1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
23 #define RAID_1_10_NAME "raid10"
26 #include "md-bitmap.h"
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
33 * near_copies (stored in low byte of layout)
34 * far_copies (stored in second byte of layout)
35 * far_offset (stored in bit 16 of layout )
36 * use_far_sets (stored in bit 17 of layout )
37 * use_far_sets_bugfixed (stored in bit 18 of layout )
39 * The data to be stored is divided into chunks using chunksize. Each device
40 * is divided into far_copies sections. In each section, chunks are laid out
41 * in a style similar to raid0, but near_copies copies of each chunk is stored
42 * (each on a different drive). The starting device for each section is offset
43 * near_copies from the starting device of the previous section. Thus there
44 * are (near_copies * far_copies) of each chunk, and each is on a different
45 * drive. near_copies and far_copies must be at least one, and their product
46 * is at most raid_disks.
48 * If far_offset is true, then the far_copies are handled a bit differently.
49 * The copies are still in different stripes, but instead of being very far
50 * apart on disk, there are adjacent stripes.
52 * The far and offset algorithms are handled slightly differently if
53 * 'use_far_sets' is true. In this case, the array's devices are grouped into
54 * sets that are (near_copies * far_copies) in size. The far copied stripes
55 * are still shifted by 'near_copies' devices, but this shifting stays confined
56 * to the set rather than the entire array. This is done to improve the number
57 * of device combinations that can fail without causing the array to fail.
58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64 * [A B] [C D] [A B] [C D E]
65 * |...| |...| |...| | ... |
66 * [B A] [D C] [B A] [E C D]
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
82 #define cmd_before(conf, cmd) \
84 write_sequnlock_irq(&(conf)->resync_lock); \
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
93 #define wait_event_barrier(conf, cond) \
94 wait_event_barrier_cmd(conf, cond, NULL_CMD)
97 * for resync bio, r10bio pointer can be retrieved from the per-bio
98 * 'struct resync_pages'.
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 return get_resync_pages(bio)->raid_bio;
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 struct r10conf *conf = data;
108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110 /* allocate a r10bio with room for raid_disks entries in the
112 return kzalloc(size, gfp_flags);
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
124 * When performing a resync, we need to read and compare, so
125 * we need as many pages are there are copies.
126 * When performing a recovery, we need 2 bios, one for read,
127 * one for write (we recover only one drive per r10buf)
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 struct r10conf *conf = data;
133 struct r10bio *r10_bio;
136 int nalloc, nalloc_rp;
137 struct resync_pages *rps;
139 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145 nalloc = conf->copies; /* resync */
147 nalloc = 2; /* recovery */
149 /* allocate once for all bios */
150 if (!conf->have_replacement)
153 nalloc_rp = nalloc * 2;
154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 goto out_free_r10bio;
161 for (j = nalloc ; j-- ; ) {
162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166 r10_bio->devs[j].bio = bio;
167 if (!conf->have_replacement)
169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 r10_bio->devs[j].repl_bio = bio;
176 * Allocate RESYNC_PAGES data pages and attach them
179 for (j = 0; j < nalloc; j++) {
180 struct bio *rbio = r10_bio->devs[j].repl_bio;
181 struct resync_pages *rp, *rp_repl;
185 rp_repl = &rps[nalloc + j];
187 bio = r10_bio->devs[j].bio;
189 if (!j || test_bit(MD_RECOVERY_SYNC,
190 &conf->mddev->recovery)) {
191 if (resync_alloc_pages(rp, gfp_flags))
194 memcpy(rp, &rps[0], sizeof(*rp));
195 resync_get_all_pages(rp);
198 rp->raid_bio = r10_bio;
199 bio->bi_private = rp;
201 memcpy(rp_repl, rp, sizeof(*rp));
202 rbio->bi_private = rp_repl;
210 resync_free_pages(&rps[j]);
214 for ( ; j < nalloc; j++) {
215 if (r10_bio->devs[j].bio)
216 bio_uninit(r10_bio->devs[j].bio);
217 kfree(r10_bio->devs[j].bio);
218 if (r10_bio->devs[j].repl_bio)
219 bio_uninit(r10_bio->devs[j].repl_bio);
220 kfree(r10_bio->devs[j].repl_bio);
224 rbio_pool_free(r10_bio, conf);
228 static void r10buf_pool_free(void *__r10_bio, void *data)
230 struct r10conf *conf = data;
231 struct r10bio *r10bio = __r10_bio;
233 struct resync_pages *rp = NULL;
235 for (j = conf->copies; j--; ) {
236 struct bio *bio = r10bio->devs[j].bio;
239 rp = get_resync_pages(bio);
240 resync_free_pages(rp);
245 bio = r10bio->devs[j].repl_bio;
252 /* resync pages array stored in the 1st bio's .bi_private */
255 rbio_pool_free(r10bio, conf);
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
262 for (i = 0; i < conf->geo.raid_disks; i++) {
263 struct bio **bio = & r10_bio->devs[i].bio;
264 if (!BIO_SPECIAL(*bio))
267 bio = &r10_bio->devs[i].repl_bio;
268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
274 static void free_r10bio(struct r10bio *r10_bio)
276 struct r10conf *conf = r10_bio->mddev->private;
278 put_all_bios(conf, r10_bio);
279 mempool_free(r10_bio, &conf->r10bio_pool);
282 static void put_buf(struct r10bio *r10_bio)
284 struct r10conf *conf = r10_bio->mddev->private;
286 mempool_free(r10_bio, &conf->r10buf_pool);
291 static void wake_up_barrier(struct r10conf *conf)
293 if (wq_has_sleeper(&conf->wait_barrier))
294 wake_up(&conf->wait_barrier);
297 static void reschedule_retry(struct r10bio *r10_bio)
300 struct mddev *mddev = r10_bio->mddev;
301 struct r10conf *conf = mddev->private;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 list_add(&r10_bio->retry_list, &conf->retry_list);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
308 /* wake up frozen array... */
309 wake_up(&conf->wait_barrier);
311 md_wakeup_thread(mddev->thread);
315 * raid_end_bio_io() is called when we have finished servicing a mirrored
316 * operation and are ready to return a success/failure code to the buffer
319 static void raid_end_bio_io(struct r10bio *r10_bio)
321 struct bio *bio = r10_bio->master_bio;
322 struct r10conf *conf = r10_bio->mddev->private;
324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325 bio->bi_status = BLK_STS_IOERR;
329 * Wake up any possible resync thread that waits for the device
334 free_r10bio(r10_bio);
338 * Update disk head position estimator based on IRQ completion info.
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 struct r10conf *conf = r10_bio->mddev->private;
344 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345 r10_bio->devs[slot].addr + (r10_bio->sectors);
349 * Find the disk number which triggered given bio
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352 struct bio *bio, int *slotp, int *replp)
357 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358 if (r10_bio->devs[slot].bio == bio)
360 if (r10_bio->devs[slot].repl_bio == bio) {
366 update_head_pos(slot, r10_bio);
372 return r10_bio->devs[slot].devnum;
375 static void raid10_end_read_request(struct bio *bio)
377 int uptodate = !bio->bi_status;
378 struct r10bio *r10_bio = bio->bi_private;
380 struct md_rdev *rdev;
381 struct r10conf *conf = r10_bio->mddev->private;
383 slot = r10_bio->read_slot;
384 rdev = r10_bio->devs[slot].rdev;
386 * this branch is our 'one mirror IO has finished' event handler:
388 update_head_pos(slot, r10_bio);
392 * Set R10BIO_Uptodate in our master bio, so that
393 * we will return a good error code to the higher
394 * levels even if IO on some other mirrored buffer fails.
396 * The 'master' represents the composite IO operation to
397 * user-side. So if something waits for IO, then it will
398 * wait for the 'master' bio.
400 set_bit(R10BIO_Uptodate, &r10_bio->state);
402 /* If all other devices that store this block have
403 * failed, we want to return the error upwards rather
404 * than fail the last device. Here we redefine
405 * "uptodate" to mean "Don't want to retry"
407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
412 raid_end_bio_io(r10_bio);
413 rdev_dec_pending(rdev, conf->mddev);
416 * oops, read error - keep the refcount on the rdev
418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
421 (unsigned long long)r10_bio->sector);
422 set_bit(R10BIO_ReadError, &r10_bio->state);
423 reschedule_retry(r10_bio);
427 static void close_write(struct r10bio *r10_bio)
429 /* clear the bitmap if all writes complete successfully */
430 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
432 !test_bit(R10BIO_Degraded, &r10_bio->state),
434 md_write_end(r10_bio->mddev);
437 static void one_write_done(struct r10bio *r10_bio)
439 if (atomic_dec_and_test(&r10_bio->remaining)) {
440 if (test_bit(R10BIO_WriteError, &r10_bio->state))
441 reschedule_retry(r10_bio);
443 close_write(r10_bio);
444 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
445 reschedule_retry(r10_bio);
447 raid_end_bio_io(r10_bio);
452 static void raid10_end_write_request(struct bio *bio)
454 struct r10bio *r10_bio = bio->bi_private;
457 struct r10conf *conf = r10_bio->mddev->private;
459 struct md_rdev *rdev = NULL;
460 struct bio *to_put = NULL;
463 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
468 rdev = conf->mirrors[dev].replacement;
472 rdev = conf->mirrors[dev].rdev;
475 * this branch is our 'one mirror IO has finished' event handler:
477 if (bio->bi_status && !discard_error) {
479 /* Never record new bad blocks to replacement,
482 md_error(rdev->mddev, rdev);
484 set_bit(WriteErrorSeen, &rdev->flags);
485 if (!test_and_set_bit(WantReplacement, &rdev->flags))
486 set_bit(MD_RECOVERY_NEEDED,
487 &rdev->mddev->recovery);
490 if (test_bit(FailFast, &rdev->flags) &&
491 (bio->bi_opf & MD_FAILFAST)) {
492 md_error(rdev->mddev, rdev);
496 * When the device is faulty, it is not necessary to
497 * handle write error.
499 if (!test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_WriteError, &r10_bio->state);
502 /* Fail the request */
503 set_bit(R10BIO_Degraded, &r10_bio->state);
504 r10_bio->devs[slot].bio = NULL;
511 * Set R10BIO_Uptodate in our master bio, so that
512 * we will return a good error code for to the higher
513 * levels even if IO on some other mirrored buffer fails.
515 * The 'master' represents the composite IO operation to
516 * user-side. So if something waits for IO, then it will
517 * wait for the 'master' bio.
519 * Do not set R10BIO_Uptodate if the current device is
520 * rebuilding or Faulty. This is because we cannot use
521 * such device for properly reading the data back (we could
522 * potentially use it, if the current write would have felt
523 * before rdev->recovery_offset, but for simplicity we don't
526 if (test_bit(In_sync, &rdev->flags) &&
527 !test_bit(Faulty, &rdev->flags))
528 set_bit(R10BIO_Uptodate, &r10_bio->state);
530 /* Maybe we can clear some bad blocks. */
531 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
538 r10_bio->devs[slot].bio = IO_MADE_GOOD;
540 set_bit(R10BIO_MadeGood, &r10_bio->state);
546 * Let's see if all mirrored write operations have finished
549 one_write_done(r10_bio);
551 rdev_dec_pending(rdev, conf->mddev);
557 * RAID10 layout manager
558 * As well as the chunksize and raid_disks count, there are two
559 * parameters: near_copies and far_copies.
560 * near_copies * far_copies must be <= raid_disks.
561 * Normally one of these will be 1.
562 * If both are 1, we get raid0.
563 * If near_copies == raid_disks, we get raid1.
565 * Chunks are laid out in raid0 style with near_copies copies of the
566 * first chunk, followed by near_copies copies of the next chunk and
568 * If far_copies > 1, then after 1/far_copies of the array has been assigned
569 * as described above, we start again with a device offset of near_copies.
570 * So we effectively have another copy of the whole array further down all
571 * the drives, but with blocks on different drives.
572 * With this layout, and block is never stored twice on the one device.
574 * raid10_find_phys finds the sector offset of a given virtual sector
575 * on each device that it is on.
577 * raid10_find_virt does the reverse mapping, from a device and a
578 * sector offset to a virtual address
581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
589 int last_far_set_start, last_far_set_size;
591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592 last_far_set_start *= geo->far_set_size;
594 last_far_set_size = geo->far_set_size;
595 last_far_set_size += (geo->raid_disks % geo->far_set_size);
597 /* now calculate first sector/dev */
598 chunk = r10bio->sector >> geo->chunk_shift;
599 sector = r10bio->sector & geo->chunk_mask;
601 chunk *= geo->near_copies;
603 dev = sector_div(stripe, geo->raid_disks);
605 stripe *= geo->far_copies;
607 sector += stripe << geo->chunk_shift;
609 /* and calculate all the others */
610 for (n = 0; n < geo->near_copies; n++) {
614 r10bio->devs[slot].devnum = d;
615 r10bio->devs[slot].addr = s;
618 for (f = 1; f < geo->far_copies; f++) {
619 set = d / geo->far_set_size;
620 d += geo->near_copies;
622 if ((geo->raid_disks % geo->far_set_size) &&
623 (d > last_far_set_start)) {
624 d -= last_far_set_start;
625 d %= last_far_set_size;
626 d += last_far_set_start;
628 d %= geo->far_set_size;
629 d += geo->far_set_size * set;
632 r10bio->devs[slot].devnum = d;
633 r10bio->devs[slot].addr = s;
637 if (dev >= geo->raid_disks) {
639 sector += (geo->chunk_mask + 1);
644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
646 struct geom *geo = &conf->geo;
648 if (conf->reshape_progress != MaxSector &&
649 ((r10bio->sector >= conf->reshape_progress) !=
650 conf->mddev->reshape_backwards)) {
651 set_bit(R10BIO_Previous, &r10bio->state);
654 clear_bit(R10BIO_Previous, &r10bio->state);
656 __raid10_find_phys(geo, r10bio);
659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
661 sector_t offset, chunk, vchunk;
662 /* Never use conf->prev as this is only called during resync
663 * or recovery, so reshape isn't happening
665 struct geom *geo = &conf->geo;
666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667 int far_set_size = geo->far_set_size;
668 int last_far_set_start;
670 if (geo->raid_disks % geo->far_set_size) {
671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672 last_far_set_start *= geo->far_set_size;
674 if (dev >= last_far_set_start) {
675 far_set_size = geo->far_set_size;
676 far_set_size += (geo->raid_disks % geo->far_set_size);
677 far_set_start = last_far_set_start;
681 offset = sector & geo->chunk_mask;
682 if (geo->far_offset) {
684 chunk = sector >> geo->chunk_shift;
685 fc = sector_div(chunk, geo->far_copies);
686 dev -= fc * geo->near_copies;
687 if (dev < far_set_start)
690 while (sector >= geo->stride) {
691 sector -= geo->stride;
692 if (dev < (geo->near_copies + far_set_start))
693 dev += far_set_size - geo->near_copies;
695 dev -= geo->near_copies;
697 chunk = sector >> geo->chunk_shift;
699 vchunk = chunk * geo->raid_disks + dev;
700 sector_div(vchunk, geo->near_copies);
701 return (vchunk << geo->chunk_shift) + offset;
705 * This routine returns the disk from which the requested read should
706 * be done. There is a per-array 'next expected sequential IO' sector
707 * number - if this matches on the next IO then we use the last disk.
708 * There is also a per-disk 'last know head position' sector that is
709 * maintained from IRQ contexts, both the normal and the resync IO
710 * completion handlers update this position correctly. If there is no
711 * perfect sequential match then we pick the disk whose head is closest.
713 * If there are 2 mirrors in the same 2 devices, performance degrades
714 * because position is mirror, not device based.
716 * The rdev for the device selected will have nr_pending incremented.
720 * FIXME: possibly should rethink readbalancing and do it differently
721 * depending on near_copies / far_copies geometry.
