if (!ok) {
2491                         /* We don't worry if we cannot set a bad block -
2492                          * it really is bad so there is no loss in not
2493                          * recording it yet
2494                          */
2495                         rdev_set_badblocks(rdev, addr, s, 0);
2496
2497                         if (rdev != conf->mirrors[dw].rdev) {
2498                                 /* need bad block on destination too */
2499                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2500                                 addr = r10_bio->devs[1].addr + sect;
2501                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2502                                 if (!ok) {
2503                                         /* just abort the recovery */
2504                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2505                                                   mdname(mddev));
2506
2507                                         conf->mirrors[dw].recovery_disabled
2508                                                 = mddev->recovery_disabled;
2509                                         set_bit(MD_RECOVERY_INTR,
2510                                                 &mddev->recovery);
2511                                         break;
2512                                 }
2513                         }
2514                 }
2515
2516                 sectors -= s;
2517                 sect += s;
2518                 idx++;
2519         }
2520 }
2521
2522 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2523 {
2524         struct r10conf *conf = mddev->private;
2525         int d;
2526         struct bio *wbio = r10_bio->devs[1].bio;
2527         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2528
2529         /* Need to test wbio2->bi_end_io before we call
2530          * submit_bio_noacct as if the former is NULL,
2531          * the latter is free to free wbio2.
2532          */
2533         if (wbio2 && !wbio2->bi_end_io)
2534                 wbio2 = NULL;
2535
2536         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2537                 fix_recovery_read_error(r10_bio);
2538                 if (wbio->bi_end_io)
2539                         end_sync_request(r10_bio);
2540                 if (wbio2)
2541                         end_sync_request(r10_bio);
2542                 return;
2543         }
2544
2545         /*
2546          * share the pages with the first bio
2547          * and submit the write request
2548          */
2549         d = r10_bio->devs[1].devnum;
2550         if (wbio->bi_end_io) {
2551                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2552                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2553                 submit_bio_noacct(wbio);
2554         }
2555         if (wbio2) {
2556                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2557                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2558                              bio_sectors(wbio2));
2559                 submit_bio_noacct(wbio2);
2560         }
2561 }
2562
2563 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2564                             int sectors, struct page *page, enum req_op op)
2565 {
2566         if (rdev_has_badblock(rdev, sector, sectors) &&
2567             (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2568                 return -1;
2569         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2570                 /* success */
2571                 return 1;
2572         if (op == REQ_OP_WRITE) {
2573                 set_bit(WriteErrorSeen, &rdev->flags);
2574                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2575                         set_bit(MD_RECOVERY_NEEDED,
2576                                 &rdev->mddev->recovery);
2577         }
2578         /* need to record an error - either for the block or the device */
2579         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2580                 md_error(rdev->mddev, rdev);
2581         return 0;
2582 }
2583
2584 /*
2585  * This is a kernel thread which:
2586  *
2587  *      1.      Retries failed read operations on working mirrors.
2588  *      2.      Updates the raid superblock when problems encounter.
2589  *      3.      Performs writes following reads for array synchronising.
2590  */
2591
2592 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2593 {
2594         int sect = 0; /* Offset from r10_bio->sector */
2595         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2596         struct md_rdev *rdev;
2597         int d = r10_bio->devs[slot].devnum;
2598
2599         /* still own a reference to this rdev, so it cannot
2600          * have been cleared recently.
2601          */
2602         rdev = conf->mirrors[d].rdev;
2603
2604         if (test_bit(Faulty, &rdev->flags))
2605                 /* drive has already been failed, just ignore any
2606                    more fix_read_error() attempts */
2607                 return;
2608
2609         if (exceed_read_errors(mddev, rdev)) {
2610                 r10_bio->devs[slot].bio = IO_BLOCKED;
2611                 return;
2612         }
2613
2614         while(sectors) {
2615                 int s = sectors;
2616                 int sl = slot;
2617                 int success = 0;
2618                 int start;
2619
2620                 if (s > (PAGE_SIZE>>9))
2621                         s = PAGE_SIZE >> 9;
2622
2623                 do {
2624                         d = r10_bio->devs[sl].devnum;
2625                         rdev = conf->mirrors[d].rdev;
2626                         if (rdev &&
2627                             test_bit(In_sync, &rdev->flags) &&
2628                             !test_bit(Faulty, &rdev->flags) &&
2629                             rdev_has_badblock(rdev,
2630                                               r10_bio->devs[sl].addr + sect,
2631                                               s) == 0) {
2632                                 atomic_inc(&rdev->nr_pending);
2633                                 success = sync_page_io(rdev,
2634                                                        r10_bio->devs[sl].addr +
2635                                                        sect,
2636                                                        s<<9,
2637                                                        conf->tmppage,
2638                                                        REQ_OP_READ, false);
2639                                 rdev_dec_pending(rdev, mddev);
2640                                 if (success)
2641                                         break;
2642                         }
2643                         sl++;
2644                         if (sl == conf->copies)
2645                                 sl = 0;
2646                 } while (sl != slot);
2647
2648                 if (!success) {
2649                         /* Cannot read from anywhere, just mark the block
2650                          * as bad on the first device to discourage future
2651                          * reads.
2652                          */
2653                         int dn = r10_bio->devs[slot].devnum;
2654                         rdev = conf->mirrors[dn].rdev;
2655
2656                         if (!rdev_set_badblocks(
2657                                     rdev,
2658                                     r10_bio->devs[slot].addr
2659                                     + sect,
2660                                     s, 0)) {
2661                                 md_error(mddev, rdev);
2662                                 r10_bio->devs[slot].bio
2663                                         = IO_BLOCKED;
2664                         }
2665                         break;
2666                 }
2667
2668                 start = sl;
2669                 /* write it back and re-read */
2670                 while (sl != slot) {
2671                         if (sl==0)
2672                                 sl = conf->copies;
2673                         sl--;
2674                         d = r10_bio->devs[sl].devnum;
2675                         rdev = conf->mirrors[d].rdev;
2676                         if (!rdev ||
2677                             test_bit(Faulty, &rdev->flags) ||
2678                             !test_bit(In_sync, &rdev->flags))
2679                                 continue;
2680
2681                         atomic_inc(&rdev->nr_pending);
2682                         if (r10_sync_page_io(rdev,
2683                                              r10_bio->devs[sl].addr +
2684                                              sect,
2685                                              s, conf->tmppage, REQ_OP_WRITE)
2686                             == 0) {
2687                                 /* Well, this device is dead */
2688                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2689                                           mdname(mddev), s,
2690                                           (unsigned long long)(
2691                                                   sect +
2692                                                   choose_data_offset(r10_bio,
2693                                                                      rdev)),
2694                                           rdev->bdev);
2695                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2696                                           mdname(mddev),
2697                                           rdev->bdev);
2698                         }
2699                         rdev_dec_pending(rdev, mddev);
2700                 }
2701                 sl = start;
2702                 while (sl != slot) {
2703                         if (sl==0)
2704                                 sl = conf->copies;
2705                         sl--;
2706                         d = r10_bio->devs[sl].devnum;
2707                         rdev = conf->mirrors[d].rdev;
2708                         if (!rdev ||
2709                             test_bit(Faulty, &rdev->flags) ||
2710                             !test_bit(In_sync, &rdev->flags))
2711                                 continue;
2712
2713                         atomic_inc(&rdev->nr_pending);
2714                         switch (r10_sync_page_io(rdev,
2715                                              r10_bio->devs[sl].addr +
2716                                              sect,
2717                                              s, conf->tmppage, REQ_OP_READ)) {
2718                         case 0:
2719                                 /* Well, this device is dead */
2720                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2721                                        mdname(mddev), s,
2722                                        (unsigned long long)(
2723                                                sect +
2724                                                choose_data_offset(r10_bio, rdev)),
2725                                        rdev->bdev);
2726                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2727                                        mdname(mddev),
2728                                        rdev->bdev);
2729                                 break;
2730                         case 1:
2731                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2732                                        mdname(mddev), s,
2733                                        (unsigned long long)(
2734                                                sect +
2735                                                choose_data_offset(r10_bio, rdev)),
2736                                        rdev->bdev);
2737                                 atomic_add(s, &rdev->corrected_errors);
2738                         }
2739
2740                         rdev_dec_pending(rdev, mddev);
2741                 }
2742
2743                 sectors -= s;
2744                 sect += s;
2745         }
2746 }
2747
2748 static int narrow_write_error(struct r10bio *r10_bio, int i)
2749 {
2750         struct bio *bio = r10_bio->master_bio;
2751         struct mddev *mddev = r10_bio->mddev;
2752         struct r10conf *conf = mddev->private;
2753         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2754         /* bio has the data to be written to slot 'i' where
2755          * we just recently had a write error.
2756          * We repeatedly clone the bio and trim down to one block,
2757          * then try the write.  Where the write fails we record
2758          * a bad block.
2759          * It is conceivable that the bio doesn't exactly align with
2760          * blocks.  We must handle this.
2761          *
2762          * We currently own a reference to the rdev.
2763          */
2764
2765         int block_sectors;
2766         sector_t sector;
2767         int sectors;
2768         int sect_to_write = r10_bio->sectors;
2769         int ok = 1;
2770
2771         if (rdev->badblocks.shift < 0)
2772                 return 0;
2773
2774         block_sectors = roundup(1 << rdev->badblocks.shift,
2775                                 bdev_logical_block_size(rdev->bdev) >> 9);
2776         sector = r10_bio->sector;
2777         sectors = ((r10_bio->sector + block_sectors)
2778                    & ~(sector_t)(block_sectors - 1))
2779                 - sector;
2780
2781         while (sect_to_write) {
2782                 struct bio *wbio;
2783                 sector_t wsector;
2784                 if (sectors > sect_to_write)
2785                         sectors = sect_to_write;
2786                 /* Write at 'sector' for 'sectors' */
2787                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2788                                        &mddev->bio_set);
2789                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2790                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2791                 wbio->bi_iter.bi_sector = wsector +
2792                                    choose_data_offset(r10_bio, rdev);
2793                 wbio->bi_opf = REQ_OP_WRITE;
2794
2795                 if (submit_bio_wait(wbio) < 0)
2796                         /* Failure! */
2797                         ok = rdev_set_badblocks(rdev, wsector,
2798                                                 sectors, 0)
2799                                 && ok;
2800
2801                 bio_put(wbio);
2802                 sect_to_write -= sectors;
2803                 sector += sectors;
2804                 sectors = block_sectors;
2805         }
2806         return ok;
2807 }
2808
2809 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2810 {
2811         int slot = r10_bio->read_slot;
2812         struct bio *bio;
2813         struct r10conf *conf = mddev->private;
2814         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2815
2816         /* we got a read error. Maybe the drive is bad.  Maybe just
2817          * the block and we can fix it.
2818          * We freeze all other IO, and try reading the block from
2819          * other devices.  When we find one, we re-write
2820          * and check it that fixes the read error.
2821          * This is all done synchronously while the array is
2822          * frozen.
2823          */
2824         bio = r10_bio->devs[slot].bio;
2825         bio_put(bio);
2826         r10_bio->devs[slot].bio = NULL;
2827
2828         if (mddev->ro)
2829                 r10_bio->devs[slot].bio = IO_BLOCKED;
2830         else if (!test_bit(FailFast, &rdev->flags)) {
2831                 freeze_array(conf, 1);
2832                 fix_read_error(conf, mddev, r10_bio);
2833                 unfreeze_array(conf);
2834         } else
2835                 md_error(mddev, rdev);
2836
2837         rdev_dec_pending(rdev, mddev);
2838         r10_bio->state = 0;
2839         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2840         /*
2841          * allow_barrier after re-submit to ensure no sync io
2842          * can be issued while regular io pending.
2843          */
2844         allow_barrier(conf);
2845 }
2846
2847 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2848 {
2849         /* Some sort of write request has finished and it
2850          * succeeded in writing where we thought there was a
2851          * bad block.  So forget the bad block.
2852          * Or possibly if failed and we need to record
2853          * a bad block.
2854          */
2855         int m;
2856         struct md_rdev *rdev;
2857
2858         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2859             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2860                 for (m = 0; m < conf->copies; m++) {
2861                         int dev = r10_bio->devs[m].devnum;
2862                         rdev = conf->mirrors[dev].rdev;
2863                         if (r10_bio->devs[m].bio == NULL ||
2864                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2865                                 continue;
2866                         if (!r10_bio->devs[m].bio->bi_status) {
2867                                 rdev_clear_badblocks(
2868                                         rdev,
2869                                         r10_bio->devs[m].addr,
2870                                         r10_bio->sectors, 0);
2871                         } else {
2872                                 if (!rdev_set_badblocks(
2873                                             rdev,
2874                                             r10_bio->devs[m].addr,
2875                                             r10_bio->sectors, 0))
2876                                         md_error(conf->mddev, rdev);
2877                         }
2878                         rdev = conf->mirrors[dev].replacement;
2879                         if (r10_bio->devs[m].repl_bio == NULL ||
2880                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2881                                 continue;
2882
2883                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2884                                 rdev_clear_badblocks(
2885                                         rdev,
2886                                         r10_bio->devs[m].addr,
2887                                         r10_bio->sectors, 0);
2888                         } else {
2889                                 if (!rdev_set_badblocks(
2890                                             rdev,
2891                                             r10_bio->devs[m].addr,
2892                                             r10_bio->sectors, 0))
2893                                         md_error(conf->mddev, rdev);
2894                         }
2895                 }
2896                 put_buf(r10_bio);
2897         } else {
2898                 bool fail = false;
2899                 for (m = 0; m < conf->copies; m++) {
2900                         int dev = r10_bio->devs[m].devnum;
2901                         struct bio *bio = r10_bio->devs[m].bio;
2902                         rdev = conf->mirrors[dev].rdev;
2903                         if (bio == IO_MADE_GOOD) {
2904                                 rdev_clear_badblocks(
2905                                         rdev,
2906                                         r10_bio->devs[m].addr,
2907                                         r10_bio->sectors, 0);
2908                                 rdev_dec_pending(rdev, conf->mddev);
2909                         } else if (bio != NULL && bio->bi_status) {
2910                                 fail = true;
2911                                 if (!narrow_write_error(r10_bio, m)) {
2912                                         md_error(conf->mddev, rdev);
2913                                         set_bit(R10BIO_Degraded,
2914                                                 &r10_bio->state);
2915                                 }
2916                                 rdev_dec_pending(rdev, conf->mddev);
2917                         }
2918                         bio = r10_bio->devs[m].repl_bio;
2919                         rdev = conf->mirrors[dev].replacement;
2920                         if (rdev && bio == IO_MADE_GOOD) {
2921                                 rdev_clear_badblocks(
2922                                         rdev,
2923                                         r10_bio->devs[m].addr,
2924                                         r10_bio->sectors, 0);
2925                                 rdev_dec_pending(rdev, conf->mddev);
2926                         }
2927                 }
2928                 if (fail) {
2929                         spin_lock_irq(&conf->device_lock);
2930                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2931                         conf->nr_queued++;
2932                         spin_unlock_irq(&conf->device_lock);
2933                         /*
2934                          * In case freeze_array() is waiting for condition
2935                          * nr_pending == nr_queued + extra to be true.
2936                          */
2937                         wake_up(&conf->wait_barrier);
2938                         md_wakeup_thread(conf->mddev->thread);
2939                 } else {
2940                         if (test_bit(R10BIO_WriteError,
2941                                      &r10_bio->state))
2942                                 close_write(r10_bio);
2943                         raid_end_bio_io(r10_bio);
2944                 }
2945         }
2946 }
2947
2948 static void raid10d(struct md_thread *thread)
2949 {
2950         struct mddev *mddev = thread->mddev;
2951         struct r10bio *r10_bio;
2952         unsigned long flags;
2953         struct r10conf *conf = mddev->private;
2954         struct list_head *head = &conf->retry_list;
2955         struct blk_plug plug;
2956
2957         md_check_recovery(mddev);
2958
2959         if (!list_empty_careful(&conf->bio_end_io_list) &&
2960             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2961                 LIST_HEAD(tmp);
2962                 spin_lock_irqsave(&conf->device_lock, flags);
2963                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2964                         while (!list_empty(&conf->bio_end_io_list)) {
2965                                 list_move(conf->bio_end_io_list.prev, &tmp);
2966                                 conf->nr_queued--;
2967                         }
2968                 }
2969                 spin_unlock_irqrestore(&conf->device_lock, flags);
2970                 while (!list_empty(&tmp)) {
2971                         r10_bio = list_first_entry(&tmp, struct r10bio,
2972                                                    retry_list);
2973                         list_del(&r10_bio->retry_list);
2974                         if (mddev->degraded)
2975                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2976
2977                         if (test_bit(R10BIO_WriteError,
2978                                      &r10_bio->state))
2979                                 close_write(r10_bio);
2980                         raid_end_bio_io(r10_bio);
2981                 }
2982         }
2983
2984         blk_start_plug(&plug);
2985         for (;;) {
2986
2987                 flush_pending_writes(conf);
2988
2989                 spin_lock_irqsave(&conf->device_lock, flags);
2990                 if (list_empty(head)) {
2991                         spin_unlock_irqrestore(&conf->device_lock, flags);
2992                         break;
2993                 }
2994                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2995                 list_del(head->prev);
2996                 conf->nr_queued--;
2997                 spin_unlock_irqrestore(&conf->device_lock, flags);
2998
2999                 mddev = r10_bio->mddev;
3000                 conf = mddev->private;
3001                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3002                     test_bit(R10BIO_WriteError, &r10_bio->state))
3003                         handle_write_completed(conf, r10_bio);
3004                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3005                         reshape_request_write(mddev, r10_bio);
3006                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3007                         sync_request_write(mddev, r10_bio);
3008                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3009                         recovery_request_write(mddev, r10_bio);
3010                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3011                         handle_read_error(mddev, r10_bio);
3012                 else
3013                         WARN_ON_ONCE(1);
3014
3015                 cond_resched();
3016                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3017                         md_check_recovery(mddev);
3018         }
3019         blk_finish_plug(&plug);
3020 }
3021
3022 static int init_resync(struct r10conf *conf)
3023 {
3024         int ret, buffs, i;
3025
3026         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3027         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3028         conf->have_replacement = 0;
3029         for (i = 0; i < conf->geo.raid_disks; i++)
3030                 if (conf->mirrors[i].replacement)
3031                         conf->have_replacement = 1;
3032         ret = mempool_init(&conf->r10buf_pool, buffs,
3033                            r10buf_pool_alloc, r10buf_pool_free, conf);
3034         if (ret)
3035                 return ret;
3036         conf->next_resync = 0;
3037         return 0;
3038 }
3039
3040 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3041 {
3042         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3043         struct rsync_pages *rp;
3044         struct bio *bio;
3045         int nalloc;
3046         int i;
3047
3048         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3049             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3050                 nalloc = conf->copies; /* resync */
3051         else
3052                 nalloc = 2; /* recovery */
3053
3054         for (i = 0; i < nalloc; i++) {
3055                 bio = r10bio->devs[i].bio;
3056                 rp = bio->bi_private;
3057                 bio_reset(bio, NULL, 0);
3058                 bio->bi_private = rp;
3059                 bio = r10bio->devs[i].repl_bio;
3060                 if (bio) {
3061                         rp = bio->bi_private;
3062                         bio_reset(bio, NULL, 0);
3063                         bio->bi_private = rp;
3064                 }
3065         }
3066         return r10bio;
3067 }
3068
3069 /*
3070  * Set cluster_sync_high since we need other nodes to add the
3071  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3072  */
3073 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3074 {
3075         sector_t window_size;
3076         int extra_chunk, chunks;
3077
3078         /*
3079          * First, here we define "stripe" as a unit which across
3080          * all member devices one time, so we get chunks by use
3081          * raid_disks / near_copies. Otherwise, if near_copies is
3082          * close to raid_disks, then resync window could increases
3083          * linearly with the increase of raid_disks, which means
3084          * we will suspend a really large IO window while it is not
3085          * necessary. If raid_disks is not divisible by near_copies,
3086          * an extra chunk is needed to ensure the whole "stripe" is
3087          * covered.
3088          */
3089
3090         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3091         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3092                 extra_chunk = 0;
3093         else
3094                 extra_chunk = 1;
3095         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3096
3097         /*
3098          * At least use a 32M window to align with raid1's resync window
3099          */
3100         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3101                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3102
3103         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3104 }
3105
3106 /*
3107  * perform a "sync" on one "block"
3108  *
3109  * We need to make sure that no normal I/O request - particularly write
3110  * requests - conflict with active sync requests.
3111  *
3112  * This is achieved by tracking pending requests and a 'barrier' concept
3113  * that can be installed to exclude normal IO requests.
3114  *
3115  * Resync and recovery are handled very differently.
3116  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3117  *
3118  * For resync, we iterate over virtual addresses, read all copies,
3119  * and update if there are differences.  If only one copy is live,
3120  * skip it.
3121  * For recovery, we iterate over physical addresses, read a good
3122  * value for each non-in_sync drive, and over-write.
3123  *
3124  * So, for recovery we may have several outstanding complex requests for a
3125  * given address, one for each out-of-sync device.  We model this by allocating
3126  * a number of r10_bio structures, one for each out-of-sync device.
3127  * As we setup these structures, we collect all bio's together into a list
3128  * which we then process collectively to add pages, and then process again
3129  * to pass to submit_bio_noacct.
3130  *
3131  * The r10_bio structures are linked using a borrowed master_bio pointer.
3132  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3133  * has its remaining count decremented to 0, the whole complex operation
3134  * is complete.
3135  *
3136  */
3137
3138 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3139                                     sector_t max_sector, int *skipped)
3140 {
3141         struct r10conf *conf = mddev->private;
3142         struct r10bio *r10_bio;
3143         struct bio *biolist = NULL, *bio;
3144         sector_t nr_sectors;
3145         int i;
3146         int max_sync;
3147         sector_t sync_blocks;
3148         sector_t sectors_skipped = 0;
3149         int chunks_skipped = 0;
3150         sector_t chunk_mask = conf->geo.chunk_mask;
3151         int page_idx = 0;
3152         int error_disk = -1;
3153
3154         /*
3155          * Allow skipping a full rebuild for incremental assembly
3156          * of a clean array, like RAID1 does.