723 static struct md_rdev *read_balance(struct r10conf *conf,
724 struct r10bio *r10_bio,
727 const sector_t this_sector = r10_bio->sector;
729 int sectors = r10_bio->sectors;
730 int best_good_sectors;
731 sector_t new_distance, best_dist;
732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
734 int best_dist_slot, best_pending_slot;
735 bool has_nonrot_disk = false;
736 unsigned int min_pending;
737 struct geom *geo = &conf->geo;
739 raid10_find_phys(conf, r10_bio);
741 min_pending = UINT_MAX;
742 best_dist_rdev = NULL;
743 best_pending_rdev = NULL;
744 best_dist = MaxSector;
745 best_good_sectors = 0;
747 clear_bit(R10BIO_FailFast, &r10_bio->state);
749 if (raid1_should_read_first(conf->mddev, this_sector, sectors))
752 for (slot = 0; slot < conf->copies ; slot++) {
756 unsigned int pending;
759 if (r10_bio->devs[slot].bio == IO_BLOCKED)
761 disk = r10_bio->devs[slot].devnum;
762 rdev = conf->mirrors[disk].replacement;
763 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764 r10_bio->devs[slot].addr + sectors >
765 rdev->recovery_offset)
766 rdev = conf->mirrors[disk].rdev;
768 test_bit(Faulty, &rdev->flags))
770 if (!test_bit(In_sync, &rdev->flags) &&
771 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 dev_sector = r10_bio->devs[slot].addr;
775 if (is_badblock(rdev, dev_sector, sectors,
776 &first_bad, &bad_sectors)) {
777 if (best_dist < MaxSector)
778 /* Already have a better slot */
780 if (first_bad <= dev_sector) {
781 /* Cannot read here. If this is the
782 * 'primary' device, then we must not read
783 * beyond 'bad_sectors' from another device.
785 bad_sectors -= (dev_sector - first_bad);
786 if (!do_balance && sectors > bad_sectors)
787 sectors = bad_sectors;
788 if (best_good_sectors > sectors)
789 best_good_sectors = sectors;
791 sector_t good_sectors =
792 first_bad - dev_sector;
793 if (good_sectors > best_good_sectors) {
794 best_good_sectors = good_sectors;
795 best_dist_slot = slot;
796 best_dist_rdev = rdev;
799 /* Must read from here */
804 best_good_sectors = sectors;
809 nonrot = bdev_nonrot(rdev->bdev);
810 has_nonrot_disk |= nonrot;
811 pending = atomic_read(&rdev->nr_pending);
812 if (min_pending > pending && nonrot) {
813 min_pending = pending;
814 best_pending_slot = slot;
815 best_pending_rdev = rdev;
818 if (best_dist_slot >= 0)
819 /* At least 2 disks to choose from so failfast is OK */
820 set_bit(R10BIO_FailFast, &r10_bio->state);
821 /* This optimisation is debatable, and completely destroys
822 * sequential read speed for 'far copies' arrays. So only
823 * keep it for 'near' arrays, and review those later.
825 if (geo->near_copies > 1 && !pending)
828 /* for far > 1 always use the lowest address */
829 else if (geo->far_copies > 1)
830 new_distance = r10_bio->devs[slot].addr;
832 new_distance = abs(r10_bio->devs[slot].addr -
833 conf->mirrors[disk].head_position);
835 if (new_distance < best_dist) {
836 best_dist = new_distance;
837 best_dist_slot = slot;
838 best_dist_rdev = rdev;
841 if (slot >= conf->copies) {
842 if (has_nonrot_disk) {
843 slot = best_pending_slot;
844 rdev = best_pending_rdev;
846 slot = best_dist_slot;
847 rdev = best_dist_rdev;
852 atomic_inc(&rdev->nr_pending);
853 r10_bio->read_slot = slot;
856 *max_sectors = best_good_sectors;
861 static void flush_pending_writes(struct r10conf *conf)
863 /* Any writes that have been queued but are awaiting
864 * bitmap updates get flushed here.
866 spin_lock_irq(&conf->device_lock);
868 if (conf->pending_bio_list.head) {
869 struct blk_plug plug;
872 bio = bio_list_get(&conf->pending_bio_list);
873 spin_unlock_irq(&conf->device_lock);
876 * As this is called in a wait_event() loop (see freeze_array),
877 * current->state might be TASK_UNINTERRUPTIBLE which will
878 * cause a warning when we prepare to wait again. As it is
879 * rare that this path is taken, it is perfectly safe to force
880 * us to go around the wait_event() loop again, so the warning
881 * is a false-positive. Silence the warning by resetting
884 __set_current_state(TASK_RUNNING);
886 blk_start_plug(&plug);
887 raid1_prepare_flush_writes(conf->mddev->bitmap);
888 wake_up(&conf->wait_barrier);
890 while (bio) { /* submit pending writes */
891 struct bio *next = bio->bi_next;
893 raid1_submit_write(bio);
897 blk_finish_plug(&plug);
899 spin_unlock_irq(&conf->device_lock);
903 * Sometimes we need to suspend IO while we do something else,
904 * either some resync/recovery, or reconfigure the array.
905 * To do this we raise a 'barrier'.
906 * The 'barrier' is a counter that can be raised multiple times
907 * to count how many activities are happening which preclude
909 * We can only raise the barrier if there is no pending IO.
910 * i.e. if nr_pending == 0.
911 * We choose only to raise the barrier if no-one is waiting for the
912 * barrier to go down. This means that as soon as an IO request
913 * is ready, no other operations which require a barrier will start
914 * until the IO request has had a chance.
916 * So: regular IO calls 'wait_barrier'. When that returns there
917 * is no backgroup IO happening, It must arrange to call
918 * allow_barrier when it has finished its IO.
919 * backgroup IO calls must call raise_barrier. Once that returns
920 * there is no normal IO happeing. It must arrange to call
921 * lower_barrier when the particular background IO completes.
924 static void raise_barrier(struct r10conf *conf, int force)
926 write_seqlock_irq(&conf->resync_lock);
928 if (WARN_ON_ONCE(force && !conf->barrier))
931 /* Wait until no block IO is waiting (unless 'force') */
932 wait_event_barrier(conf, force || !conf->nr_waiting);
934 /* block any new IO from starting */
935 WRITE_ONCE(conf->barrier, conf->barrier + 1);
937 /* Now wait for all pending IO to complete */
938 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939 conf->barrier < RESYNC_DEPTH);
941 write_sequnlock_irq(&conf->resync_lock);
944 static void lower_barrier(struct r10conf *conf)
948 write_seqlock_irqsave(&conf->resync_lock, flags);
949 WRITE_ONCE(conf->barrier, conf->barrier - 1);
950 write_sequnlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
954 static bool stop_waiting_barrier(struct r10conf *conf)
956 struct bio_list *bio_list = current->bio_list;
957 struct md_thread *thread;
959 /* barrier is dropped */
964 * If there are already pending requests (preventing the barrier from
965 * rising completely), and the pre-process bio queue isn't empty, then
966 * don't wait, as we need to empty that queue to get the nr_pending
969 if (atomic_read(&conf->nr_pending) && bio_list &&
970 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
973 /* daemon thread must exist while handling io */
974 thread = rcu_dereference_protected(conf->mddev->thread, true);
976 * move on if io is issued from raid10d(), nr_pending is not released
977 * from original io(see handle_read_error()). All raise barrier is
978 * blocked until this io is done.
980 if (thread->tsk == current) {
981 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
988 static bool wait_barrier_nolock(struct r10conf *conf)
990 unsigned int seq = read_seqbegin(&conf->resync_lock);
992 if (READ_ONCE(conf->barrier))
995 atomic_inc(&conf->nr_pending);
996 if (!read_seqretry(&conf->resync_lock, seq))
999 if (atomic_dec_and_test(&conf->nr_pending))
1000 wake_up_barrier(conf);
1005 static bool wait_barrier(struct r10conf *conf, bool nowait)
1009 if (wait_barrier_nolock(conf))
1012 write_seqlock_irq(&conf->resync_lock);
1013 if (conf->barrier) {
1014 /* Return false when nowait flag is set */
1019 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020 wait_event_barrier(conf, stop_waiting_barrier(conf));
1023 if (!conf->nr_waiting)
1024 wake_up(&conf->wait_barrier);
1026 /* Only increment nr_pending when we wait */
1028 atomic_inc(&conf->nr_pending);
1029 write_sequnlock_irq(&conf->resync_lock);
1033 static void allow_barrier(struct r10conf *conf)
1035 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036 (conf->array_freeze_pending))
1037 wake_up_barrier(conf);
1040 static void freeze_array(struct r10conf *conf, int extra)
1042 /* stop syncio and normal IO and wait for everything to
1044 * We increment barrier and nr_waiting, and then
1045 * wait until nr_pending match nr_queued+extra
1046 * This is called in the context of one normal IO request
1047 * that has failed. Thus any sync request that might be pending
1048 * will be blocked by nr_pending, and we need to wait for
1049 * pending IO requests to complete or be queued for re-try.
1050 * Thus the number queued (nr_queued) plus this request (extra)
1051 * must match the number of pending IOs (nr_pending) before
1054 write_seqlock_irq(&conf->resync_lock);
1055 conf->array_freeze_pending++;
1056 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1058 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059 conf->nr_queued + extra, flush_pending_writes(conf));
1060 conf->array_freeze_pending--;
1061 write_sequnlock_irq(&conf->resync_lock);
1064 static void unfreeze_array(struct r10conf *conf)
1066 /* reverse the effect of the freeze */
1067 write_seqlock_irq(&conf->resync_lock);
1068 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1070 wake_up(&conf->wait_barrier);
1071 write_sequnlock_irq(&conf->resync_lock);
1074 static sector_t choose_data_offset(struct r10bio *r10_bio,
1075 struct md_rdev *rdev)
1077 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078 test_bit(R10BIO_Previous, &r10_bio->state))
1079 return rdev->data_offset;
1081 return rdev->new_data_offset;
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1086 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087 struct mddev *mddev = plug->cb.data;
1088 struct r10conf *conf = mddev->private;
1091 if (from_schedule) {
1092 spin_lock_irq(&conf->device_lock);
1093 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094 spin_unlock_irq(&conf->device_lock);
1095 wake_up_barrier(conf);
1096 md_wakeup_thread(mddev->thread);
1101 /* we aren't scheduling, so we can do the write-out directly. */
1102 bio = bio_list_get(&plug->pending);
1103 raid1_prepare_flush_writes(mddev->bitmap);
1104 wake_up_barrier(conf);
1106 while (bio) { /* submit pending writes */
1107 struct bio *next = bio->bi_next;
1109 raid1_submit_write(bio);
1117 * 1. Register the new request and wait if the reconstruction thread has put
1118 * up a bar for new requests. Continue immediately if no resync is active
1120 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123 struct bio *bio, sector_t sectors)
1125 /* Bail out if REQ_NOWAIT is set for the bio */
1126 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127 bio_wouldblock_error(bio);
1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 bio->bi_iter.bi_sector < conf->reshape_progress &&
1132 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133 allow_barrier(conf);
1134 if (bio->bi_opf & REQ_NOWAIT) {
1135 bio_wouldblock_error(bio);
1138 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139 wait_event(conf->wait_barrier,
1140 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141 conf->reshape_progress >= bio->bi_iter.bi_sector +
1143 wait_barrier(conf, false);
1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149 struct r10bio *r10_bio, bool io_accounting)
1151 struct r10conf *conf = mddev->private;
1152 struct bio *read_bio;
1153 const enum req_op op = bio_op(bio);
1154 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1156 struct md_rdev *rdev;
1157 char b[BDEVNAME_SIZE];
1158 int slot = r10_bio->read_slot;
1159 struct md_rdev *err_rdev = NULL;
1160 gfp_t gfp = GFP_NOIO;
1162 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1164 * This is an error retry, but we cannot
1165 * safely dereference the rdev in the r10_bio,
1166 * we must use the one in conf.
1167 * If it has already been disconnected (unlikely)
1168 * we lose the device name in error messages.
1172 * As we are blocking raid10, it is a little safer to
1175 gfp = GFP_NOIO | __GFP_HIGH;
1177 disk = r10_bio->devs[slot].devnum;
1178 err_rdev = conf->mirrors[disk].rdev;
1180 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1183 /* This never gets dereferenced */
1184 err_rdev = r10_bio->devs[slot].rdev;
1188 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1190 rdev = read_balance(conf, r10_bio, &max_sectors);
1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1195 (unsigned long long)r10_bio->sector);
1197 raid_end_bio_io(r10_bio);
1201 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1204 (unsigned long long)r10_bio->sector);
1205 if (max_sectors < bio_sectors(bio)) {
1206 struct bio *split = bio_split(bio, max_sectors,
1207 gfp, &conf->bio_split);
1208 bio_chain(split, bio);
1209 allow_barrier(conf);
1210 submit_bio_noacct(bio);
1211 wait_barrier(conf, false);
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = max_sectors;
1216 slot = r10_bio->read_slot;
1218 if (io_accounting) {
1219 md_account_bio(mddev, &bio);
1220 r10_bio->master_bio = bio;
1222 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1224 r10_bio->devs[slot].bio = read_bio;
1225 r10_bio->devs[slot].rdev = rdev;
1227 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228 choose_data_offset(r10_bio, rdev);
1229 read_bio->bi_end_io = raid10_end_read_request;
1230 read_bio->bi_opf = op | do_sync;
1231 if (test_bit(FailFast, &rdev->flags) &&
1232 test_bit(R10BIO_FailFast, &r10_bio->state))
1233 read_bio->bi_opf |= MD_FAILFAST;
1234 read_bio->bi_private = r10_bio;
1235 mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1236 submit_bio_noacct(read_bio);
1240 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1241 struct bio *bio, bool replacement,
1244 const enum req_op op = bio_op(bio);
1245 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1246 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1247 unsigned long flags;
1248 struct r10conf *conf = mddev->private;
1249 struct md_rdev *rdev;
1250 int devnum = r10_bio->devs[n_copy].devnum;
1253 rdev = replacement ? conf->mirrors[devnum].replacement :
1254 conf->mirrors[devnum].rdev;
1256 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1258 r10_bio->devs[n_copy].repl_bio = mbio;
1260 r10_bio->devs[n_copy].bio = mbio;
1262 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1263 choose_data_offset(r10_bio, rdev));
1264 mbio->bi_end_io = raid10_end_write_request;
1265 mbio->bi_opf = op | do_sync | do_fua;
1266 if (!replacement && test_bit(FailFast,
1267 &conf->mirrors[devnum].rdev->flags)
1268 && enough(conf, devnum))
1269 mbio->bi_opf |= MD_FAILFAST;
1270 mbio->bi_private = r10_bio;
1271 mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272 /* flush_pending_writes() needs access to the rdev so...*/
1273 mbio->bi_bdev = (void *)rdev;
1275 atomic_inc(&r10_bio->remaining);
1277 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278 spin_lock_irqsave(&conf->device_lock, flags);
1279 bio_list_add(&conf->pending_bio_list, mbio);
1280 spin_unlock_irqrestore(&conf->device_lock, flags);
1281 md_wakeup_thread(mddev->thread);
1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1288 struct r10conf *conf = mddev->private;
1289 struct md_rdev *blocked_rdev;
1292 blocked_rdev = NULL;
1293 for (i = 0; i < conf->copies; i++) {
1294 struct md_rdev *rdev, *rrdev;
1296 rdev = conf->mirrors[i].rdev;
1297 rrdev = conf->mirrors[i].replacement;
1298 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1299 atomic_inc(&rdev->nr_pending);
1300 blocked_rdev = rdev;
1303 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1304 atomic_inc(&rrdev->nr_pending);
1305 blocked_rdev = rrdev;
1309 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1310 sector_t dev_sector = r10_bio->devs[i].addr;
1313 * Discard request doesn't care the write result
1314 * so it doesn't need to wait blocked disk here.