3157          */
3158         if (mddev->bitmap == NULL &&
3159             mddev->recovery_cp == MaxSector &&
3160             mddev->reshape_position == MaxSector &&
3161             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3162             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3163             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3164             conf->fullsync == 0) {
3165                 *skipped = 1;
3166                 return mddev->dev_sectors - sector_nr;
3167         }
3168
3169         if (!mempool_initialized(&conf->r10buf_pool))
3170                 if (init_resync(conf))
3171                         return 0;
3172
3173  skipped:
3174         if (sector_nr >= max_sector) {
3175                 conf->cluster_sync_low = 0;
3176                 conf->cluster_sync_high = 0;
3177
3178                 /* If we aborted, we need to abort the
3179                  * sync on the 'current' bitmap chucks (there can
3180                  * be several when recovering multiple devices).
3181                  * as we may have started syncing it but not finished.
3182                  * We can find the current address in
3183                  * mddev->curr_resync, but for recovery,
3184                  * we need to convert that to several
3185                  * virtual addresses.
3186                  */
3187                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3188                         end_reshape(conf);
3189                         close_sync(conf);
3190                         return 0;
3191                 }
3192
3193                 if (mddev->curr_resync < max_sector) { /* aborted */
3194                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3195                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3196                                                    &sync_blocks, 1);
3197                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3198                                 sector_t sect =
3199                                         raid10_find_virt(conf, mddev->curr_resync, i);
3200                                 md_bitmap_end_sync(mddev->bitmap, sect,
3201                                                    &sync_blocks, 1);
3202                         }
3203                 } else {
3204                         /* completed sync */
3205                         if ((!mddev->bitmap || conf->fullsync)
3206                             && conf->have_replacement
3207                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3208                                 /* Completed a full sync so the replacements
3209                                  * are now fully recovered.
3210                                  */
3211                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3212                                         struct md_rdev *rdev =
3213                                                 conf->mirrors[i].replacement;
3214
3215                                         if (rdev)
3216                                                 rdev->recovery_offset = MaxSector;
3217                                 }
3218                         }
3219                         conf->fullsync = 0;
3220                 }
3221                 md_bitmap_close_sync(mddev->bitmap);
3222                 close_sync(conf);
3223                 *skipped = 1;
3224                 return sectors_skipped;
3225         }
3226
3227         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3228                 return reshape_request(mddev, sector_nr, skipped);
3229
3230         if (chunks_skipped >= conf->geo.raid_disks) {
3231                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3232                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3233                 if (error_disk >= 0 &&
3234                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3235                         /*
3236                          * recovery fails, set mirrors.recovery_disabled,
3237                          * device shouldn't be added to there.
3238                          */
3239                         conf->mirrors[error_disk].recovery_disabled =
3240                                                 mddev->recovery_disabled;
3241                         return 0;
3242                 }
3243                 /*
3244                  * if there has been nothing to do on any drive,
3245                  * then there is nothing to do at all.
3246                  */
3247                 *skipped = 1;
3248                 return (max_sector - sector_nr) + sectors_skipped;
3249         }
3250
3251         if (max_sector > mddev->resync_max)
3252                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3253
3254         /* make sure whole request will fit in a chunk - if chunks
3255          * are meaningful
3256          */
3257         if (conf->geo.near_copies < conf->geo.raid_disks &&
3258             max_sector > (sector_nr | chunk_mask))
3259                 max_sector = (sector_nr | chunk_mask) + 1;
3260
3261         /*
3262          * If there is non-resync activity waiting for a turn, then let it
3263          * though before starting on this new sync request.
3264          */
3265         if (conf->nr_waiting)
3266                 schedule_timeout_uninterruptible(1);
3267
3268         /* Again, very different code for resync and recovery.
3269          * Both must result in an r10bio with a list of bios that
3270          * have bi_end_io, bi_sector, bi_bdev set,
3271          * and bi_private set to the r10bio.
3272          * For recovery, we may actually create several r10bios
3273          * with 2 bios in each, that correspond to the bios in the main one.
3274          * In this case, the subordinate r10bios link back through a
3275          * borrowed master_bio pointer, and the counter in the master
3276          * includes a ref from each subordinate.
3277          */
3278         /* First, we decide what to do and set ->bi_end_io
3279          * To end_sync_read if we want to read, and
3280          * end_sync_write if we will want to write.
3281          */
3282
3283         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3284         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3285                 /* recovery... the complicated one */
3286                 int j;
3287                 r10_bio = NULL;
3288
3289                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3290                         int still_degraded;
3291                         struct r10bio *rb2;
3292                         sector_t sect;
3293                         int must_sync;
3294                         int any_working;
3295                         struct raid10_info *mirror = &conf->mirrors[i];
3296                         struct md_rdev *mrdev, *mreplace;
3297
3298                         mrdev = mirror->rdev;
3299                         mreplace = mirror->replacement;
3300
3301                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3302                             test_bit(In_sync, &mrdev->flags)))
3303                                 mrdev = NULL;
3304                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3305                                 mreplace = NULL;
3306
3307                         if (!mrdev && !mreplace)
3308                                 continue;
3309
3310                         still_degraded = 0;
3311                         /* want to reconstruct this device */
3312                         rb2 = r10_bio;
3313                         sect = raid10_find_virt(conf, sector_nr, i);
3314                         if (sect >= mddev->resync_max_sectors)
3315                                 /* last stripe is not complete - don't
3316                                  * try to recover this sector.
3317                                  */
3318                                 continue;
3319                         /* Unless we are doing a full sync, or a replacement
3320                          * we only need to recover the block if it is set in
3321                          * the bitmap
3322                          */
3323                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3324                                                          &sync_blocks, 1);
3325                         if (sync_blocks < max_sync)
3326                                 max_sync = sync_blocks;
3327                         if (!must_sync &&
3328                             mreplace == NULL &&
3329                             !conf->fullsync) {
3330                                 /* yep, skip the sync_blocks here, but don't assume
3331                                  * that there will never be anything to do here
3332                                  */
3333                                 chunks_skipped = -1;
3334                                 continue;
3335                         }
3336                         if (mrdev)
3337                                 atomic_inc(&mrdev->nr_pending);
3338                         if (mreplace)
3339                                 atomic_inc(&mreplace->nr_pending);
3340
3341                         r10_bio = raid10_alloc_init_r10buf(conf);
3342                         r10_bio->state = 0;
3343                         raise_barrier(conf, rb2 != NULL);
3344                         atomic_set(&r10_bio->remaining, 0);
3345
3346                         r10_bio->master_bio = (struct bio*)rb2;
3347                         if (rb2)
3348                                 atomic_inc(&rb2->remaining);
3349                         r10_bio->mddev = mddev;
3350                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3351                         r10_bio->sector = sect;
3352
3353                         raid10_find_phys(conf, r10_bio);
3354
3355                         /* Need to check if the array will still be
3356                          * degraded
3357                          */
3358                         for (j = 0; j < conf->geo.raid_disks; j++) {
3359                                 struct md_rdev *rdev = conf->mirrors[j].rdev;
3360
3361                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3362                                         still_degraded = 1;
3363                                         break;
3364                                 }
3365                         }
3366
3367                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3368                                                          &sync_blocks, still_degraded);
3369
3370                         any_working = 0;
3371                         for (j=0; j<conf->copies;j++) {
3372                                 int k;
3373                                 int d = r10_bio->devs[j].devnum;
3374                                 sector_t from_addr, to_addr;
3375                                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3376                                 sector_t sector, first_bad;
3377                                 int bad_sectors;
3378                                 if (!rdev ||
3379                                     !test_bit(In_sync, &rdev->flags))
3380                                         continue;
3381                                 /* This is where we read from */
3382                                 any_working = 1;
3383                                 sector = r10_bio->devs[j].addr;
3384
3385                                 if (is_badblock(rdev, sector, max_sync,
3386                                                 &first_bad, &bad_sectors)) {
3387                                         if (first_bad > sector)
3388                                                 max_sync = first_bad - sector;
3389                                         else {
3390                                                 bad_sectors -= (sector
3391                                                                 - first_bad);
3392                                                 if (max_sync > bad_sectors)
3393                                                         max_sync = bad_sectors;
3394                                                 continue;
3395                                         }
3396                                 }
3397                                 bio = r10_bio->devs[0].bio;
3398                                 bio->bi_next = biolist;
3399                                 biolist = bio;
3400                                 bio->bi_end_io = end_sync_read;
3401                                 bio->bi_opf = REQ_OP_READ;
3402                                 if (test_bit(FailFast, &rdev->flags))
3403                                         bio->bi_opf |= MD_FAILFAST;
3404                                 from_addr = r10_bio->devs[j].addr;
3405                                 bio->bi_iter.bi_sector = from_addr +
3406                                         rdev->data_offset;
3407                                 bio_set_dev(bio, rdev->bdev);
3408                                 atomic_inc(&rdev->nr_pending);
3409                                 /* and we write to 'i' (if not in_sync) */
3410
3411                                 for (k=0; k<conf->copies; k++)
3412                                         if (r10_bio->devs[k].devnum == i)
3413                                                 break;
3414                                 BUG_ON(k == conf->copies);
3415                                 to_addr = r10_bio->devs[k].addr;
3416                                 r10_bio->devs[0].devnum = d;
3417                                 r10_bio->devs[0].addr = from_addr;
3418                                 r10_bio->devs[1].devnum = i;
3419                                 r10_bio->devs[1].addr = to_addr;
3420
3421                                 if (mrdev) {
3422                                         bio = r10_bio->devs[1].bio;
3423                                         bio->bi_next = biolist;
3424                                         biolist = bio;
3425                                         bio->bi_end_io = end_sync_write;
3426                                         bio->bi_opf = REQ_OP_WRITE;
3427                                         bio->bi_iter.bi_sector = to_addr
3428                                                 + mrdev->data_offset;
3429                                         bio_set_dev(bio, mrdev->bdev);
3430                                         atomic_inc(&r10_bio->remaining);
3431                                 } else
3432                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3433
3434                                 /* and maybe write to replacement */
3435                                 bio = r10_bio->devs[1].repl_bio;
3436                                 if (bio)
3437                                         bio->bi_end_io = NULL;
3438                                 /* Note: if replace is not NULL, then bio
3439                                  * cannot be NULL as r10buf_pool_alloc will
3440                                  * have allocated it.
3441                                  */
3442                                 if (!mreplace)
3443                                         break;
3444                                 bio->bi_next = biolist;
3445                                 biolist = bio;
3446                                 bio->bi_end_io = end_sync_write;
3447                                 bio->bi_opf = REQ_OP_WRITE;
3448                                 bio->bi_iter.bi_sector = to_addr +
3449                                         mreplace->data_offset;
3450                                 bio_set_dev(bio, mreplace->bdev);
3451                                 atomic_inc(&r10_bio->remaining);
3452                                 break;
3453                         }
3454                         if (j == conf->copies) {
3455                                 /* Cannot recover, so abort the recovery or
3456                                  * record a bad block */
3457                                 if (any_working) {
3458                                         /* problem is that there are bad blocks
3459                                          * on other device(s)
3460                                          */
3461                                         int k;
3462                                         for (k = 0; k < conf->copies; k++)
3463                                                 if (r10_bio->devs[k].devnum == i)
3464                                                         break;
3465                                         if (mrdev && !test_bit(In_sync,
3466                                                       &mrdev->flags)
3467                                             && !rdev_set_badblocks(
3468                                                     mrdev,
3469                                                     r10_bio->devs[k].addr,
3470                                                     max_sync, 0))
3471                                                 any_working = 0;
3472                                         if (mreplace &&
3473                                             !rdev_set_badblocks(
3474                                                     mreplace,
3475                                                     r10_bio->devs[k].addr,
3476                                                     max_sync, 0))
3477                                                 any_working = 0;
3478                                 }
3479                                 if (!any_working)  {
3480                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3481                                                               &mddev->recovery))
3482                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3483                                                        mdname(mddev));
3484                                         mirror->recovery_disabled
3485                                                 = mddev->recovery_disabled;
3486                                 } else {
3487                                         error_disk = i;
3488                                 }
3489                                 put_buf(r10_bio);
3490                                 if (rb2)
3491                                         atomic_dec(&rb2->remaining);
3492                                 r10_bio = rb2;
3493                                 if (mrdev)
3494                                         rdev_dec_pending(mrdev, mddev);
3495                                 if (mreplace)
3496                                         rdev_dec_pending(mreplace, mddev);
3497                                 break;
3498                         }
3499                         if (mrdev)
3500                                 rdev_dec_pending(mrdev, mddev);
3501                         if (mreplace)
3502                                 rdev_dec_pending(mreplace, mddev);
3503                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3504                                 /* Only want this if there is elsewhere to
3505                                  * read from. 'j' is currently the first
3506                                  * readable copy.
3507                                  */
3508                                 int targets = 1;
3509                                 for (; j < conf->copies; j++) {
3510                                         int d = r10_bio->devs[j].devnum;
3511                                         if (conf->mirrors[d].rdev &&
3512                                             test_bit(In_sync,
3513                                                       &conf->mirrors[d].rdev->flags))
3514                                                 targets++;
3515                                 }
3516                                 if (targets == 1)
3517                                         r10_bio->devs[0].bio->bi_opf
3518                                                 &= ~MD_FAILFAST;
3519                         }
3520                 }
3521                 if (biolist == NULL) {
3522                         while (r10_bio) {
3523                                 struct r10bio *rb2 = r10_bio;
3524                                 r10_bio = (struct r10bio*) rb2->master_bio;
3525                                 rb2->master_bio = NULL;
3526                                 put_buf(rb2);
3527                         }
3528                         goto giveup;
3529                 }
3530         } else {
3531                 /* resync. Schedule a read for every block at this virt offset */
3532                 int count = 0;
3533
3534                 /*
3535                  * Since curr_resync_completed could probably not update in
3536                  * time, and we will set cluster_sync_low based on it.
3537                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3538                  * safety reason, which ensures curr_resync_completed is
3539                  * updated in bitmap_cond_end_sync.
3540                  */
3541                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3542                                         mddev_is_clustered(mddev) &&
3543                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3544
3545                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3546                                           &sync_blocks, mddev->degraded) &&
3547                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3548                                                  &mddev->recovery)) {
3549                         /* We can skip this block */
3550                         *skipped = 1;
3551                         return sync_blocks + sectors_skipped;
3552                 }
3553                 if (sync_blocks < max_sync)
3554                         max_sync = sync_blocks;
3555                 r10_bio = raid10_alloc_init_r10buf(conf);
3556                 r10_bio->state = 0;
3557
3558                 r10_bio->mddev = mddev;
3559                 atomic_set(&r10_bio->remaining, 0);
3560                 raise_barrier(conf, 0);
3561                 conf->next_resync = sector_nr;
3562
3563                 r10_bio->master_bio = NULL;
3564                 r10_bio->sector = sector_nr;
3565                 set_bit(R10BIO_IsSync, &r10_bio->state);
3566                 raid10_find_phys(conf, r10_bio);
3567                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3568
3569                 for (i = 0; i < conf->copies; i++) {
3570                         int d = r10_bio->devs[i].devnum;
3571                         sector_t first_bad, sector;
3572                         int bad_sectors;
3573                         struct md_rdev *rdev;
3574
3575                         if (r10_bio->devs[i].repl_bio)
3576                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3577
3578                         bio = r10_bio->devs[i].bio;
3579                         bio->bi_status = BLK_STS_IOERR;
3580                         rdev = conf->mirrors[d].rdev;
3581                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3582                                 continue;
3583
3584                         sector = r10_bio->devs[i].addr;
3585                         if (is_badblock(rdev, sector, max_sync,
3586                                         &first_bad, &bad_sectors)) {
3587                                 if (first_bad > sector)
3588                                         max_sync = first_bad - sector;
3589                                 else {
3590                                         bad_sectors -= (sector - first_bad);
3591                                         if (max_sync > bad_sectors)
3592                                                 max_sync = bad_sectors;
3593                                         continue;
3594                                 }
3595                         }
3596                         atomic_inc(&rdev->nr_pending);
3597                         atomic_inc(&r10_bio->remaining);
3598                         bio->bi_next = biolist;
3599                         biolist = bio;
3600                         bio->bi_end_io = end_sync_read;
3601                         bio->bi_opf = REQ_OP_READ;
3602                         if (test_bit(FailFast, &rdev->flags))
3603                                 bio->bi_opf |= MD_FAILFAST;
3604                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3605                         bio_set_dev(bio, rdev->bdev);
3606                         count++;
3607
3608                         rdev = conf->mirrors[d].replacement;
3609                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3610                                 continue;
3611
3612                         atomic_inc(&rdev->nr_pending);
3613
3614                         /* Need to set up for writing to the replacement */
3615                         bio = r10_bio->devs[i].repl_bio;
3616                         bio->bi_status = BLK_STS_IOERR;
3617
3618                         sector = r10_bio->devs[i].addr;
3619                         bio->bi_next = biolist;
3620                         biolist = bio;
3621                         bio->bi_end_io = end_sync_write;
3622                         bio->bi_opf = REQ_OP_WRITE;
3623                         if (test_bit(FailFast, &rdev->flags))
3624                                 bio->bi_opf |= MD_FAILFAST;
3625                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3626                         bio_set_dev(bio, rdev->bdev);
3627                         count++;
3628                 }
3629
3630                 if (count < 2) {
3631                         for (i=0; i<conf->copies; i++) {
3632                                 int d = r10_bio->devs[i].devnum;
3633                                 if (r10_bio->devs[i].bio->bi_end_io)
3634                                         rdev_dec_pending(conf->mirrors[d].rdev,
3635                                                          mddev);
3636                                 if (r10_bio->devs[i].repl_bio &&
3637                                     r10_bio->devs[i].repl_bio->bi_end_io)
3638                                         rdev_dec_pending(
3639                                                 conf->mirrors[d].replacement,
3640                                                 mddev);
3641                         }
3642                         put_buf(r10_bio);
3643                         biolist = NULL;
3644                         goto giveup;
3645                 }
3646         }
3647
3648         nr_sectors = 0;
3649         if (sector_nr + max_sync < max_sector)
3650                 max_sector = sector_nr + max_sync;
3651         do {
3652                 struct page *page;
3653                 int len = PAGE_SIZE;
3654                 if (sector_nr + (len>>9) > max_sector)
3655                         len = (max_sector - sector_nr) << 9;
3656                 if (len == 0)
3657                         break;
3658                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3659                         struct resync_pages *rp = get_resync_pages(bio);
3660                         page = resync_fetch_page(rp, page_idx);
3661                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3662                                 bio->bi_status = BLK_STS_RESOURCE;
3663                                 bio_endio(bio);
3664                                 goto giveup;
3665                         }
3666                 }
3667                 nr_sectors += len>>9;
3668                 sector_nr += len>>9;
3669         } while (++page_idx < RESYNC_PAGES);
3670         r10_bio->sectors = nr_sectors;
3671
3672         if (mddev_is_clustered(mddev) &&
3673             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3674                 /* It is resync not recovery */
3675                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3676                         conf->cluster_sync_low = mddev->curr_resync_completed;
3677                         raid10_set_cluster_sync_high(conf);
3678                         /* Send resync message */
3679                         md_cluster_ops->resync_info_update(mddev,
3680                                                 conf->cluster_sync_low,
3681                                                 conf->cluster_sync_high);
3682                 }
3683         } else if (mddev_is_clustered(mddev)) {
3684                 /* This is recovery not resync */
3685                 sector_t sect_va1, sect_va2;
3686                 bool broadcast_msg = false;
3687
3688                 for (i = 0; i < conf->geo.raid_disks; i++) {
3689                         /*
3690                          * sector_nr is a device address for recovery, so we
3691                          * need translate it to array address before compare
3692                          * with cluster_sync_high.
3693                          */
3694                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3695
3696                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3697                                 broadcast_msg = true;
3698                                 /*
3699                                  * curr_resync_completed is similar as
3700                                  * sector_nr, so make the translation too.
3701                                  */
3702                                 sect_va2 = raid10_find_virt(conf,
3703                                         mddev->curr_resync_completed, i);
3704
3705                                 if (conf->cluster_sync_low == 0 ||
3706                                     conf->cluster_sync_low > sect_va2)
3707                                         conf->cluster_sync_low = sect_va2;
3708                         }
3709                 }
3710                 if (broadcast_msg) {
3711                         raid10_set_cluster_sync_high(conf);
3712                         md_cluster_ops->resync_info_update(mddev,
3713                                                 conf->cluster_sync_low,
3714                                                 conf->cluster_sync_high);
3715                 }
3716         }
3717
3718         while (biolist) {
3719                 bio = biolist;
3720                 biolist = biolist->bi_next;
3721
3722                 bio->bi_next = NULL;
3723                 r10_bio = get_resync_r10bio(bio);
3724                 r10_bio->sectors = nr_sectors;
3725
3726                 if (bio->bi_end_io == end_sync_read) {
3727                         md_sync_acct_bio(bio, nr_sectors);
3728                         bio->bi_status = 0;
3729                         submit_bio_noacct(bio);
3730                 }
3731         }
3732
3733         if (sectors_skipped)
3734                 /* pretend they weren't skipped, it makes
3735                  * no important difference in this case
3736                  */
3737                 md_done_sync(mddev, sectors_skipped, 1);
3738
3739         return sectors_skipped + nr_sectors;
3740  giveup:
3741         /* There is nowhere to write, so all non-sync
3742          * drives must be failed or in resync, all drives
3743          * have a bad block, so try the next chunk...
3744          */
3745         if (sector_nr + max_sync < max_sector)
3746                 max_sector = sector_nr + max_sync;
3747
3748         sectors_skipped += (max_sector - sector_nr);
3749         chunks_skipped ++;
3750         sector_nr = max_sector;
3751         goto skipped;
3752 }
3753
3754 static sector_t
3755 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3756 {
3757         sector_t size;
3758         struct r10conf *conf = mddev->private;
3759
3760         if (!raid_disks)
3761                 raid_disks = min(conf->geo.raid_disks,
3762                                  conf->prev.raid_disks);
3763         if (!sectors)
3764                 sectors = conf->dev_sectors;
3765
3766         size = sectors >> conf->geo.chunk_shift;
3767         sector_div(size, conf->geo.far_copies);
3768         size = size * raid_disks;
3769         sector_div(size, conf->geo.near_copies);
3770
3771         return size << conf->geo.chunk_shift;
3772 }
3773
3774 static void calc_sectors(struct r10conf *conf, sector_t size)
3775 {
3776         /* Calculate the number of sectors-per-device that will
3777          * actually be used, and set conf->dev_sectors and
3778          * conf->stride
3779          */
3780
3781         size = size >> conf->geo.chunk_shift;
3782         sector_div(size, conf->geo.far_copies);
3783         size = size * conf->geo.raid_disks;
3784         sector_div(size, conf->geo.near_copies);
3785         /* 'size' is now the number of chunks in the array */
3786         /* calculate "used chunks per device" */
3787         size = size * conf->copies;
3788
3789         /* We need to round up when dividing by raid_disks to
3790          * get the stride size.