1316 if (!r10_bio->sectors)
1319 if (rdev_has_badblock(rdev, dev_sector,
1320 r10_bio->sectors) < 0) {
1322 * Mustn't write here until the bad block
1325 atomic_inc(&rdev->nr_pending);
1326 set_bit(BlockedBadBlocks, &rdev->flags);
1327 blocked_rdev = rdev;
1333 if (unlikely(blocked_rdev)) {
1334 /* Have to wait for this device to get unblocked, then retry */
1335 allow_barrier(conf);
1336 mddev_add_trace_msg(conf->mddev,
1337 "raid10 %s wait rdev %d blocked",
1338 __func__, blocked_rdev->raid_disk);
1339 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1340 wait_barrier(conf, false);
1345 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1346 struct r10bio *r10_bio)
1348 struct r10conf *conf = mddev->private;
1353 if ((mddev_is_clustered(mddev) &&
1354 md_cluster_ops->area_resyncing(mddev, WRITE,
1355 bio->bi_iter.bi_sector,
1356 bio_end_sector(bio)))) {
1358 /* Bail out if REQ_NOWAIT is set for the bio */
1359 if (bio->bi_opf & REQ_NOWAIT) {
1360 bio_wouldblock_error(bio);
1364 prepare_to_wait(&conf->wait_barrier,
1366 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1367 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1371 finish_wait(&conf->wait_barrier, &w);
1374 sectors = r10_bio->sectors;
1375 if (!regular_request_wait(mddev, conf, bio, sectors))
1377 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1378 (mddev->reshape_backwards
1379 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1380 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1381 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1382 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1383 /* Need to update reshape_position in metadata */
1384 mddev->reshape_position = conf->reshape_progress;
1385 set_mask_bits(&mddev->sb_flags, 0,
1386 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1387 md_wakeup_thread(mddev->thread);
1388 if (bio->bi_opf & REQ_NOWAIT) {
1389 allow_barrier(conf);
1390 bio_wouldblock_error(bio);
1393 mddev_add_trace_msg(conf->mddev,
1394 "raid10 wait reshape metadata");
1395 wait_event(mddev->sb_wait,
1396 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1398 conf->reshape_safe = mddev->reshape_position;
1401 /* first select target devices under rcu_lock and
1402 * inc refcount on their rdev. Record them by setting
1404 * If there are known/acknowledged bad blocks on any device
1405 * on which we have seen a write error, we want to avoid
1406 * writing to those blocks. This potentially requires several
1407 * writes to write around the bad blocks. Each set of writes
1408 * gets its own r10_bio with a set of bios attached.
1411 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1412 raid10_find_phys(conf, r10_bio);
1414 wait_blocked_dev(mddev, r10_bio);
1416 max_sectors = r10_bio->sectors;
1418 for (i = 0; i < conf->copies; i++) {
1419 int d = r10_bio->devs[i].devnum;
1420 struct md_rdev *rdev, *rrdev;
1422 rdev = conf->mirrors[d].rdev;
1423 rrdev = conf->mirrors[d].replacement;
1424 if (rdev && (test_bit(Faulty, &rdev->flags)))
1426 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1429 r10_bio->devs[i].bio = NULL;
1430 r10_bio->devs[i].repl_bio = NULL;
1432 if (!rdev && !rrdev) {
1433 set_bit(R10BIO_Degraded, &r10_bio->state);
1436 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1438 sector_t dev_sector = r10_bio->devs[i].addr;
1442 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443 &first_bad, &bad_sectors);
1444 if (is_bad && first_bad <= dev_sector) {
1445 /* Cannot write here at all */
1446 bad_sectors -= (dev_sector - first_bad);
1447 if (bad_sectors < max_sectors)
1448 /* Mustn't write more than bad_sectors
1449 * to other devices yet
1451 max_sectors = bad_sectors;
1452 /* We don't set R10BIO_Degraded as that
1453 * only applies if the disk is missing,
1454 * so it might be re-added, and we want to
1455 * know to recover this chunk.
1456 * In this case the device is here, and the
1457 * fact that this chunk is not in-sync is
1458 * recorded in the bad block log.
1463 int good_sectors = first_bad - dev_sector;
1464 if (good_sectors < max_sectors)
1465 max_sectors = good_sectors;
1469 r10_bio->devs[i].bio = bio;
1470 atomic_inc(&rdev->nr_pending);
1473 r10_bio->devs[i].repl_bio = bio;
1474 atomic_inc(&rrdev->nr_pending);
1478 if (max_sectors < r10_bio->sectors)
1479 r10_bio->sectors = max_sectors;
1481 if (r10_bio->sectors < bio_sectors(bio)) {
1482 struct bio *split = bio_split(bio, r10_bio->sectors,
1483 GFP_NOIO, &conf->bio_split);
1484 bio_chain(split, bio);
1485 allow_barrier(conf);
1486 submit_bio_noacct(bio);
1487 wait_barrier(conf, false);
1489 r10_bio->master_bio = bio;
1492 md_account_bio(mddev, &bio);
1493 r10_bio->master_bio = bio;
1494 atomic_set(&r10_bio->remaining, 1);
1495 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1497 for (i = 0; i < conf->copies; i++) {
1498 if (r10_bio->devs[i].bio)
1499 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1500 if (r10_bio->devs[i].repl_bio)
1501 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1503 one_write_done(r10_bio);
1506 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1508 struct r10conf *conf = mddev->private;
1509 struct r10bio *r10_bio;
1511 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1513 r10_bio->master_bio = bio;
1514 r10_bio->sectors = sectors;
1516 r10_bio->mddev = mddev;
1517 r10_bio->sector = bio->bi_iter.bi_sector;
1519 r10_bio->read_slot = -1;
1520 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1521 conf->geo.raid_disks);
1523 if (bio_data_dir(bio) == READ)
1524 raid10_read_request(mddev, bio, r10_bio, true);
1526 raid10_write_request(mddev, bio, r10_bio);
1529 static void raid_end_discard_bio(struct r10bio *r10bio)
1531 struct r10conf *conf = r10bio->mddev->private;
1532 struct r10bio *first_r10bio;
1534 while (atomic_dec_and_test(&r10bio->remaining)) {
1536 allow_barrier(conf);
1538 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1539 first_r10bio = (struct r10bio *)r10bio->master_bio;
1540 free_r10bio(r10bio);
1541 r10bio = first_r10bio;
1543 md_write_end(r10bio->mddev);
1544 bio_endio(r10bio->master_bio);
1545 free_r10bio(r10bio);
1551 static void raid10_end_discard_request(struct bio *bio)
1553 struct r10bio *r10_bio = bio->bi_private;
1554 struct r10conf *conf = r10_bio->mddev->private;
1555 struct md_rdev *rdev = NULL;
1560 * We don't care the return value of discard bio
1562 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1563 set_bit(R10BIO_Uptodate, &r10_bio->state);
1565 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1566 rdev = repl ? conf->mirrors[dev].replacement :
1567 conf->mirrors[dev].rdev;
1569 raid_end_discard_bio(r10_bio);
1570 rdev_dec_pending(rdev, conf->mddev);
1574 * There are some limitations to handle discard bio
1575 * 1st, the discard size is bigger than stripe_size*2.
1576 * 2st, if the discard bio spans reshape progress, we use the old way to
1577 * handle discard bio
1579 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1581 struct r10conf *conf = mddev->private;
1582 struct geom *geo = &conf->geo;
1583 int far_copies = geo->far_copies;
1584 bool first_copy = true;
1585 struct r10bio *r10_bio, *first_r10bio;
1589 unsigned int stripe_size;
1590 unsigned int stripe_data_disks;
1591 sector_t split_size;
1592 sector_t bio_start, bio_end;
1593 sector_t first_stripe_index, last_stripe_index;
1594 sector_t start_disk_offset;
1595 unsigned int start_disk_index;
1596 sector_t end_disk_offset;
1597 unsigned int end_disk_index;
1598 unsigned int remainder;
1600 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1603 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1604 bio_wouldblock_error(bio);
1607 wait_barrier(conf, false);
1610 * Check reshape again to avoid reshape happens after checking
1611 * MD_RECOVERY_RESHAPE and before wait_barrier
1613 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1616 if (geo->near_copies)
1617 stripe_data_disks = geo->raid_disks / geo->near_copies +
1618 geo->raid_disks % geo->near_copies;
1620 stripe_data_disks = geo->raid_disks;
1622 stripe_size = stripe_data_disks << geo->chunk_shift;
1624 bio_start = bio->bi_iter.bi_sector;
1625 bio_end = bio_end_sector(bio);
1628 * Maybe one discard bio is smaller than strip size or across one
1629 * stripe and discard region is larger than one stripe size. For far
1630 * offset layout, if the discard region is not aligned with stripe
1631 * size, there is hole when we submit discard bio to member disk.
1632 * For simplicity, we only handle discard bio which discard region
1633 * is bigger than stripe_size * 2
1635 if (bio_sectors(bio) < stripe_size*2)
1639 * Keep bio aligned with strip size.
1641 div_u64_rem(bio_start, stripe_size, &remainder);
1643 split_size = stripe_size - remainder;
1644 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1645 bio_chain(split, bio);
1646 allow_barrier(conf);
1647 /* Resend the fist split part */
1648 submit_bio_noacct(split);
1649 wait_barrier(conf, false);
1651 div_u64_rem(bio_end, stripe_size, &remainder);
1653 split_size = bio_sectors(bio) - remainder;
1654 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1655 bio_chain(split, bio);
1656 allow_barrier(conf);
1657 /* Resend the second split part */
1658 submit_bio_noacct(bio);
1660 wait_barrier(conf, false);
1663 bio_start = bio->bi_iter.bi_sector;
1664 bio_end = bio_end_sector(bio);
1667 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1668 * One stripe contains the chunks from all member disk (one chunk from
1669 * one disk at the same HBA address). For layout detail, see 'man md 4'
1671 chunk = bio_start >> geo->chunk_shift;
1672 chunk *= geo->near_copies;
1673 first_stripe_index = chunk;
1674 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1675 if (geo->far_offset)
1676 first_stripe_index *= geo->far_copies;
1677 start_disk_offset = (bio_start & geo->chunk_mask) +
1678 (first_stripe_index << geo->chunk_shift);
1680 chunk = bio_end >> geo->chunk_shift;
1681 chunk *= geo->near_copies;
1682 last_stripe_index = chunk;
1683 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1684 if (geo->far_offset)
1685 last_stripe_index *= geo->far_copies;
1686 end_disk_offset = (bio_end & geo->chunk_mask) +
1687 (last_stripe_index << geo->chunk_shift);
1690 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1691 r10_bio->mddev = mddev;
1693 r10_bio->sectors = 0;
1694 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1695 wait_blocked_dev(mddev, r10_bio);
1698 * For far layout it needs more than one r10bio to cover all regions.
1699 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1700 * to record the discard bio. Other r10bio->master_bio record the first
1701 * r10bio. The first r10bio only release after all other r10bios finish.
1702 * The discard bio returns only first r10bio finishes
1705 r10_bio->master_bio = bio;
1706 set_bit(R10BIO_Discard, &r10_bio->state);
1708 first_r10bio = r10_bio;
1710 r10_bio->master_bio = (struct bio *)first_r10bio;
1713 * first select target devices under rcu_lock and
1714 * inc refcount on their rdev. Record them by setting
1717 for (disk = 0; disk < geo->raid_disks; disk++) {
1718 struct md_rdev *rdev, *rrdev;
1720 rdev = conf->mirrors[disk].rdev;
1721 rrdev = conf->mirrors[disk].replacement;
1722 r10_bio->devs[disk].bio = NULL;
1723 r10_bio->devs[disk].repl_bio = NULL;
1725 if (rdev && (test_bit(Faulty, &rdev->flags)))
1727 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1729 if (!rdev && !rrdev)
1733 r10_bio->devs[disk].bio = bio;
1734 atomic_inc(&rdev->nr_pending);
1737 r10_bio->devs[disk].repl_bio = bio;
1738 atomic_inc(&rrdev->nr_pending);
1742 atomic_set(&r10_bio->remaining, 1);
1743 for (disk = 0; disk < geo->raid_disks; disk++) {
1744 sector_t dev_start, dev_end;
1745 struct bio *mbio, *rbio = NULL;
1748 * Now start to calculate the start and end address for each disk.
1749 * The space between dev_start and dev_end is the discard region.
1751 * For dev_start, it needs to consider three conditions:
1752 * 1st, the disk is before start_disk, you can imagine the disk in
1753 * the next stripe. So the dev_start is the start address of next
1755 * 2st, the disk is after start_disk, it means the disk is at the
1756 * same stripe of first disk
1757 * 3st, the first disk itself, we can use start_disk_offset directly
1759 if (disk < start_disk_index)
1760 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1761 else if (disk > start_disk_index)
1762 dev_start = first_stripe_index * mddev->chunk_sectors;
1764 dev_start = start_disk_offset;
1766 if (disk < end_disk_index)
1767 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1768 else if (disk > end_disk_index)
1769 dev_end = last_stripe_index * mddev->chunk_sectors;
1771 dev_end = end_disk_offset;
1774 * It only handles discard bio which size is >= stripe size, so
1775 * dev_end > dev_start all the time.
1776 * It doesn't need to use rcu lock to get rdev here. We already
1777 * add rdev->nr_pending in the first loop.
1779 if (r10_bio->devs[disk].bio) {
1780 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1781 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1783 mbio->bi_end_io = raid10_end_discard_request;
1784 mbio->bi_private = r10_bio;
1785 r10_bio->devs[disk].bio = mbio;
1786 r10_bio->devs[disk].devnum = disk;
1787 atomic_inc(&r10_bio->remaining);
1788 md_submit_discard_bio(mddev, rdev, mbio,
1789 dev_start + choose_data_offset(r10_bio, rdev),
1790 dev_end - dev_start);
1793 if (r10_bio->devs[disk].repl_bio) {
1794 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1795 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1797 rbio->bi_end_io = raid10_end_discard_request;
1798 rbio->bi_private = r10_bio;
1799 r10_bio->devs[disk].repl_bio = rbio;
1800 r10_bio->devs[disk].devnum = disk;
1801 atomic_inc(&r10_bio->remaining);
1802 md_submit_discard_bio(mddev, rrdev, rbio,
1803 dev_start + choose_data_offset(r10_bio, rrdev),
1804 dev_end - dev_start);
1809 if (!geo->far_offset && --far_copies) {
1810 first_stripe_index += geo->stride >> geo->chunk_shift;
1811 start_disk_offset += geo->stride;
1812 last_stripe_index += geo->stride >> geo->chunk_shift;
1813 end_disk_offset += geo->stride;
1814 atomic_inc(&first_r10bio->remaining);
1815 raid_end_discard_bio(r10_bio);
1816 wait_barrier(conf, false);
1820 raid_end_discard_bio(r10_bio);
1824 allow_barrier(conf);
1828 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1830 struct r10conf *conf = mddev->private;
1831 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1832 int chunk_sects = chunk_mask + 1;
1833 int sectors = bio_sectors(bio);
1835 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1836 && md_flush_request(mddev, bio))
1839 md_write_start(mddev, bio);
1841 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1842 if (!raid10_handle_discard(mddev, bio))
1846 * If this request crosses a chunk boundary, we need to split
1849 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1850 sectors > chunk_sects
1851 && (conf->geo.near_copies < conf->geo.raid_disks
1852 || conf->prev.near_copies <
1853 conf->prev.raid_disks)))
1854 sectors = chunk_sects -
1855 (bio->bi_iter.bi_sector &
1857 __make_request(mddev, bio, sectors);
1859 /* In case raid10d snuck in to freeze_array */
1860 wake_up_barrier(conf);
1864 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1866 struct r10conf *conf = mddev->private;
1869 lockdep_assert_held(&mddev->lock);
1871 if (conf->geo.near_copies < conf->geo.raid_disks)
1872 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1873 if (conf->geo.near_copies > 1)
1874 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1875 if (conf->geo.far_copies > 1) {
1876 if (conf->geo.far_offset)
1877 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1879 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1880 if (conf->geo.far_set_size != conf->geo.raid_disks)
1881 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1883 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1884 conf->geo.raid_disks - mddev->degraded);
1885 for (i = 0; i < conf->geo.raid_disks; i++) {
1886 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1888 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1890 seq_printf(seq, "]");
1893 /* check if there are enough drives for
1894 * every block to appear on atleast one.
1895 * Don't consider the device numbered 'ignore'
1896 * as we might be about to remove it.
1898 static int _enough(struct r10conf *conf, int previous, int ignore)
1904 disks = conf->prev.raid_disks;
1905 ncopies = conf->prev.near_copies;
1907 disks = conf->geo.raid_disks;
1908 ncopies = conf->geo.near_copies;
1912 int n = conf->copies;
1916 struct md_rdev *rdev;
1917 if (this != ignore &&
1918 (rdev = conf->mirrors[this].rdev) &&
1919 test_bit(In_sync, &rdev->flags))
1921 this = (this+1) % disks;
1925 first = (first + ncopies) % disks;
1926 } while (first != 0);
1932 static int enough(struct r10conf *conf, int ignore)
1934 /* when calling 'enough', both 'prev' and 'geo' must
1936 * This is ensured if ->reconfig_mutex or ->device_lock
1939 return _enough(conf, 0, ignore) &&
1940 _enough(conf, 1, ignore);
1944 * raid10_error() - RAID10 error handler.
1945 * @mddev: affected md device.
1946 * @rdev: member device to fail.
1948 * The routine acknowledges &rdev failure and determines new @mddev state.
1949 * If it failed, then:
1950 * - &MD_BROKEN flag is set in &mddev->flags.
1951 * Otherwise, it must be degraded:
1952 * - recovery is interrupted.
1953 * - &mddev->degraded is bumped.
1955 * @rdev is marked as &Faulty excluding case when array is failed and
1956 * &mddev->fail_last_dev is off.
1958 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1960 struct r10conf *conf = mddev->private;
1961 unsigned long flags;
1963 spin_lock_irqsave(&conf->device_lock, flags);
1965 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1966 set_bit(MD_BROKEN, &mddev->flags);
1968 if (!mddev->fail_last_dev) {
1969 spin_unlock_irqrestore(&conf->device_lock, flags);
1973 if (test_and_clear_bit(In_sync, &rdev->flags))
1976 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1977 set_bit(Blocked, &rdev->flags);
1978 set_bit(Faulty, &rdev->flags);
1979 set_mask_bits(&mddev->sb_flags, 0,
1980 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1981 spin_unlock_irqrestore(&conf->device_lock, flags);
1982 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1983 "md/raid10:%s: Operation continuing on %d devices.\n",
1984 mdname(mddev), rdev->bdev,
1985 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1988 static void print_conf(struct r10conf *conf)
1991 struct md_rdev *rdev;
1993 pr_debug("RAID10 conf printout:\n");
1995 pr_debug("(!conf)\n");
1998 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1999 conf->geo.raid_disks);
2001 lockdep_assert_held(&conf->mddev->reconfig_mutex);
2002 for (i = 0; i < conf->geo.raid_disks; i++) {
2003 rdev = conf->mirrors[i].rdev;
2005 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2006 i, !test_bit(In_sync, &rdev->flags),
2007 !test_bit(Faulty, &rdev->flags),
2012 static void close_sync(struct r10conf *conf)
2014 wait_barrier(conf, false);
2015 allow_barrier(conf);
2017 mempool_exit(&conf->r10buf_pool);
2020 static int raid10_spare_active(struct mddev *mddev)
2023 struct r10conf *conf = mddev->private;
2024 struct raid10_info *tmp;
2026 unsigned long flags;
2029 * Find all non-in_sync disks within the RAID10 configuration
2030 * and mark them in_sync
2032 for (i = 0; i < conf->geo.raid_disks; i++) {
2033 tmp = conf->mirrors + i;
2034 if (tmp->replacement
2035 && tmp->replacement->recovery_offset == MaxSector
2036 && !test_bit(Faulty, &tmp->replacement->flags)
2037 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038 /* Replacement has just become active */
2040 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2043 /* Replaced device not technically faulty,
2044 * but we need to be sure it gets removed
2045 * and never re-added.
2047 set_bit(Faulty, &tmp->rdev->flags);
2048 sysfs_notify_dirent_safe(
2049 tmp->rdev->sysfs_state);
2051 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052 } else if (tmp->rdev
2053 && tmp->rdev->recovery_offset == MaxSector
2054 && !test_bit(Faulty, &tmp->rdev->flags)
2055 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2057 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2060 spin_lock_irqsave(&conf->device_lock, flags);
2061 mddev->degraded -= count;
2062 spin_unlock_irqrestore(&conf->device_lock, flags);
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2070 struct r10conf *conf = mddev->private;
2072 int mirror, repl_slot = -1;
2074 int last = conf->geo.raid_disks - 1;
2075 struct raid10_info *p;
2077 if (mddev->recovery_cp < MaxSector)
2078 /* only hot-add to in-sync arrays, as recovery is
2079 * very different from resync
2082 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2085 if (rdev->raid_disk >= 0)
2086 first = last = rdev->raid_disk;
2088 if (rdev->saved_raid_disk >= first &&
2089 rdev->saved_raid_disk < conf->geo.raid_disks &&
2090 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2091 mirror = rdev->saved_raid_disk;
2094 for ( ; mirror <= last ; mirror++) {
2095 p = &conf->mirrors[mirror];
2096 if (p->recovery_disabled == mddev->recovery_disabled)
2099 if (test_bit(WantReplacement, &p->rdev->flags) &&
2100 p->replacement == NULL && repl_slot < 0)
2105 err = mddev_stack_new_rdev(mddev, rdev);
2108 p->head_position = 0;
2109 p->recovery_disabled = mddev->recovery_disabled - 1;
2110 rdev->raid_disk = mirror;
2112 if (rdev->saved_raid_disk != mirror)
2114 WRITE_ONCE(p->rdev, rdev);
2118 if (err && repl_slot >= 0) {
2119 p = &conf->mirrors[repl_slot];
2120 clear_bit(In_sync, &rdev->flags);
2121 set_bit(Replacement, &rdev->flags);
2122 rdev->raid_disk = repl_slot;
2123 err = mddev_stack_new_rdev(mddev, rdev);
2127 WRITE_ONCE(p->replacement, rdev);
2134 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2136 struct r10conf *conf = mddev->private;
2138 int number = rdev->raid_disk;
2139 struct md_rdev **rdevp;
2140 struct raid10_info *p;
2143 if (unlikely(number >= mddev->raid_disks))
2145 p = conf->mirrors + number;
2146 if (rdev == p->rdev)
2148 else if (rdev == p->replacement)
2149 rdevp = &p->replacement;
2153 if (test_bit(In_sync, &rdev->flags) ||
2154 atomic_read(&rdev->nr_pending)) {
2158 /* Only remove non-faulty devices if recovery
2161 if (!test_bit(Faulty, &rdev->flags) &&
2162 mddev->recovery_disabled != p->recovery_disabled &&
2163 (!p->replacement || p->replacement == rdev) &&
2164 number < conf->geo.raid_disks &&
2169 WRITE_ONCE(*rdevp, NULL);
2170 if (p->replacement) {
2171 /* We must have just cleared 'rdev' */
2172 WRITE_ONCE(p->rdev, p->replacement);
2173 clear_bit(Replacement, &p->replacement->flags);
2174 WRITE_ONCE(p->replacement, NULL);
2177 clear_bit(WantReplacement, &rdev->flags);
2178 err = md_integrity_register(mddev);
2186 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2188 struct r10conf *conf = r10_bio->mddev->private;
2190 if (!bio->bi_status)
2191 set_bit(R10BIO_Uptodate, &r10_bio->state);
2193 /* The write handler will notice the lack of
2194 * R10BIO_Uptodate and record any errors etc
2196 atomic_add(r10_bio->sectors,
2197 &conf->mirrors[d].rdev->corrected_errors);
2199 /* for reconstruct, we always reschedule after a read.
2200 * for resync, only after all reads
2202 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2203 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2204 atomic_dec_and_test(&r10_bio->remaining)) {
2205 /* we have read all the blocks,
2206 * do the comparison in process context in raid10d
2208 reschedule_retry(r10_bio);
2212 static void end_sync_read(struct bio *bio)
2214 struct r10bio *r10_bio = get_resync_r10bio(bio);
2215 struct r10conf *conf = r10_bio->mddev->private;
2216 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2218 __end_sync_read(r10_bio, bio, d);
2221 static void end_reshape_read(struct bio *bio)
2223 /* reshape read bio isn't allocated from r10buf_pool */
2224 struct r10bio *r10_bio = bio->bi_private;
2226 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2229 static void end_sync_request(struct r10bio *r10_bio)
2231 struct mddev *mddev = r10_bio->mddev;
2233 while (atomic_dec_and_test(&r10_bio->remaining)) {
2234 if (r10_bio->master_bio == NULL) {
2235 /* the primary of several recovery bios */
2236 sector_t s = r10_bio->sectors;
2237 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2238 test_bit(R10BIO_WriteError, &r10_bio->state))
2239 reschedule_retry(r10_bio);
2242 md_done_sync(mddev, s, 1);
2245 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2246 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2247 test_bit(R10BIO_WriteError, &r10_bio->state))
2248 reschedule_retry(r10_bio);
2256 static void end_sync_write(struct bio *bio)
2258 struct r10bio *r10_bio = get_resync_r10bio(bio);
2259 struct mddev *mddev = r10_bio->mddev;
2260 struct r10conf *conf = mddev->private;
2264 struct md_rdev *rdev = NULL;
2266 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2268 rdev = conf->mirrors[d].replacement;
2270 rdev = conf->mirrors[d].rdev;
2272 if (bio->bi_status) {
2274 md_error(mddev, rdev);
2276 set_bit(WriteErrorSeen, &rdev->flags);
2277 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2278 set_bit(MD_RECOVERY_NEEDED,
2279 &rdev->mddev->recovery);
2280 set_bit(R10BIO_WriteError, &r10_bio->state);
2282 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2283 r10_bio->sectors)) {
2284 set_bit(R10BIO_MadeGood, &r10_bio->state);
2287 rdev_dec_pending(rdev, mddev);
2289 end_sync_request(r10_bio);
2293 * Note: sync and recover and handled very differently for raid10
2294 * This code is for resync.
2295 * For resync, we read through virtual addresses and read all blocks.
2296 * If there is any error, we schedule a write. The lowest numbered
2297 * drive is authoritative.
2298 * However requests come for physical address, so we need to map.
2299 * For every physical address there are raid_disks/copies virtual addresses,
2300 * which is always are least one, but is not necessarly an integer.
2301 * This means that a physical address can span multiple chunks, so we may
2302 * have to submit multiple io requests for a single sync request.
2305 * We check if all blocks are in-sync and only write to blocks that
2308 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2310 struct r10conf *conf = mddev->private;
2312 struct bio *tbio, *fbio;
2314 struct page **tpages, **fpages;
2316 atomic_set(&r10_bio->remaining, 1);
2318 /* find the first device with a block */
2319 for (i=0; i<conf->copies; i++)
2320 if (!r10_bio->devs[i].bio->bi_status)
2323 if (i == conf->copies)
2327 fbio = r10_bio->devs[i].bio;
2328 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2329 fbio->bi_iter.bi_idx = 0;
2330 fpages = get_resync_pages(fbio)->pages;
2332 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2333 /* now find blocks with errors */
2334 for (i=0 ; i < conf->copies ; i++) {
2336 struct md_rdev *rdev;
2337 struct resync_pages *rp;
2339 tbio = r10_bio->devs[i].bio;
2341 if (tbio->bi_end_io != end_sync_read)
2346 tpages = get_resync_pages(tbio)->pages;
2347 d = r10_bio->devs[i].devnum;
2348 rdev = conf->mirrors[d].rdev;
2349 if (!r10_bio->devs[i].bio->bi_status) {
2350 /* We know that the bi_io_vec layout is the same for
2351 * both 'first' and 'i', so we just compare them.
2352 * All vec entries are PAGE_SIZE;
2354 int sectors = r10_bio->sectors;
2355 for (j = 0; j < vcnt; j++) {
2356 int len = PAGE_SIZE;
2357 if (sectors < (len / 512))
2358 len = sectors * 512;
2359 if (memcmp(page_address(fpages[j]),
2360 page_address(tpages[j]),
2367 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2368 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2369 /* Don't fix anything. */
2371 } else if (test_bit(FailFast, &rdev->flags)) {
2372 /* Just give up on this device */
2373 md_error(rdev->mddev, rdev);
2376 /* Ok, we need to write this bio, either to correct an
2377 * inconsistency or to correct an unreadable block.
2378 * First we need to fixup bv_offset, bv_len and
2379 * bi_vecs, as the read request might have corrupted these
2381 rp = get_resync_pages(tbio);
2382 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2384 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2386 rp->raid_bio = r10_bio;
2387 tbio->bi_private = rp;
2388 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2389 tbio->bi_end_io = end_sync_write;
2391 bio_copy_data(tbio, fbio);
2393 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2394 atomic_inc(&r10_bio->remaining);
2395 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2397 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2398 tbio->bi_opf |= MD_FAILFAST;
2399 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2400 submit_bio_noacct(tbio);
2403 /* Now write out to any replacement devices
2406 for (i = 0; i < conf->copies; i++) {
2409 tbio = r10_bio->devs[i].repl_bio;
2410 if (!tbio || !tbio->bi_end_io)
2412 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2413 && r10_bio->devs[i].bio != fbio)
2414 bio_copy_data(tbio, fbio);
2415 d = r10_bio->devs[i].devnum;
2416 atomic_inc(&r10_bio->remaining);
2417 md_sync_acct(conf->mirrors[d].replacement->bdev,
2419 submit_bio_noacct(tbio);
2423 if (atomic_dec_and_test(&r10_bio->remaining)) {
2424 md_done_sync(mddev, r10_bio->sectors, 1);
2430 * Now for the recovery code.
2431 * Recovery happens across physical sectors.
2432 * We recover all non-is_sync drives by finding the virtual address of
2433 * each, and then choose a working drive that also has that virt address.
2434 * There is a separate r10_bio for each non-in_sync drive.
2435 * Only the first two slots are in use. The first for reading,
2436 * The second for writing.
2439 static void fix_recovery_read_error(struct r10bio *r10_bio)
2441 /* We got a read error during recovery.
2442 * We repeat the read in smaller page-sized sections.
2443 * If a read succeeds, write it to the new device or record
2444 * a bad block if we cannot.
2445 * If a read fails, record a bad block on both old and
2448 struct mddev *mddev = r10_bio->mddev;
2449 struct r10conf *conf = mddev->private;
2450 struct bio *bio = r10_bio->devs[0].bio;
2452 int sectors = r10_bio->sectors;
2454 int dr = r10_bio->devs[0].devnum;
2455 int dw = r10_bio->devs[1].devnum;
2456 struct page **pages = get_resync_pages(bio)->pages;
2460 struct md_rdev *rdev;
2464 if (s > (PAGE_SIZE>>9))
2467 rdev = conf->mirrors[dr].rdev;
2468 addr = r10_bio->devs[0].addr + sect,
2469 ok = sync_page_io(rdev,
2473 REQ_OP_READ, false);
2475 rdev = conf->mirrors[dw].rdev;
2476 addr = r10_bio->devs[1].addr + sect;
2477 ok = sync_page_io(rdev,
2481 REQ_OP_WRITE, false);
2483 set_bit(WriteErrorSeen, &rdev->flags);
2484 if (!test_and_set_bit(WantReplacement,
2486 set_bit(MD_RECOVERY_NEEDED,
2487 &rdev->mddev->recovery);
2491 /* We don't worry if we cannot set a bad block -
2492 * it really is bad so there is no loss in not
2495 rdev_set_badblocks(rdev, addr, s, 0);
2497 if (rdev != conf->mirrors[dw].rdev) {
2498 /* need bad block on destination too */
2499 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2500 addr = r10_bio->devs[1].addr + sect;
2501 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2503 /* just abort the recovery */
2504 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2507 conf->mirrors[dw].recovery_disabled
2508 = mddev->recovery_disabled;
2509 set_bit(MD_RECOVERY_INTR,
2522 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2524 struct r10conf *conf = mddev->private;
2526 struct bio *wbio = r10_bio->devs[1].bio;
2527 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2529 /* Need to test wbio2->bi_end_io before we call
2530 * submit_bio_noacct as if the former is NULL,
2531 * the latter is free to free wbio2.
2533 if (wbio2 && !wbio2->bi_end_io)
2536 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2537 fix_recovery_read_error(r10_bio);
2538 if (wbio->bi_end_io)
2539 end_sync_request(r10_bio);
2541 end_sync_request(r10_bio);
2546 * share the pages with the first bio
2547 * and submit the write request
2549 d = r10_bio->devs[1].devnum;
2550 if (wbio->bi_end_io) {
2551 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2552 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2553 submit_bio_noacct(wbio);
2556 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2557 md_sync_acct(conf->mirrors[d].replacement->bdev,
2558 bio_sectors(wbio2));
2559 submit_bio_noacct(wbio2);
2563 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2564 int sectors, struct page *page, enum req_op op)
2566 if (rdev_has_badblock(rdev, sector, sectors) &&
2567 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2569 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2572 if (op == REQ_OP_WRITE) {
2573 set_bit(WriteErrorSeen, &rdev->flags);
2574 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2575 set_bit(MD_RECOVERY_NEEDED,
2576 &rdev->mddev->recovery);
2578 /* need to record an error - either for the block or the device */
2579 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2580 md_error(rdev->mddev, rdev);
2585 * This is a kernel thread which:
2587 * 1. Retries failed read operations on working mirrors.
2588 * 2. Updates the raid superblock when problems encounter.
2589 * 3. Performs writes following reads for array synchronising.
2592 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2594 int sect = 0; /* Offset from r10_bio->sector */
2595 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2596 struct md_rdev *rdev;
2597 int d = r10_bio->devs[slot].devnum;
2599 /* still own a reference to this rdev, so it cannot
2600 * have been cleared recently.