3791          */
3792         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3793
3794         conf->dev_sectors = size << conf->geo.chunk_shift;
3795
3796         if (conf->geo.far_offset)
3797                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3798         else {
3799                 sector_div(size, conf->geo.far_copies);
3800                 conf->geo.stride = size << conf->geo.chunk_shift;
3801         }
3802 }
3803
3804 enum geo_type {geo_new, geo_old, geo_start};
3805 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3806 {
3807         int nc, fc, fo;
3808         int layout, chunk, disks;
3809         switch (new) {
3810         case geo_old:
3811                 layout = mddev->layout;
3812                 chunk = mddev->chunk_sectors;
3813                 disks = mddev->raid_disks - mddev->delta_disks;
3814                 break;
3815         case geo_new:
3816                 layout = mddev->new_layout;
3817                 chunk = mddev->new_chunk_sectors;
3818                 disks = mddev->raid_disks;
3819                 break;
3820         default: /* avoid 'may be unused' warnings */
3821         case geo_start: /* new when starting reshape - raid_disks not
3822                          * updated yet. */
3823                 layout = mddev->new_layout;
3824                 chunk = mddev->new_chunk_sectors;
3825                 disks = mddev->raid_disks + mddev->delta_disks;
3826                 break;
3827         }
3828         if (layout >> 19)
3829                 return -1;
3830         if (chunk < (PAGE_SIZE >> 9) ||
3831             !is_power_of_2(chunk))
3832                 return -2;
3833         nc = layout & 255;
3834         fc = (layout >> 8) & 255;
3835         fo = layout & (1<<16);
3836         geo->raid_disks = disks;
3837         geo->near_copies = nc;
3838         geo->far_copies = fc;
3839         geo->far_offset = fo;
3840         switch (layout >> 17) {
3841         case 0: /* original layout.  simple but not always optimal */
3842                 geo->far_set_size = disks;
3843                 break;
3844         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3845                  * actually using this, but leave code here just in case.*/
3846                 geo->far_set_size = disks/fc;
3847                 WARN(geo->far_set_size < fc,
3848                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3849                 break;
3850         case 2: /* "improved" layout fixed to match documentation */
3851                 geo->far_set_size = fc * nc;
3852                 break;
3853         default: /* Not a valid layout */
3854                 return -1;
3855         }
3856         geo->chunk_mask = chunk - 1;
3857         geo->chunk_shift = ffz(~chunk);
3858         return nc*fc;
3859 }
3860
3861 static void raid10_free_conf(struct r10conf *conf)
3862 {
3863         if (!conf)
3864                 return;
3865
3866         mempool_exit(&conf->r10bio_pool);
3867         kfree(conf->mirrors);
3868         kfree(conf->mirrors_old);
3869         kfree(conf->mirrors_new);
3870         safe_put_page(conf->tmppage);
3871         bioset_exit(&conf->bio_split);
3872         kfree(conf);
3873 }
3874
3875 static struct r10conf *setup_conf(struct mddev *mddev)
3876 {
3877         struct r10conf *conf = NULL;
3878         int err = -EINVAL;
3879         struct geom geo;
3880         int copies;
3881
3882         copies = setup_geo(&geo, mddev, geo_new);
3883
3884         if (copies == -2) {
3885                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3886                         mdname(mddev), PAGE_SIZE);
3887                 goto out;
3888         }
3889
3890         if (copies < 2 || copies > mddev->raid_disks) {
3891                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3892                         mdname(mddev), mddev->new_layout);
3893                 goto out;
3894         }
3895
3896         err = -ENOMEM;
3897         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3898         if (!conf)
3899                 goto out;
3900
3901         /* FIXME calc properly */
3902         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3903                                 sizeof(struct raid10_info),
3904                                 GFP_KERNEL);
3905         if (!conf->mirrors)
3906                 goto out;
3907
3908         conf->tmppage = alloc_page(GFP_KERNEL);
3909         if (!conf->tmppage)
3910                 goto out;
3911
3912         conf->geo = geo;
3913         conf->copies = copies;
3914         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3915                            rbio_pool_free, conf);
3916         if (err)
3917                 goto out;
3918
3919         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3920         if (err)
3921                 goto out;
3922
3923         calc_sectors(conf, mddev->dev_sectors);
3924         if (mddev->reshape_position == MaxSector) {
3925                 conf->prev = conf->geo;
3926                 conf->reshape_progress = MaxSector;
3927         } else {
3928                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3929                         err = -EINVAL;
3930                         goto out;
3931                 }
3932                 conf->reshape_progress = mddev->reshape_position;
3933                 if (conf->prev.far_offset)
3934                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3935                 else
3936                         /* far_copies must be 1 */
3937                         conf->prev.stride = conf->dev_sectors;
3938         }
3939         conf->reshape_safe = conf->reshape_progress;
3940         spin_lock_init(&conf->device_lock);
3941         INIT_LIST_HEAD(&conf->retry_list);
3942         INIT_LIST_HEAD(&conf->bio_end_io_list);
3943
3944         seqlock_init(&conf->resync_lock);
3945         init_waitqueue_head(&conf->wait_barrier);
3946         atomic_set(&conf->nr_pending, 0);
3947
3948         err = -ENOMEM;
3949         rcu_assign_pointer(conf->thread,
3950                            md_register_thread(raid10d, mddev, "raid10"));
3951         if (!conf->thread)
3952                 goto out;
3953
3954         conf->mddev = mddev;
3955         return conf;
3956
3957  out:
3958         raid10_free_conf(conf);
3959         return ERR_PTR(err);
3960 }
3961
3962 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3963 {
3964         unsigned int raid_disks = conf->geo.raid_disks;
3965
3966         if (conf->geo.raid_disks % conf->geo.near_copies)
3967                 return raid_disks;
3968         return raid_disks / conf->geo.near_copies;
3969 }
3970
3971 static int raid10_set_queue_limits(struct mddev *mddev)
3972 {
3973         struct r10conf *conf = mddev->private;
3974         struct queue_limits lim;
3975         int err;
3976
3977         md_init_stacking_limits(&lim);
3978         lim.max_write_zeroes_sectors = 0;
3979         lim.io_min = mddev->chunk_sectors << 9;
3980         lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3981         err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3982         if (err) {
3983                 queue_limits_cancel_update(mddev->gendisk->queue);
3984                 return err;
3985         }
3986         return queue_limits_set(mddev->gendisk->queue, &lim);
3987 }
3988
3989 static int raid10_run(struct mddev *mddev)
3990 {
3991         struct r10conf *conf;
3992         int i, disk_idx;
3993         struct raid10_info *disk;
3994         struct md_rdev *rdev;
3995         sector_t size;
3996         sector_t min_offset_diff = 0;
3997         int first = 1;
3998         int ret = -EIO;
3999
4000         if (mddev->private == NULL) {
4001                 conf = setup_conf(mddev);
4002                 if (IS_ERR(conf))
4003                         return PTR_ERR(conf);
4004                 mddev->private = conf;
4005         }
4006         conf = mddev->private;
4007         if (!conf)
4008                 goto out;
4009
4010         rcu_assign_pointer(mddev->thread, conf->thread);
4011         rcu_assign_pointer(conf->thread, NULL);
4012
4013         if (mddev_is_clustered(conf->mddev)) {
4014                 int fc, fo;
4015
4016                 fc = (mddev->layout >> 8) & 255;
4017                 fo = mddev->layout & (1<<16);
4018                 if (fc > 1 || fo > 0) {
4019                         pr_err("only near layout is supported by clustered"
4020                                 " raid10\n");
4021                         goto out_free_conf;
4022                 }
4023         }
4024
4025         rdev_for_each(rdev, mddev) {
4026                 long long diff;
4027
4028                 disk_idx = rdev->raid_disk;
4029                 if (disk_idx < 0)
4030                         continue;
4031                 if (disk_idx >= conf->geo.raid_disks &&
4032                     disk_idx >= conf->prev.raid_disks)
4033                         continue;
4034                 disk = conf->mirrors + disk_idx;
4035
4036                 if (test_bit(Replacement, &rdev->flags)) {
4037                         if (disk->replacement)
4038                                 goto out_free_conf;
4039                         disk->replacement = rdev;
4040                 } else {
4041                         if (disk->rdev)
4042                                 goto out_free_conf;
4043                         disk->rdev = rdev;
4044                 }
4045                 diff = (rdev->new_data_offset - rdev->data_offset);
4046                 if (!mddev->reshape_backwards)
4047                         diff = -diff;
4048                 if (diff < 0)
4049                         diff = 0;
4050                 if (first || diff < min_offset_diff)
4051                         min_offset_diff = diff;
4052
4053                 disk->head_position = 0;
4054                 first = 0;
4055         }
4056
4057         if (!mddev_is_dm(conf->mddev)) {
4058                 ret = raid10_set_queue_limits(mddev);
4059                 if (ret)
4060                         goto out_free_conf;
4061         }
4062
4063         /* need to check that every block has at least one working mirror */
4064         if (!enough(conf, -1)) {
4065                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4066                        mdname(mddev));
4067                 goto out_free_conf;
4068         }
4069
4070         if (conf->reshape_progress != MaxSector) {
4071                 /* must ensure that shape change is supported */
4072                 if (conf->geo.far_copies != 1 &&
4073                     conf->geo.far_offset == 0)
4074                         goto out_free_conf;
4075                 if (conf->prev.far_copies != 1 &&
4076                     conf->prev.far_offset == 0)
4077                         goto out_free_conf;
4078         }
4079
4080         mddev->degraded = 0;
4081         for (i = 0;
4082              i < conf->geo.raid_disks
4083                      || i < conf->prev.raid_disks;
4084              i++) {
4085
4086                 disk = conf->mirrors + i;
4087
4088                 if (!disk->rdev && disk->replacement) {
4089                         /* The replacement is all we have - use it */
4090                         disk->rdev = disk->replacement;
4091                         disk->replacement = NULL;
4092                         clear_bit(Replacement, &disk->rdev->flags);
4093                 }
4094
4095                 if (!disk->rdev ||
4096                     !test_bit(In_sync, &disk->rdev->flags)) {
4097                         disk->head_position = 0;
4098                         mddev->degraded++;
4099                         if (disk->rdev &&
4100                             disk->rdev->saved_raid_disk < 0)
4101                                 conf->fullsync = 1;
4102                 }
4103
4104                 if (disk->replacement &&
4105                     !test_bit(In_sync, &disk->replacement->flags) &&
4106                     disk->replacement->saved_raid_disk < 0) {
4107                         conf->fullsync = 1;
4108                 }
4109
4110                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4111         }
4112
4113         if (mddev->recovery_cp != MaxSector)
4114                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4115                           mdname(mddev));
4116         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4117                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4118                 conf->geo.raid_disks);
4119         /*
4120          * Ok, everything is just fine now
4121          */
4122         mddev->dev_sectors = conf->dev_sectors;
4123         size = raid10_size(mddev, 0, 0);
4124         md_set_array_sectors(mddev, size);
4125         mddev->resync_max_sectors = size;
4126         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4127
4128         if (md_integrity_register(mddev))
4129                 goto out_free_conf;
4130
4131         if (conf->reshape_progress != MaxSector) {
4132                 unsigned long before_length, after_length;
4133
4134                 before_length = ((1 << conf->prev.chunk_shift) *
4135                                  conf->prev.far_copies);
4136                 after_length = ((1 << conf->geo.chunk_shift) *
4137                                 conf->geo.far_copies);
4138
4139                 if (max(before_length, after_length) > min_offset_diff) {
4140                         /* This cannot work */
4141                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4142                         goto out_free_conf;
4143                 }
4144                 conf->offset_diff = min_offset_diff;
4145
4146                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4147                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4148                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4149                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4150         }
4151
4152         return 0;
4153
4154 out_free_conf:
4155         md_unregister_thread(mddev, &mddev->thread);
4156         raid10_free_conf(conf);
4157         mddev->private = NULL;
4158 out:
4159         return ret;
4160 }
4161
4162 static void raid10_free(struct mddev *mddev, void *priv)
4163 {
4164         raid10_free_conf(priv);
4165 }
4166
4167 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4168 {
4169         struct r10conf *conf = mddev->private;
4170
4171         if (quiesce)
4172                 raise_barrier(conf, 0);
4173         else
4174                 lower_barrier(conf);
4175 }
4176
4177 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4178 {
4179         /* Resize of 'far' arrays is not supported.