2602 rdev = conf->mirrors[d].rdev;
2604 if (test_bit(Faulty, &rdev->flags))
2605 /* drive has already been failed, just ignore any
2606 more fix_read_error() attempts */
2609 if (exceed_read_errors(mddev, rdev)) {
2610 r10_bio->devs[slot].bio = IO_BLOCKED;
2620 if (s > (PAGE_SIZE>>9))
2624 d = r10_bio->devs[sl].devnum;
2625 rdev = conf->mirrors[d].rdev;
2627 test_bit(In_sync, &rdev->flags) &&
2628 !test_bit(Faulty, &rdev->flags) &&
2629 rdev_has_badblock(rdev,
2630 r10_bio->devs[sl].addr + sect,
2632 atomic_inc(&rdev->nr_pending);
2633 success = sync_page_io(rdev,
2634 r10_bio->devs[sl].addr +
2638 REQ_OP_READ, false);
2639 rdev_dec_pending(rdev, mddev);
2644 if (sl == conf->copies)
2646 } while (sl != slot);
2649 /* Cannot read from anywhere, just mark the block
2650 * as bad on the first device to discourage future
2653 int dn = r10_bio->devs[slot].devnum;
2654 rdev = conf->mirrors[dn].rdev;
2656 if (!rdev_set_badblocks(
2658 r10_bio->devs[slot].addr
2661 md_error(mddev, rdev);
2662 r10_bio->devs[slot].bio
2669 /* write it back and re-read */
2670 while (sl != slot) {
2674 d = r10_bio->devs[sl].devnum;
2675 rdev = conf->mirrors[d].rdev;
2677 test_bit(Faulty, &rdev->flags) ||
2678 !test_bit(In_sync, &rdev->flags))
2681 atomic_inc(&rdev->nr_pending);
2682 if (r10_sync_page_io(rdev,
2683 r10_bio->devs[sl].addr +
2685 s, conf->tmppage, REQ_OP_WRITE)
2687 /* Well, this device is dead */
2688 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2690 (unsigned long long)(
2692 choose_data_offset(r10_bio,
2695 pr_notice("md/raid10:%s: %pg: failing drive\n",
2699 rdev_dec_pending(rdev, mddev);
2702 while (sl != slot) {
2706 d = r10_bio->devs[sl].devnum;
2707 rdev = conf->mirrors[d].rdev;
2709 test_bit(Faulty, &rdev->flags) ||
2710 !test_bit(In_sync, &rdev->flags))
2713 atomic_inc(&rdev->nr_pending);
2714 switch (r10_sync_page_io(rdev,
2715 r10_bio->devs[sl].addr +
2717 s, conf->tmppage, REQ_OP_READ)) {
2719 /* Well, this device is dead */
2720 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2722 (unsigned long long)(
2724 choose_data_offset(r10_bio, rdev)),
2726 pr_notice("md/raid10:%s: %pg: failing drive\n",
2731 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2733 (unsigned long long)(
2735 choose_data_offset(r10_bio, rdev)),
2737 atomic_add(s, &rdev->corrected_errors);
2740 rdev_dec_pending(rdev, mddev);
2748 static int narrow_write_error(struct r10bio *r10_bio, int i)
2750 struct bio *bio = r10_bio->master_bio;
2751 struct mddev *mddev = r10_bio->mddev;
2752 struct r10conf *conf = mddev->private;
2753 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2754 /* bio has the data to be written to slot 'i' where
2755 * we just recently had a write error.
2756 * We repeatedly clone the bio and trim down to one block,
2757 * then try the write. Where the write fails we record
2759 * It is conceivable that the bio doesn't exactly align with
2760 * blocks. We must handle this.
2762 * We currently own a reference to the rdev.
2768 int sect_to_write = r10_bio->sectors;
2771 if (rdev->badblocks.shift < 0)
2774 block_sectors = roundup(1 << rdev->badblocks.shift,
2775 bdev_logical_block_size(rdev->bdev) >> 9);
2776 sector = r10_bio->sector;
2777 sectors = ((r10_bio->sector + block_sectors)
2778 & ~(sector_t)(block_sectors - 1))
2781 while (sect_to_write) {
2784 if (sectors > sect_to_write)
2785 sectors = sect_to_write;
2786 /* Write at 'sector' for 'sectors' */
2787 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2789 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2790 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2791 wbio->bi_iter.bi_sector = wsector +
2792 choose_data_offset(r10_bio, rdev);
2793 wbio->bi_opf = REQ_OP_WRITE;
2795 if (submit_bio_wait(wbio) < 0)
2797 ok = rdev_set_badblocks(rdev, wsector,
2802 sect_to_write -= sectors;
2804 sectors = block_sectors;
2809 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2811 int slot = r10_bio->read_slot;
2813 struct r10conf *conf = mddev->private;
2814 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2816 /* we got a read error. Maybe the drive is bad. Maybe just
2817 * the block and we can fix it.
2818 * We freeze all other IO, and try reading the block from
2819 * other devices. When we find one, we re-write
2820 * and check it that fixes the read error.
2821 * This is all done synchronously while the array is
2824 bio = r10_bio->devs[slot].bio;
2826 r10_bio->devs[slot].bio = NULL;
2829 r10_bio->devs[slot].bio = IO_BLOCKED;
2830 else if (!test_bit(FailFast, &rdev->flags)) {
2831 freeze_array(conf, 1);
2832 fix_read_error(conf, mddev, r10_bio);
2833 unfreeze_array(conf);
2835 md_error(mddev, rdev);
2837 rdev_dec_pending(rdev, mddev);
2839 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2841 * allow_barrier after re-submit to ensure no sync io
2842 * can be issued while regular io pending.
2844 allow_barrier(conf);
2847 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2849 /* Some sort of write request has finished and it
2850 * succeeded in writing where we thought there was a
2851 * bad block. So forget the bad block.
2852 * Or possibly if failed and we need to record
2856 struct md_rdev *rdev;
2858 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2859 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2860 for (m = 0; m < conf->copies; m++) {
2861 int dev = r10_bio->devs[m].devnum;
2862 rdev = conf->mirrors[dev].rdev;
2863 if (r10_bio->devs[m].bio == NULL ||
2864 r10_bio->devs[m].bio->bi_end_io == NULL)
2866 if (!r10_bio->devs[m].bio->bi_status) {
2867 rdev_clear_badblocks(
2869 r10_bio->devs[m].addr,
2870 r10_bio->sectors, 0);
2872 if (!rdev_set_badblocks(
2874 r10_bio->devs[m].addr,
2875 r10_bio->sectors, 0))
2876 md_error(conf->mddev, rdev);
2878 rdev = conf->mirrors[dev].replacement;
2879 if (r10_bio->devs[m].repl_bio == NULL ||
2880 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2883 if (!r10_bio->devs[m].repl_bio->bi_status) {
2884 rdev_clear_badblocks(
2886 r10_bio->devs[m].addr,
2887 r10_bio->sectors, 0);
2889 if (!rdev_set_badblocks(
2891 r10_bio->devs[m].addr,
2892 r10_bio->sectors, 0))
2893 md_error(conf->mddev, rdev);
2899 for (m = 0; m < conf->copies; m++) {
2900 int dev = r10_bio->devs[m].devnum;
2901 struct bio *bio = r10_bio->devs[m].bio;
2902 rdev = conf->mirrors[dev].rdev;
2903 if (bio == IO_MADE_GOOD) {
2904 rdev_clear_badblocks(
2906 r10_bio->devs[m].addr,
2907 r10_bio->sectors, 0);
2908 rdev_dec_pending(rdev, conf->mddev);
2909 } else if (bio != NULL && bio->bi_status) {
2911 if (!narrow_write_error(r10_bio, m)) {
2912 md_error(conf->mddev, rdev);
2913 set_bit(R10BIO_Degraded,
2916 rdev_dec_pending(rdev, conf->mddev);
2918 bio = r10_bio->devs[m].repl_bio;
2919 rdev = conf->mirrors[dev].replacement;
2920 if (rdev && bio == IO_MADE_GOOD) {
2921 rdev_clear_badblocks(
2923 r10_bio->devs[m].addr,
2924 r10_bio->sectors, 0);
2925 rdev_dec_pending(rdev, conf->mddev);
2929 spin_lock_irq(&conf->device_lock);
2930 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2932 spin_unlock_irq(&conf->device_lock);
2934 * In case freeze_array() is waiting for condition
2935 * nr_pending == nr_queued + extra to be true.
2937 wake_up(&conf->wait_barrier);
2938 md_wakeup_thread(conf->mddev->thread);
2940 if (test_bit(R10BIO_WriteError,
2942 close_write(r10_bio);
2943 raid_end_bio_io(r10_bio);
2948 static void raid10d(struct md_thread *thread)
2950 struct mddev *mddev = thread->mddev;
2951 struct r10bio *r10_bio;
2952 unsigned long flags;
2953 struct r10conf *conf = mddev->private;
2954 struct list_head *head = &conf->retry_list;
2955 struct blk_plug plug;
2957 md_check_recovery(mddev);
2959 if (!list_empty_careful(&conf->bio_end_io_list) &&
2960 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2962 spin_lock_irqsave(&conf->device_lock, flags);
2963 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2964 while (!list_empty(&conf->bio_end_io_list)) {
2965 list_move(conf->bio_end_io_list.prev, &tmp);
2969 spin_unlock_irqrestore(&conf->device_lock, flags);
2970 while (!list_empty(&tmp)) {
2971 r10_bio = list_first_entry(&tmp, struct r10bio,
2973 list_del(&r10_bio->retry_list);
2974 if (mddev->degraded)
2975 set_bit(R10BIO_Degraded, &r10_bio->state);
2977 if (test_bit(R10BIO_WriteError,
2979 close_write(r10_bio);
2980 raid_end_bio_io(r10_bio);
2984 blk_start_plug(&plug);
2987 flush_pending_writes(conf);
2989 spin_lock_irqsave(&conf->device_lock, flags);
2990 if (list_empty(head)) {
2991 spin_unlock_irqrestore(&conf->device_lock, flags);
2994 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2995 list_del(head->prev);
2997 spin_unlock_irqrestore(&conf->device_lock, flags);
2999 mddev = r10_bio->mddev;
3000 conf = mddev->private;
3001 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3002 test_bit(R10BIO_WriteError, &r10_bio->state))
3003 handle_write_completed(conf, r10_bio);
3004 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3005 reshape_request_write(mddev, r10_bio);
3006 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3007 sync_request_write(mddev, r10_bio);
3008 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3009 recovery_request_write(mddev, r10_bio);
3010 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3011 handle_read_error(mddev, r10_bio);
3016 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3017 md_check_recovery(mddev);
3019 blk_finish_plug(&plug);
3022 static int init_resync(struct r10conf *conf)
3026 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3027 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3028 conf->have_replacement = 0;
3029 for (i = 0; i < conf->geo.raid_disks; i++)
3030 if (conf->mirrors[i].replacement)
3031 conf->have_replacement = 1;
3032 ret = mempool_init(&conf->r10buf_pool, buffs,
3033 r10buf_pool_alloc, r10buf_pool_free, conf);
3036 conf->next_resync = 0;
3040 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3042 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3043 struct rsync_pages *rp;
3048 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3049 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3050 nalloc = conf->copies; /* resync */
3052 nalloc = 2; /* recovery */
3054 for (i = 0; i < nalloc; i++) {
3055 bio = r10bio->devs[i].bio;
3056 rp = bio->bi_private;
3057 bio_reset(bio, NULL, 0);
3058 bio->bi_private = rp;
3059 bio = r10bio->devs[i].repl_bio;
3061 rp = bio->bi_private;
3062 bio_reset(bio, NULL, 0);
3063 bio->bi_private = rp;
3070 * Set cluster_sync_high since we need other nodes to add the
3071 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3073 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3075 sector_t window_size;
3076 int extra_chunk, chunks;
3079 * First, here we define "stripe" as a unit which across
3080 * all member devices one time, so we get chunks by use
3081 * raid_disks / near_copies. Otherwise, if near_copies is
3082 * close to raid_disks, then resync window could increases
3083 * linearly with the increase of raid_disks, which means
3084 * we will suspend a really large IO window while it is not
3085 * necessary. If raid_disks is not divisible by near_copies,
3086 * an extra chunk is needed to ensure the whole "stripe" is
3090 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3091 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3095 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3098 * At least use a 32M window to align with raid1's resync window
3100 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3101 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3103 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3107 * perform a "sync" on one "block"
3109 * We need to make sure that no normal I/O request - particularly write
3110 * requests - conflict with active sync requests.
3112 * This is achieved by tracking pending requests and a 'barrier' concept
3113 * that can be installed to exclude normal IO requests.
3115 * Resync and recovery are handled very differently.
3116 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3118 * For resync, we iterate over virtual addresses, read all copies,
3119 * and update if there are differences. If only one copy is live,
3121 * For recovery, we iterate over physical addresses, read a good
3122 * value for each non-in_sync drive, and over-write.
3124 * So, for recovery we may have several outstanding complex requests for a
3125 * given address, one for each out-of-sync device. We model this by allocating
3126 * a number of r10_bio structures, one for each out-of-sync device.
3127 * As we setup these structures, we collect all bio's together into a list
3128 * which we then process collectively to add pages, and then process again
3129 * to pass to submit_bio_noacct.
3131 * The r10_bio structures are linked using a borrowed master_bio pointer.
3132 * This link is counted in ->remaining. When the r10_bio that points to NULL
3133 * has its remaining count decremented to 0, the whole complex operation
3138 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3139 sector_t max_sector, int *skipped)
3141 struct r10conf *conf = mddev->private;
3142 struct r10bio *r10_bio;
3143 struct bio *biolist = NULL, *bio;
3144 sector_t nr_sectors;
3147 sector_t sync_blocks;
3148 sector_t sectors_skipped = 0;
3149 int chunks_skipped = 0;
3150 sector_t chunk_mask = conf->geo.chunk_mask;
3152 int error_disk = -1;
3155 * Allow skipping a full rebuild for incremental assembly
3156 * of a clean array, like RAID1 does.
3158 if (mddev->bitmap == NULL &&
3159 mddev->recovery_cp == MaxSector &&
3160 mddev->reshape_position == MaxSector &&
3161 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3162 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3163 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3164 conf->fullsync == 0) {
3166 return mddev->dev_sectors - sector_nr;
3169 if (!mempool_initialized(&conf->r10buf_pool))
3170 if (init_resync(conf))
3174 if (sector_nr >= max_sector) {
3175 conf->cluster_sync_low = 0;
3176 conf->cluster_sync_high = 0;
3178 /* If we aborted, we need to abort the
3179 * sync on the 'current' bitmap chucks (there can
3180 * be several when recovering multiple devices).
3181 * as we may have started syncing it but not finished.
3182 * We can find the current address in
3183 * mddev->curr_resync, but for recovery,
3184 * we need to convert that to several
3185 * virtual addresses.
3187 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3193 if (mddev->curr_resync < max_sector) { /* aborted */
3194 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3195 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3197 else for (i = 0; i < conf->geo.raid_disks; i++) {
3199 raid10_find_virt(conf, mddev->curr_resync, i);
3200 md_bitmap_end_sync(mddev->bitmap, sect,
3204 /* completed sync */
3205 if ((!mddev->bitmap || conf->fullsync)
3206 && conf->have_replacement
3207 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3208 /* Completed a full sync so the replacements
3209 * are now fully recovered.
3211 for (i = 0; i < conf->geo.raid_disks; i++) {
3212 struct md_rdev *rdev =
3213 conf->mirrors[i].replacement;
3216 rdev->recovery_offset = MaxSector;
3221 md_bitmap_close_sync(mddev->bitmap);
3224 return sectors_skipped;
3227 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3228 return reshape_request(mddev, sector_nr, skipped);
3230 if (chunks_skipped >= conf->geo.raid_disks) {
3231 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3232 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3233 if (error_disk >= 0 &&
3234 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3236 * recovery fails, set mirrors.recovery_disabled,
3237 * device shouldn't be added to there.
3239 conf->mirrors[error_disk].recovery_disabled =
3240 mddev->recovery_disabled;
3244 * if there has been nothing to do on any drive,
3245 * then there is nothing to do at all.
3248 return (max_sector - sector_nr) + sectors_skipped;
3251 if (max_sector > mddev->resync_max)
3252 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3254 /* make sure whole request will fit in a chunk - if chunks
3257 if (conf->geo.near_copies < conf->geo.raid_disks &&
3258 max_sector > (sector_nr | chunk_mask))
3259 max_sector = (sector_nr | chunk_mask) + 1;
3262 * If there is non-resync activity waiting for a turn, then let it
3263 * though before starting on this new sync request.
3265 if (conf->nr_waiting)
3266 schedule_timeout_uninterruptible(1);
3268 /* Again, very different code for resync and recovery.
3269 * Both must result in an r10bio with a list of bios that
3270 * have bi_end_io, bi_sector, bi_bdev set,
3271 * and bi_private set to the r10bio.
3272 * For recovery, we may actually create several r10bios
3273 * with 2 bios in each, that correspond to the bios in the main one.
3274 * In this case, the subordinate r10bios link back through a
3275 * borrowed master_bio pointer, and the counter in the master
3276 * includes a ref from each subordinate.
3278 /* First, we decide what to do and set ->bi_end_io
3279 * To end_sync_read if we want to read, and
3280 * end_sync_write if we will want to write.
3283 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3284 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3285 /* recovery... the complicated one */
3289 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3295 struct raid10_info *mirror = &conf->mirrors[i];
3296 struct md_rdev *mrdev, *mreplace;
3298 mrdev = mirror->rdev;
3299 mreplace = mirror->replacement;
3301 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3302 test_bit(In_sync, &mrdev->flags)))
3304 if (mreplace && test_bit(Faulty, &mreplace->flags))
3307 if (!mrdev && !mreplace)
3311 /* want to reconstruct this device */
3313 sect = raid10_find_virt(conf, sector_nr, i);
3314 if (sect >= mddev->resync_max_sectors)
3315 /* last stripe is not complete - don't
3316 * try to recover this sector.
3319 /* Unless we are doing a full sync, or a replacement
3320 * we only need to recover the block if it is set in
3323 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3325 if (sync_blocks < max_sync)
3326 max_sync = sync_blocks;
3330 /* yep, skip the sync_blocks here, but don't assume
3331 * that there will never be anything to do here
3333 chunks_skipped = -1;
3337 atomic_inc(&mrdev->nr_pending);
3339 atomic_inc(&mreplace->nr_pending);
3341 r10_bio = raid10_alloc_init_r10buf(conf);
3343 raise_barrier(conf, rb2 != NULL);
3344 atomic_set(&r10_bio->remaining, 0);
3346 r10_bio->master_bio = (struct bio*)rb2;
3348 atomic_inc(&rb2->remaining);
3349 r10_bio->mddev = mddev;
3350 set_bit(R10BIO_IsRecover, &r10_bio->state);
3351 r10_bio->sector = sect;
3353 raid10_find_phys(conf, r10_bio);
3355 /* Need to check if the array will still be
3358 for (j = 0; j < conf->geo.raid_disks; j++) {
3359 struct md_rdev *rdev = conf->mirrors[j].rdev;
3361 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3367 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3368 &sync_blocks, still_degraded);
3371 for (j=0; j<conf->copies;j++) {
3373 int d = r10_bio->devs[j].devnum;
3374 sector_t from_addr, to_addr;
3375 struct md_rdev *rdev = conf->mirrors[d].rdev;
3376 sector_t sector, first_bad;
3379 !test_bit(In_sync, &rdev->flags))
3381 /* This is where we read from */
3383 sector = r10_bio->devs[j].addr;
3385 if (is_badblock(rdev, sector, max_sync,
3386 &first_bad, &bad_sectors)) {
3387 if (first_bad > sector)
3388 max_sync = first_bad - sector;
3390 bad_sectors -= (sector
3392 if (max_sync > bad_sectors)
3393 max_sync = bad_sectors;
3397 bio = r10_bio->devs[0].bio;
3398 bio->bi_next = biolist;
3400 bio->bi_end_io = end_sync_read;
3401 bio->bi_opf = REQ_OP_READ;
3402 if (test_bit(FailFast, &rdev->flags))
3403 bio->bi_opf |= MD_FAILFAST;
3404 from_addr = r10_bio->devs[j].addr;
3405 bio->bi_iter.bi_sector = from_addr +
3407 bio_set_dev(bio, rdev->bdev);
3408 atomic_inc(&rdev->nr_pending);
3409 /* and we write to 'i' (if not in_sync) */
3411 for (k=0; k<conf->copies; k++)
3412 if (r10_bio->devs[k].devnum == i)
3414 BUG_ON(k == conf->copies);
3415 to_addr = r10_bio->devs[k].addr;
3416 r10_bio->devs[0].devnum = d;
3417 r10_bio->devs[0].addr = from_addr;
3418 r10_bio->devs[1].devnum = i;
3419 r10_bio->devs[1].addr = to_addr;
3422 bio = r10_bio->devs[1].bio;
3423 bio->bi_next = biolist;
3425 bio->bi_end_io = end_sync_write;
3426 bio->bi_opf = REQ_OP_WRITE;
3427 bio->bi_iter.bi_sector = to_addr
3428 + mrdev->data_offset;
3429 bio_set_dev(bio, mrdev->bdev);
3430 atomic_inc(&r10_bio->remaining);
3432 r10_bio->devs[1].bio->bi_end_io = NULL;
3434 /* and maybe write to replacement */
3435 bio = r10_bio->devs[1].repl_bio;
3437 bio->bi_end_io = NULL;
3438 /* Note: if replace is not NULL, then bio
3439 * cannot be NULL as r10buf_pool_alloc will
3440 * have allocated it.
3444 bio->bi_next = biolist;
3446 bio->bi_end_io = end_sync_write;
3447 bio->bi_opf = REQ_OP_WRITE;
3448 bio->bi_iter.bi_sector = to_addr +
3449 mreplace->data_offset;
3450 bio_set_dev(bio, mreplace->bdev);
3451 atomic_inc(&r10_bio->remaining);
3454 if (j == conf->copies) {
3455 /* Cannot recover, so abort the recovery or
3456 * record a bad block */
3458 /* problem is that there are bad blocks
3459 * on other device(s)
3462 for (k = 0; k < conf->copies; k++)
3463 if (r10_bio->devs[k].devnum == i)
3465 if (mrdev && !test_bit(In_sync,
3467 && !rdev_set_badblocks(
3469 r10_bio->devs[k].addr,
3473 !rdev_set_badblocks(
3475 r10_bio->devs[k].addr,
3480 if (!test_and_set_bit(MD_RECOVERY_INTR,
3482 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3484 mirror->recovery_disabled
3485 = mddev->recovery_disabled;
3491 atomic_dec(&rb2->remaining);
3494 rdev_dec_pending(mrdev, mddev);
3496 rdev_dec_pending(mreplace, mddev);
3500 rdev_dec_pending(mrdev, mddev);
3502 rdev_dec_pending(mreplace, mddev);
3503 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3504 /* Only want this if there is elsewhere to
3505 * read from. 'j' is currently the first
3509 for (; j < conf->copies; j++) {
3510 int d = r10_bio->devs[j].devnum;
3511 if (conf->mirrors[d].rdev &&
3513 &conf->mirrors[d].rdev->flags))
3517 r10_bio->devs[0].bio->bi_opf
3521 if (biolist == NULL) {
3523 struct r10bio *rb2 = r10_bio;
3524 r10_bio = (struct r10bio*) rb2->master_bio;
3525 rb2->master_bio = NULL;
3531 /* resync. Schedule a read for every block at this virt offset */
3535 * Since curr_resync_completed could probably not update in
3536 * time, and we will set cluster_sync_low based on it.
3537 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3538 * safety reason, which ensures curr_resync_completed is
3539 * updated in bitmap_cond_end_sync.
3541 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3542 mddev_is_clustered(mddev) &&
3543 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3545 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3546 &sync_blocks, mddev->degraded) &&
3547 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3548 &mddev->recovery)) {
3549 /* We can skip this block */
3551 return sync_blocks + sectors_skipped;
3553 if (sync_blocks < max_sync)
3554 max_sync = sync_blocks;
3555 r10_bio = raid10_alloc_init_r10buf(conf);
3558 r10_bio->mddev = mddev;
3559 atomic_set(&r10_bio->remaining, 0);
3560 raise_barrier(conf, 0);
3561 conf->next_resync = sector_nr;
3563 r10_bio->master_bio = NULL;
3564 r10_bio->sector = sector_nr;
3565 set_bit(R10BIO_IsSync, &r10_bio->state);
3566 raid10_find_phys(conf, r10_bio);
3567 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3569 for (i = 0; i < conf->copies; i++) {
3570 int d = r10_bio->devs[i].devnum;
3571 sector_t first_bad, sector;
3573 struct md_rdev *rdev;
3575 if (r10_bio->devs[i].repl_bio)
3576 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3578 bio = r10_bio->devs[i].bio;
3579 bio->bi_status = BLK_STS_IOERR;
3580 rdev = conf->mirrors[d].rdev;
3581 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3584 sector = r10_bio->devs[i].addr;
3585 if (is_badblock(rdev, sector, max_sync,
3586 &first_bad, &bad_sectors)) {
3587 if (first_bad > sector)
3588 max_sync = first_bad - sector;
3590 bad_sectors -= (sector - first_bad);
3591 if (max_sync > bad_sectors)
3592 max_sync = bad_sectors;
3596 atomic_inc(&rdev->nr_pending);
3597 atomic_inc(&r10_bio->remaining);
3598 bio->bi_next = biolist;
3600 bio->bi_end_io = end_sync_read;
3601 bio->bi_opf = REQ_OP_READ;
3602 if (test_bit(FailFast, &rdev->flags))
3603 bio->bi_opf |= MD_FAILFAST;
3604 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3605 bio_set_dev(bio, rdev->bdev);
3608 rdev = conf->mirrors[d].replacement;
3609 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3612 atomic_inc(&rdev->nr_pending);
3614 /* Need to set up for writing to the replacement */
3615 bio = r10_bio->devs[i].repl_bio;
3616 bio->bi_status = BLK_STS_IOERR;
3618 sector = r10_bio->devs[i].addr;
3619 bio->bi_next = biolist;
3621 bio->bi_end_io = end_sync_write;
3622 bio->bi_opf = REQ_OP_WRITE;
3623 if (test_bit(FailFast, &rdev->flags))
3624 bio->bi_opf |= MD_FAILFAST;
3625 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3626 bio_set_dev(bio, rdev->bdev);
3631 for (i=0; i<conf->copies; i++) {
3632 int d = r10_bio->devs[i].devnum;
3633 if (r10_bio->devs[i].bio->bi_end_io)
3634 rdev_dec_pending(conf->mirrors[d].rdev,
3636 if (r10_bio->devs[i].repl_bio &&
3637 r10_bio->devs[i].repl_bio->bi_end_io)
3639 conf->mirrors[d].replacement,
3649 if (sector_nr + max_sync < max_sector)
3650 max_sector = sector_nr + max_sync;
3653 int len = PAGE_SIZE;
3654 if (sector_nr + (len>>9) > max_sector)
3655 len = (max_sector - sector_nr) << 9;
3658 for (bio= biolist ; bio ; bio=bio->bi_next) {
3659 struct resync_pages *rp = get_resync_pages(bio);
3660 page = resync_fetch_page(rp, page_idx);
3661 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3662 bio->bi_status = BLK_STS_RESOURCE;
3667 nr_sectors += len>>9;
3668 sector_nr += len>>9;
3669 } while (++page_idx < RESYNC_PAGES);
3670 r10_bio->sectors = nr_sectors;
3672 if (mddev_is_clustered(mddev) &&
3673 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3674 /* It is resync not recovery */
3675 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3676 conf->cluster_sync_low = mddev->curr_resync_completed;
3677 raid10_set_cluster_sync_high(conf);
3678 /* Send resync message */
3679 md_cluster_ops->resync_info_update(mddev,
3680 conf->cluster_sync_low,
3681 conf->cluster_sync_high);
3683 } else if (mddev_is_clustered(mddev)) {
3684 /* This is recovery not resync */
3685 sector_t sect_va1, sect_va2;
3686 bool broadcast_msg = false;
3688 for (i = 0; i < conf->geo.raid_disks; i++) {
3690 * sector_nr is a device address for recovery, so we
3691 * need translate it to array address before compare
3692 * with cluster_sync_high.
3694 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3696 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3697 broadcast_msg = true;
3699 * curr_resync_completed is similar as
3700 * sector_nr, so make the translation too.
3702 sect_va2 = raid10_find_virt(conf,
3703 mddev->curr_resync_completed, i);
3705 if (conf->cluster_sync_low == 0 ||
3706 conf->cluster_sync_low > sect_va2)
3707 conf->cluster_sync_low = sect_va2;
3710 if (broadcast_msg) {
3711 raid10_set_cluster_sync_high(conf);
3712 md_cluster_ops->resync_info_update(mddev,
3713 conf->cluster_sync_low,
3714 conf->cluster_sync_high);
3720 biolist = biolist->bi_next;
3722 bio->bi_next = NULL;
3723 r10_bio = get_resync_r10bio(bio);
3724 r10_bio->sectors = nr_sectors;
3726 if (bio->bi_end_io == end_sync_read) {
3727 md_sync_acct_bio(bio, nr_sectors);
3729 submit_bio_noacct(bio);
3733 if (sectors_skipped)
3734 /* pretend they weren't skipped, it makes
3735 * no important difference in this case
3737 md_done_sync(mddev, sectors_skipped, 1);
3739 return sectors_skipped + nr_sectors;
3741 /* There is nowhere to write, so all non-sync
3742 * drives must be failed or in resync, all drives
3743 * have a bad block, so try the next chunk...
3745 if (sector_nr + max_sync < max_sector)
3746 max_sector = sector_nr + max_sync;
3748 sectors_skipped += (max_sector - sector_nr);
3750 sector_nr = max_sector;
3755 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3758 struct r10conf *conf = mddev->private;
3761 raid_disks = min(conf->geo.raid_disks,
3762 conf->prev.raid_disks);
3764 sectors = conf->dev_sectors;
3766 size = sectors >> conf->geo.chunk_shift;
3767 sector_div(size, conf->geo.far_copies);
3768 size = size * raid_disks;
3769 sector_div(size, conf->geo.near_copies);
3771 return size << conf->geo.chunk_shift;
3774 static void calc_sectors(struct r10conf *conf, sector_t size)
3776 /* Calculate the number of sectors-per-device that will
3777 * actually be used, and set conf->dev_sectors and
3781 size = size >> conf->geo.chunk_shift;
3782 sector_div(size, conf->geo.far_copies);
3783 size = size * conf->geo.raid_disks;
3784 sector_div(size, conf->geo.near_copies);
3785 /* 'size' is now the number of chunks in the array */
3786 /* calculate "used chunks per device" */
3787 size = size * conf->copies;
3789 /* We need to round up when dividing by raid_disks to
3790 * get the stride size.