4180          * For 'near' and 'offset' arrays we can set the
4181          * number of sectors used to be an appropriate multiple
4182          * of the chunk size.
4183          * For 'offset', this is far_copies*chunksize.
4184          * For 'near' the multiplier is the LCM of
4185          * near_copies and raid_disks.
4186          * So if far_copies > 1 && !far_offset, fail.
4187          * Else find LCM(raid_disks, near_copy)*far_copies and
4188          * multiply by chunk_size.  Then round to this number.
4189          * This is mostly done by raid10_size()
4190          */
4191         struct r10conf *conf = mddev->private;
4192         sector_t oldsize, size;
4193
4194         if (mddev->reshape_position != MaxSector)
4195                 return -EBUSY;
4196
4197         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4198                 return -EINVAL;
4199
4200         oldsize = raid10_size(mddev, 0, 0);
4201         size = raid10_size(mddev, sectors, 0);
4202         if (mddev->external_size &&
4203             mddev->array_sectors > size)
4204                 return -EINVAL;
4205         if (mddev->bitmap) {
4206                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4207                 if (ret)
4208                         return ret;
4209         }
4210         md_set_array_sectors(mddev, size);
4211         if (sectors > mddev->dev_sectors &&
4212             mddev->recovery_cp > oldsize) {
4213                 mddev->recovery_cp = oldsize;
4214                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4215         }
4216         calc_sectors(conf, sectors);
4217         mddev->dev_sectors = conf->dev_sectors;
4218         mddev->resync_max_sectors = size;
4219         return 0;
4220 }
4221
4222 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4223 {
4224         struct md_rdev *rdev;
4225         struct r10conf *conf;
4226
4227         if (mddev->degraded > 0) {
4228                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4229                         mdname(mddev));
4230                 return ERR_PTR(-EINVAL);
4231         }
4232         sector_div(size, devs);
4233
4234         /* Set new parameters */
4235         mddev->new_level = 10;
4236         /* new layout: far_copies = 1, near_copies = 2 */
4237         mddev->new_layout = (1<<8) + 2;
4238         mddev->new_chunk_sectors = mddev->chunk_sectors;
4239         mddev->delta_disks = mddev->raid_disks;
4240         mddev->raid_disks *= 2;
4241         /* make sure it will be not marked as dirty */
4242         mddev->recovery_cp = MaxSector;
4243         mddev->dev_sectors = size;
4244
4245         conf = setup_conf(mddev);
4246         if (!IS_ERR(conf)) {
4247                 rdev_for_each(rdev, mddev)
4248                         if (rdev->raid_disk >= 0) {
4249                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4250                                 rdev->sectors = size;
4251                         }
4252         }
4253
4254         return conf;
4255 }
4256
4257 static void *raid10_takeover(struct mddev *mddev)
4258 {
4259         struct r0conf *raid0_conf;
4260
4261         /* raid10 can take over:
4262          *  raid0 - providing it has only two drives
4263          */
4264         if (mddev->level == 0) {
4265                 /* for raid0 takeover only one zone is supported */
4266                 raid0_conf = mddev->private;
4267                 if (raid0_conf->nr_strip_zones > 1) {
4268                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4269                                 mdname(mddev));
4270                         return ERR_PTR(-EINVAL);
4271                 }
4272                 return raid10_takeover_raid0(mddev,
4273                         raid0_conf->strip_zone->zone_end,
4274                         raid0_conf->strip_zone->nb_dev);
4275         }
4276         return ERR_PTR(-EINVAL);
4277 }
4278
4279 static int raid10_check_reshape(struct mddev *mddev)
4280 {
4281         /* Called when there is a request to change
4282          * - layout (to ->new_layout)
4283          * - chunk size (to ->new_chunk_sectors)
4284          * - raid_disks (by delta_disks)
4285          * or when trying to restart a reshape that was ongoing.
4286          *
4287          * We need to validate the request and possibly allocate
4288          * space if that might be an issue later.
4289          *
4290          * Currently we reject any reshape of a 'far' mode array,
4291          * allow chunk size to change if new is generally acceptable,
4292          * allow raid_disks to increase, and allow
4293          * a switch between 'near' mode and 'offset' mode.
4294          */
4295         struct r10conf *conf = mddev->private;
4296         struct geom geo;
4297
4298         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4299                 return -EINVAL;
4300
4301         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4302                 /* mustn't change number of copies */
4303                 return -EINVAL;
4304         if (geo.far_copies > 1 && !geo.far_offset)
4305                 /* Cannot switch to 'far' mode */
4306                 return -EINVAL;
4307
4308         if (mddev->array_sectors & geo.chunk_mask)
4309                         /* not factor of array size */
4310                         return -EINVAL;
4311
4312         if (!enough(conf, -1))
4313                 return -EINVAL;
4314
4315         kfree(conf->mirrors_new);
4316         conf->mirrors_new = NULL;
4317         if (mddev->delta_disks > 0) {
4318                 /* allocate new 'mirrors' list */
4319                 conf->mirrors_new =
4320                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4321                                 sizeof(struct raid10_info),
4322                                 GFP_KERNEL);
4323                 if (!conf->mirrors_new)
4324                         return -ENOMEM;
4325         }
4326         return 0;
4327 }
4328
4329 /*
4330  * Need to check if array has failed when deciding whether to:
4331  *  - start an array
4332  *  - remove non-faulty devices
4333  *  - add a spare
4334  *  - allow a reshape
4335  * This determination is simple when no reshape is happening.
4336  * However if there is a reshape, we need to carefully check
4337  * both the before and after sections.
4338  * This is because some failed devices may only affect one
4339  * of the two sections, and some non-in_sync devices may
4340  * be insync in the section most affected by failed devices.
4341  */
4342 static int calc_degraded(struct r10conf *conf)
4343 {
4344         int degraded, degraded2;
4345         int i;
4346
4347         degraded = 0;
4348         /* 'prev' section first */
4349         for (i = 0; i < conf->prev.raid_disks; i++) {
4350                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4351
4352                 if (!rdev || test_bit(Faulty, &rdev->flags))
4353                         degraded++;
4354                 else if (!test_bit(In_sync, &rdev->flags))
4355                         /* When we can reduce the number of devices in
4356                          * an array, this might not contribute to
4357                          * 'degraded'.  It does now.
4358                          */
4359                         degraded++;
4360         }
4361         if (conf->geo.raid_disks == conf->prev.raid_disks)
4362                 return degraded;
4363         degraded2 = 0;
4364         for (i = 0; i < conf->geo.raid_disks; i++) {
4365                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4366
4367                 if (!rdev || test_bit(Faulty, &rdev->flags))
4368                         degraded2++;
4369                 else if (!test_bit(In_sync, &rdev->flags)) {
4370                         /* If reshape is increasing the number of devices,
4371                          * this section has already been recovered, so
4372                          * it doesn't contribute to degraded.
4373                          * else it does.
4374                          */
4375                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4376                                 degraded2++;
4377                 }
4378         }
4379         if (degraded2 > degraded)
4380                 return degraded2;
4381         return degraded;
4382 }
4383
4384 static int raid10_start_reshape(struct mddev *mddev)
4385 {
4386         /* A 'reshape' has been requested. This commits
4387          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4388          * This also checks if there are enough spares and adds them
4389          * to the array.
4390          * We currently require enough spares to make the final
4391          * array non-degraded.  We also require that the difference
4392          * between old and new data_offset - on each device - is
4393          * enough that we never risk over-writing.
4394          */
4395
4396         unsigned long before_length, after_length;
4397         sector_t min_offset_diff = 0;
4398         int first = 1;
4399         struct geom new;
4400         struct r10conf *conf = mddev->private;
4401         struct md_rdev *rdev;
4402         int spares = 0;
4403         int ret;
4404
4405         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4406                 return -EBUSY;
4407
4408         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4409                 return -EINVAL;
4410
4411         before_length = ((1 << conf->prev.chunk_shift) *
4412                          conf->prev.far_copies);
4413         after_length = ((1 << conf->geo.chunk_shift) *
4414                         conf->geo.far_copies);
4415
4416         rdev_for_each(rdev, mddev) {
4417                 if (!test_bit(In_sync, &rdev->flags)
4418                     && !test_bit(Faulty, &rdev->flags))
4419                         spares++;
4420                 if (rdev->raid_disk >= 0) {
4421                         long long diff = (rdev->new_data_offset
4422                                           - rdev->data_offset);
4423                         if (!mddev->reshape_backwards)
4424                                 diff = -diff;
4425                         if (diff < 0)
4426                                 diff = 0;
4427                         if (first || diff < min_offset_diff)
4428                                 min_offset_diff = diff;
4429                         first = 0;
4430                 }
4431         }
4432
4433         if (max(before_length, after_length) > min_offset_diff)
4434                 return -EINVAL;
4435
4436         if (spares < mddev->delta_disks)
4437                 return -EINVAL;
4438
4439         conf->offset_diff = min_offset_diff;
4440         spin_lock_irq(&conf->device_lock);
4441         if (conf->mirrors_new) {
4442                 memcpy(conf->mirrors_new, conf->mirrors,
4443                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4444                 smp_mb();
4445                 kfree(conf->mirrors_old);
4446                 conf->mirrors_old = conf->mirrors;
4447                 conf->mirrors = conf->mirrors_new;
4448                 conf->mirrors_new = NULL;
4449         }
4450         setup_geo(&conf->geo, mddev, geo_start);
4451         smp_mb();
4452         if (mddev->reshape_backwards) {
4453                 sector_t size = raid10_size(mddev, 0, 0);
4454                 if (size < mddev->array_sectors) {
4455                         spin_unlock_irq(&conf->device_lock);
4456                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4457                                 mdname(mddev));
4458                         return -EINVAL;
4459                 }
4460                 mddev->resync_max_sectors = size;
4461                 conf->reshape_progress = size;
4462         } else
4463                 conf->reshape_progress = 0;
4464         conf->reshape_safe = conf->reshape_progress;
4465         spin_unlock_irq(&conf->device_lock);
4466
4467         if (mddev->delta_disks && mddev->bitmap) {
4468                 struct mdp_superblock_1 *sb = NULL;
4469                 sector_t oldsize, newsize;
4470
4471                 oldsize = raid10_size(mddev, 0, 0);
4472                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4473
4474                 if (!mddev_is_clustered(mddev)) {
4475                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4476                         if (ret)
4477                                 goto abort;
4478                         else
4479                                 goto out;
4480                 }
4481
4482                 rdev_for_each(rdev, mddev) {
4483                         if (rdev->raid_disk > -1 &&
4484                             !test_bit(Faulty, &rdev->flags))
4485                                 sb = page_address(rdev->sb_page);
4486                 }
4487
4488                 /*
4489                  * some node is already performing reshape, and no need to
4490                  * call md_bitmap_resize again since it should be called when
4491                  * receiving BITMAP_RESIZE msg
4492                  */
4493                 if ((sb && (le32_to_cpu(sb->feature_map) &
4494                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4495                         goto out;
4496
4497                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4498                 if (ret)
4499                         goto abort;
4500
4501                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4502                 if (ret) {
4503                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4504                         goto abort;
4505                 }
4506         }
4507 out:
4508         if (mddev->delta_disks > 0) {
4509                 rdev_for_each(rdev, mddev)
4510                         if (rdev->raid_disk < 0 &&
4511                             !test_bit(Faulty, &rdev->flags)) {
4512                                 if (raid10_add_disk(mddev, rdev) == 0) {
4513                                         if (rdev->raid_disk >=
4514                                             conf->prev.raid_disks)
4515                                                 set_bit(In_sync, &rdev->flags);
4516                                         else
4517                                                 rdev->recovery_offset = 0;
4518
4519                                         /* Failure here is OK */
4520                                         sysfs_link_rdev(mddev, rdev);
4521                                 }
4522                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4523                                    && !test_bit(Faulty, &rdev->flags)) {
4524                                 /* This is a spare that was manually added */
4525                                 set_bit(In_sync, &rdev->flags);
4526                         }
4527         }
4528         /* When a reshape changes the number of devices,
4529          * ->degraded is measured against the larger of the
4530          * pre and  post numbers.