3792 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3794 conf->dev_sectors = size << conf->geo.chunk_shift;
3796 if (conf->geo.far_offset)
3797 conf->geo.stride = 1 << conf->geo.chunk_shift;
3799 sector_div(size, conf->geo.far_copies);
3800 conf->geo.stride = size << conf->geo.chunk_shift;
3804 enum geo_type {geo_new, geo_old, geo_start};
3805 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3808 int layout, chunk, disks;
3811 layout = mddev->layout;
3812 chunk = mddev->chunk_sectors;
3813 disks = mddev->raid_disks - mddev->delta_disks;
3816 layout = mddev->new_layout;
3817 chunk = mddev->new_chunk_sectors;
3818 disks = mddev->raid_disks;
3820 default: /* avoid 'may be unused' warnings */
3821 case geo_start: /* new when starting reshape - raid_disks not
3823 layout = mddev->new_layout;
3824 chunk = mddev->new_chunk_sectors;
3825 disks = mddev->raid_disks + mddev->delta_disks;
3830 if (chunk < (PAGE_SIZE >> 9) ||
3831 !is_power_of_2(chunk))
3834 fc = (layout >> 8) & 255;
3835 fo = layout & (1<<16);
3836 geo->raid_disks = disks;
3837 geo->near_copies = nc;
3838 geo->far_copies = fc;
3839 geo->far_offset = fo;
3840 switch (layout >> 17) {
3841 case 0: /* original layout. simple but not always optimal */
3842 geo->far_set_size = disks;
3844 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3845 * actually using this, but leave code here just in case.*/
3846 geo->far_set_size = disks/fc;
3847 WARN(geo->far_set_size < fc,
3848 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3850 case 2: /* "improved" layout fixed to match documentation */
3851 geo->far_set_size = fc * nc;
3853 default: /* Not a valid layout */
3856 geo->chunk_mask = chunk - 1;
3857 geo->chunk_shift = ffz(~chunk);
3861 static void raid10_free_conf(struct r10conf *conf)
3866 mempool_exit(&conf->r10bio_pool);
3867 kfree(conf->mirrors);
3868 kfree(conf->mirrors_old);
3869 kfree(conf->mirrors_new);
3870 safe_put_page(conf->tmppage);
3871 bioset_exit(&conf->bio_split);
3875 static struct r10conf *setup_conf(struct mddev *mddev)
3877 struct r10conf *conf = NULL;
3882 copies = setup_geo(&geo, mddev, geo_new);
3885 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3886 mdname(mddev), PAGE_SIZE);
3890 if (copies < 2 || copies > mddev->raid_disks) {
3891 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3892 mdname(mddev), mddev->new_layout);
3897 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3901 /* FIXME calc properly */
3902 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3903 sizeof(struct raid10_info),
3908 conf->tmppage = alloc_page(GFP_KERNEL);
3913 conf->copies = copies;
3914 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3915 rbio_pool_free, conf);
3919 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3923 calc_sectors(conf, mddev->dev_sectors);
3924 if (mddev->reshape_position == MaxSector) {
3925 conf->prev = conf->geo;
3926 conf->reshape_progress = MaxSector;
3928 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3932 conf->reshape_progress = mddev->reshape_position;
3933 if (conf->prev.far_offset)
3934 conf->prev.stride = 1 << conf->prev.chunk_shift;
3936 /* far_copies must be 1 */
3937 conf->prev.stride = conf->dev_sectors;
3939 conf->reshape_safe = conf->reshape_progress;
3940 spin_lock_init(&conf->device_lock);
3941 INIT_LIST_HEAD(&conf->retry_list);
3942 INIT_LIST_HEAD(&conf->bio_end_io_list);
3944 seqlock_init(&conf->resync_lock);
3945 init_waitqueue_head(&conf->wait_barrier);
3946 atomic_set(&conf->nr_pending, 0);
3949 rcu_assign_pointer(conf->thread,
3950 md_register_thread(raid10d, mddev, "raid10"));
3954 conf->mddev = mddev;
3958 raid10_free_conf(conf);
3959 return ERR_PTR(err);
3962 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3964 unsigned int raid_disks = conf->geo.raid_disks;
3966 if (conf->geo.raid_disks % conf->geo.near_copies)
3968 return raid_disks / conf->geo.near_copies;
3971 static int raid10_set_queue_limits(struct mddev *mddev)
3973 struct r10conf *conf = mddev->private;
3974 struct queue_limits lim;
3977 md_init_stacking_limits(&lim);
3978 lim.max_write_zeroes_sectors = 0;
3979 lim.io_min = mddev->chunk_sectors << 9;
3980 lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3981 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3983 queue_limits_cancel_update(mddev->gendisk->queue);
3986 return queue_limits_set(mddev->gendisk->queue, &lim);
3989 static int raid10_run(struct mddev *mddev)
3991 struct r10conf *conf;
3993 struct raid10_info *disk;
3994 struct md_rdev *rdev;
3996 sector_t min_offset_diff = 0;
4000 if (mddev->private == NULL) {
4001 conf = setup_conf(mddev);
4003 return PTR_ERR(conf);
4004 mddev->private = conf;
4006 conf = mddev->private;
4010 rcu_assign_pointer(mddev->thread, conf->thread);
4011 rcu_assign_pointer(conf->thread, NULL);
4013 if (mddev_is_clustered(conf->mddev)) {
4016 fc = (mddev->layout >> 8) & 255;
4017 fo = mddev->layout & (1<<16);
4018 if (fc > 1 || fo > 0) {
4019 pr_err("only near layout is supported by clustered"
4025 rdev_for_each(rdev, mddev) {
4028 disk_idx = rdev->raid_disk;
4031 if (disk_idx >= conf->geo.raid_disks &&
4032 disk_idx >= conf->prev.raid_disks)
4034 disk = conf->mirrors + disk_idx;
4036 if (test_bit(Replacement, &rdev->flags)) {
4037 if (disk->replacement)
4039 disk->replacement = rdev;
4045 diff = (rdev->new_data_offset - rdev->data_offset);
4046 if (!mddev->reshape_backwards)
4050 if (first || diff < min_offset_diff)
4051 min_offset_diff = diff;
4053 disk->head_position = 0;
4057 if (!mddev_is_dm(conf->mddev)) {
4058 ret = raid10_set_queue_limits(mddev);
4063 /* need to check that every block has at least one working mirror */
4064 if (!enough(conf, -1)) {
4065 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4070 if (conf->reshape_progress != MaxSector) {
4071 /* must ensure that shape change is supported */
4072 if (conf->geo.far_copies != 1 &&
4073 conf->geo.far_offset == 0)
4075 if (conf->prev.far_copies != 1 &&
4076 conf->prev.far_offset == 0)
4080 mddev->degraded = 0;
4082 i < conf->geo.raid_disks
4083 || i < conf->prev.raid_disks;
4086 disk = conf->mirrors + i;
4088 if (!disk->rdev && disk->replacement) {
4089 /* The replacement is all we have - use it */
4090 disk->rdev = disk->replacement;
4091 disk->replacement = NULL;
4092 clear_bit(Replacement, &disk->rdev->flags);
4096 !test_bit(In_sync, &disk->rdev->flags)) {
4097 disk->head_position = 0;
4100 disk->rdev->saved_raid_disk < 0)
4104 if (disk->replacement &&
4105 !test_bit(In_sync, &disk->replacement->flags) &&
4106 disk->replacement->saved_raid_disk < 0) {
4110 disk->recovery_disabled = mddev->recovery_disabled - 1;
4113 if (mddev->recovery_cp != MaxSector)
4114 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4116 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4117 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4118 conf->geo.raid_disks);
4120 * Ok, everything is just fine now
4122 mddev->dev_sectors = conf->dev_sectors;
4123 size = raid10_size(mddev, 0, 0);
4124 md_set_array_sectors(mddev, size);
4125 mddev->resync_max_sectors = size;
4126 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4128 if (md_integrity_register(mddev))
4131 if (conf->reshape_progress != MaxSector) {
4132 unsigned long before_length, after_length;
4134 before_length = ((1 << conf->prev.chunk_shift) *
4135 conf->prev.far_copies);
4136 after_length = ((1 << conf->geo.chunk_shift) *
4137 conf->geo.far_copies);
4139 if (max(before_length, after_length) > min_offset_diff) {
4140 /* This cannot work */
4141 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4144 conf->offset_diff = min_offset_diff;
4146 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4147 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4148 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4149 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4155 md_unregister_thread(mddev, &mddev->thread);
4156 raid10_free_conf(conf);
4157 mddev->private = NULL;
4162 static void raid10_free(struct mddev *mddev, void *priv)
4164 raid10_free_conf(priv);
4167 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4169 struct r10conf *conf = mddev->private;
4172 raise_barrier(conf, 0);
4174 lower_barrier(conf);
4177 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4179 /* Resize of 'far' arrays is not supported.
4180 * For 'near' and 'offset' arrays we can set the
4181 * number of sectors used to be an appropriate multiple
4182 * of the chunk size.
4183 * For 'offset', this is far_copies*chunksize.
4184 * For 'near' the multiplier is the LCM of
4185 * near_copies and raid_disks.
4186 * So if far_copies > 1 && !far_offset, fail.
4187 * Else find LCM(raid_disks, near_copy)*far_copies and
4188 * multiply by chunk_size. Then round to this number.
4189 * This is mostly done by raid10_size()
4191 struct r10conf *conf = mddev->private;
4192 sector_t oldsize, size;
4194 if (mddev->reshape_position != MaxSector)
4197 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4200 oldsize = raid10_size(mddev, 0, 0);
4201 size = raid10_size(mddev, sectors, 0);
4202 if (mddev->external_size &&
4203 mddev->array_sectors > size)
4205 if (mddev->bitmap) {
4206 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4210 md_set_array_sectors(mddev, size);
4211 if (sectors > mddev->dev_sectors &&
4212 mddev->recovery_cp > oldsize) {
4213 mddev->recovery_cp = oldsize;
4214 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4216 calc_sectors(conf, sectors);
4217 mddev->dev_sectors = conf->dev_sectors;
4218 mddev->resync_max_sectors = size;
4222 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4224 struct md_rdev *rdev;
4225 struct r10conf *conf;
4227 if (mddev->degraded > 0) {
4228 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4230 return ERR_PTR(-EINVAL);
4232 sector_div(size, devs);
4234 /* Set new parameters */
4235 mddev->new_level = 10;
4236 /* new layout: far_copies = 1, near_copies = 2 */
4237 mddev->new_layout = (1<<8) + 2;
4238 mddev->new_chunk_sectors = mddev->chunk_sectors;
4239 mddev->delta_disks = mddev->raid_disks;
4240 mddev->raid_disks *= 2;
4241 /* make sure it will be not marked as dirty */
4242 mddev->recovery_cp = MaxSector;
4243 mddev->dev_sectors = size;
4245 conf = setup_conf(mddev);
4246 if (!IS_ERR(conf)) {
4247 rdev_for_each(rdev, mddev)
4248 if (rdev->raid_disk >= 0) {
4249 rdev->new_raid_disk = rdev->raid_disk * 2;
4250 rdev->sectors = size;
4257 static void *raid10_takeover(struct mddev *mddev)
4259 struct r0conf *raid0_conf;
4261 /* raid10 can take over:
4262 * raid0 - providing it has only two drives
4264 if (mddev->level == 0) {
4265 /* for raid0 takeover only one zone is supported */
4266 raid0_conf = mddev->private;
4267 if (raid0_conf->nr_strip_zones > 1) {
4268 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4270 return ERR_PTR(-EINVAL);
4272 return raid10_takeover_raid0(mddev,
4273 raid0_conf->strip_zone->zone_end,
4274 raid0_conf->strip_zone->nb_dev);
4276 return ERR_PTR(-EINVAL);
4279 static int raid10_check_reshape(struct mddev *mddev)
4281 /* Called when there is a request to change
4282 * - layout (to ->new_layout)
4283 * - chunk size (to ->new_chunk_sectors)
4284 * - raid_disks (by delta_disks)
4285 * or when trying to restart a reshape that was ongoing.
4287 * We need to validate the request and possibly allocate
4288 * space if that might be an issue later.
4290 * Currently we reject any reshape of a 'far' mode array,
4291 * allow chunk size to change if new is generally acceptable,
4292 * allow raid_disks to increase, and allow
4293 * a switch between 'near' mode and 'offset' mode.
4295 struct r10conf *conf = mddev->private;
4298 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4301 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4302 /* mustn't change number of copies */
4304 if (geo.far_copies > 1 && !geo.far_offset)
4305 /* Cannot switch to 'far' mode */
4308 if (mddev->array_sectors & geo.chunk_mask)
4309 /* not factor of array size */
4312 if (!enough(conf, -1))
4315 kfree(conf->mirrors_new);
4316 conf->mirrors_new = NULL;
4317 if (mddev->delta_disks > 0) {
4318 /* allocate new 'mirrors' list */
4320 kcalloc(mddev->raid_disks + mddev->delta_disks,
4321 sizeof(struct raid10_info),
4323 if (!conf->mirrors_new)
4330 * Need to check if array has failed when deciding whether to:
4332 * - remove non-faulty devices
4335 * This determination is simple when no reshape is happening.
4336 * However if there is a reshape, we need to carefully check
4337 * both the before and after sections.
4338 * This is because some failed devices may only affect one
4339 * of the two sections, and some non-in_sync devices may
4340 * be insync in the section most affected by failed devices.
4342 static int calc_degraded(struct r10conf *conf)
4344 int degraded, degraded2;
4348 /* 'prev' section first */
4349 for (i = 0; i < conf->prev.raid_disks; i++) {
4350 struct md_rdev *rdev = conf->mirrors[i].rdev;
4352 if (!rdev || test_bit(Faulty, &rdev->flags))
4354 else if (!test_bit(In_sync, &rdev->flags))
4355 /* When we can reduce the number of devices in
4356 * an array, this might not contribute to
4357 * 'degraded'. It does now.
4361 if (conf->geo.raid_disks == conf->prev.raid_disks)
4364 for (i = 0; i < conf->geo.raid_disks; i++) {
4365 struct md_rdev *rdev = conf->mirrors[i].rdev;
4367 if (!rdev || test_bit(Faulty, &rdev->flags))
4369 else if (!test_bit(In_sync, &rdev->flags)) {
4370 /* If reshape is increasing the number of devices,
4371 * this section has already been recovered, so
4372 * it doesn't contribute to degraded.
4375 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4379 if (degraded2 > degraded)
4384 static int raid10_start_reshape(struct mddev *mddev)
4386 /* A 'reshape' has been requested. This commits
4387 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4388 * This also checks if there are enough spares and adds them
4390 * We currently require enough spares to make the final
4391 * array non-degraded. We also require that the difference
4392 * between old and new data_offset - on each device - is
4393 * enough that we never risk over-writing.
4396 unsigned long before_length, after_length;
4397 sector_t min_offset_diff = 0;
4400 struct r10conf *conf = mddev->private;
4401 struct md_rdev *rdev;
4405 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4408 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4411 before_length = ((1 << conf->prev.chunk_shift) *
4412 conf->prev.far_copies);
4413 after_length = ((1 << conf->geo.chunk_shift) *
4414 conf->geo.far_copies);
4416 rdev_for_each(rdev, mddev) {
4417 if (!test_bit(In_sync, &rdev->flags)
4418 && !test_bit(Faulty, &rdev->flags))
4420 if (rdev->raid_disk >= 0) {
4421 long long diff = (rdev->new_data_offset
4422 - rdev->data_offset);
4423 if (!mddev->reshape_backwards)
4427 if (first || diff < min_offset_diff)
4428 min_offset_diff = diff;
4433 if (max(before_length, after_length) > min_offset_diff)
4436 if (spares < mddev->delta_disks)
4439 conf->offset_diff = min_offset_diff;
4440 spin_lock_irq(&conf->device_lock);
4441 if (conf->mirrors_new) {
4442 memcpy(conf->mirrors_new, conf->mirrors,
4443 sizeof(struct raid10_info)*conf->prev.raid_disks);
4445 kfree(conf->mirrors_old);
4446 conf->mirrors_old = conf->mirrors;
4447 conf->mirrors = conf->mirrors_new;
4448 conf->mirrors_new = NULL;
4450 setup_geo(&conf->geo, mddev, geo_start);
4452 if (mddev->reshape_backwards) {
4453 sector_t size = raid10_size(mddev, 0, 0);
4454 if (size < mddev->array_sectors) {
4455 spin_unlock_irq(&conf->device_lock);
4456 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4460 mddev->resync_max_sectors = size;
4461 conf->reshape_progress = size;
4463 conf->reshape_progress = 0;
4464 conf->reshape_safe = conf->reshape_progress;
4465 spin_unlock_irq(&conf->device_lock);
4467 if (mddev->delta_disks && mddev->bitmap) {
4468 struct mdp_superblock_1 *sb = NULL;
4469 sector_t oldsize, newsize;
4471 oldsize = raid10_size(mddev, 0, 0);
4472 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4474 if (!mddev_is_clustered(mddev)) {
4475 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4482 rdev_for_each(rdev, mddev) {
4483 if (rdev->raid_disk > -1 &&
4484 !test_bit(Faulty, &rdev->flags))
4485 sb = page_address(rdev->sb_page);
4489 * some node is already performing reshape, and no need to
4490 * call md_bitmap_resize again since it should be called when
4491 * receiving BITMAP_RESIZE msg
4493 if ((sb && (le32_to_cpu(sb->feature_map) &
4494 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4497 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4501 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4503 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4508 if (mddev->delta_disks > 0) {
4509 rdev_for_each(rdev, mddev)
4510 if (rdev->raid_disk < 0 &&
4511 !test_bit(Faulty, &rdev->flags)) {
4512 if (raid10_add_disk(mddev, rdev) == 0) {
4513 if (rdev->raid_disk >=
4514 conf->prev.raid_disks)
4515 set_bit(In_sync, &rdev->flags);
4517 rdev->recovery_offset = 0;
4519 /* Failure here is OK */
4520 sysfs_link_rdev(mddev, rdev);
4522 } else if (rdev->raid_disk >= conf->prev.raid_disks
4523 && !test_bit(Faulty, &rdev->flags)) {
4524 /* This is a spare that was manually added */
4525 set_bit(In_sync, &rdev->flags);
4528 /* When a reshape changes the number of devices,
4529 * ->degraded is measured against the larger of the
4530 * pre and post numbers.
4532 spin_lock_irq(&conf->device_lock);
4533 mddev->degraded = calc_degraded(conf);
4534 spin_unlock_irq(&conf->device_lock);
4535 mddev->raid_disks = conf->geo.raid_disks;
4536 mddev->reshape_position = conf->reshape_progress;
4537 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4539 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4540 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4541 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4542 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4543 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4544 conf->reshape_checkpoint = jiffies;
4549 mddev->recovery = 0;
4550 spin_lock_irq(&conf->device_lock);
4551 conf->geo = conf->prev;
4552 mddev->raid_disks = conf->geo.raid_disks;
4553 rdev_for_each(rdev, mddev)
4554 rdev->new_data_offset = rdev->data_offset;
4556 conf->reshape_progress = MaxSector;
4557 conf->reshape_safe = MaxSector;
4558 mddev->reshape_position = MaxSector;
4559 spin_unlock_irq(&conf->device_lock);
4563 /* Calculate the last device-address that could contain
4564 * any block from the chunk that includes the array-address 's'
4565 * and report the next address.
4566 * i.e. the address returned will be chunk-aligned and after
4567 * any data that is in the chunk containing 's'.
4569 static sector_t last_dev_address(sector_t s, struct geom *geo)
4571 s = (s | geo->chunk_mask) + 1;
4572 s >>= geo->chunk_shift;
4573 s *= geo->near_copies;
4574 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4575 s *= geo->far_copies;
4576 s <<= geo->chunk_shift;
4580 /* Calculate the first device-address that could contain
4581 * any block from the chunk that includes the array-address 's'.
4582 * This too will be the start of a chunk
4584 static sector_t first_dev_address(sector_t s, struct geom *geo)
4586 s >>= geo->chunk_shift;
4587 s *= geo->near_copies;
4588 sector_div(s, geo->raid_disks);
4589 s *= geo->far_copies;
4590 s <<= geo->chunk_shift;
4594 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4597 /* We simply copy at most one chunk (smallest of old and new)
4598 * at a time, possibly less if that exceeds RESYNC_PAGES,
4599 * or we hit a bad block or something.
4600 * This might mean we pause for normal IO in the middle of
4601 * a chunk, but that is not a problem as mddev->reshape_position
4602 * can record any location.
4604 * If we will want to write to a location that isn't
4605 * yet recorded as 'safe' (i.e. in metadata on disk) then
4606 * we need to flush all reshape requests and update the metadata.
4608 * When reshaping forwards (e.g. to more devices), we interpret
4609 * 'safe' as the earliest block which might not have been copied
4610 * down yet. We divide this by previous stripe size and multiply
4611 * by previous stripe length to get lowest device offset that we
4612 * cannot write to yet.
4613 * We interpret 'sector_nr' as an address that we want to write to.
4614 * From this we use last_device_address() to find where we might
4615 * write to, and first_device_address on the 'safe' position.
4616 * If this 'next' write position is after the 'safe' position,
4617 * we must update the metadata to increase the 'safe' position.
4619 * When reshaping backwards, we round in the opposite direction
4620 * and perform the reverse test: next write position must not be
4621 * less than current safe position.
4623 * In all this the minimum difference in data offsets
4624 * (conf->offset_diff - always positive) allows a bit of slack,
4625 * so next can be after 'safe', but not by more than offset_diff
4627 * We need to prepare all the bios here before we start any IO
4628 * to ensure the size we choose is acceptable to all devices.
4629 * The means one for each copy for write-out and an extra one for
4631 * We store the read-in bio in ->master_bio and the others in
4632 * ->devs[x].bio and ->devs[x].repl_bio.
4634 struct r10conf *conf = mddev->private;
4635 struct r10bio *r10_bio;
4636 sector_t next, safe, last;
4640 struct md_rdev *rdev;
4643 struct bio *bio, *read_bio;
4644 int sectors_done = 0;
4645 struct page **pages;
4647 if (sector_nr == 0) {
4648 /* If restarting in the middle, skip the initial sectors */
4649 if (mddev->reshape_backwards &&
4650 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4651 sector_nr = (raid10_size(mddev, 0, 0)
4652 - conf->reshape_progress);
4653 } else if (!mddev->reshape_backwards &&
4654 conf->reshape_progress > 0)
4655 sector_nr = conf->reshape_progress;
4657 mddev->curr_resync_completed = sector_nr;
4658 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4664 /* We don't use sector_nr to track where we are up to
4665 * as that doesn't work well for ->reshape_backwards.
4666 * So just use ->reshape_progress.
4668 if (mddev->reshape_backwards) {
4669 /* 'next' is the earliest device address that we might
4670 * write to for this chunk in the new layout
4672 next = first_dev_address(conf->reshape_progress - 1,
4675 /* 'safe' is the last device address that we might read from
4676 * in the old layout after a restart
4678 safe = last_dev_address(conf->reshape_safe - 1,
4681 if (next + conf->offset_diff < safe)
4684 last = conf->reshape_progress - 1;
4685 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4686 & conf->prev.chunk_mask);
4687 if (sector_nr + RESYNC_SECTORS < last)
4688 sector_nr = last + 1 - RESYNC_SECTORS;
4690 /* 'next' is after the last device address that we
4691 * might write to for this chunk in the new layout
4693 next = last_dev_address(conf->reshape_progress, &conf->geo);
4695 /* 'safe' is the earliest device address that we might
4696 * read from in the old layout after a restart
4698 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4700 /* Need to update metadata if 'next' might be beyond 'safe'
4701 * as that would possibly corrupt data
4703 if (next > safe + conf->offset_diff)
4706 sector_nr = conf->reshape_progress;
4707 last = sector_nr | (conf->geo.chunk_mask
4708 & conf->prev.chunk_mask);
4710 if (sector_nr + RESYNC_SECTORS <= last)
4711 last = sector_nr + RESYNC_SECTORS - 1;
4715 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4716 /* Need to update reshape_position in metadata */
4717 wait_barrier(conf, false);
4718 mddev->reshape_position = conf->reshape_progress;
4719 if (mddev->reshape_backwards)
4720 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4721 - conf->reshape_progress;
4723 mddev->curr_resync_completed = conf->reshape_progress;
4724 conf->reshape_checkpoint = jiffies;
4725 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4726 md_wakeup_thread(mddev->thread);
4727 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4728 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4729 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4730 allow_barrier(conf);
4731 return sectors_done;
4733 conf->reshape_safe = mddev->reshape_position;
4734 allow_barrier(conf);
4737 raise_barrier(conf, 0);
4739 /* Now schedule reads for blocks from sector_nr to last */
4740 r10_bio = raid10_alloc_init_r10buf(conf);
4742 raise_barrier(conf, 1);
4743 atomic_set(&r10_bio->remaining, 0);
4744 r10_bio->mddev = mddev;
4745 r10_bio->sector = sector_nr;
4746 set_bit(R10BIO_IsReshape, &r10_bio->state);
4747 r10_bio->sectors = last - sector_nr + 1;
4748 rdev = read_balance(conf, r10_bio, &max_sectors);
4749 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4752 /* Cannot read from here, so need to record bad blocks
4753 * on all the target devices.
4756 mempool_free(r10_bio, &conf->r10buf_pool);
4757 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4758 return sectors_done;
4761 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4762 GFP_KERNEL, &mddev->bio_set);
4763 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4764 + rdev->data_offset);
4765 read_bio->bi_private = r10_bio;
4766 read_bio->bi_end_io = end_reshape_read;
4767 r10_bio->master_bio = read_bio;
4768 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4771 * Broadcast RESYNC message to other nodes, so all nodes would not
4772 * write to the region to avoid conflict.
4774 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4775 struct mdp_superblock_1 *sb = NULL;
4776 int sb_reshape_pos = 0;
4778 conf->cluster_sync_low = sector_nr;
4779 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4780 sb = page_address(rdev->sb_page);
4782 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4784 * Set cluster_sync_low again if next address for array
4785 * reshape is less than cluster_sync_low. Since we can't
4786 * update cluster_sync_low until it has finished reshape.
4788 if (sb_reshape_pos < conf->cluster_sync_low)
4789 conf->cluster_sync_low = sb_reshape_pos;
4792 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4793 conf->cluster_sync_high);
4796 /* Now find the locations in the new layout */
4797 __raid10_find_phys(&conf->geo, r10_bio);
4800 read_bio->bi_next = NULL;
4802 for (s = 0; s < conf->copies*2; s++) {
4804 int d = r10_bio->devs[s/2].devnum;
4805 struct md_rdev *rdev2;
4807 rdev2 = conf->mirrors[d].replacement;
4808 b = r10_bio->devs[s/2].repl_bio;
4810 rdev2 = conf->mirrors[d].rdev;
4811 b = r10_bio->devs[s/2].bio;
4813 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4816 bio_set_dev(b, rdev2->bdev);
4817 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4818 rdev2->new_data_offset;
4819 b->bi_end_io = end_reshape_write;
4820 b->bi_opf = REQ_OP_WRITE;
4825 /* Now add as many pages as possible to all of these bios. */
4828 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4829 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4830 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4831 int len = (max_sectors - s) << 9;
4832 if (len > PAGE_SIZE)
4834 for (bio = blist; bio ; bio = bio->bi_next) {
4835 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4836 bio->bi_status = BLK_STS_RESOURCE;
4838 return sectors_done;
4841 sector_nr += len >> 9;
4842 nr_sectors += len >> 9;
4844 r10_bio->sectors = nr_sectors;
4846 /* Now submit the read */
4847 md_sync_acct_bio(read_bio, r10_bio->sectors);
4848 atomic_inc(&r10_bio->remaining);
4849 read_bio->bi_next = NULL;
4850 submit_bio_noacct(read_bio);
4851 sectors_done += nr_sectors;
4852 if (sector_nr <= last)
4855 lower_barrier(conf);
4857 /* Now that we have done the whole section we can
4858 * update reshape_progress
4860 if (mddev->reshape_backwards)
4861 conf->reshape_progress -= sectors_done;
4863 conf->reshape_progress += sectors_done;
4865 return sectors_done;
4868 static void end_reshape_request(struct r10bio *r10_bio);
4869 static int handle_reshape_read_error(struct mddev *mddev,
4870 struct r10bio *r10_bio);
4871 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4873 /* Reshape read completed. Hopefully we have a block
4875 * If we got a read error then we do sync 1-page reads from
4876 * elsewhere until we find the data - or give up.
4878 struct r10conf *conf = mddev->private;
4881 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4882 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4883 /* Reshape has been aborted */
4884 md_done_sync(mddev, r10_bio->sectors, 0);
4888 /* We definitely have the data in the pages, schedule the
4891 atomic_set(&r10_bio->remaining, 1);
4892 for (s = 0; s < conf->copies*2; s++) {
4894 int d = r10_bio->devs[s/2].devnum;
4895 struct md_rdev *rdev;
4897 rdev = conf->mirrors[d].replacement;
4898 b = r10_bio->devs[s/2].repl_bio;
4900 rdev = conf->mirrors[d].rdev;
4901 b = r10_bio->devs[s/2].bio;
4903 if (!rdev || test_bit(Faulty, &rdev->flags))
4906 atomic_inc(&rdev->nr_pending);
4907 md_sync_acct_bio(b, r10_bio->sectors);
4908 atomic_inc(&r10_bio->remaining);
4910 submit_bio_noacct(b);
4912 end_reshape_request(r10_bio);
4915 static void end_reshape(struct r10conf *conf)
4917 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4920 spin_lock_irq(&conf->device_lock);
4921 conf->prev = conf->geo;
4922 md_finish_reshape(conf->mddev);
4924 conf->reshape_progress = MaxSector;
4925 conf->reshape_safe = MaxSector;
4926 spin_unlock_irq(&conf->device_lock);
4928 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4932 static void raid10_update_reshape_pos(struct mddev *mddev)
4934 struct r10conf *conf = mddev->private;
4937 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4938 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4939 || mddev->reshape_position == MaxSector)
4940 conf->reshape_progress = mddev->reshape_position;
4945 static int handle_reshape_read_error(struct mddev *mddev,
4946 struct r10bio *r10_bio)
4948 /* Use sync reads to get the blocks from somewhere else */
4949 int sectors = r10_bio->sectors;
4950 struct r10conf *conf = mddev->private;
4951 struct r10bio *r10b;
4954 struct page **pages;
4956 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4958 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4962 /* reshape IOs share pages from .devs[0].bio */
4963 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4965 r10b->sector = r10_bio->sector;
4966 __raid10_find_phys(&conf->prev, r10b);
4971 int first_slot = slot;
4973 if (s > (PAGE_SIZE >> 9))
4977 int d = r10b->devs[slot].devnum;
4978 struct md_rdev *rdev = conf->mirrors[d].rdev;
4981 test_bit(Faulty, &rdev->flags) ||
4982 !test_bit(In_sync, &rdev->flags))
4985 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4986 atomic_inc(&rdev->nr_pending);
4987 success = sync_page_io(rdev,
4991 REQ_OP_READ, false);
4992 rdev_dec_pending(rdev, mddev);
4997 if (slot >= conf->copies)
4999 if (slot == first_slot)
5003 /* couldn't read this block, must give up */
5004 set_bit(MD_RECOVERY_INTR,
5016 static void end_reshape_write(struct bio *bio)
5018 struct r10bio *r10_bio = get_resync_r10bio(bio);
5019 struct mddev *mddev = r10_bio->mddev;
5020 struct r10conf *conf = mddev->private;
5024 struct md_rdev *rdev = NULL;
5026 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5027 rdev = repl ? conf->mirrors[d].replacement :
5028 conf->mirrors[d].rdev;
5030 if (bio->bi_status) {
5031 /* FIXME should record badblock */
5032 md_error(mddev, rdev);
5035 rdev_dec_pending(rdev, mddev);
5036 end_reshape_request(r10_bio);
5039 static void end_reshape_request(struct r10bio *r10_bio)
5041 if (!atomic_dec_and_test(&r10_bio->remaining))
5043 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5044 bio_put(r10_bio->master_bio);
5048 static void raid10_finish_reshape(struct mddev *mddev)
5050 struct r10conf *conf = mddev->private;
5052 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5055 if (mddev->delta_disks > 0) {
5056 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5057 mddev->recovery_cp = mddev->resync_max_sectors;
5058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5060 mddev->resync_max_sectors = mddev->array_sectors;
5063 for (d = conf->geo.raid_disks ;
5064 d < conf->geo.raid_disks - mddev->delta_disks;
5066 struct md_rdev *rdev = conf->mirrors[d].rdev;
5068 clear_bit(In_sync, &rdev->flags);
5069 rdev = conf->mirrors[d].replacement;
5071 clear_bit(In_sync, &rdev->flags);
5074 mddev->layout = mddev->new_layout;
5075 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5076 mddev->reshape_position = MaxSector;
5077 mddev->delta_disks = 0;
5078 mddev->reshape_backwards = 0;
5081 static struct md_personality raid10_personality =
5085 .owner = THIS_MODULE,
5086 .make_request = raid10_make_request,
5088 .free = raid10_free,
5089 .status = raid10_status,
5090 .error_handler = raid10_error,
5091 .hot_add_disk = raid10_add_disk,
5092 .hot_remove_disk= raid10_remove_disk,
5093 .spare_active = raid10_spare_active,
5094 .sync_request = raid10_sync_request,
5095 .quiesce = raid10_quiesce,
5096 .size = raid10_size,
5097 .resize = raid10_resize,
5098 .takeover = raid10_takeover,
5099 .check_reshape = raid10_check_reshape,
5100 .start_reshape = raid10_start_reshape,
5101 .finish_reshape = raid10_finish_reshape,
5102 .update_reshape_pos = raid10_update_reshape_pos,
5105 static int __init raid_init(void)
5107 return register_md_personality(&raid10_personality);
5110 static void raid_exit(void)
5112 unregister_md_personality(&raid10_personality);
5115 module_init(raid_init);
5116 module_exit(raid_exit);
5117 MODULE_LICENSE("GPL");
5118 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5119 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5120 MODULE_ALIAS("md-raid10");
5121 MODULE_ALIAS("md-level-10");