4531          */
4532         spin_lock_irq(&conf->device_lock);
4533         mddev->degraded = calc_degraded(conf);
4534         spin_unlock_irq(&conf->device_lock);
4535         mddev->raid_disks = conf->geo.raid_disks;
4536         mddev->reshape_position = conf->reshape_progress;
4537         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4538
4539         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4540         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4541         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4542         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4543         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4544         conf->reshape_checkpoint = jiffies;
4545         md_new_event();
4546         return 0;
4547
4548 abort:
4549         mddev->recovery = 0;
4550         spin_lock_irq(&conf->device_lock);
4551         conf->geo = conf->prev;
4552         mddev->raid_disks = conf->geo.raid_disks;
4553         rdev_for_each(rdev, mddev)
4554                 rdev->new_data_offset = rdev->data_offset;
4555         smp_wmb();
4556         conf->reshape_progress = MaxSector;
4557         conf->reshape_safe = MaxSector;
4558         mddev->reshape_position = MaxSector;
4559         spin_unlock_irq(&conf->device_lock);
4560         return ret;
4561 }
4562
4563 /* Calculate the last device-address that could contain
4564  * any block from the chunk that includes the array-address 's'
4565  * and report the next address.
4566  * i.e. the address returned will be chunk-aligned and after
4567  * any data that is in the chunk containing 's'.
4568  */
4569 static sector_t last_dev_address(sector_t s, struct geom *geo)
4570 {
4571         s = (s | geo->chunk_mask) + 1;
4572         s >>= geo->chunk_shift;
4573         s *= geo->near_copies;
4574         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4575         s *= geo->far_copies;
4576         s <<= geo->chunk_shift;
4577         return s;
4578 }
4579
4580 /* Calculate the first device-address that could contain
4581  * any block from the chunk that includes the array-address 's'.
4582  * This too will be the start of a chunk
4583  */
4584 static sector_t first_dev_address(sector_t s, struct geom *geo)
4585 {
4586         s >>= geo->chunk_shift;
4587         s *= geo->near_copies;
4588         sector_div(s, geo->raid_disks);
4589         s *= geo->far_copies;
4590         s <<= geo->chunk_shift;
4591         return s;
4592 }
4593
4594 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4595                                 int *skipped)
4596 {
4597         /* We simply copy at most one chunk (smallest of old and new)
4598          * at a time, possibly less if that exceeds RESYNC_PAGES,
4599          * or we hit a bad block or something.
4600          * This might mean we pause for normal IO in the middle of
4601          * a chunk, but that is not a problem as mddev->reshape_position
4602          * can record any location.
4603          *
4604          * If we will want to write to a location that isn't
4605          * yet recorded as 'safe' (i.e. in metadata on disk) then
4606          * we need to flush all reshape requests and update the metadata.
4607          *
4608          * When reshaping forwards (e.g. to more devices), we interpret
4609          * 'safe' as the earliest block which might not have been copied
4610          * down yet.  We divide this by previous stripe size and multiply
4611          * by previous stripe length to get lowest device offset that we
4612          * cannot write to yet.
4613          * We interpret 'sector_nr' as an address that we want to write to.
4614          * From this we use last_device_address() to find where we might
4615          * write to, and first_device_address on the  'safe' position.
4616          * If this 'next' write position is after the 'safe' position,
4617          * we must update the metadata to increase the 'safe' position.
4618          *
4619          * When reshaping backwards, we round in the opposite direction
4620          * and perform the reverse test:  next write position must not be
4621          * less than current safe position.
4622          *
4623          * In all this the minimum difference in data offsets
4624          * (conf->offset_diff - always positive) allows a bit of slack,
4625          * so next can be after 'safe', but not by more than offset_diff
4626          *
4627          * We need to prepare all the bios here before we start any IO
4628          * to ensure the size we choose is acceptable to all devices.
4629          * The means one for each copy for write-out and an extra one for
4630          * read-in.
4631          * We store the read-in bio in ->master_bio and the others in
4632          * ->devs[x].bio and ->devs[x].repl_bio.
4633          */
4634         struct r10conf *conf = mddev->private;
4635         struct r10bio *r10_bio;
4636         sector_t next, safe, last;
4637         int max_sectors;
4638         int nr_sectors;
4639         int s;
4640         struct md_rdev *rdev;
4641         int need_flush = 0;
4642         struct bio *blist;
4643         struct bio *bio, *read_bio;
4644         int sectors_done = 0;
4645         struct page **pages;
4646
4647         if (sector_nr == 0) {
4648                 /* If restarting in the middle, skip the initial sectors */
4649                 if (mddev->reshape_backwards &&
4650                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4651                         sector_nr = (raid10_size(mddev, 0, 0)
4652                                      - conf->reshape_progress);
4653                 } else if (!mddev->reshape_backwards &&
4654                            conf->reshape_progress > 0)
4655                         sector_nr = conf->reshape_progress;
4656                 if (sector_nr) {
4657                         mddev->curr_resync_completed = sector_nr;
4658                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4659                         *skipped = 1;
4660                         return sector_nr;
4661                 }
4662         }
4663
4664         /* We don't use sector_nr to track where we are up to
4665          * as that doesn't work well for ->reshape_backwards.
4666          * So just use ->reshape_progress.
4667          */
4668         if (mddev->reshape_backwards) {
4669                 /* 'next' is the earliest device address that we might
4670                  * write to for this chunk in the new layout
4671                  */
4672                 next = first_dev_address(conf->reshape_progress - 1,
4673                                          &conf->geo);
4674
4675                 /* 'safe' is the last device address that we might read from
4676                  * in the old layout after a restart
4677                  */
4678                 safe = last_dev_address(conf->reshape_safe - 1,
4679                                         &conf->prev);
4680
4681                 if (next + conf->offset_diff < safe)
4682                         need_flush = 1;
4683
4684                 last = conf->reshape_progress - 1;
4685                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4686                                                & conf->prev.chunk_mask);
4687                 if (sector_nr + RESYNC_SECTORS < last)
4688                         sector_nr = last + 1 - RESYNC_SECTORS;
4689         } else {
4690                 /* 'next' is after the last device address that we
4691                  * might write to for this chunk in the new layout
4692                  */
4693                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4694
4695                 /* 'safe' is the earliest device address that we might
4696                  * read from in the old layout after a restart
4697                  */
4698                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4699
4700                 /* Need to update metadata if 'next' might be beyond 'safe'
4701                  * as that would possibly corrupt data
4702                  */
4703                 if (next > safe + conf->offset_diff)
4704                         need_flush = 1;
4705
4706                 sector_nr = conf->reshape_progress;
4707                 last  = sector_nr | (conf->geo.chunk_mask
4708                                      & conf->prev.chunk_mask);
4709
4710                 if (sector_nr + RESYNC_SECTORS <= last)
4711                         last = sector_nr + RESYNC_SECTORS - 1;
4712         }
4713
4714         if (need_flush ||
4715             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4716                 /* Need to update reshape_position in metadata */
4717                 wait_barrier(conf, false);
4718                 mddev->reshape_position = conf->reshape_progress;
4719                 if (mddev->reshape_backwards)
4720                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4721                                 - conf->reshape_progress;
4722                 else
4723                         mddev->curr_resync_completed = conf->reshape_progress;
4724                 conf->reshape_checkpoint = jiffies;
4725                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4726                 md_wakeup_thread(mddev->thread);
4727                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4728                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4729                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4730                         allow_barrier(conf);
4731                         return sectors_done;
4732                 }
4733                 conf->reshape_safe = mddev->reshape_position;
4734                 allow_barrier(conf);
4735         }
4736
4737         raise_barrier(conf, 0);
4738 read_more:
4739         /* Now schedule reads for blocks from sector_nr to last */
4740         r10_bio = raid10_alloc_init_r10buf(conf);
4741         r10_bio->state = 0;
4742         raise_barrier(conf, 1);
4743         atomic_set(&r10_bio->remaining, 0);
4744         r10_bio->mddev = mddev;
4745         r10_bio->sector = sector_nr;
4746         set_bit(R10BIO_IsReshape, &r10_bio->state);
4747         r10_bio->sectors = last - sector_nr + 1;
4748         rdev = read_balance(conf, r10_bio, &max_sectors);
4749         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4750
4751         if (!rdev) {
4752                 /* Cannot read from here, so need to record bad blocks
4753                  * on all the target devices.
4754                  */
4755                 // FIXME
4756                 mempool_free(r10_bio, &conf->r10buf_pool);
4757                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4758                 return sectors_done;
4759         }
4760
4761         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4762                                     GFP_KERNEL, &mddev->bio_set);
4763         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4764                                + rdev->data_offset);
4765         read_bio->bi_private = r10_bio;
4766         read_bio->bi_end_io = end_reshape_read;
4767         r10_bio->master_bio = read_bio;
4768         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4769
4770         /*
4771          * Broadcast RESYNC message to other nodes, so all nodes would not
4772          * write to the region to avoid conflict.
4773         */
4774         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4775                 struct mdp_superblock_1 *sb = NULL;
4776                 int sb_reshape_pos = 0;
4777
4778                 conf->cluster_sync_low = sector_nr;
4779                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4780                 sb = page_address(rdev->sb_page);
4781                 if (sb) {
4782                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4783                         /*
4784                          * Set cluster_sync_low again if next address for array
4785                          * reshape is less than cluster_sync_low. Since we can't
4786                          * update cluster_sync_low until it has finished reshape.
4787                          */
4788                         if (sb_reshape_pos < conf->cluster_sync_low)
4789                                 conf->cluster_sync_low = sb_reshape_pos;
4790                 }
4791
4792                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4793                                                           conf->cluster_sync_high);
4794         }
4795
4796         /* Now find the locations in the new layout */
4797         __raid10_find_phys(&conf->geo, r10_bio);
4798
4799         blist = read_bio;
4800         read_bio->bi_next = NULL;
4801
4802         for (s = 0; s < conf->copies*2; s++) {
4803                 struct bio *b;
4804                 int d = r10_bio->devs[s/2].devnum;
4805                 struct md_rdev *rdev2;
4806                 if (s&1) {
4807                         rdev2 = conf->mirrors[d].replacement;
4808                         b = r10_bio->devs[s/2].repl_bio;
4809                 } else {
4810                         rdev2 = conf->mirrors[d].rdev;
4811                         b = r10_bio->devs[s/2].bio;
4812                 }
4813                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4814                         continue;
4815
4816                 bio_set_dev(b, rdev2->bdev);
4817                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4818                         rdev2->new_data_offset;
4819                 b->bi_end_io = end_reshape_write;
4820                 b->bi_opf = REQ_OP_WRITE;
4821                 b->bi_next = blist;
4822                 blist = b;
4823         }
4824
4825         /* Now add as many pages as possible to all of these bios. */
4826
4827         nr_sectors = 0;
4828         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4829         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4830                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4831                 int len = (max_sectors - s) << 9;
4832                 if (len > PAGE_SIZE)
4833                         len = PAGE_SIZE;
4834                 for (bio = blist; bio ; bio = bio->bi_next) {
4835                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4836                                 bio->bi_status = BLK_STS_RESOURCE;
4837                                 bio_endio(bio);
4838                                 return sectors_done;
4839                         }
4840                 }
4841                 sector_nr += len >> 9;
4842                 nr_sectors += len >> 9;
4843         }
4844         r10_bio->sectors = nr_sectors;
4845
4846         /* Now submit the read */
4847         md_sync_acct_bio(read_bio, r10_bio->sectors);
4848         atomic_inc(&r10_bio->remaining);
4849         read_bio->bi_next = NULL;
4850         submit_bio_noacct(read_bio);
4851         sectors_done += nr_sectors;
4852         if (sector_nr <= last)
4853                 goto read_more;
4854
4855         lower_barrier(conf);
4856
4857         /* Now that we have done the whole section we can
4858          * update reshape_progress
4859          */
4860         if (mddev->reshape_backwards)
4861                 conf->reshape_progress -= sectors_done;
4862         else
4863                 conf->reshape_progress += sectors_done;
4864
4865         return sectors_done;
4866 }
4867
4868 static void end_reshape_request(struct r10bio *r10_bio);
4869 static int handle_reshape_read_error(struct mddev *mddev,
4870                                      struct r10bio *r10_bio);
4871 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4872 {
4873         /* Reshape read completed.  Hopefully we have a block
4874          * to write out.
4875          * If we got a read error then we do sync 1-page reads from
4876          * elsewhere until we find the data - or give up.
4877          */
4878         struct r10conf *conf = mddev->private;
4879         int s;
4880
4881         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4882                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4883                         /* Reshape has been aborted */
4884                         md_done_sync(mddev, r10_bio->sectors, 0);
4885                         return;
4886                 }
4887
4888         /* We definitely have the data in the pages, schedule the
4889          * writes.
4890          */
4891         atomic_set(&r10_bio->remaining, 1);
4892         for (s = 0; s < conf->copies*2; s++) {
4893                 struct bio *b;
4894                 int d = r10_bio->devs[s/2].devnum;
4895                 struct md_rdev *rdev;
4896                 if (s&1) {
4897                         rdev = conf->mirrors[d].replacement;
4898                         b = r10_bio->devs[s/2].repl_bio;
4899                 } else {
4900                         rdev = conf->mirrors[d].rdev;
4901                         b = r10_bio->devs[s/2].bio;
4902                 }
4903                 if (!rdev || test_bit(Faulty, &rdev->flags))
4904                         continue;
4905
4906                 atomic_inc(&rdev->nr_pending);
4907                 md_sync_acct_bio(b, r10_bio->sectors);
4908                 atomic_inc(&r10_bio->remaining);
4909                 b->bi_next = NULL;
4910                 submit_bio_noacct(b);
4911         }
4912         end_reshape_request(r10_bio);
4913 }
4914
4915 static void end_reshape(struct r10conf *conf)
4916 {
4917         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4918                 return;
4919
4920         spin_lock_irq(&conf->device_lock);
4921         conf->prev = conf->geo;
4922         md_finish_reshape(conf->mddev);
4923         smp_wmb();
4924         conf->reshape_progress = MaxSector;
4925         conf->reshape_safe = MaxSector;
4926         spin_unlock_irq(&conf->device_lock);
4927
4928         mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4929         conf->fullsync = 0;
4930 }
4931
4932 static void raid10_update_reshape_pos(struct mddev *mddev)
4933 {
4934         struct r10conf *conf = mddev->private;
4935         sector_t lo, hi;
4936
4937         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4938         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4939             || mddev->reshape_position == MaxSector)
4940                 conf->reshape_progress = mddev->reshape_position;
4941         else
4942                 WARN_ON_ONCE(1);
4943 }
4944
4945 static int handle_reshape_read_error(struct mddev *mddev,
4946                                      struct r10bio *r10_bio)
4947 {
4948         /* Use sync reads to get the blocks from somewhere else */
4949         int sectors = r10_bio->sectors;
4950         struct r10conf *conf = mddev->private;
4951         struct r10bio *r10b;
4952         int slot = 0;
4953         int idx = 0;
4954         struct page **pages;
4955
4956         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4957         if (!r10b) {
4958                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4959                 return -ENOMEM;
4960         }
4961
4962         /* reshape IOs share pages from .devs[0].bio */
4963         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4964
4965         r10b->sector = r10_bio->sector;
4966         __raid10_find_phys(&conf->prev, r10b);
4967
4968         while (sectors) {
4969                 int s = sectors;
4970                 int success = 0;
4971                 int first_slot = slot;
4972
4973                 if (s > (PAGE_SIZE >> 9))
4974                         s = PAGE_SIZE >> 9;
4975
4976                 while (!success) {
4977                         int d = r10b->devs[slot].devnum;
4978                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4979                         sector_t addr;
4980                         if (rdev == NULL ||
4981                             test_bit(Faulty, &rdev->flags) ||
4982                             !test_bit(In_sync, &rdev->flags))
4983                                 goto failed;
4984
4985                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4986                         atomic_inc(&rdev->nr_pending);
4987                         success = sync_page_io(rdev,
4988                                                addr,
4989                                                s << 9,
4990                                                pages[idx],
4991                                                REQ_OP_READ, false);
4992                         rdev_dec_pending(rdev, mddev);
4993                         if (success)
4994                                 break;
4995                 failed:
4996                         slot++;
4997                         if (slot >= conf->copies)
4998                                 slot = 0;
4999                         if (slot == first_slot)
5000                                 break;
5001                 }
5002                 if (!success) {
5003                         /* couldn't read this block, must give up */
5004                         set_bit(MD_RECOVERY_INTR,
5005                                 &mddev->recovery);
5006                         kfree(r10b);
5007                         return -EIO;
5008                 }
5009                 sectors -= s;
5010                 idx++;
5011         }
5012         kfree(r10b);
5013         return 0;
5014 }
5015
5016 static void end_reshape_write(struct bio *bio)
5017 {
5018         struct r10bio *r10_bio = get_resync_r10bio(bio);
5019         struct mddev *mddev = r10_bio->mddev;
5020         struct r10conf *conf = mddev->private;
5021         int d;
5022         int slot;
5023         int repl;
5024         struct md_rdev *rdev = NULL;
5025
5026         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5027         rdev = repl ? conf->mirrors[d].replacement :
5028                       conf->mirrors[d].rdev;
5029
5030         if (bio->bi_status) {
5031                 /* FIXME should record badblock */
5032                 md_error(mddev, rdev);
5033         }
5034
5035         rdev_dec_pending(rdev, mddev);
5036         end_reshape_request(r10_bio);
5037 }
5038
5039 static void end_reshape_request(struct r10bio *r10_bio)
5040 {
5041         if (!atomic_dec_and_test(&r10_bio->remaining))
5042                 return;
5043         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5044         bio_put(r10_bio->master_bio);
5045         put_buf(r10_bio);
5046 }
5047
5048 static void raid10_finish_reshape(struct mddev *mddev)
5049 {
5050         struct r10conf *conf = mddev->private;
5051
5052         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5053                 return;
5054
5055         if (mddev->delta_disks > 0) {
5056                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5057                         mddev->recovery_cp = mddev->resync_max_sectors;
5058                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5059                 }
5060                 mddev->resync_max_sectors = mddev->array_sectors;
5061         } else {
5062                 int d;
5063                 for (d = conf->geo.raid_disks ;
5064                      d < conf->geo.raid_disks - mddev->delta_disks;
5065                      d++) {
5066                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5067                         if (rdev)
5068                                 clear_bit(In_sync, &rdev->flags);
5069                         rdev = conf->mirrors[d].replacement;
5070                         if (rdev)
5071                                 clear_bit(In_sync, &rdev->flags);
5072                 }
5073         }
5074         mddev->layout = mddev->new_layout;
5075         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5076         mddev->reshape_position = MaxSector;
5077         mddev->delta_disks = 0;
5078         mddev->reshape_backwards = 0;
5079 }
5080
5081 static struct md_personality raid10_personality =
5082 {
5083         .name           = "raid10",
5084         .level          = 10,
5085         .owner          = THIS_MODULE,
5086         .make_request   = raid10_make_request,
5087         .run            = raid10_run,
5088         .free           = raid10_free,
5089         .status         = raid10_status,
5090         .error_handler  = raid10_error,
5091         .hot_add_disk   = raid10_add_disk,
5092         .hot_remove_disk= raid10_remove_disk,
5093         .spare_active   = raid10_spare_active,
5094         .sync_request   = raid10_sync_request,
5095         .quiesce        = raid10_quiesce,
5096         .size           = raid10_size,
5097         .resize         = raid10_resize,
5098         .takeover       = raid10_takeover,
5099         .check_reshape  = raid10_check_reshape,
5100         .start_reshape  = raid10_start_reshape,
5101         .finish_reshape = raid10_finish_reshape,
5102         .update_reshape_pos = raid10_update_reshape_pos,
5103 };
5104
5105 static int __init raid_init(void)
5106 {
5107         return register_md_personality(&raid10_personality);
5108 }
5109
5110 static void raid_exit(void)
5111 {
5112         unregister_md_personality(&raid10_personality);
5113 }
5114
5115 module_init(raid_init);
5116 module_exit(raid_exit);
5117 MODULE_LICENSE("GPL");
5118 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5119 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5120 MODULE_ALIAS("md-raid10");
5121 MODULE_ALIAS("md-level-10");
This page took 0.34371 seconds and 4 git commands to generate.